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Abstract

The allocation of emissions permits in "cap-and-trade" programs is an increasingly con-

tentious policy design issue. Recent theoretical work has characterized the e¢ ciency and

distributional implications of alternative approaches to allocating these permits in detail.

This paper addresses the empirical question: Is theory borne out in practice? I develop a

simple analytical model to capture the essential theoretical relationships between permit al-

location design choices and �rm-level production decisions. Data gathered from a multi-state

emissions trading program are used to analyze these relationships empirically. Results suggest

that �rms do account for explicit environmental compliance costs (i.e. the costs of holding

permits to o¤set emissions) in their short-run supply decisions. The data provide somewhat

weaker evidence that �rms are also responding to the less salient production subsidy that is

implicitly conferred by dynamic permit allocation updating regimes.
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1 Introduction

Billions of dollars worth of tradable emissions permits are allocated each year to U.S. industrial

producers regulated under emissions "cap-and-trade" programs.1 In theory, how these permits

are allocated can have signi�cant implications for who will bear the costs and how e¢ ciently the

mandated emissions reductions will be achieved. Permit allocation has thus emerged as one of the

more contentious issues in permit market design.

Regulatory agencies have been allocating tradable emissions permits under the auspices of

local, regional, and nationwide cap-and-trade programs for over a decade. Over this time period,

theoretical analyses of the e¢ ciency and distributional implications of permit market design choices

has grown increasingly sophisticated. Accumulated theory and experience notwithstanding, we

know relatively little about how permit allocation design a¤ects �rm decision-making in real world

settings. Some core assumptions underlying policy simulation models are largely untested. This

paper brings evidence to bear on a �rst-order empirical question: are �rms responding to permit

allocation incentives as theory predicts?

Traditionally, policy makers have chosen between two general approaches to allocating emis-

sions permits: auctioning and grandfathering. Under an auction regime, emissions permits are

sold to the highest bidder. In contrast, "grandfathered" permits are freely distributed to regulated

sources based on pre-determined, �rm-speci�c characteristics. In the absence of other market fail-

ures, this choice between grandfathering and auctioning should have no bearing on permit market

e¢ ciency in the short-run (Montgomery, 1974).

Many economists favor auctioning on the grounds that revenues can be used to o¤set distor-

tionary factor taxes (Crampton and Kerr, 2002; Goulder et al.,1999).2 However, in practice, policy

makers have routinely chosen to forego auction revenues in favor of handing permits out for free

1The value of permits allocated to emitting facilities under the NOx Budget Program and the Acid Rain
Program each year is roughly $1.4 B and $4.5B, respectively. The U.S. Environmental Protection Agency (EPA)
has estimated that the value of allowances allocated annually under proposed Federal climate legislation would
exceed $200 billion (US EPA, 2008) .

2Other e¢ ciency-related arguments in favor of auctioning pertain to the mitigation of pre-existing regulatory
distortions and distributional concerns. For example, Dinan and Rogers (2002) and Parry (2004)? emphasize the
potential distributional implications of the allocation design choice, demonstrating that high income individuals
are likely to gain more from freely allocated allowances than are low income individuals,
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to regulated entities.3 The ability to make concessions to adversely impacted and politically pow-

erful stakeholders via grandfathering has arguably been as important a factor in the widespread

adoption of emissions trading programs as the promise of cost minimization and gains from trade.

More recently, a third design alternative has emerged. Under a "contingent allocation" regime,

updating rules established ex ante are used to determine how a �rm�s permit allocations will be

periodically updated over the course of the trading program. Allocation updating is typically

based on a �rm�s production choices (such as output levels or fuel inputs). The incentives created

by contingent allocation rules are quite di¤erent from those associated with grandfathering or

auctioning because updating creates an incentive to increase whatever activity determines future

emissions permit allocations.

In a theoretical, "�rst-best" setting, it is straightforward to demonstrate that periodically

updating �rms� future permit allocations based on present production choices will undermine

the e¢ ciency of permit market outcomes because the implicit subsidy conferred by allocation

updating encourages �rms to increase output to economically ine¢ cient levels. (Bohringer and

Lange, 2005; Sterner and Muller, 2008).4 However, contingent updating can welfare dominate

other permit allocation approaches when there are additional, pre-existing distortions to contend

with. For example, the theory literature has explored how allocation updating can be used reduce

ine¢ ciencies resulting from the exercise of market power (Fischer, 2003; Gerbasch and Requate,

2004; Neuho¤, Martinez, and Sato, 2006), tax interaction e¤ects (Fischer and Fox, 2007), and

emissions leakage (Bernard et al., 2007; Quirion and Demailly, 2006). Allocation updating can

also been discussed as a used to reduce impacts on consumer prices and mitigate e¤ects on sectoral

adjustment to address political concerns about the incidence of a cap-and-trade programs (Jensen

and Rasmussen, 2000).

Political support for contingent allocation updating is increasing. Industry groups endorse it

as a "common sense way to promote e¢ ciency, fairness, and environmental protection".5 Policy

3A majority of permits are distributed freely to regulated entities in Southern California�s RECLAIM program,
the European Union�s Emissions Trading Program, the nation-wide Acid Rain Program, and the regional NOx
Budget Trading Program.

4Here, �rst best refers to a regulatory environment in which the only market distortion or imperfection is the
environmental externality that the emissions regulation is designed to internalize.

5"Advantages of Allocating Emissions Credits Based on E¢ ciency." The Clean Energy Group. May 15, 2009.
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experts concede that it may o¤er the most pragmatic approach to mitigating the adverse e¤ects

of environmental regulation on domestic industry competitiveness when emissions regulations are

incomplete.6 Federal climate legislation passed in June 2009 by the House of Representatives

includes provisions for allocation updating as a means of compensating trade exposed emitters

for compliance costs incurred.7 In, legislators are considering allocation updating as a means

of mitigating impacts on consumer prices and reducing emissions leakage to unregulated entities

(Bushnell and Chen, 2009).8

Can permit allocation design be e¤ectively used to achieve these kinds of policy objectives?

This depends in large part on whether �rms respond to permit market incentives as standard

theory predicts. In policy debates, stakeholders have begun to question the extent to which

the implicit subsidy conferred by updating will be factored into �rms�"real world" production

decisions.9 Others contend that these subsidy e¤ects will be mitigated by pre-existing regulatory

and market constraints (NCEP, 2008). Finally, researchers investigating private-sector decision-

making in other contexts have documented gain-loss asymmetries and heuristic behaviors. If these

behavioral factors in�uence environmental compliance decisions, �rms may perceive and respond

to permit allocation incentives in unexpected ways(see, for example, Duxbury and Summers, 2004;

Hirshliefer, 2001).

This study makes three contributions to both the academic literature and the ongoing policy

discourse. In the �rst part of the paper, a simple analytical model is used to illustrate the essential

short-run implications of the permit allocation design. In an attempt to clarify the terms of the

policy debate surrounding this issue, these theoretical implications have been over-simpli�ed to

the point of misrepresentation. For example, in an attempt to "clear up misperceptions, common

http://www.thecleanenergygroup.com/lsgbrie�ngs.asp>In
6See, for example, the testimony of Richard Morgenstern of Resources for the Future. Competitiveness and

Climate Policy: Avoiding Leakage of Jobs and Emissions: Hearings before the committee on Energy and Commerce
U.S. House of Representatives. March 18, 2009

7The justi�cation for contingent updating in this context rests on the concern that �rms would divert new
investments and production to manufacturing facilities located in countries without commensurate regulations.
Contingent allocation updating, intended as a stop-gap measure, compensates �rms for the compliance costs in-
curred so as to mitigate adverse competitiveness impacts.

8The design recommendations of both the California Public Utilities Commission and theWCI include the
minimization of the impacts of carbon regulations on consumers as a prominent objective of the allocation process.
In this context, allocation updating has emerged as a politically palatable option (Bushnell and Chen, 2009).

9See, for example, RGGI, 2004.
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among many stakeholders, about how allocation decisions do and do not a¤ect the way an emis-

sions trading program works in practice", an in�uential report asserts that �[a]llocation a¤ects

the distribution of bene�ts and burdens among �rms and industry sectors; it does not change

program results or overall costs (NCEP, 2007)." In fact, this conventional wisdom does not hold

when future permit allocations are contingent upon current production choices. The simple model

presented here intuitively demonstrates how permit allocation design can signi�cantly a¤ect �rms�

compliance choices (and thus aggregate social costs).

Second, the paper o¤ers some of the �rst empirical evidence of how contingent allocation

updating is working in practice. Previous attempts to study the e¤ects of contingent permit allo-

cation updating, and revenue recycling more generally, have been unable to convincingly separate

the e¤ects of the implicit subsidy from the overall e¤ect of the environmental regulation.10 I exploit

an unusual policy setting in which the implicit subsidies conferred by a regional emissions trading

program vary systematically across producers. More importantly, much of this cross-sectional

and inter-temporal variation is exogenous- in an econometric sense- to �rms�short-run production

decisions. I present a general model of the underlying data generating process to motivate a more

descriptive analysis of �rms�observed esponse to permit allocation incentives. I then derive a

tractable reduced form that can be implemented empirically using a discrete choice framework.

This facilitates a more structural analysis of how permit allocation design decisions have a¤ected

�rms�short run compliance decisions. Estimation results provide strong evidence that �rms ac-

count for explicit compliance costs (i.e. the costs of holding permits to o¤set emissions) in their

short-run production decisions. The data provide somewhat weaker evidence that �rms are also

accounting for the implicit subsidy, although there appears to be substantial variation in the extent

to which di¤erent plants incorporate this positive incentive in their supply decisions. Attempts to

explain this variation in terms of observable plant characteristics meet with only limited success;

10Sterner and Isaksson (2006) were the �rst to empirically investigate the e¤ects of revenue recycling in the
context of market-based emissions regulation. They analyze a Swedish program in which emissions charges are
refunded to polluting �rms in proportion to output. Because rebates do not vary across �rms or across time, the
authors cannot separate the e¤ect of the tax fro the e¤ect of the recycled revenues. In a more recent paper, Sjim
et al. (2006) encounter similar di¢ culties in their analysis of how sequentially grandfathered permits in the EU
ETS impacts electricity market outcomes. The lack of clarity surrounding how current production decisions will
in�uence future permit allocations in the European Union�s Emissions Trading System complicates their analysis
of how this implicit updating has a¤ected �rm decision making.
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I provide weak evidence that larger plants are more responsive to these positive incentives.

Finally, the empirical results provide insights into how permit market incentives a¤ect �rms�

short-run production decisions more generally. An emerging literature examines the relationships

between permit price series and wholesale electricity price series (Bunn and Fezzi, 2007; Fell,

2009; Sijm et al., 2006 ; Zachmann and von Hirschhausen, 2008). However, given the complexity

of interactions between permit markets and wholesale electricity markets, it has been di¢ cult to

deduce �rm-level behaviors from wholesale market price dynamics. This paper examines �rm-level

responses to changing permit market conditions in unprecedented detail.

The paper proceeds as follows. The following section develops a simple theoretical model

that is used to intuitively demonstrate the �rst order implications of alternative permit allocation

designs. Section 3 introduces the NOx Budget Program. Section 4 discusses the data that were

collected from this program. Section 5 augments the simple framework presented in the �rst section

so as to re�ect some important features of the underlying data generating process and introduces

the empirical strategy. Section 6 summarizethe estimation results. Section 7 concludes.

