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1 Introduction

We look at asset prices from the perspective of macroeconomists and ask: What do they tell
us about the structure of the economy that generated them? We document two sets of facts
that we think are worth exploring further. The first is the well-known tendency for equity
prices (or their growth rates) and term spreads (differences between long- and short-term
interest rates) to lead the business cycle. In US data, and to some extent in data for other
countries, fluctuations in these variables are positively correlated with economic growth up
to 12 months in the future. Yet in virtually all business cycle models, everything — including
equity prices and term spreads — moves up and down together. Indeed, this is often treated
as the defining feature of the business cycle, and therefore an attractive property of a model.
The second set of facts concerns excess returns. We show that excess returns on a broad
range of equity and bond portfolios also lead the cycle: high excess returns are associated
with high future growth. Moreover, they display similar cyclical patterns. This property is
less widely known and might even be new. It suggests that the cyclical component of excess
returns is common across asset classes and has a macroeconomic origin.

If these are the facts, what do they tell us about the structure of the aggregate econ-
omy? In a general markov environment, prices and quantities are functions of the state
of the economy. The facts suggest that asset prices reflect some feature of the state that
is correlated with future economic growth. We construct an example that shows how this
might work. To keep things simple, we consider a traditional exchange economy in which
the only inputs are preferences and a stochastic process for consumption growth. The evi-
dence points us to the consumption growth process. What we need, it seems, is a process
in which predictable changes in future consumption growth show up now in equity prices
and term spreads. Preferences play a role, too, since they affect the value given to expected
future growth. We’d have to work out the details to see whether this line of attack delivers
the goods, but it strikes us as a good starting point.

The evidence on excess returns poses more of a challenge. If we have constant variances
in the consumption growth process and use common loglinear approximation methods, ex-
pected excess returns are constant by construction. We need variation in either aggregate
aversion to risk (perhaps through a nonlinearity or heterogeneity across agents) or in risk
itself. This point was made forcefully by Atkeson and Kehoe (2008) and we think it’s a
good one: you can’t talk sensibly about the cyclical behavior of excess returns without
cyclical variation in risk and/or risk aversion. Both paths have been taken in the litera-
ture. Without making any claim to superiority, we consider changes in risk generated by



stochastic volatility in the consumption growth process. Recursive preferences allow us to
assign volatility a nonzero price. Cyclical variation requires, in addition, some interaction
between consumption growth (the cycle) and volatility (risk). The net result is a modest
generalization of the environment of Bansal and Yaron (2004).

Here’s the plan. In Sections 2 and 3, we document the cyclical behavior financial vari-
ables and economic growth. We do this with cross-correlation functions, which we regard
as useful visual representations of the dynamic relations between variables. In Sections 4
and 5 we describe an exchange economy and show how it can be tuned to deliver something
like the facts documented earlier. The last two sections connect our work to the literature,
clean up some loose ends, and point to issues that remain unresolved.

2 Financial indicators of business cycles

In the US and elsewhere, financial variables are commonly used as indicators of future
economic growth. Two of the most popular are equity prices (typically the growth rate or
return of a broad-based index) and the term spread (the difference between a long-maturity
interest rate and a short rate). We describe the dynamic relations between these variables
and aggregate economic growth with cross-correlation functions.

Data

Our data cover the period from 1960 to the present. We use monthly series because the
finer time interval allows clearer identification of leads and lags than the quarterly data
commonly used in national income accounts and business cycle research. Definitions and
sources are given in Appendix A, but here’s a summary. Most of our financial variables
come from CRSP and Ken French’s web site. Bond yields refer to the end of the month
— the last trading day — so the yield associated with October 2008 is that for October
31. Returns cover the whole month; the return for October 2008, for example, refers to the
period September 30 to October 31. We use logarithms of gross returns because they line
up more neatly with our theory.

Most of our macroeconomic variables come from FRED, the online data repository
of the Federal Reserve Bank of St. Louis. They are typically time averages. Industrial
production for October 2008 is an estimate of the average for that month. The same holds
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for our other two measures of economic growth, consumption and employment, and to
measures of the price level. We compute growth rates as log-differences over the previous
month (log xt − log xt−1), so that the October growth rate is the growth rate of October
over September. We also use centered year-on-year growth rates (log xt+6 − log xt−6) on
occasion; this smooths out the high-frequency variation in these series without disturbing
the timing. We think of these year-on-year growth rates as crude approximations to the
Hodrick-Prescott filtered series often used in business cycle analysis.

Cross-correlation functions

The dynamic interrelations between financial indicators and economic growth are conve-
niently summarized with cross-correlation functions. If x is a financial indicator and y is a
measure of economic growth, their cross-correlation function is

ccf xy(k) = corr(xt, yt−k),

a function of the lag k. For negative values of k, this is the correlation of the indicator
with future economic growth. If these correlations are nonzero, we say the indicator leads
the business cycle. Similarly, positive values of k correspond to correlations of the indicator
with past economic growth; nonzero values suggest a lagging indicator. Our interest is in
the former: financial variables that lead economic growth and thus serve as a source of
information about the future.