2 Allocating emissions permits: Theory

The analytical framework introduced in this section serves two purposes. The model is �rst used

to demonstrate the most essential partial equilibrium implications of the permit allocation design

choice, and then to motivate the empirical analysis. The model is intentionally simple. Many of the

insitutional details and market imperfections captured by models found elsewhere in the literature

(such as pre-existing tax distortions, the exercise of market power, or incomplete regulation) have

been stripped away. Eliminating some of the complexities of real policy settings helps to highlight

the the most basic trade-o¤s between static production e¢ ciency, static allocative e¢ ciency, and

distributional concerns.

The analysis will focus on short run relationships exclusively. To the extent that allocation

updating is seen as a way to smooth the transition to auctioning regimes, these short run relation-

ships will be very important. Also, a clear characterization of short run interactions is an essential

�rst step towards understanding longer-run outcomes and implications.

5



2.1 A simple partial equilibrium framework

Production of a homogeneous good generates harmful pollution. Industry production in time t is

denoted Qt. Let qit denote the quantity produced by �rm i in time t. Producers are characterized

by increasing marginal cost technologies; Ci(qit) and ciqit denote the unit-speci�c total cost and

marginal cost functions, respectively. E¢ cient factor markets are assumed. Marginal operating

costs thus re�ect the true opportunity cost of allocating inputs to production in this industry.

Emissions rates ei are constant per unit of output but vary across �rms. Demand is characterized

by an a¢ ne inverse demand function Pt = a� bQt.

To keep the model transparent and tractable, only two price taking �rms are represented. A

more general model with N > 2 is easily formulated but more di¢ cult to intuitively interpret. The

two �rms are indexed c (denoting the relatively "clean" producer) and d (denoting the relatively

"dirty" producer). For the purpose of this example, I assume emissions rates are negatively

correlated with operating costs: ; ec < ed ,. cc > cd:11

Industry emissions are regulated under a cap-and-trade program; aggregate emissions in pe-

riod t cannot exceed an exogenously determined cap Et: The time path of permitted emissions

(i.e. E1; E2; :::) is set by the regulator ex ante. To comply with the program, �rms must o¤set

uncontrolled emissions with permits. These permits are tradable in an emissions permit market.

There are no spatial or temporal restrictions on permit trading. I assume that �rms acts as price

takers in both the permit and product markets

This short run analysis conditions on existing production technology and operating charac-

teristics; emissions rates and operating costs are exogenously determined and �xed. Emissions

reductions can thus be achieved in two ways: through increasing the share of the market served

by the relatively clean producer or reducing the quantity consumed.

In existing and planned cap-and-trade programs, permits are allocated via auctioning, grand-

fathering, symmetric "output-based" updating, or asymmetric updating. Stylized representations

of all four approaches are considered below.

11This assumption �nds empirical support. Unit-level fuel operating costs and NOx emissions rates are negatively
correlated in the data analyzed in the subsequent section. However, there are certainly examples of low-emitting
facilities with relatively low operating costs, and high-emitting facilities with relatively high operating costs.

6



2.2 The benchmark case

Outcomes under alternative allocation rules will be compared against a "�rst best" benchmark

that maximizes total economic surplus S(Q) subject to technology operating constraints and the

constraint that aggregate emissions do not exceed the exogenously set cap:

max
qct;qdt

: S(Qt) =

QtZ
0

P (Qt)dQt � Cc(qct) � Cd(qdt) (1)

s:t: ecqct + edqdt = Et

qct + qdt = Qt:

Note that the welfare measure S(Qt) re�ects the utility associated with total consumption less

production costs but does not capture the bene�ts associated with emissions reductions. Because

aggregate emissions are held constant at E across all scenarios, changes in S(Qt) across scenarios

will re�ect changes in absolute welfare vis a vis this benchmark.

The �rst order conditions for this maximization problem imply:

P (Q�t )� ciq�it � � tei = 0; i = c; d: (2)

where � t is the shadow value of the emissions constraint at time t. The � superscript denotes

values that maximize economic surplus subject to the constraint.

Rearranging these �rst order conditions (and omitting the t subscripts for expositional clarity)

yields:
P � cdq�d
P � ccq�c

=
ed
ec
: (3)

Figure 1 helps to illustrate this result. The downward sloping line, representing the emissions

constraint, connects all allocations of production across the two �rms that exactly satisfy the

emissions cap. The slope of this line is ed
ec
: The economic surplus function S(Q) is also projected

into this space. The level sets of the surplus function appear as concentric iso-surplus curves.

The slope of an iso-surplus curve measures the rate at which production at the clean �rm can be

substituted for production at the dirty �rm while holding total economic surplus constant. The
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socially optimal allocation of production occurs at the point where the emissions constraint is just

tangent to an iso-surplus curve. All other points that exactly satisfy the emissions constraint are

associated with lower levels of economic surplus.

Two e¢ ciency properties of this equilibrium are worth highlighting:

Property 1 : Marginal abatement costs (measured in terms of foregone pro�ts per unit of emissions

reduction) are set equal across producers:

P � cdq�d
ed

=
P � ccq�c
ec

: (4)

This assures that abatement activities have been e¢ ciently allocated among producers. Given

production level Q� , the cost of meeting the emissions constraint E is minimized.

Property 2 : Emissions abatement activities are allocated e¢ ciently across producers and con-

sumers:
@S�

@E
=
ccq

�
c � cdq�d
ed � ec

: (5)

Intuitively, the derivative of the welfare function with respect to the emissions constraint

captures the marginal cost of reducing emissions via conservation measures on the demand side

(i.e. through a reduction in consumption). The marginal abatement cost on the supply side is

the cost of reallocating production from the low cost, high emitting producer to the high cost, low

emitting producer so as to incrementally reduce emissions. [5] implies that an optimal balance is

struck between the two short run abatement options. Appendix 1 works through this result in

more detail.

Returning to Figure 1, the broken line connects all points associated with an aggregate pro-

duction level Q�: Production allocations on the emissions constraint lying strictly above (below)

the optimal outcome are associated with less (more) consumption than is consistent with compli-

ance constrained economic surplus maximization, thus requiring higher (lower) levels of supply-side

abatement to achieve compliance.

2.3 Grandfathering and auctioning regimes
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I now consider a perfectly competitive industry subject to a market-based emissions cap-and-trade

program. Let Ait represents the �rm�s permit allocation in period t. Under grandfathering, the

number of permits the �rm receives (free of charge) from the regulator each period is determined

at the outset of the program. Under auctioning, Ait = 0 8 i: Under either scenario, �rms�future

permit allocations are independent of their production decisions going forward.

Let � t represent the permit price (an endogenously determined parameter). The �rm�s

compliance costs (i.e. the cost of holding permits to o¤set uncontrolled emissions) are � t(Ait�eiqit):

The pro�t maximization problem faced by price taking �rm i in time period t is thus:

max : �it = Ptqit � C(qit) + � t(Ait � eiqit); i = c; d: (6)

Assuming price-taking behavior in both the permit and product markets, the �rst order

conditions for this pro�t maximization problem are given by [2]. Thus, the e¢ ciency properties

[4] and [5] are satis�ed under both grandfathering and auctioning.

2.4 Output-based updating

Under a contingent updating regime, the total quantity of emissions permits to be allocated in

each period, and the rules specifying how �rms�production decisions will determine future permit

allocations, are determined at the outset of the program. An output-based updating regime

de�nes a �rm�s permit allocation in period t as a function of the �rms�production decisions in

the preceeding period or periods. To simplify the analysis, I consider the simplest of output-based

allocation rules: a �rm�s permit allocation in period t + 1 is determined by its market share in

period t:

Ait+1 =
Et+1
Qt

qit � stqit: (7)

The size of the subsidy conferred by output-based updating will depend on the total number

of permits allocated in the future period Et+1, how the �rm discounts future revenue streams �i(t),

the future permit price � t+1, and total industry production Qt:Contingent-updating thus adds an
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additional argument to the �rm�s pro�t function.:

max : �it = Pitqit � C(qit)� � teiqit + �i(1) � t+1stqit: (8)

Some additional assumptions further simplify the analysis. Unrestricted banking and bor-

rowing of permits, rational expectations, and zero arbitrage together imply that permit prices are

constant in present value terms. If all �rms discount future period gains at the market rate and

take total sector output Qt as given, the implicit subsidy per unit of production in period t simpli-

�es to �st.12 Omitting t subscripts for simplicity, the �rst order conditions for pro�t maximization

under output-based updating are:

P (Q0)� ciq0i � �(ei + s) = 0; i = c; d (9)

The subscript �denotes equilibrium outcomes under non-contingent permit updating. Rearranging

[9] yields:
P � cdq0d
P � ccq0c

=
ed � s
ec � s

:

This equilibrium outcome { q0c, q
0
dg lies strictly above the optimal outcome on the emissions

constraint line and is associated with a level of total economic surplus that is strictly less than

S(Q�) (see �gure 1): Intuitively, the implicit production subsidy increases each �rm�s willingness

to supply vis a vis grandfathering or auctioning. At higher levels of production, more supply-side

abatement is required to comply with the emissions cap. Consequently, the market share of the

relatively clean producer increases relative to the �rst best benchmark.

Appendix 2 demonstrates that the equilibrium permit price will be unambiguously higher

than � �, re�ecting higher supply-side marginal abatement costs. Consumption levels exceed that

associated with optimal compliance, so there is a transfer of surplus from producers to consumers

vis a vis grandfathering.13

12Alternatively, �rms could take into account how their own production decisions a¤ect aggregate production
levels (and thus the size of the implicit subsidy). This would reduce the perceived production subsidy by �t�tAt+1qt

Q2
t

:

Intuitively, if the �rm incrementally increases production in time t, it decreases the number of permits allocated in
time t+ 1 per share of output Qt, although it is now entitled to an additional share.
13Making similar distributional comparisons with auctioning is complicated by the fact that consumer and pro-
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2.5 Asymmetric contingent allocation

In practice, the implicit production subsidy introduced by contingent updating is often asymmetric.

For political and practical reasons, the s parameter often varies across units based on technology

type, fuel e¢ ciency, or other observable operating characteristics. To accomodate asymmetric

updating, the �rm�s objective function is modi�ed slightly to allow the implicit production subsidy

to vary across �rms. Omitting the t subscripts for simplicity, the �rst order conditions for pro�t

maximization are:

P (Q00)� ciq00i � �(ei + si) = 0; i = c; d (10)

I assume that the updating parameters are de�ned such that the total number of permits

allocated through updating does exceed the total cap. This implies that the average updating

parameter cannot exceed the average emissions rate. In this asymmetric case, the equilibrium

permit price is no longer equal to the economic cost of redispatching production activity in order

to incrementally reduce emissions. If the implicit production subsidy favors the relatively dirty

(clean) �rm, the permit price must rise above (fall below) the true marginal abatement cost in

order to counteract this asymmetry in compliance incentives. The equilibrium permit price is:

� 00 =
ccqc � cdqd

ed � ec + (sc � sd)
: (11)

The e¢ ciency and distributional implications of asymmetric updating vis a vis �rst best will

depend on the ratio of the updating parameters sc and sd. If the implicit subsidy per unit of

pollution is exactly equal across �rms (i.e. implying that sd
sc
= ed

ec
), the �rst best quantities and

product price are achieved (see Appendix 3). If the subsidy per unit of emissions is larger for

the relatively clean �rm (as is the case with output based updating), the outcome will occur at a

point on the emissions constraint above the optimal outcome (implying too little conservation on

the demand side and too much abatement on the supply side). Conversely, if the subsidy per unit

of emissions is larger for the more polluting �rm, consumer prices will increase and consumption

levels will fall relative to �rst best. A larger share of the mandated emissions reductions will be

ducer surplus under auctioning will depend on how auction revenues are allocated.
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achieved on the demand-side.