Consider equity returns. In Figure 1 we report the cross-correlation function for the
(nominal) return on an aggregate portfolio of publicly-traded equity and the monthly growth
rate of industrial production. Both series are inherently noisy — there’s little persistence
in either series — yet we see a modest but clear pattern. The correlations on the left show
that equity returns are positively correlated with growth in industrial production up to one
year in the future. The correlations are modest individually (the largest are between 0.1
and 0.2) but exhibit a clear pattern. The correlations on the right are smaller, on average,
and mostly negative.

Figure 2 shows that this pattern is robust to a number of variations in measurement
and methodology. In the upper right panel, we subtract inflation to generate (ex post) real
returns. The picture is virtually the same. The correlations are slightly larger, but it’s hard
to see this in the figure. In the lower left panel, we use centered year-on-year growth in
industrial production. When we average growth over 12 months, the pattern emerges even
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more clearly: high equity returns are associated with high economic growth several months
later. This is a typical result: correlations are larger and smoother if we use year-on-year
growth rates. The pattern is sharper still if we use centered annual returns (not reported).
These annualized series are closer to what is done in business cycle research. We stick with
month returns and growth rates because they respect the timing of the data and give us a
finer (if noisier) picture of the leads and lags present in the data. Finally, in the lower right
panel we use only data from 1990 on. The pattern is again similar, but the cross-correlation
function is choppier with the shorter sample period.

We turn next to interest rates. In Figure 3, we show the cross-correlation function
between the term spread (in this case the difference between continuously compounded
nominal yields on 5-year and 1-month treasuries) and the monthly growth rate in industrial
production. A large positive value for the spread indicates a steep yield curve, a small or
negative value a flat or declining yield curve. Decades of research has found that steep yield
curves (and large term spreads) are associated with above-average future economic growth.

We report several variations on this theme in Figure 4. The most interesting is the
upper right panel, the cross-correlation function for the short rate (the 1-month yield): the
panel is a mirror image of what we see with the term spread (repeated in the upper left
panel). This suggests that most of what we see in the cross-correlation function for the
term spread comes from the short rate. The same pattern emerges if we use the ex post
real short rate (not reported). As with equity returns, the lower left panel shows that the
cross-correlations are larger and smoother when we use the year-on-year growth rate of
industrial production, but the overall pattern is similar. Finally, if we use data from 1990
on (lower right panel), the pattern is the same as for the whole sample.

All of these features of the data are robust to changes in our measurement of economic
growth (not reported). If we replace industrial production with employment (nonfarm
employment from the establishment survey) or consumption (total, real) little changes.
The employment figures are the sharpest and consumption the least sharp; whether this
reflects better measurement or something else is hard to say.

Most of these facts have been documented in earlier studies. Prominent examples include
Ang, Piazzesi, and Wei (2006), Estrella and Hardouvelis (1991), Fama and French (1989),
King and Watson (1996), Mueller (2008), Rouwenhorst (1995), and Stock and Watson (1989,
2003). Each contains an extensive set of references to related work.
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3 Cyclical behavior of excess returns

If these cyclical properties of equity returns and interest rates seem familiar, a little thought
raises an issue: the difference in the behavior of equity returns and the short-term interest
rate. Roughly speaking, the evidence suggests that several months before an increase in
economic growth, returns on equity rise and the return on the short bond falls. If we put
the two together, we see that changes in economic growth are preceded (on average) by
changes in the expected excess return on equity.

We see precisely this cyclical variation in excess returns in Figure 5, a plot of the cross-
correlation function for the excess return on equity and the monthly growth rate of industrial
production. The correlations for excess returns are slightly larger than those for returns,
but the pattern is similar. Evidently most of the variation in excess returns comes from the
return rather than the short rate.

This cyclical variation in equity excess returns appears in a wide range of equity port-
folios, including those related to industry (49 industries based on 4-digit SIC codes), firm
size (deciles based on market value), and book-to-market ratio (deciles based on the ratio
of book to market values of equity). Virtually all of them exhibit the same cyclical pattern.
Consider industry portfolios. Cross correlations for four examples are pictured in Figure
6. We report two industries we thought would have highly cyclical production and sales
(automobiles and machinery) and two that would be less cyclical (food and drugs). Their
cross-correlation functions are nevertheless quite similar. Indeed, we could say the same for
virtually all 49 industry portfolios (not reported). At least to a first approximation, the
cyclical behavior of these excess returns is the same.

The same is true of Fama-French (1992) portfolios. Four examples are given in Figure 7:
the smallest and largest firms ranked by market value and the lowest and highest ranked
by book-to-market ratio. All four have positive correlations of excess returns with growth
3-12 months in the future. Also striking (but not reported) is that “difference portfolios”
(the infamous “small minus big” and “high minus low”) show little cyclical pattern: the
cyclical behavior apparently cancels when you subtract one return from the other.

We find the common cyclical pattern in these portfolios surprising, because we know
— from Fama and French (1992) and many others — that these portfolios have very dif-
ferent return characteristics. Their average returns, in particular, are wildly different. The
cross correlation functions suggest, however, that whatever these differences are, they are
unrelated to the business cycle.

5



If equity portfolios exhibit similar cyclical behavior, what about bonds? Bond returns
are noisier than the yields we looked at in the last section, but they display a clear cyclical
pattern. The four panels of Figure 8 are based on portfolios of US treasuries with differ-
ent maturities: 1-6 months, 19-24 months, 55-60 months, and 55-60 months, and 115-120
months. Curiously, their cyclical behavior is similar. This is, again, despite substantial
differences in their volatility and average returns. This pattern is similar to that of equities,
but not identical: where equities have a correlation close to zero with current economic
growth, bond returns have a noticeably negative correlation with growth 0-5 months in the
future.

[Later: corporate bonds, commodities, currencies, ...]

We have seen that excess returns on a variety of equity and bond portfolios lead the
business cycle: they are positively correlated with future economic growth. Cyclical vari-
ation in excess returns suggests that risk premiums vary systematically over the business
cycle. The common pattern across assets suggests that a single macroeconomic factor might
be able to account for all of them.

4 A theoretical exchange economy

The rest of the paper is concerned with mimicking the observed cyclical behavior of excess
returns in a theoretical environment. Before diving into the mechanics, it’s worth thinking
a little about what we need. Consider a stationary markov environment in which quantities
(consumption, for example) and asset prices (equity and bonds) at any date t are functions
of a finite state vector st. Returns and excess returns between dates t and t + 1 are then
functions of successive states, say r(st, st+1). Variation in each of these variables thus reflects
variation in the underlying state vector. The evidence of the last two sections indicates that
some of this variation is positively correlated with future economic growth. Even better,
the statistical work of Sargent and Sims (1978) and Stock and Watson (2005) indicates that
a state vector of modest dimension (somewhere between two and seven) can account for
virtually all of the variation in aggregate quantities and prices.

We illustrate this in the simplest possible macroeconomic setting: an exchange economy
with a representative agent. Variation in expected excess returns is generated by changes
in the conditional variance of consumption growth; stochastic volatility, in other words.
Correlation with future consumption growth is produced directly, by specifying consumption
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growth as a process that depends on past volatility. With the exception of the interaction
between consumption growth and volatility, the structure is Bansal and Yaron’s (2004). We
feature a loglinear approximation method adapted from Hansen, Heaton, and Li (2008).

Environment

We follow a long tradition in generating theoretical asset returns from an exchange econ-
omy in which a representative agent consumes an endowment whose growth rate follows a
stationary Markov process. Our version has two essential ingredients: recursive preferences
and a consumption growth process with predictable variation in consumption growth and
its conditional variance.

Preferences have the now-familiar recursive structure described by Kreps and Porteus
(1978), Epstein and Zin (1989), and Weil (1989). If Ut is “utility from date t on,” preferences
follow from the time aggregator V ,

Ut = V [ct, µt(Ut+1)] = [(1− β)cρ
t + βµt(Ut+1)ρ]1/ρ

, (1)

and (expected utility) certainty equivalent function µ,

µt(Ut+1) =
[
Et(Uα

t+1)
]1/α

. (2)

The conventional interpretation is that ρ < 1 captures time preference (the intertemporal
elasticity of substitution is 1/(1 − ρ)) and α < 1 captures risk aversion (the coefficient of
relative risk aversion is 1− α). Additive utility is a special case with α = ρ.

Both the time aggregator and the certainty equivalent function are homogeneous of
degree one, which allows us to scale everything by current consumption and convert our
problem to one in growth rates. If we define scaled utility ut = Ut/ct, equation (1) can be
expressed

ut = [(1− β) + βµt(gt+1ut+1)ρ]1/ρ , (3)

where gt+1 = ct+1/ct is the growth rate of the endowment/consumption.

With these preferences, the pricing kernel (marginal rate of substitution) is

mt+1 = β(ct+1/ct)ρ−1 [Ut+1/µt(Ut+1)]
α−ρ

= βgρ−1
t+1 [gt+1ut+1/µt(gt+1ut+1)]

α−ρ . (4)
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See Appendix B. The pricing kernel is the heart of any asset pricing model, so (4) is central
to the properties of asset prices and returns. The last term is the contribution of recursive
preferences. If α = ρ, it drops out, but in general the difference between α and ρ affects
how predictable changes in consumption growth and its volatility are priced.

We specify a general linear process for the logarithm of consumption growth. Let state
variables xt (a vector of arbitrary dimension) and vt (volatility, a scalar) follow

xt+1 = Axt + a(vt − v) + v
1/2
t Bwt+1 (5)

vt+1 = (1− ϕv)v + ϕvvt + bwt+1, (6)

where v is the unconditional mean of vt, {wt} ∼ NID(0, I), and Bb> = 0 (innovations in xt

and vt are uncorrelated). The aggregate state is therefore st = (xt, vt). Consumption growth
is tied to xt: log gt = g + e>xt for some constant vector e. This gives us flexible dynamics
for xt, and therefore consumption growth. The conditional variance of consumption growth
is proportional to vt:

Vart (log gt+1) = e>BB>e vt.

This structure also allows some interaction between the dynamics of xt and vt through
the parameter a. If a = 0, consumption growth and volatility are uncorrelated. We’ll see
later that all of these features — a predictable component in consumption growth, stochastic
volatility, and interaction between the two — are needed to account for the cyclical behavior
of asset returns.

Loglinear approximation of the pricing kernel

Asset prices in this setting are functions of the state variables and returns are functions
of prices. We derive loglinear approximations to equilibrium asset prices with the goal of
having something that is both easy to compute and relatively transparent. We break the
solution process into steps to show how it works.