2.6 Motivating the empirical exercise

Conditional on the assumptions outlined above, contingent allocation updating will distort out-

comes away from the e¢ cient short-run equilibrium in a �rst best setting (except in the very special

case where si
sj
= ei

ej
;8 i 6=; j). Abatement e¤orts will be ine¢ ciently allocated across producers and

consumers and across �rms with di¤erent production technologies and cost stuctures.14 Much of

the theory literature is devoted to extending this kind of analytical exercise to more complicated,

second-best settings. In cases where the implicit subsidy can be used to mitigate one or more

pre-existing distortions or imperfections (such as the exercise of market power in the product mar-

ket, or incomplete emissions regulation) contingent allocation updating can theoretically welfare

dominate grandfathering and auctioning.

Underlying this burgeoning literature is the assumption that compliance cost minimizing

�rms in cap-and-trade programs accurately and equally account for all permit market incentives

in their supply decisions However, there are several reasons why this assumption might not hold in

practice. First, the behavioral �nance literature o¤ers evidence to suggest that �rms may focus on

information that is more readily accessible and easy to understand at the expense of information

that is more opaque or that requires more resources to process (Hirshleifer, 2001; Sarin and Weber,

1993). It is arguably much easier for plant managers to translate permit prices into compliance

costs per unit of production, versus the expected future subsidy per unit of current production.

Particularly when allocation updating rules are convoluted or confusing.

Second, researchers have found evidence of gain loss asymmetry (whereby agents place more

emphasis on minimizing losses versus maximizing gains) in private sector decision-making (Fiegen-

baum, 1990; Gabel and Sinclair-Desgagne, 2000). Studies have also documented assymmetric cost

transmission, whereby �rms pass operating cost increases through to customers at a di¤erent

rate than they pass any cost reductions). For instance, a recent study o¤er evidence of asym-

14General equilibrium models calibrated to speci�c policy contexts have been used to quantitatively estimate the
potential magnitude of these distortions. In several instances, ine¢ ciencies induced by allocation updating have
been found to be economically signi�cant. See, for example, Burtraw et al. (2005), Jensen and Rasmussen (2000),
Neuho¤ et al. (2005). (Jensen & Rasmussen 2000)(?)(?)(Quirion & Demailly 2008)
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metric compliance cost past through in the EU Emissions Trading Scheme (Zachmann and von

Hirschhausen, 2008). To the extent that these behavioral elements a¤ect �rms�environmental

compliance decisions, managers may discount- or ignore- the implicit production subsidy.

Finally, if there is any uncertainty regarding how the cap-and-trade regulation will be im-

plemented or modi�ed in the future, managers may discount the implicit production subsidy to

re�ect this regulatory risk.

In sum, whereas it is standard to assume that the explicit compliance cost and implicity

production subsidy are weighted equally in �rms�production decisions, this may not be the case

in practice.The obligation to hold permits to o¤set uncontrolled emissions may a¤ect short run

compliance decisions di¤erently than the implicit subsidy conferred by permit allocation updating.

If �rms discount- or ignore- the implicit subsidy conferred by contingent allocation updating,

permit allocation incentives will not have the intended e¤ects on �rms� short-run production

decisions, or market outcomes. In what follows, this assumption is evaluated using detailed data

from a regional emissions trading program.

3 Empirical application: The NOx Budget Program

In 1998, the U.S. Environmental Protection Agency (EPA) determined that 23 eastern states

were contributing signi�cantly to ozone non-attainment problems. These states were issued "NOx

budgets" and required to design and implement regulations that would reduce seasonal NOx

emissions to budget levels. Although states had �exibility in choosing their compliance strategies,

they were invited to meet their compliance obligations by joining an EPA-administered cap-and-

trade program. All states accepted the invitation.

States in the NOx Budget Program (NBP) are required to accept program design features

outlined in a model rule that was issued by the EPA. These features include permit trading

protocols and emissions reporting standards. For instance, throughout the program, a NOx permit

authorizes the holder to emit one ton of NOx during "ozone season" (i.e. May to September).15

15Compliance is only required in the spring and summer when average temperatures rise and NOx emissions
contribute to smog formation.

13



At the end of each season, all regulated source must hold su¢ cient permits to o¤set ozone season

emissions.16 There are no spatial trading restrictions in the NBP; permits are freely traded among

all participating sources in all participating states.

The model rule also required standardization of intertemporal trading restrictions across

participating states. Emitters cannot borrow against future allocations. Emissions in year t must

be o¤set using permits of vintage t or earlier. Permits can be banked, although the use of banked

permits is subject to a "progressive �ow control" (PFC) constraint designed to discourage the

excessive use of banked permits in a particular year.17

3.1 Permit allocation in the NBP

In the process of designing the NBP model rule, the US EPA commissioned an ex ante analysis

of permit allocation design alternatives. A detailed simulation model of the electricity sector

was used to evaluate various allocation regimes, including grandfathering, output-based allocation

updating, and fuel input-based allocation updating (US EPA, 1999)18. Simulation results indicated

that the permit allocation design choice would appreciably a¤ect market outcomes. Simulated

retail electricity prices were 3.4 percent lower under updating versus grandfathering (representing a

transfer of $1.25 billion from producers to consumers). Supply-side abatement costs were projected

to be 18 percent higher under updating versus grandfathering (largely due to an increased share

of electricity supply provided by relatively clean- and relatively more costly- natural gas units). It

was also anticipated that emissions leakage to neighboring, unregulated states would be reduced

by allocation updating; simulated electricity production in regulated jurisdictions was 10 percent

higher under updating as compared to grandfathering.

16If a facility�s emissions exceed its permit allocation, the facility must purchase additional NOx permits in
the permit market. Compliance has been nearly perfect over the duration of the program; the few cases of non-
compliance have been attributed to accounting errors.
17By law, if the number of permits in the region-wide bank prior to ozone season exceeds 10 percent of the total

(i.e. program-wide) cap for that season, a non-linear discount factor is applied. The PFC ratio is computed as 10
percent of the seasonal cap divided by the size of the bank. This ratio de�nes the fraction of banked permits that
can be used to o¤set a ton of permits that season. The remaining permits can be used to o¤set only a half ton.The
discount factor is applied at the facility level. For example, if a single �rm holds 100 permits and the ratio in year
t is de�ned to be 0.5, that �rm can use 50 banked permits to o¤set emissions in year t on a one for one basis.
18Because over 90 percent of emissions regulated under this program come from electricity producers, EPA

analysis focused exclusively on the electricity sector.
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Whereas many important program design features were de�ned at the federal level, states were

ultimately given broad �exibility with regards to permit allocation design. The EPA recommended

allocation updating based on heat inputs, but states were free to deviate from this recommenda-

tion.19 Several states chose to pursue alternative approaches; permit allocation rules vary signi�-

cantly in terms of overall regime choice (i.e. grandfathering, or contingent updating), the frequency

of allocations, and the basis for distributing the allowances.

4 Data

I use data from the �rst four years of the NOx Budget Program (i.e. 2003-2006) and focus ex-

clusively on electricity producers serving restructured wholesale electricity markets in the Eastern

United States (i.e. the New York, New England , and Mid-Atlantic or "PJM" markets).20 This

section brie�y summarizes the data.

State-level permit allocation regimes

Permit allocation design parameters were collected from state-level implementing agencies. All

states have documented the speci�c algorithms and equations used to determine facility-speci�c

permit allocations in detail. Agencies were contacted directly when implementation details were

unclear or could not be found in the public record.

Table 1 reports state-level NOx budgets (which were pre-determined and do not change

over the study period) and information regarding state-speci�c permit allocation design choices.

Whereas smaller states chose grandfathering (due in part to the management resources required to

administer a more complex permit allocation updating process), a majority of states chose some

form of contingent allocation updating based on either output or fuel inputs.
19Fuel-based updating was chosen over output-based updating primarily because, historically, emissions regula-

tions had been de�ned in terms of mass emissions per unit of heat input.
20Electricity generating facilities (EGUs) comprise 87 percent of the emissions sources and over 90 percent of

the NOx emissions regulated under the NBP (EPA, 2007). EGUs regulated under the NBP operate in a variety
if electricity market environments. Whereas units in the sample supply restructured wholesale electricity markets,
other facilities in the program are rate-regulated producers serving vertically integrated, economically regulated
electricity markets, while other units are owned and operated by public entities and operate on a non-pro�t basis.
Production at rate-regulated plants and public entities are more centrally coordinated and in�uenced by an array
of economic, regulatory, and institutional factors. I choose to focus on restructured electricity markets because
EGUs in these markets are more likely to have short-run objectives consistent with pro�t maximization.
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Unit-level operations and attributes

Hourly, unit-level emissions, heat input, and output data were obtained from the US EPA Con-

tinuous Emission Monitoring System (CEMS).21 Continuous emission monitoring and reporting

requirements for EGUs regulated under EPA�s Acid Rain Program (ARP) and/or the NOx Bud-

get Program require monitoring of hourly sulfur dioxide mass emissions, carbon dioxide mass

emissions, NOx emission rates, heat input, and other operating conditions.22

Table 2 summarizes some important unit-level operating characteristics by permit allocation

regime. I exclude nuclear, hydro, and renewable fuels because these zero emitting producers are

categorically excluded from the NOx budget program. Small producers (i.e. less than 10 or 15

MW) are also excluded from the NBP. Finally, I exclude any units for which wholesale electricity

generation is not the primary production activity (such as self generating units). This leaves 610

electricity generating units in the cleaned data set.

Two operating attributes that are particularly relevant to this analysis are the NOx emissions

rate (i.e. pounds of NOx emitted per MWh electricity produced) and heat rate (i.e.btus of fuel

burned per kWh of electricity produced).23 It is fairly standard in the empirical literature to treat

these unit-speci�c performance parameters as immutable features of the production technology.

However, emissions rates and heat rates can be a¤ected by operating decisions made by the plant

manager, including the choice of fuel characteristics, utilization rates, and combustion tuning.

Purely exogenous factors (such as ambient temperature) can also play a role.

To construct unit-speci�c summary measures of these operating characteristics, separate

seasonal regression equations are estimated for each unit. This estimation exercise, described

in more detail in Appendix 4, obtains unit-speci�c, season-speci�c point estimates of emission

21Coal units report hourly gross and net unit load (in MWe). Combined-cycle units are required the sources to
report the sum of all loads associated with all cycles (steam and electric) on a consistent basis. This sometimes
involves converting steam load to an equivalent electrical load or vice-versa.
22Only those units that participate in both the NBP and the the Acid Rain Program are required to report hourly

operations year round. Units regulated under the NBP only need not report outside of ozone season. Hourly data
are also not reported when plants are taken o¤-line for scheduled outtages or maintenance. In total, the analysis
sample includes 15.9 million hourly observations.

23A unit�s heat rate measures the e¢ ciency with which the unit transforms fuel into electricity. The lower the
heat rate, the more fuel e¢ cient the generator.
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rates and heat rates under average operating conditions.24 Capacity-weighted summaries of these

estimates are presented in Table 2. The support of the distributions overlap considerably across

allocation regimes, which facilitates an empirical comparison of short-run production decisions

made by similar units facing di¤erent permit allocation incentives.