Step 1 (approximate time aggregator). The starting point is equation (3), which is not
loglinear unless ρ = 0. A first-order approximation of log ut in log µt around the point
log µt = log µ is

log ut = ρ−1 log [(1− β) + βµt(gt+1ut+1)ρ]

= ρ−1 log
[
(1− β) + βeρ log µt(gt+1ut+1)

]

≈ κ0 + κ1 log µt(gt+1ut+1), (7)
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where

κ1 = βeρ log µ/[(1− β) + βeρ log µ]

κ0 = ρ−1 log[(1− β) + βeρ log µ]− κ1 log µ.

The approximation is exact when ρ = 0, in which case κ0 = 0 and κ1 = β. See Hansen,
Heaton, and Li (2008, Section III).

The rest of the solution follows those of many approximate solutions to dynamic pro-
grams: we guess a value function of a specific form with unknown parameters, substitute
optimal decisions into the Bellman equation, and solve for the unknown parameters. In
this case the decision is trivial (consume the endowment), but the rest of the solution is
the same. Equation (7) serves as the (approximate) Bellman equation with κ1 in the role
of discount factor.

Step 2 (guess value function). We conjecture an approximate scaled value function

log ut = u + p>x xt + pvvt

with coefficients (px, pv) to be determined.

Step 3 (compute certainty equivalent). The novel ingredient of (7) is the certainty
equivalent µt(gt+1ut+1). Note that

log(gt+1ut+1) = u + g + (e + px)>xt+1 + pvvt+1

= u + g + (e + px)>[Axt + a(vt − v) + v
1/2
t Bwt+1] + pv[(1− ϕv)v + ϕvvt + bwt+1].

The certainty equivalent is

log µt(gt+1ut+1) = u + g − (e + px)>av + (e + px)>[Axt + a(vt − v)] + pv[(1− ϕv)v + ϕvvt]

+ (α/2)[(e + px)>BB>(e + px)vt + p2
vbb

>].

This follows from common properties of lognormal random variables: if an arbitrary random
variable x ∼ N(a, b), then log E(x) = a + b/2 and log µ(x) = a + (α/2)b. The difference is

log(gt+1ut+1)− log µt(gt+1ut+1) = −(α/2)
[
p2

vbb
> + (e + px)>BB>(e + px)vt

]

+ v
1/2
t (e + px)>Bwt+1 + pvbwt+1.

The right-hand side has two kinds of terms: innovations (the terms with wt+1) and penalties
for risk (those with α/2).
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Step 4 (solve Bellman equation). If we substitute the certainty equivalent into (3) and
line up coefficients, we have

u = κ0 + κ1

[
u + g + pv(1− ϕv)v + (α/2)p2

vbb
>

]

p>x = e>(κ1A)(I − κ1A)−1

pv = (1− κ1ϕv)−1κ1

[
(e + px)>a + (α/2)(e + px)>BB>(e + px)

]
.

The coefficient px has the form

p>x = e>
[
(κ1A) + (κ1A)2 + (κ1A)3 + · · ·

]
.

We think of it as capturing the Bansal-Yaron effect: the impact of xt on expected future
consumption growth and, through this route, on future scaled utility (discounted at rate
κ1). If A = 0 in equation (5) (white noise consumption growth), it’s zero. The volatility
coefficient pv has two components. The first (the one involving the interaction parameter a)
comes from the impact of volatility vt on future values of xt. The second (the one involving
α/2) summarizes the impact of vt on the conditional variance of next-period scaled utility.
In practice, we compute px as stated, which implies

(e + px)> = e>(I − κ1A)−1.

The solution for pv follows immediately. We ignore the intercept (for now). From this point
on, we take the coefficients (px, pv) as given.

Step 5 (derive pricing kernel). With these inputs, the pricing kernel (4) is

log mt+1 = log β + (ρ− 1) log gt+1 + (α− ρ) [log(gt+1ut+1)− log µt(gt+1ut+1)]

= log β + (ρ− 1)(g − e>av)− (α− ρ)(α/2)p2
vbb

>

+ (ρ− 1)e>Axt + [(ρ− 1)e>a− (α− ρ)(α/2)(e + px)>BB>(e + px)]vt

+ v
1/2
t [(ρ− 1)e + (α− ρ)(e + px)]>Bwt+1 + (α− ρ)pvbwt+1

= δ0 + δ>x xt + δvvt + v
1/2
t λ>x wt+1, +λ>v wt+1, (8)

with the implicit definitions of (δ0, δx, δv, λx, λv). You may recognize this as a close relative
of so-called affine models of bond pricing. The main difference is that the parameters are
not free: they’re tied to preferences and the consumption growth process.

The pricing kernel illustrates the interaction of recursive preferences, predictability of
consumption growth, and stochastic volatility. The state variables xt play a role only to
the extent they help to forecast future consumption growth. If they do not (in other words,

10



when A = 0), they do not appear in the pricing kernel (δx = 0). If they do, their impact
is governed by the intertemporal substitution parameter ρ. Volatility vt appears for two
reasons: because it helps predict future consumption growth (the parameter a) and because
it controls the conditional variance (the second term). The impact of the former is again
controlled by intertemporal substitution, but the latter depends on risk aversion (through
α/2) and the departure from additive preferences (the difference α − ρ). When either is
zero, the term is also zero, and volatility affects the pricing kernel only through its impact
on expected future consumption growth.