Emissions permit prices

NOx permits are actively traded in a liquid permit market.25 Brokers facilitate the majority

of arms length transactions, administer escrow accounts, and provide market analysis. A variety

of transaction structures exist in the market, including forward settlements, calls, puts, composite

structures such as straddles, and vintage swaps.

Daily permit price data were purchased from Evolution Markets LLC. Table 3 reports average

spot NOx permit prices by vintage (in nominal dollars per ton). NOx permit prices are falling

over the sample period, largely due to abatement costs that proved to be lower than anticipated,

and lower than expected temperatures in the early years of the program.26 This table also helps

to illustrate the e¤ect of the progressive �ow control (PFC) constraint on permit prices. As early

as 2003, permit market participants correctly anticipated that the PFC constraint would start to

bind in 2005. This explains the large vintage 2004/2005 spread in 2003 and 2004.27.

Compliance costs and production incentives

To estimate the cost of purchasing permits to o¤set the emissions associated with generating

a MWh of electricity, each unit�s NOx emissions rate is multiplied by the NOx permit price. Table

4 summarizes these unit-level cost estimates. On average, explicit compliance costs amount to a 7

percent increase in total variable (i.e. fuel, operating and maintenance) costs.28 However, among

units with particularly high emissions rates, this increase can exceed 40 percent.

24Speci�cations that allow rates to vary across years are also estimated.
25In 2007, the volume of "economically signi�cant" immediate settlement trades (i.e. trades between versus

within �rms) reached 247,000 tons (EPA 2008).
26Evolution Markets LLC provides informative monthly analyses of the NOx Budget Program permit market.
27In years when the PFC constraint binds, banked permits trade at a considerable discount. The PFC ratio was

0.25 and 0.27 in 2005 and 2006, respectively. In both years, permits were used to o¤set emissions at a discounted
rate (4,168 and 1,950 permits in 2005 and 2006, respectively). In March of 2005, the EPA released its new Clean
Air Interstate Rule (CAIR), intended to subsume the NBP in 2009. CAIR eliminated progressive �ow control.
28Unit-speci�c estimates of variable fuel operating costs are obtained by multiplying the unit-level heat rate (see

above) by the corresponding fuel price. Estimates of unit-level variable, non-fuel operating and maintenance costs
(not including environmental compliance costs) are obtained from Platts.
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Estimating the implicit production subsidies conferred by contingent updating is more compli-

cated. The size of the production subsidy varies with state permit allocation rules, state-speci�c

NOx budgets, annual production levels, and in input-based updating regimes, unit-level heat

rates. Individual states allocate their respective NOx "budgets" (listed in Table 3) using formulas

of varying complexity.

For each unit, an estimate of the number of future permits earned per unit of current produc-

tion is constructed using the corresponding state budget Es, the average ozone season production

(or heat input) aggregated across NBP sources in the state, and the speci�c details of state�s per-

mit allocation updating protocols. For example, if NOx permits in state s are allocated based on

the average heat input in the preceeding L years, the e¤ect of an incremental increase in current

production at �rm i in year t on future permit entitlements is assumed to be hi
�
Es
Hst

�
;where hi

measures the fuel inputs required to generate a unit of output at unit i, and Hst measures the

total quantity of fuel inputs used by NBP sources in state s over the course of the ozone season

in year t. This assumes that �rms take the size of the subsidy as given.29 Column 3 of Table 4

summarizes these estimated subsidies, in terms of future permits allocated, per MWh of electricity

generated.

In present value dollar terms, the estimated implicit subsidy conferred under this input-based

updating regime is:

sit =
LX
l=1

�i(l)

L
� l

�
hit
Ht
Es

�
; (12)

where � l is the expected permit price in l years and �(l) is the discount rate applied to bene�ts

accruing l years in the future.30 In the �nal column of Table 4, net compliance costs (i.e. explicit

compliance costs less the implicit subsidy per MWh) are summarized.31 These incentives vary sig-

29A �rm with a dominant market position would want to account for the fact that increasing its fuel consumption
would increase Hst and thus decrease the size of the subsidy it received for all of its production. Thus we would
expect the perceived subsidy would be decreasing in market share.
30To construct an estimate these implicit subsidies, the futures price of permits issued l years in the future is

used to estimate �i(l)� l: In cases where permits did not trade far enough into the future, the market price for the
permit vintage farthest in the future was applied to all subsequent vintages..
31Rather than assume an arbitrary discount rate, these calculations present undiscounted estimates of the implicit

production subsidy. Plant managers presumably discount the value of future permit allocations, so these estimates
should be interpreted as generous.
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ni�cantly across facilities. Notably, for several units in allocation updating regimes with relatively

low emissions rates, the estimated implicit subsidy exceeds the estimated explicit compliance cost

such that the net e¤ect of the NBP on variable operating costs is negative.

Electricity market data

Hourly data summarizing electricity market conditions (including realized and forecast load,

real time prices, and day ahead prices) were collected from the New England, New York, and PJM

websites. Hourly weather station data were obtained from the National Oceanic and Atmospheric

Administration. Additional operating characteristics (including production capacities and fuel

characteristics) were obtained from Platts Basecase database.

Fuel price data

Daily spot prices of New York Harbor No. 2 and No. 6 heating oils were obtained from the

Energy Information Administration. Daily natural gas spot prices were obtained from Platts.32

The OTC NYMEX "Look-Alike" contract, the most actively traded coal product, is used as a

measure of coal prices.33

5 Empirical framework

The unique design of the NBP provides several potentially useful sources of variation. First, the

delegation of permit design to state-level agencies has yielded signi�cant interstate variation in

permit allocation rules and related incentives. From a research design standpoint, permit allocation

design features would ideally have been randomly assigned across electricity producers. Although

states�choice of permit allocation regime was not random, interstate variation in permit allocation

design is arguably exogenous, in an econometric sense, to �rms�short-run production decisions.

32For New England I use the natural gas spot prices for Algonquin City Gates and Tennessee, zone 6. For New
York gas prices I use Dominion, north point. For PJM I use the Transco Zone 6 non-New York prices.
33The NYMEX look-alike price is based on trading using the speci�cations in the NYMEX futures contract.

Originally, NYMEX was predominantly traded "physical" with companies engaging in bilateral agreements. Now a
majority of NYMEX trades are transacted OTC then "given up" to the exchange for clearing, which allows market
participants to manage credit risk over a larger pool of counterparties.
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State level permit allocation design decisions were determined by a variety of factors, including

the institutional capacities of the implementing agency and the preferences of politically powerful

constituents. Conditional on pre-determined industry and production technology characteristics,

the factors that shaped a state�s choice of allocation regime should not impact unit-level short run

production decisions except through permit allocation incentives.

Second, the seasonal nature of the program�s compliance requirements generates useful in-

tertemporal variation. There is considerable overlap in the distribution of hourly load levels, and

other observable market conditions across ozone season and o¤-season (see Table 5). This makes it

possible to observe unit-level production decisions in hours that di¤er in terms of ozone compliance

requirements, but share similar market conditions.

Third, a subset of NOx emitting producers supplying the New England electricity market are

exempt from the NBP for meteorological reasons. Prevailing wind and weather patterns ensure

that emissions from these plants do not contribute signi�cantly to U.S. non-attainment problems

. The distributions of operating characteristics that determine short run production decisions in

the exempt and NBP regulated sub-populations overlap considerably (see Table 2), making these

exempt units a potentially useful control group.

Finally, a majority of states chose to adopt the EPA�s recommended permit allocation ap-

proach: heat input based updating. Under this regime, the production subsidy varies signi�cantly

with fuel e¢ ciency. Input-based updating thus generates interfacility, intra-market variation in

production incentives that is independent of variation in explicit compliance costs per unit of

production.34

5.1 Modeling the data generating process

The model developed in section 2 serves as a good starting point for an empirical model of the

process generating observed hourly electricity production decisions. However, a preliminary look

at the data suggests that some immediate modi�cations are needed. First, physical capacity

contraints routinely bind in the short-run (units are often observed running at full capacity or

34Unit-level fuel e¢ ciency measures are not strongly correlated with NOx emissions rates. The correlation
coe¢ cient is 0.69.
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shut down completely) so interior solutions are no longer assumed. Second, the vast majority of

variation in hourly heat rates occurs across- versus within units (see Appendix X). I therefore

assume constant unit-level marginal costs.

Once these two modi�cations are made, we are left with a model that closely resembles those

used to simulate wholesale electricity market outcomes in competitive benchmark analysis (see,

for example, Borenstein, Bushnell, and Wolak, 2002 and Wolfram, 1999) and environmental policy

simulations (examples include US EPA, 1999 and Burtraw, Palmer and Kahn, 2005). This model

predicts that pro�t maximizing electricity producers follow an on-o¤ strategy, producing at full

capacity whenever price exceeds a reservation price set equal to the unit�s marginal operating cost.

In theory, the introduction of the NBP should increase this reservation price by an amount equal

to the unit-speci�c net compliance cost per MWh.

Are observed production decisions consistent with this prediction? Figure 2 is generated using

a small subset of the data collected from a representative unit over a short (three day) period in the

ozone o¤-season.35 The left panel plots capacity utilization and hourly wholesale electricity prices

over these 96 hours. The horizontal line represents the estimated marginal o¤-season operating

cost of $49/MWh (speci�c to this unit and time period). The right panel plots capacity factor

as a function of the wholesale electricity price less variable operating costs. The thick black line

plots the relationship predicted by the model. The thin black line is a local polynomial smooth

of the observed data. This �gure serves to illustrate how observed hourly production decisions at

this representative unit deviate systematically from the predictions of the simple, static model.36

Figure 3 conducts a similar exercise using the complete data set. The vertical axis measures

capacity factor. The horizontal axis measures price less variable operating costs (not including

NBP compliance costs). The solid line in each panel plots the local mean smooth of hourly, unit-

level capacity utilization rates on hourly, unit-speci�c price-cost margins in the ozone o¤-season.37

35I chose a period in the ozone o¤-season in which the wholesale electricity price was vascillating around the
unit�s theoretical reservation price (i.e. the prevailing fuel price multiplied by the unit�s fuel e¢ ciency rating plus
variable, non-fuel operating costs).
36These supply decisions are observed in the ozone o¤-season. The average net compliance cost incurred by

this unit during ozone season is estimated to be $3.16. The thick red line illustrates how the introduction of the
emissions trading program should, in theory, a¤ect the unit�s hourly production decisions.
37To generate these �gures, I use an Epanechnikov weight function and a rule-of-thumb bandwidth estimator.

The smooth is evaluated at 50 points. Price cost margins are calculated by subtracting a unit�s fuel costs and
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These functions are generated separately for grandfathering and contingent updating regimes,

respectively. The broken lines plot the same relationships using data from ozone season (i.e. May

to September) when all units are required to purchase permits to o¤set their NOx emissions.

On average, we should expect that the ozone-season supply functions will lie to the right of

their o¤-season counterparts. Because the average net e¤ect of the NBP on variable operating

costs is substantially higher among units operating in grandfathering regimes (see table 4), we

should also expect that the NBP-induced shift in the supply curve will be larger in the right

panel. The data appear to be consistent with the �rst prediction, less so with the second.