In what sense is our solution an approximation? The only relation that isn’t exact — so
far — is (7), which is exact when ρ = 0. Moreover, relative to standard methods (linearize
around the deterministic steady state), uncertainty plays a central role.

Asset returns

[Despite the loglinear structure, this is still a bit of a mess. We’re hoping that with some
thought, the properties of the solution will be transparent.]

Given a pricing kernel m, (gross) asset returns r satisfy the pricing relation

Et (mt+1rt+1) = 1.

An asset, for our purposes, is a claim at date t to a dividend stream {dt+j} for j ≥ 1. We
use the pricing kernel (8) to derive prices and returns for a number of common assets, whose
properties can then be compared to those we documented in Sections 2 and 3.

Short rate. The dividend is one unit of the consumption good next period: dt+1 = 1. The
price of this 1-period (real) bond is q1

t = Etmt+1 and the return is r1
t+1 = 1/q1

t = 1/Etmt+1.
Thus

log r1
t+1 = − log q1

t = −(δ0 + λ>v λv/2)− δ>x xt − (δv + λ>x λx/2)vt,

a loglinear function of the state (xt, vt). In practice, we’ll see that the dynamics of the
short rate are dominated by the volatility term. Typically, if α and α − ρ are negative,
the short rate is decreasing in volatility. The cross-correlation function with consumption
growth then depends on its interaction with volatility. In practice this feature gives the
model an Atkeson-Kehoe (2008) flavor: movements in the short rate reflect variation in the
conditional variance of the pricing kernel more than changes in the conditional mean.
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Consumption strip. The dividend is consumption next period: dt+1 = ct+1. This isn’t a
real asset, but it illustrates how the various ingredients interact. The price-dividend ratio
is

qs
t = Et (mt+1gt+1)

and the return is rs
t+1 = gt+1/qs

t . The log growth rate is

log gt+1 = g + e>xt+1 = g + e>[Axt + a(vt − v) + v
1/2
t Bwt+1].

The price is

log qs
t = (δ0 + g − e>av + λ>v λv/2) + (δ>x + e>A)xt + [δv + e>a + (λ>x + e>B)(λx + B>e)/2]vt

and the return is

log rs
t+1 = −(δ0 + λ>v λv/2)− δ>x xt − [δv + (λ>x + e>B)(λx + B>e)/2]vt + v

1/2
t e>Bwt+1.

The excess return is therefore

log rs
t+1 − log r1

t+1 = (1/2)[λ>x λx − (λ>x + e>B)(λx + B>e)]vt + v
1/2
t e>Bwt+1.

This expression give us a sense of how cross-correlations with consumption growth will work.
Note that the excess return does not depend on xt: the impact of xt is the same on both
returns, so it drops out of the excess return. This is a general result: all of the variation
in the expected excess return (its conditional mean) comes from vt. Without it, expected
excess returns are constant. That means the cross-correlation function of the excess return
with consumption growth is largely the cross-correlation function for volatility. Second, the
innovation wt+1 will tend to generate a positive contemporaneous correlation, because it
affects consumption growth and the return the same way. Finally, the impact of volatility
depends on its relation to consumption growth. If they’re independent, as they are when
a = 0, volatility has no impact on the shape of the cross-correlation function. Evidently we
need to work on both the contemporaneous correlation and the interaction of volatility and
growth if we are going to reproduce the dynamic patterns we see in US data.

Consumption stream. This serves for now as equity. The dividend is dt+j = ct+j for all
j ≥ 1; that is, equity is a claim to consumption from next period on. The return on this
asset takes a particular form:

rc
t+1 = β−1 [gt+1ut+1/µt(gt+1ut+1)]

ρ g1−ρ
t+1 . (9)
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See Appendix B. This result depends only on the constant elasticity form of the time
aggregator; it does not reflect any of the structure we’ve given to consumption growth
or the certainty equivalent (other than linear homogeneity). Expressed in terms of state
variables and innovations, the log return is

log rc
t+1 = − log β + (1− ρ)(g − e>av)− (ρα/2)p2

vbb
>

+ (1− ρ)e>Axt + [(1− ρ)e>a− (ρα/2)(e + px)>BB>(e + px)]vt

+ v
1/2
t (e + ρpx)>Bwt+1 + ρpvbwt+1.

(You may wonder where we snuck in the loglinear approximation. The answer is that it’s
built into equation (7). Everything else is exact.) The excess return is

log rc
t+1 − log r1

t+1 = (1/2)[(α− ρ)2 − α2]p2
vbb

>

+ [(ρ− 1)e + (α− ρ)(e + px)]>BB>[(ρ− 1)e + (α− ρ)(e + px)]vt

− (α2/2)(e + px)>BB>(e + px)vt

+ v
1/2
t (e> + ρp>x )Bwt+1 + ρpvbwt+1.

Notice, again, that it does not depend on xt: all of the variation in the conditional mean
of the excess return comes from vt. The volatility term is a little complicated, but if you
consider (as we do) situations in which α is large relative to ρ, then the volatility term is
dominated by

(α2/2)(e + px)>BB>(e + px)vt.