This preliminary look at the data suggests that the simple, static model poorly approximates

the true data generating process. On average, plant managers seem willing to operate in hours

when prices fall below marginal operating costs, and are slow to respond when the prices rise

above cost. Much of this behavior can likely be explained by production constraints omitted

from the model. At the unit level, ramping limits, start up costs, minimum run times, and other

intertemporal operating constraints can signi�cantly a¤ect how a plant responds to changing

market conditions. At the system-level, transmission constraints, system-security requirements,

and other operating protocols can a¤ect which units get called upon to run in a given hour.

The so-called "unit commitment" problem (i.e. the scheduling of electricity production over

hours in a day) has been extensively analyzed in the operations research and power systems

literature. The problem is di¢ cult to solve because of its large dimension, non-linearity, and large

number of constraints (Sheble and Fahd 1990). One formulation of the unit commitment problem,

introduced in Appendix 5, helps to convey the complexity of the dynamic optimization faced by

plant managers and system operators each day.

Ideally, the estimation framework would accomodate the salient features of the underlying

data generating process. Specifying a fully structural econometric model would allow for rich,

out of sample, counterfactual welfare analysis. However, this approach would be computationally

intensive and would require critical assumptions about the nature of both the system-level and

unit-level operating constraints and protocols. Given the limitations of the available data, these

non-fuel variable operating costs per MWh from the hourly real-time wholesale electricity price.
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assumptions would be, for the most part, ad hoc and untestable.

In light of these limitations, two alternative empirical strategies are pursued. The �rst ap-

proach is grounded in economic theory only to the extent that theory identi�es which variables

should a¤ect �rms�supply decisions. The second empirical strategy focuses on one speci�c dimen-

sion or margin of the larger unit commitment problem- the decision to begin operating conditional

on being shut down- and derives a reduced form that can be implemented empirically as a discrete

choice problem.

5.2 A descriptive model of short-run supply decisions

Price-taking producers are assumed to choose output levels based on historic, current, and forecast

electricity market conditions, operating costs, and intertemporal operating constraints:

cfit = �i +X
0
iti +NBPit � � t(�1ei + �2si) + "it; (13)

where i indexes the electricity generating unit, t indexes the time period, and cf is the capacity

factor (i.e. the percentage of maximum capacity at which the unit is operating). The matrix X

includes observable variables that a¤ect short-run supply decisions but are unrelated to the NBP

(including fuel prices, day ahead and real time electricity prices, temperature, etc.). The NOx

permit price is � .

The binary indicator NBPit equals one if unit i is obliged to comply with the NBP in period

t and zero otherwise. Unit-level emissions rates and implicit subsidies (in terms of future permits

earned per unit of electricity generated) are represented by ei and si, respectively. The � coe¢ -

cients accomodate asymmetric weighting of the explicit compliance costs and implicit production

subsidies. The error term "it is intended to capture the e¤ects of unobserved determinants of the

operating decision (including unanticipated deviations from least-cost system dispatch and unit

level productivity shocks).38

38This estimation framework is similar to the approach used by Mansur (2008) to model the short-run production
decisions of electricity generating units in the PJM wholesale market.
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This descriptive model can be used to assess whether the statistical relationships in the ob-

served data are qualitatively consistent with the theory. However, because the assumed linear

conditional mean speci�cation has not been formally derived from the underlying unit commit-

ment problem, any structural interpretation of the coe¢ cient estimates will require additional

assumptions. These are introduced in section 6.

5.3 A reduced form model of the participation decision

Consider the unit commitment problem faced by a single electricity generating unit.39 Let Hi

denote the relevant time horizon (measured in hours) for the unit commitment problem solved by

unit i. For baseload units that are incapable of responding quickly to changing market conditions,

production levels in one hour will constrain production possibilities H hours into the future.

Among the most nimble units, H = 1 and the production decision reduces to the static benchmark

model.

Let qit measure the output level at unit i at the beginning of hour t. The control variable

dit measures the change in output at unit i in hour t. The transition equation that determines

the evolution of the state variable qit over time is thus qit + dit = qit+1: Let D de�ne the decision

space. The set of possible production level changes available to unit i in hour t, Dit, will depend

on time invariant parameters of the operating constraints �i and the state variable qit: The family

of unit-speci�c constraint sets is fDit(qit;�i)g.

Pro�ts earned from the sales of electricity generated at unit i in hour t are:

�it = (Pit � ci � �t� tei + ��s � tsi)(qit + dit)� Uiyit � Fi; dit 2 fDit(qit;�i)g

� F (qit; dit; X
0
it)

where the weighting parameters � are included to allow �rms to weigh explicit compliance costs

and the implicit subsidy asymmetrically in their production decisions. Let Xit denote a matrix

of state variables observed by both the plant manager and the econometrician, including fuel

39Here I assume that hourly supply decisions are controlled by plant managers insofar as they can submit bids
to the independent system operator to achieve their desired production levels.
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prices, permit prices, day ahead and real time electricity prices. The superscript 0 is intended to

distinguish this matrix from the larger X matrix in equation [13]. I assume that the plant manager

takes X 0
it as given; this assumption is revisited in the next section.

The binary variable yit equals 1 if the unit turns on in hour t; yit = 0. Start-up costs and

�xed costs are represented by U and F , respectively. The plant manager�s objective is to maximize

multi-period pro�ts �(q0; X 00
i ; d) =

HiX
t=0

F (qit; X
0
it; dit) subject to the transition function T (qt; dt)

and the constraint sets Dit(qit;�i):

Within this framework, theory makes clear predictions about when an inactive unit should

start producing. A pro�t maximizing manager will choose to incur the costs of initiating operations

if the pro�ts from doing so exceed the pro�ts associated with remaining out of the market. Focusing

exclusively on this participation margin greatly simpli�es the derivation of an estimable, more

structural model.

This estimation strategy will consider only those unit-hour observations in which qit = 0: I use

j to index the participation choice situation and t to index the hours relevant to the participation

decision: t = 0:::Hi: I de�ne choice speci�c value functions v(y;X 00
j ) to capture the expected pro�ts

associated with participation choice:

v(1; X 00
j ) = E0[F (0; d

�
0(1); X

0
j) +

HX
t=1

F (qt; d
�
t (1); X

0
j) + �

1
j ]

v(0; X 00
j ) = E0[F (0; 0; X

0
j; ) +

HX
t=1

F (qt; d
�
t (0); X

0
j) + �

0
j :

The i subscripts have been dropped for ease of exposition. The X 00 matrix includes all state

variables relevant to the participation choice made in hour 0: fuel prices and permit prices which do

not vary over the time horizon H, the real time electricity price in hour 0 and the day ahead prices

for hours 1::H . The optimal production choice in hour t conditional on the initial participation

choice y is d�t (y). A decision speci�c shock �
y captures the e¤ects of unobserved factors a¤ecting

expected returns to either starting to produce or remaining inactive. These factors could include

plant e¢ ciency shocks, unscheduled outtages, operator errors, etc. For simplicity I assume these
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shocks are additive, independently distrubuted N(0,�).

To complete the motivation of the econometric model, I de�ne a latent variable y�ij to measure the

di¤erence in these conditional value functions:

y�ij = v(1; X
00
ij)� v(0; X 00

ij) = �i +
HX
t=0

�PijtPt � �cijcij � �e� jei + �s� jsi + �ij

The unit-speci�c �xed e¤ect �i captures start up costs, �xed operating costs, and other unobserved,

time-invariant factors in�uencing the participation decision. The electricity price coe¢ cients �Pt

capture the period by period di¤erences in optimal output levels (conditional on the participation

decision made in period 0) for a particular unit and choice situation: �Pt = (qt(1) + d
�
t (1)). Let

�ij measure the e¤ect of the participation decision on production over the time horizon Hi for

unit i and choice situation j: �ij =
HX
t=1

(qijh(1) + d
�
ijh(1) � qijh(0) � d�ijh(0)). Note that these

�ij values vary across units and within units across choice situations; as the decision environment

changes (i.e. as fuel prices, permit prices, and electricity prices change), the trajectories of optimal

production choices fd�t (y)g will change. The reduced form parameters �c; �e; and �s coe¢ cients

are de�ned as �ij, �
t
i�ij, and �

s
i�i�ij; respectively. The random state variable �ij is assumed to

be normally distributed (arising from the di¤erence between �0j and �
1
j):

The observed binary choice variable yj serves as an indicator that the latent valye y�j > 0 :

yij = 1fy�ij � 1g:The probability that an inactive unit i facing choice situation j will begin to

operate is given by:

Pr(yij = 1jX 00
ij;�i) = �

 
�i +

HX
t=0

�PijtPt � �cijcij � �e� jei + �s� jsi

!
:

6 Estimation

The data set used in the estimation is hierarchical. Explanatory variables and stochastic com-

ponents occur at nested micro (i.e. unit-hour) and macro (i.e. electricity generating unit) levels.

Each individual unit is observed making production decisions over several thousand hours, so there

are su¢ cient data to carry out a unit-by-unit analysis of relationships between short-run supply
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choices and changing electricity market conditions. However, independent variation in permit

allocation-related incentives exists only in very limited quantities at the micro-level.40 The em-

pirical analysis must therefore exploit macro-level variation in unit-level operating characteristics

and state-level permit allocation design choices.

Estimation strategies are designed to make e¢ cient use of these hierarchical data without

incurring large computational costs. This section describes the two empirical strategies in detail

and presents results.

Before turning to the speci�cs of the estimating equations, two simplifying assumptions de-

serve mention. First, the contemporaneous permit price � will be used to proxy for �rms�expec-

tations regarding future permit prices. More precisely, I assume that �rms value future permit

allocations at contemporaneous permit prices and employ a discount rate of zero. This simpli-

fying assumption solves a multicollinearity problem: current and future permit prices are highly

correlated. The disadvantage is that the assumption is likely innaccurate. Firms presumably use

a non-zero discount rate when valuing bene�ts accruing in future periods. Also, Table 2 illustrates

how futures prices can deviate from spot prices in this permit market. This will have implications

for how estimation results should be interpreted.

Second, I treat unit-level emissions rates and heat rates as �xed. No attempt is made to

account for the stochastic properties of these unit-speci�c operating parameters (see Appendix 4).

Future work will explore alternative approaches to incorporating this variation.41

6.1 Estimating the descriptive model of unit-level production deci-

sions

The i parameters in equation [13] are likely to vary signi�cantly with unobserved factors (such as

technical operating constraints). There are su¢ cient data to estimate these parameters separately

40There is some within-unit variation in emissions rates and heat rates (and thus per-MWh compliance costs)
across years. In most cases this variation is very small relative to the cross-sectional variation in unit-level emissions
rates.
41Appendix 4 summarizes how unit-speci�c emissions rate and heat rate parameters are generated. Joskow and

Schmalensee (1985) demonstrate a consistent (adjusted least-squares) technique for using estimated plant operating
characteristics as independent variables in crosssection regression analysis.
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for each unit, estimating [13] in one step using fully pooled OLS. However, this is cumbersome

because it involves thousands of interactions between the variables contained in Xit and unit-

speci�c dummy variables. Estimating the model in two steps is computationally easier and has

expositional advantages.

In the �rst step, unit-speci�c equations are estimated using micro-level data:

cfit = �i +X
0
iti + �i� t �D_OZt + "it: (14)

The dependent variable measures unit-level, hourly capacity factor (on a scale of 0-100). The

�rst two arguments in [14] represent a �exible function that is used to predict �rms�operating

capacity, given Xit, when the cost of emissions is zero. Letfcf it represent this predicted conditional
mean value: fcf it � �i + X

0
iti. The Xit matrix includes 28 covariates: marginal operating costs,

wholesale price (contemporaneous and two lags), forward price (contemporaneous and two leads),

daily average price (contemporaneous and lagged), and year �xed e¤ects. With the exception of

the �xed e¤ects, these variables enter as third-order polynomials.