The quadratic form is the conditional variance of next-period utility, whose impact is gov-
erned largely by risk aversion (α) squared. Thus we see that risk aversion affects not only
the average excess return, but also its variation. The Bansal-Yaron term px also plays a
role: if it’s small or even negative, the impact of volatility is also small. If px = 0, the
volatility term is

[(α− 1)2 − α2/2]e>BB>e vt,

so, again, risk aversion is central.

Multiperiod bonds. An n-period bond is a claim to one unit of the consumption good n

periods in the future: dt+j = 1 for j = n, zero otherwise. Since the return on an n+1-period
bond is rn+1

t+1 = qn
t+1/qn+1

t , the pricing relation implies that prices satisfy

qn+1
t = Et

(
mt+1q

n
t+1

)
.
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We guess that prices are loglinear functions of the state:

log qn
t = δn

0 + δn>
x xt + δn

v vt.

The coefficients satisfy the recursions

δn+1
0 = δ0 + δn

0 + [δn
v (1− ϕv)− δn>

x a]v + (δn
v b + λ>v )(δn

v b> + λv)/2

δn+1>
x = δ>x + δn>

x A = δ>x (I + A + · · ·+ An)

δn+1
v = δn>

x a + δv + δn
v ϕv + (δn>

x B + λ>x )(B>δn
x + λx)/2.

Excess returns are therefore

rn+1
t+1 − r1

t+1 = log qn
t+1 − log qn+1

t + log q1
t

= (δn
0 − δn+1

0 − δn
0 ) + δn>

x xt+1 + δn
v vt+1 + (δ1

x − δn+1
x )>xt + (δ1

v − δn+1
v )vt.

This is a little ugly, but the expressions can can be used to compute excess returns in the
model, and thus their properties.

5 Cyclical behavior of theoretical excess returns

We present a numerical example to show how this works. This is illustrative: we haven’t
worked out all the implications for means, variances, and autocorrelations of returns. But
since cross-correlations do not depend on magnitudes, it’s likely we can match these features
about as well as our starting point, Bansal and Yaron (2004).

Parameter values

We start with the Bansal-Yaron (2004) parameter values and vary them as needed. Details
follow.

Consumption growth. Our version of (5) is a scalar ARMA(1,1) approximation to the
two-component Bansal-Yaron process:

log gt − g = ϕg(log gt−1 − g) + v
1/2
t−1(wt − θwt−1) + avt−1.

Even when a = 0, consumption growth has a persistent component whose magnitude is
governed by ϕg − θ. We set θ = ϕg, which turns this process off altogether. The reason
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isn’t apparent in what follows, but this component induces a contemporaneous correlation
between interest rates and consumption growth that is inconsistent with US data. We
choose a smaller value (0.95) than Bansal-Yaron, but adjust σg to retain their value of the
unconditional variance of log gt. The autocorrelation is also similar, because consumption
growth inherits some of the persistence of the volatility process.

Volatility. Mean volatility v = 0.00802, the unconditional variance of consumption
growth. We use a smaller autocorrelation (ϕv = 0.8), but hold the unconditional variance
of volatility constant. Otherwise the cross-correlation functions die out too slowly.

The interaction term. We set a = 25; if this seems large, remember v is small. This raises
the first-order autocorrelation of log consumption growth from 0.0436 (the Bansal-Yaron
number) to 0.0895. With these values, increases in volatility generate persistent increases
in future consumption growth. It’s essential that a is positive; otherwise, the correlation
between volatility and future consumption growth is negative.

These parameter values imply the cross-correlation function between consumption growth
and volatility reported in the top panel of Figure 9. We see a similar pattern to the cross-
correlation functions for excess returns — Figure 5, for example.

Preferences. We set α = −9 (so that the coefficient of relative risk aversion is 10) and
ρ = −1 (so that the IES is 1/2). The former affects the magnitudes of risk premiums, but
has little effect on correlations. The latter (time preference) controls the sign of the impact
of volatility on excess returns on the consumption stream. If ρ > 0, the sign changes, as you
might guess from (9). We also set κ1 = 0.997, although in principle this should be derived
from other parameters. It doesn’t play an important role in any case.

Properties of excess returns

We’ve approached pricing two ways. The most natural from a theoretical perspective is
to specify returns as functions of the expanded state s∗t+1 = (st+1, st). Ditto the pricing
kernel. If you take this version and substitute for st+1 with its law of motion, you can
express returns as functions of st and innovations. That’s what we did above. In some ways
that’s more informative, but computations follow more easily from the former.

Given relations between returns (or excess returns) and the expanded state vector,
we compute cross-correlations of returns from those of the state. The critical ingredient
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for excess returns is volatility. An example is the second panel of Figure 9: the cross-
correlation function for the excess return on equity (the claim to the consumption stream)
and consumption growth. It mimics, for the most part, the first panel, and the cross–
correlations of Section 3. This should be no surprise, because the excess return is a function
of volatility.

The exception is the contemporaneous correlation, which has a sharp positive spike at
lag zero. This is a direct result of the dividend being consumption itself. In real life this
isn’t true: the contemporary contemporaneous correlation between consumption growth
and dividend growth is small. Figure 10 shows that dividends and earnings lag indus-
trial production, which raises an additional issue: the tendency for equity returns to lead
economic growth occurs despite the tendency for its cash flows to lag.

6 Discussion

We have some work to do to nail down the details, but the numerical example shows that
this kind of mechanism can replicate the shape of cross-correlation functions between excess
returns and economic growth. There remain some open issues.

Risk and risk aversion. We’ve mimicked the cyclical behavior of excess returns in a
model in which expected excess returns stem from variations in risk with constant risk
aversion. We could have addressed the same issue by allowing risk aversion to vary across
states, as it does in Campbell and Cochrane (1999) and Routledge and Zin (2003), or by
letting the price of risk vary with the distribution of wealth across individuals, as in Lustig
and Van Nieuwerburgh (2005). We have no particular reason to prefer our approach to
these alternatives. Our point is simply that the data implies cyclical variation in excess
returns.

A related issue is the magnitude of risk aversion used in our example. A common argu-
ment against risk aversion parameters this large is that when we extrapolate them to large
risks (aggregate risks are small), the extent of risk aversion seems unreasonable. Extrapola-
tion of this sort depends a lot on the form of risk preference, including the power form used
here and expected utility in general. A natural resolution is a form of risk preference that
exhibits different aversion to small and large risks. One such is disappointment aversion.
Campanale, Castro, and Clementi (2006) show that the first-order risk aversion exhibited
by such preferences exhibits substantial aversion to the small risks we see in the aggregate
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yet has modest aversion to the large risks faced by individuals. We could model that ex-
plicitly in this case, but at some cost of computational complexity. It’s simpler to think of
our risk preferences as a local approximation for the small risks present in this model.

An alternative is to interpret the risk aversion parameter as aversion to uncertainty
about the model’s structure. Barillas, Hansen, and Sargent (2008) show that a modest
amount of uncertainty about the model’s structure (the stochastic process for consumption,
for example) can look like extreme risk aversion.

Consumption and returns. Empirical work by Canzoneri, Dumby, and Diba (2007) and
Parker and Julliard (2005) shows that the contemporaneous correlation between returns and
consumption growth is small, but increases as we expand the time interval. The evidence is
Sections 2 and 3 is similar: since the correlation is larger with a lag of several months, it’s
not hard to imagine that the correlation will increase with the time interval. Our theoretical
model suggestions an explanation: that the pricing kernel contains an additional factor that
is correlated with consumption growth only with a lag.

Alvarez-Jermann bound. Our example has a relatively small bound. Is there enough
variability in the pricing kernel with our parameter values?

Endogenous consumption. In a more complete model, variation in the conditional vari-
ance of (say) productivity shocks will generate an endogenous response from consumption.
Naik (1993) and Primiceri, Schaumburg, Tambalotti (2006) are examples. It remains to be
seen whether this produces the interaction we have specified for volatility and consumption
growth.

Cross-section of returns. We’ve looked at the possibility that aggregate volatility might
account for the cyclical behavior of excess returns. Koijen, Lustig, and Van Nieuwerburgh
(2008) use a similar approach to account for the cross section of asset returns.

Solution method. There is a growing literature on perturbation methods, in which uncer-
tainty doesn’t appear until the second-order approximation. Collard and Juillard (2001) is
an elegant example, and Van Binsbergen, Fernandez-Villaverde, Koijen, and Rubio-Ramirez
(2008) show how such methods can be extended to models with recursive preferences. Our
approach differs in two respects: recursive preferences lead to more complex equilibrium
conditions, and we use methods similar to those in finance in which variances appear even
with first-order (linear) approximations. This isn’t a substitute for high-order approxi-
mations, but it allows us to generate reasonably accurate solutions without giving up the
convenience of linearity.

17



7 Conclusions

[Later.]
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A Data sources

[Later.]

B Theoretical results

The Kreps-Porteus pricing kernel

[Change to Markov environment with conditional probabilities π(st+1|st).]

The pricing kernel in a representative agent model is the marginal rate of substitution
between (say) consumption at date t [ct] and consumption in state s at t+1 [ct+1(s)]. Here’s
how that works with recursive preferences. With this notation, the certainty equivalent (2)
might be expressed less compactly as

µt(Ut+1) =

[∑
s

π(s)Ut+1(s)α

]1/α

,

where π(s) is the conditional probability of state s and Ut+1(s) is continuation utility. Some
derivatives of (1) and (2):

∂Ut/∂ct = U1−ρ
t (1− β)cρ−1

t

∂Ut/∂µt(Ut+1) = U1−ρ
t βµt(Ut+1)ρ−1

∂µt(Ut+1)/∂Ut+1(s) = µt(Ut+1)1−απ(s)Ut+1(s)α−1.

The marginal rate of substitution between consumption at date t and consumption in state
s at t + 1 is

∂Ut/∂ct+1(s)
∂Ut/∂ct

=
[∂Ut/∂µt(Ut+1)][∂µt(Ut+1)/∂Ut+1(s)][∂Ut+1(s)/∂ct+1(s)]

∂Ut/∂ct

= π(s) β

(
ct+1(s)

ct

)ρ−1 (
Ut+1(s)
µt(Ut+1)

)α−ρ

.

The pricing kernel (4) is the same with the probability π(s) left out and the state left
implicit.