The binary variable D_OZit equals one during ozone season and zero otherwise. Inclusion of

�
i
� t �D_OZt in [14] allows predicted production levels to deviate systematically fromfcf it during

ozone season. These deviations are modeled as unit-speci�c linear functions of the permit price � t

.

To address potential endogeneity concerns, ISO-speci�c hourly demand forecasts are used in

some speci�cations to instrument for electricity prices. Local marginal electricity prices may be

endogenous if unobserved supply shocks a¤ect both market clearing prices and unit-level supply

decisions. Day ahead demand forecasts should be independent of unobserved supply shocks but

highly correlated with realized demand conditions and thus electricity prices in a given hour. Serial

correlation is also likely to be a concern given the time series nature of these data. Newey-West

autocorrelation consistent standard errors are estimated assuming a twelve hour lag.42

In the second stage, the estimated �
i
coe¢ cients are regressed on a constant, a measure of the

42Note that this error structure does not account for contemporaneous correlation across the unit-level equations.
This is a disadvantage of estimating �rst stage regression equations separately.
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unit-speci�c NOx emissions rate ei; and the unit-speci�c implicit production subsidy si. Emissions

rates at units exempt from the NOx Budget Program are set to zero. The emissions rate variable

is demeaned such that the constant term captures the average relationship between an incremental

change in the NOx permit price and operating capacities among units with average NOx emissions

rates.

The second stage residuals contain two components: a sampling error component (i.e. the

di¤erence between the true value of the estimated dependent variable and the true value) and the

idiosyncratic variation that would have obtained regardless of whether the dependent variable was

estimated or observed directly. If the sampling variance di¤ers across units, this component will

be heteroskedastic. To address this issue, a feasible generalized least squares (FGLS) estimator is

used to incorporate information about the variance structure obtained in the �rst stage estimation

(Hanushek, ).43 The weighting matrix used in the second stage is given by:

b
 = bG+ b�2I; (15)

b�2 =

P
i e
2
i �

P
i �
2
i + tr(X

0X)�1 bGX
N � k (16)

where bG is the variance covariance matrix from the �rst stage, e2i are the �rst stage standard errors
of the estimated coe¢ cient that serves as the dependent variable in the second stage, �i are the

residuals from an OLS estimation of the second stage, k is the number of regressors in the second

stage and X is the matrix of regressors. This estimator weights more precise �rst stage estimates

more heavily, but only to the degree that sampling error is an important component of the overall

second stage residual. Standard errors are also clustered at the facility level to account for the

fact that the idiosyncratic component of the error term may be correlated among boilers located

at the same facility.

Table 6A summarizes results from estimating [14] using 2SLS. For ease of exposition, this

43A more common approach to adjusting standard error estimates when the dependent variable is estimated
involves weighting second stage observations using the inverse of the estimated standard error of the dependent
variable (Saxonhouse, 1976). However, this assumes that the total residual is heteroskedastic (versus just the
component that is explained by sampling error).If the variance due to sampling error accounts for a relatively small
fraction of the total residual variance in the second stage, this reweighting can generate misleading standard error
estimates.
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table reports summary statistics for only a subset of the coe¢ cient estimates: the unit-speci�c

constants, fuel costs ($/MWh), hourly wholesale electricity market price ($/MWh), and the NOx

price interacted with the ozone season indicator ($/ton). Corresponding standard errors are also

reported.

The marginal cost coe¢ cient is negative on average as expected; the coe¢ cient on (instru-

mented) electricity price is positive as expected.44 The coe¢ cient on the NOx permit price inter-

action is also negative on average. There is cross-sectional variation in the permit price coe¢ cient

estimates. The second stage of the estimation seeks to explain some of this variation in terms of

observable unit-level characteristics.

Table 7 summarizes results from the second stage of the estimation. The dependent variable is

the unit-speci�c NOx price coe¢ cients obtained in the �rst stage. The most restrictive speci�cation

(1) includes only the demeaned NOx rate and a constant. Results indicate that there is no

signi�cant statistical relationship between observed production decisions and ozone season NOx

prices among NBP units with average NOx emissions rates. However, the NOX emissions rate

coe¢ cient is statistically signi�cant and negative, suggesting that the relationship between NOx

permit prices and hourly output is signi�cantly more (less) negative among units with higher

(lower) emissions rates. Adding the implicit subsidy variable (speci�cation 2) marginally improves

the �t of the model. The coe¢ cient on the implicit subsidy is positive (as expected) but very

imprecisely estimated.

Column (3) facilitates a test of whether these coe¢ cient estimates vary systematically with

observable unit characteristics.45 Both the emissions rate and implicit subsidy coe¢ cients are

allowed to vary systematically with demeaned unit-level emissions rates and demeaned unit size.

In this less restrictive speci�cation, the subsidy coe¢ cient is statistically signi�cant. Of the in-

teraction terms, only the quadratic emissions rate term is signi�cant, suggesting a negative and

convex relationship. This speci�cation is also estimated using wholesale electricity prices in the

44 The wholesale electricity price coe¢ cient is particularly di¢ cult to interpret because this variable is highly
correlated with the lagged prices, day ahead lead prices, and higher order terms that are alos included in the
regression. Marginal costs also enter as a third order polynomial.
45Several alternative speci�cations were tried but none improved the �t of the model. For example, NOx emissions

rates and implicit subsidies were also interacted with heat rates and SO2 emissions rates.
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�rst stage versus instruments. This does not substantively a¤ect the second stage results (reported

in column 5).

One potential concern with these results is that the estimated coe¢ cients are capturing spu-

rious correlation. The e¤ect of a change in NOx prices on hourly capacity factors is modeled

somewhat crudely within this framework as a vertical shift in fcf it (i.e. the unit-speci�c function
that predicts o¤-season capacity factor). This shift should only occur in hours when a unit is

close to the margin. Otherwise, an incremental change in the permit price should have no e¤ect

on short-run production decisions. For many units in the sample, price-cost margins are far be-

low or above zero in majority of hours. In these cases, we should expect to �nd a very weak or

non-existent relationship between permit price variation and unit-level capacity factor (averaged

across all hours).

If unit-level price-cost margins are correlated with emissions rates or implicit subsidies, this

would confound the interpretation of the estimation results. To address this possibility, two alter-

native speci�cations are estimated. First, a (demeaned) measure of the mean squared price-cost

margins is added to the model (speci�cation 5). When this variable is controlled for, the constant

term becomes statistically signi�cant and negative. The other coe¢ cients are not signi�cantly

a¤ected. A second approach involves re-estimating the model using a dataset that omits obser-

vations in which units are far from the margin (i.e. price-cost margins exceed $50/MWh or fall

below -$50). Results are reported in column 6. As expected, all coe¢ cient estimates are larger in

absolute value. Both the emissions rate and subsidy coe¢ cient are statistically signi�cant. Taken

together, these results suggest that the negative NOx emissions rate coe¢ cient and the positive

subsidy coe¢ cient are not capturing the spurious e¤ects of variation in price-cost margins.

To put the results in Table 7 in context, consider a change in the NOx price of $100/ton.

For a unit with an average NOx emissions rate in a grandfathering regime, coe¢ cient estimates

reported in column (5) imply an increase in operating costs of approximately $0.22/MWh.46 For

a unit of average capacity receiving no subsidy, this incremental NOx price change is associated

with a decrease in operating capacity of 7% . If this unit is entitled to an implicit subsidy of 2.9

46This increase is very small relative to average variable operating costs which exceed $80/MWh.
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lbs/MWh (the average subsidy observed in the data), this decrease falls to 3%. Using the more

limited data set that omits hourly observations at units far from the margin, these decreases are

12% and 6%, respectively.

In sum, the statistical patterns found in these data are generally consistent with standard

theory. Short-run production decisions appear to respond more negatively to changes in NOx per-

mit prices among units with higher emissions rates and this negative response is more attenuated

among units entitled to larger implicit subsidies. This suggests that �rms are taking both explicit

and implicit permit allocation incentives into consideration when making their hourly production

decisions. Although there is some evidence that these relationships vary in predictable ways with

NOx emissions rates and plant capacities, these patterns are not robust to changes in speci�cation.

In order to draw more de�nitive, causal inference from these statistical relationships, addi-

tional structure and assumptions are required. The next section summarizes results from estimat-

ing the more structured, reduced form speci�cation.

6.2 Estimating the reduced form model of the participation decision

This empirical model conditions on the unit being initially inactive; all unit-hours in which a

unit begins an hour with a capacity factor above zero are dropped from the data set used to

estimate [5.3]. This amounts to omitting more than 80 percent of observations at coal-�red units,

approximately 25 percent of observations at natural gas �red units, and 14 percent of hourly

observations at oil-�red units.

Estimation of [5.3] also proceeds in two steps in order to accomodate heterogeneity in the index

parameters. Electricity generating units in the study sample vary signi�cantly in terms of the

production technologies they use and the wholesale electricity markets they serve. This variation

begets unobserved variation in residual variances and the �ij parameters. The large quantity

of data makes it possible, in principle, to consistently estimate the reduced form coe¢ cients in

[??]separately for each unit. However, estimating all of these unit-speci�c index parameters in a

single step is di¢ cult given the matrix size limitations of most statistical software. Estimation in

two stages is relatively easy to implement.
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In the �rst stage, unit-speci�c probit equations are estimated:

yij = 1f�i +
HX
t=0

�PitPt � �cicij � �1i � j �D_OZj + �ijg:

Second stage estimation is very similar to the exercise summarized above. Unit-speci�c es-

timates of �1i are regressed on a constant, unit-level emissions rates (interacted with an NBP

indicator signaling compliance obligations) and estimated implicit subsidies. An FGLS estimator

is used to incorporate information about the variance structure obtained in the �rst stage.

Interpretation of these estimates is complicated by two identi�cation problems. The �rst is

inherent in all discrete choice models: parameters are identi�ed only up to a scale factor (Maddala

1983). Consequently, comparisons of coe¢ cient estimates across units confound the magnitude of

the regression coe¢ cients with residual variation. The second identi�cation problem pertains to

the structure of the reduced form estimating equation. Permit price coe¢ cients are confounded

with the�ij parameters:47 To identify relationships between permit allocation incentives and short

run production decisions, some additional assumptions must be made. These are discussed below.

Table 6B summarizes the estimation results from the �rst stage. These estimates are generated

using a speci�cation that assumes a time horizon of six hours. Hourly demand forecasts are used

as instruments for real time and day ahead electricity prices. As expected, estimated marginal cost

coe¢ cients are negative on average. Estimated wholesale electricity price coe¢ cients are of the

same order of magnitude and are positive on average. The average NOx price coe¢ cient estimate

is also negative and highly variable across units.

Estimation results from the second stage are presented in Table 8. The dependent variable

is the estimated �1i coe¢ cients from the �rst stage. The most restrictive speci�cation includes

only a constant and demeaned NOx emissions rate. Somewhat surprisingly, the constant term

is not statistically signi�cant. This implies that an incremental change in the NOx price has no

statistically signi�cant e¤ect on the latent value y� as de�ned in [5.3] among units with average

47The ratio of the marginal cost and NOx permit price coe¢ cient is identi�ed in principle; scale parameters and
� parameters cancel out. One approach would involve using this ratio as the dependent variable in the second stage
in order to overcome these identi�cation problems. However, this is di¢ cult to implement in practice. Because the
distribution of both coe¢ cients include zero, some estimates of this ratio are in�nitely large.
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NOx emissions rates. However, results indicate that this NOx price coe¢ cient is signi�cantly more

(less) negative among units with relatively high (low) emissions rates.