Equity prices and returns

We define equity at t as a claim to consumption from t + 1 on. The return is the ratio of
its value at t + 1, measured in units of t + 1 consumption, to the value at t, measured in
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units of t consumption. The value at t + 1 is Ut+1 expressed in ct+1 units:

Ut+1/ (∂Ut+1/∂ct+1) = Ut+1/
[
(1− β)U1−ρ

t+1 cρ−1
t+1

]

= (1− β)−1uρ
t+1ct+1.

The value at t is the certainty equivalent expressed in ct units:

qc
t ct =

∂Ut/∂µt(Ut+1)
∂Ut/∂ct

µt(Ut+1) =
βµt(Ut+1)ρ

(1− β)cρ
t

ct

= β(1− β)−1µt(gt+1ut+1)ρct.

The return is the ratio:

rc
t+1 = β−1 [ut+1/µt(gt+1ut+1)]

ρ gt+1

= β−1 [gt+1ut+1/µt(gt+1ut+1)]
ρ g1−ρ

t+1 .

Check to see if this satisfies the Euler equation:

Et
(
mt+1r

c
t+1

)
= Et [gt+1ut+1/µt(gt+1ut+1)]

α

= µt(gt+1ut+1)α/µt(gt+1ut+1)α = 1.

[To do: Connect to Campbell-Shiller approx... show that the approx in u is equiv to that
in q with the same κ1.]

Computing cross correlations

Recall that the state is st = (xt, vt) and the “expanded state” is s∗t = (st, st−1). The latter
has the law of motion

s∗t+1 = A∗s∗t + B∗wt+1,

with

As =

[
A a
0 ϕv

]
, Bs =

[
B
b

]

and

A∗ =

[
As 0
I 0

]
, B∗ =

[
Bs

0

]
.

The unconditional variance is

G(0) = E
(
s∗t s

∗>
t

)
= A∗G(0)A>∗ + B∗B>

∗ .
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We compute G(0) iteratively using Hansen and Sargent’s (2005) Matlab program doublej.m.
Autocovariances follow from

G(k) = E
(
s∗t s

∗>
t−k

)
=

{
Ak∗G(0) k > 0

G(0)(Ak∗)> k < 0.

Since G(−k) = G(k)>, positive k is sufficient.

Returns and excess returns are linear functions of the expanded state: rt = Hs∗t say for
a vector of returns and excess returns. Autocovariances are

E
(
rtr

>
t−k

)
= hG(k)h>.

Cross-covariances are off-diagonal elements and cross-correlations are scaled by standard
deviations.
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Figure 1
Cross correlations for equity returns
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Notes. The figure depicts the cross-correlation function for the return on an aggregate
equity portfolio and the monthly growth rate of industrial production. On the left side
of the figure, the return leads growth, on the right side it lags. The sample period is
1960-present.
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Figure 2
Cross correlations for equity returns: variations
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Year−on−Year Growth
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Notes. The figure depicts cross-correlation functions for the return on an aggregate equity
portfolio and the growth rate of industrial production. The upper left panel is a repeat of
Figure 1. The upper right panel is based on the real equity return: we subtract the monthly
inflation rate from the nominal return. The bottom left panel replaces monthly growth in
industrial production with centered year-on-year growth. All three use data from 1960 to
the present. The lower right panel uses data from 1990 to the present.
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Figure 3
Cross correlations for the term spread
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Notes. The figure depicts the cross-correlation function for the term spread (the difference
between the 5-year and 1-month continuously compounded nominal yields on US treasuries)
and the monthly growth rate of industrial production. The sample period is 1960-present.
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Figure 4
Cross correlations for the term spread: variations
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Notes. The figure depicts cross-correlation functions for interest rates and the growth rate
of industrial production. The upper left panel is a repeat of Figure 3 for the term spread.
The bottom left panel replaces monthly growth in industrial production with centered year-
on-year growth. The upper right panel is based on the short rate (the 1-month treasury
yield). All three use data from 1960 to the present. The lower right panel uses data from
1990 to the present.
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Figure 5
Cross correlations for equity excess returns
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Notes. The figure depicts the cross-correlation function for the excess return on an aggregate
equity portfolio and the monthly growth rate of industrial production. The sample period
is 1960-present.
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Figure 6
Cross correlations for industry portfolios
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Notes. The figure depicts cross-correlation functions for excess returns on four industry
portfolios and the monthly growth rate of industrial production. The sample period is
1960-present.
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Figure 7
Cross correlations for size and book-to-market portfolios
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Notes. The figure depicts cross-correlation functions for excess returns on the first and
tenth deciles of size and book-to-market portfolios, respectively, and the monthly growth
rate of industrial production. The sample period is 1960-present.
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Figure 8
Cross correlations for bond portfolios
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Notes. The figure depicts cross-correlation functions for the excess returns on bond port-
folios of different maturities and the monthly growth rate of industrial production. The
sample period is 1960-present.
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Figure 9
Cross correlations for numerical example
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Notes. The figure depicts cross-correlation functions for the numerical example. The top
panel is the cross-correlation function for volatility and consumption growth. The bot-
tom panel is for the excess return on “equity” (a claim to the consumption stream) and
consumption growth. NB: this is based on a = 75 to make the graph look better.
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Figure 10
Cross correlations for dividends and earnings
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Notes. The figure depicts cross-correlation functions for growth rate of dividend and earn-
ings, respectively, and industrial production.
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