A slightly less restrictive speci�cation (2) allows the NOx price coe¢ cient to vary with the im-

plicit subsidy introduced by contingent allocation updating regimes. The emissions rate coe¢ cient

increases slightly in absolute value and remains highly statistically signi�cant. The coe¢ cient on

the subsidy variable is positive as expected, but imprecisely estimated and not statistically signif-

icant at a 10 percent con�dence level.

Alternative speci�cations were estimated so as to allow the NOx rate and subsidy coe¢ cients

to vary with observable unit-level characteristics. The speci�cation that best �t the data is one

that allows these coe¢ cients to vary with installed capacity (column 3). Results suggest that the

statistically signi�cant and negative coe¢ cient on the NOx emissions rate becomes more (less)

negative among units with relatively large (small) operating capacities. Similarly, the statistically

signi�cant and positive coe¢ cient on the implicit subsidy becomes more (less) positive among

relatively large (small) units.

Columns (4), (5), (6), and (7) report results from estimation exercises intended to test the

robustness of these results to varying assumptions about the endogeneity of �rst stage covariates

and the appropriate choice of time horizon. ,Column (4) reports results obtained when electricity

prices are assumed to be exogenous in the �rst stage. Columns (5), (6), and (7) report results

under varying assumptions about the time horizon. The NOx rate coe¢ cient is negative and

highly statistically signi�cant across all speci�cations. The statistical signi�cance of the implicit

subsidy and the interaction terms are less robust to these speci�cation changes.

One interpretation of these NOx emissions rate and implicit subsidy coe¢ cients is that they

provide unbiased measures of direct, causal e¤ects on the relationship between permit prices and

short run participation decisions. This interpretation implicitly assumes that the residual variance

and the �ij parameters are distributed independently of permit allocation incentives. Otherwise,

strong correlations between NOx price coe¢ cients estimated in the �rst stage and emissions rates

or implicit subsidies could be spurious.48 To investigate this possibility, additional speci�cations

48For example, if the �ij parameters are systematically smaller among units with higher emissions rates, this
would result in a negative NOx emissions rate coe¢ cient in the second stage that has nothing to do with a causal
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are estimated. Although the �ij parameters and residual variances are not observable, variables

that are plausibly strongly correlated with these factors are observed in the data. For example,

fast ramp rates should be associated with smaller �ij parameters. Larger operating capacities

should be associated with larger �ij parameters. Residual variances could be expected to vary

across regional electricity markets with di¤erent dispatch protocols and procedures. Including

these variables, and/or interaction terms implicating these variables, did not improve the �t of

the model or substantially a¤ect coe¢ cient estimates. These results provide weak support to the

aforementioned independence assumptions.

Conditional on these additional identifying assumptions, the estimation results suggest that

electricity suppliers do respond to both explicit compliance costs and implicit production subsidies

associated with the introduction of this cap-and-trade program. For a variety of reasons (including

the discounting of future revenue streams, loss aversion, regulatory risk premiums, etc), we might

expect that the implicit subsidy would be weighted less heavily than the explicit and immediate

costs of holding permits to o¤set emissions. This is what we observe in the point estimates across

speci�cations, although these coe¢ cients are quite noisy. Based on these estimation results, we

cannot reject the hypothesis that these two operating cost considerations receive equal weight in

short run production decisions.

7 Conclusions

Policymakers, industry representatives, and other stakeholders are increasingly interested in un-

derstanding how the choice of permit allocation methodology a¤ects permit and product market

outcomes in practice. Contingent permit allocation rules simultaneously penalize emissions while

rewarding production. A growing number of theoretical papers o¤er insights into how �rms should

(in theory) respond to dynamic permit allocation rules. However, the practical implications of

contingent allocation updating are not well understood.

A simple partial equilibrium model is used to demonstrate the �rst order, short run implica-

tions of contingent updating vis a vis more traditional permit allocation designs (i.e. auctioning

relationship between high emissions rates and the nature of producers�response to changing NOx permit prices.
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and grandfathering). In a �rst best setting, allocation fails to achieve the e¢ cient, "�rst-best"

outcome. In general, consumer prices are lower, consumption levels are higher, and supply-side

emissions abatement costs are greater as compared to grandfathering or auctioning.

These implications, and related results demonstrated elsewhere in both the theory literature

and more applied policy simulations, are predicated on the assumption that �rms will accurately

account for all permit allocation incentives in their short run production decisions. However,

there are a variety of reasons why �rms might discount, or ignore, the implicit subsidy conferred

by contingent allocation updating in practice.

A multi-state emissions trading program o¤ers a unique opportunity to analyze how �rms

are responding to the incentives created by di¤erent emissions permit allocating rules. Two com-

plementary empirical strategies are used to evaluate whether these data are consistent with the

theory.

I �nd that an increase in the emissions permit price has a larger (more negative) e¤ect on

the production decisions of units with higher emissions rates in this cap-and-trade program (as

theory predicts). This suggests that �rms are accounting for the costs of holding permits to

o¤set uncontrolled emissions when making short run supply decisions. The e¤ect of the implicit

subsidy introduced by contingent allocation updating is less clear. The data suggest there is

considerable heterogeneity in �rms�response to this implicit production subsidy. Among average

sized producers, there is evidence that production does respond positively to these incentives.

Among smaller producers, the evidence is mixed. Finally, I cannot reject the hypothesis that �rms

place equal weight on explicit environmental compliance costs and implicit production subsidies

conferred by the environmental regulation when making short-run supply decisions.
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Figure 1 : Emissions constrained social welfare maximizing outcome 

Notes  :  The  downward  sloping  solid  line  represents  the  emissions  constraint.  The  socially  optimal 

allocation of production occurs at the point where the emissions constraint is just tangent to a level set 

of the economic surplus function. This point is intersected by the vector from the origin. The broken line, 

with a  slope of  ‐1, connects all points  that correspond  to an aggregate output quantity equal  to  that 

associated with  the  optimum  outcome.  Points  lying  on  the  emissions  constraint  above  (below)  the 

optimal point are associated with more (less) consumption and more (less) supply side abatement than 

is consistent with welfare maximization.  
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Figure 2 : Hourly Production Decisions at a Representative Unit 

Notes : Hourly production decisions at  a single unit (measured as capacity factor) and the corresponding 

hourly wholesale electricity price over a four day period are plotted in the left panel. The horizontal line 

represents  the  theoretical  reservation  price  during  these  off‐season  hours  (i.e.  the  unit’s  constant 

marginal operating cost). This cost of $49/MWh is estimated using the fuel input prices that prevailed in 

this four day period, the unit‐specific heat rate, and other variable (non‐fuel) operations costs.  The thin 

black  line  in the right panel plots these same data  in capacity factor, price‐cost margin (i.e. the hourly 

wholesale electricity price  less the marginal operating costs  incurred) space. This  is a mean smooth of 

capacity  factor  on  price‐cost margins.  The  thick  black  line  represents  the  on‐off  production  protocol 

implied by  the benchmark model of a profit maximizing, price  taking producer.   Comparing these two 

functions  helps  to  illustrate  how  observed  production  decisions  deviate  systematically  from  the 

predictions of the simple, static model. Finally, the thick red  line represent the expected  impact of the 

NBP on  these short‐run supply  functions.  In  theory,  the unit’s reservation price should  increase by an 

amount equal to the net compliance costs per MWh. 
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Figure 3 : Electricity Supply Decisions in Grandfathering and Contingent Allocation Updating Regimes 

Notes  : These  figures plot a  local mean  smooth of hourly, unit‐level  capacity  factors on hourly, unit‐

specific price‐cost margins, where costs include fuel costs and other variable operating costs but exclude 

any costs or  implicit subsidies associated with the NOx Budget Program. The shaded regions represent 

95 percent confidence  intervals. These graphs are generated using hourly  from almost 600 electricity 

generating units over the study time period (2003‐2006), excluding the top and bottom five percentiles 

of observations.  I use an Epanechnikov weight  function and  rule‐of‐thumb bandwidth estimator. The 

right panel summarizes the production decisions at 73 units operating in states where NOx permits are 

grandfathered. The  left panel summarizes production decisions at 515 units operating  in states where 

permit allocations are periodically updated based on lagged input or output choices.  
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Table 1 : Permit allocation regime chosen by New York, New England, and Mid‐Atlantic states 

Electricity 
market 

State Annual state NOx budget for 
Electricity generating units 

(tons NOx) 

Chosen permit allocation regime 

New 
England 

CT 4,253 Output‐based updating 

MA 12,861 Output‐based updating 

ME N/A N/A 

NH N/A N/A 

RI 936 Grandfathering 

VT N/A N/A 
New York  NY 30,405 Input‐based updating 

PJM  DC 233 Grandfathering 

DE 4,463 Grandfathering 

MD 14,520 Grandfathering 

NJ 8,200 Output‐based updating 

PA 47,244 Input‐based updating 

VA 17,091 Input‐based updating 
 Notes:  Annual, state‐level NOx budgets do not change over the study period. Among states that chose 

contingent  updating,  implementation  details  vary  considerably.  For  example,  whereas  some  states 

update annually, others update in three or four year blocks.   
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Table 2 : Operating summary statistics by permit allocation regime  :  CENSUS 

 
Allocation 
regime 

 
# Units 

 
Summer 
Capacity 
(MW) 

 

 
Off‐season 
capacity 
factor 

 
Heat rate* 
(btu/kWh) 

 
Ozone season 
NOx rate* 

(lbs NOx/MWh) 
 

Input‐based 
updating 

362  155 
(206) 

19% 
(26%) 

11,384 
(2,444) 

2.01 
(2.04) 

 
Output‐based 
updating 

153  134 
(176) 

10% 
(18%) 

12,857 
(3,090) 

2.82 
(4.54) 

 
Grandfathering  70  200 

(182) 
21% 
(26%) 

12,080 
(3,447) 

3.07 
(3.60) 

 
Exempt  25  181 

(234) 
23% 
(29%) 

11,592 
(5,388) 

1.57 
(4.67) 

 

Notes:  Standard deviations in parentheses.  Summary statistics are generated using data from 610 fossil 
fuel‐fired electricity generating units supplying the New York, New England, or PJM markets during the 
study period (2003‐2006). Self generating and co‐generating units are excluded from the sample. 
* Emissions rate and heat rate summary statistics are weighted by installed capacity. 
 
 
Table 3 : NOx Allowance Prices  2003‐2006 (Nominal $/ton) 

Permit vintage  Transaction year 

2003  2004  2005*  2006* 

2003  $3682  $1906  ‐  ‐ 

2004  $3163  $2250  $2180  $1507 

2005  $2204  $3432  $2771  $1507 

2006    $2951  $3018  $1842 

2007    $2665              $2705  $1750 

2008    $2705  $2299  $1570 

2009    $2314  $2232  $1518 

Notes:    This  table  reports  average  annual  permit  prices  by  NOx  permit  vintage.  Contemporaneous 

permit prices  appear  in bold. The  asterisk denotes  years  in which  the progressive  flow  control  (PFC) 

constraint was binding. The PFC ratio was 0.25 and 0.27 in 2005 and 2006, respectively;  banked permits  

are traded at a discount in these years. Permit price data were purchased from Evolution Markets LLC. 
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Table 4 : Estimated NBP compliance costs and production incentives by allocation regime 

 
 
 

Allocation 
regime 

(1) 
 

NOx permit 
costs per MWh 
generated 

 

(2) 
 

(1) as a percentage 
of off‐season 

variable operating 
costs 

(3) 
 

Future permits 
allocated 
(tons)            

per MWh 
generated  

 

(4) 
 

Estimated net 
compliance cost 

per MWh* 
 

Input‐based 

updating 

$4.89 
($4.69) 

6.4% 
(6.0%) 

0.001 
(0.001) 

$1.40 
($4.69) 

Output‐based 

updating 

$7.46 
($8.24) 

6.5% 
(5.9%) 

0.002 
(0.001) 

$1.45 
($8.24) 

Grandfathering  $6.49 
($9.03) 

8.1% 
(6.8%) 

0 
 

$6.49 
($9.03) 

Exempt  $0  ‐‐  0  $0 

Notes:  Standard deviations in parentheses.  Summary statistics are generated using data from 610 fossil 
fuel‐fired electricity generating units supplying the New York, New England, or PJM markets during the 
study  period  (2003‐2006).  Self  generating  and  co‐generating  units  are  excluded  from  the  sample. 
Averages across unit‐years are reported; standard deviations are in parentheses.   
 
* To calculate net compliance costs, future permits allocated per unit of output are valued using  futures 
permit prices. This value is then subtracted from the explicit compliance cost per MWh (i.e. the product 
of the unit‐specific emissions rate and the spot NOx permit price). 
   



46 
 

Table 5 : Regional wholesale electricity prices and electricity demand by season  

 

 
Regional  
electricity 
market 

 
Hourly electricity demand 

(MW) 

 
Wholesale electricity price 

($/MWh) 

  Off‐season 
 

Ozone season  Off‐season  
 

Ozone season 

New England 

(NEPOOL) 

14,603 
(2,513) 

 

15,344 
(3,416) 

$60.88 
($29.34) 

$57.98 
($34.88) 

New York 

(NYISO) 

17,547 
(2,768) 

19,151 
(3,936) 

$68.00 
($96.97) 

$70.74 
($78.17) 

 

Mid‐Atlantic 

(PJM) 

29,214 
(8,787) 

31,694 
(9,957) 

$52.03 
($33.84) 

 

$55.41 
($43.34) 

Notes:  Standard deviations in parentheses.  This table summarizes  observed prices and load levels over 

the 35,040 hours in the data. Both prices and load levels are similarly distributed across seasons. 

 

   



47 
 

Table 6A : Summary of  first stage estimates:  Dependent variable is hourly capacity factor 

Covariate 
 

Average point 
estimate 

Standard  
deviation  

Average standard error 

       
Unit‐level constant  25.24  93.49  62.66 
 
Marginal operating cost 
($/MWh) 
 

 
‐9.24 

 
12.93 

 
4.18 

Local wholesale 
marginal price 
($/MWh) 
 

3.04  17.76  9.39 

NOx price * Ozone 
indicator 
($/ton) 

‐0.003  0.25  0.0008 

Average # 
observations/unit 

15,087 
 

Notes:  The unit of analysis is a unit‐hour. The dependent variable is the capacity factor (measured on a scale of 1‐
100).  For ease of exposition, only the higher order cost and price variables, lagged prices, futures prices, and year 
dummies are omitted from this table.   
 

Table 6B : Summary statistics for the first stage estimates 

Covariate 
 

Average point 
estimate 

Standard  
deviation  

Average standard error 

       
Unit‐level constant 
 

‐2.98  1.78  1.69 

Marginal operating cost 
($/MWh) 
 

‐0.14  0.03  0.02 

Local wholesale 
marginal price 
($/MWh) 
 

 0.06  0.09  0.05 

NOx price * Ozone 
indicator 
($/ton) 

‐0.0004  0.018  0.0001 

Average # 
observations/unit 

13,945 

Notes:  The unit of analysis is a unit‐hour. The dependent variable is the binary participation indicator.  Each unit‐
level regression includes: a unit‐level fixed effect, marginal operating costs, contemporaneous wholesale price , 
hourly forward prices for 1 through 6 hours forward,  the NOx permit price interacted with the ozone season 
indicator and year fixed effects. Real time and day ahead electricity prices are instrumented for using  hourly 
demand forecasts. 
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Table 7 :  Descriptive model :  Second stage estimation results 

Specification  (1)  (2)  (3)  (4)  (5)  (6) 

Constant  ‐0.00 
(0.02) 

‐0.02 
(0.02) 

‐0.05 
(0.03) 

‐0.03* 
(0.02) 

‐0.07** 
(0.03) 

‐0.12** 
(0.03) 

NOx rate    ‐14.56** 
(5.65) 

‐16.27*** 
(5.59) 

‐30.02*** 
(10.90) 

‐28.46*** 
(7.24) 

‐31.35*** 
(11.75) 

‐49.85*** 
(15.93) 

Estimated 
subsidy  

  10.82 
(9.84) 

 

23.42** 
(11.00) 

17.06** 
(7.96) 

26.00** 
11.46 

41.31** 
(17.83) 

(NOx rate)2      1792.17** 
825.67 

1413.27*** 
467.35 

2033.56 
887.56 

2143.83 
1316.53 

NOx rate * 
Estimated 
subsidy 

    1279.88 
(1831.50) 

550.55 
(1359.16) 

635.06 
(1727.62) 

1488.16 
(7748.64) 

NOx rate * 
capacity 

    ‐0.05 
(0.05) 

‐0.09* 
(0.05) 

‐0.08 
(0.06) 

‐0.22** 
(0.09) 

Estimated 
subsidy * 
capacity 

    0.08 
(0.05) 

0.02 
(0.05) 

0.06 
(0.06) 

‐0.09 
(0.09) 

Mean price‐
cost margin 

        ‐0.0001 
(0.0003) 

 

R2 

          N 

0.09 
 

553 

0.10 
 

553 
 

0.08 
 

553 

0.10 
 

553 

0.09 
 

553 

0.13 
 

553 

First stage IV  Y  Y  Y  N  Y  Y 

Notes:  The unit of analysis is an electricity generating unit. The dependent variable is the estimated NOx price 
effect (in ozone season) from the unit‐level linear regression estimation. In the first stage, forecast demand is used 
to instrument for local marginal electricity prices unless otherwise indicated. Emissions rates (demeaned) and 
estimated subsidies are measured in tons of NOx per MWH. Production capacity (also demeaned) is measured in 
MW. FGLS standard errors (in parentheses) are clustered at the facility level. To estimate specification (6), all unit‐
hours in which the estimated price margin is greater than $50 or less than ‐$50  are dropped in the first stage. 
* Statistically significant at the 10 percent level. 
** Statistically significant at the 5 percent level. 
*** Statistically significant at the 1 percent level. 
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Table 8 :  How do NOx permit prices affect the participation decision?  Second stage estimation results 

Specification  (1)  (2)  (3)  (4)  (5)  (6)  (7) 

Constant  0.000 
(0.000) 

‐0.003 
(0.002) 

‐0.004***
(0.001) 

‐0.002 
(0.001) 

‐0.002 
(0.002) 

‐0.003** 
(0.001) 

‐0.002 
(0.002) 

NOx rate  
(tons/MWh) 

‐2.21*** 
(0.80) 

‐2.44*** 
(0.82) 

‐3.04*** 
(0.44) 

‐2.05*** 
(0.49) 

‐2.87*** 
(0.54) 

‐3.21*** 
(0.44) 

‐2.97*** 
(0.65) 

Estimated 
subsidy 

(tons/MWh) 

  1.69 
(1.23) 

 

1.92*** 
(0.70) 

1.45* 
(0.76) 

1.48* 
(0.84) 

1.65** 
(0.70) 

1.47 
(0.99) 

NOx rate * 
capacity 

    ‐0.008** 
(0.002) 

‐0.002 
(0.003) 

‐0.003 
(0.004) 

‐0.008** 
(0.003) 

 

‐0.014***
(0.01) 

Estimated 
subsidy * 
capacity 

    0.001* 
(0.004) 

0.007* 
(0.004) 

0.004 
(0.004) 

‐0.001 
(0.004) 

0.010*** 
(0.005) 

R2 

 

N 

0.09 
 
 

550 

0.10 
 
 

550 
 

0.11 
 
 

550 

0.08 
 
 

553 

0.10 
 
 

550 

0.13 
 
 

553 

0.06 
 
 

553 

Assumed 
time horizon 

(hours) 

6  
 

6  
 

6  
 

6   2  4  8 

First stage 
IV? 

Y  Y  Y  N  Y  Y  Y 

 
Notes:  The unit of analysis is an electricity generating unit. The dependent variable is the coefficient on the 
interaction between the NOx permit price and ozone season indicator from the first stage of the estimation. First 
stage probit equations also include a constant, unit‐specific marginal operating cost, year indicators, and 
instruments for current and future wholesale electricity prices (unless otherwise indicated). These first stage 
equations are estimated under different assumptions about the relevant time horizon (measured in hours). 
Emissions rates (demeaned) and estimated subsidies are measured in tons of NOx per MWH. Production capacity 
(also demeaned) is measured in MW. FGLS standard errors (in parentheses) are also clustered at the facility level. 
 
* Statistically significant at the 10 percent level. 
** Statistically significant at the 5 percent level. 
*** Statistically significant at the 1 percent level. 
 



Appendix 1

Using the system of �rst order conditions, solve for equilibrium quantities and permit price in
terms of the model parameters:

Q� =
Eeccd � 2aeced + Eedcc + ae2c + ae2d
be2c � 2beced + be2d + e2ccd + e2dcc

(1)

q�c =
bEec � bEed � aeced + Eeccd + ae2d
be2c � 2beced + be2d + e2ccd + e2dcc

(2)

q�d =
bEed � bEec � aeced + Eedcc + ae2c
be2c � 2beced + be2d + e2ccd + e2dcc

(3)

� � =
a(eccd + edcc)� E(bcc + bcd + cccd)

b(ed � ec)2 + e2ccd + e2dcc
(4)

Substituting these expressions into the economic surplus function and di¤erentiating with respect
to the emissions constraint:

@S�

@E
=
a(eccd + edcc)� bE(cd + cc + cccd)

b(ec � ed)2 + e2ccd + e2dcc
= � �: (5)

By equation [??] , � � is also the marginal cost of reducing emissions on the supply side. Thus,
in the �rst best case, marginal abatement costs are set equal across all producers and across the
supply and demand side of the product market.

Appendix 2 :

Pro�t maximization under symmetric updating yields lower consumer prices and higher supply
side abatement costs as compared to the �rst best case. To see this, I solve for the equilibrium
quantities and permit price in terms of the model parameters:

QS_UP =
Eeccd + Eedcc � 2aeced � sEcd � sEcc + ae2c + ae2d
be2c � seccd � sedcc � 2beced + be2d + e2ccd + e2dcc

(6)

qS_UPc =
bEec � bEed � aeced � seced + Eeccd + ae2d + se2d

be2c � 2beced + be2d + e2ccd + e2dcc
(7)

q
S_UP
d =

bEed � bEec � aeced � seced + Eedcc + ae2c + se2c
be2c � 2beced + be2d + e2ccd + e2dcc

(8)

�S_UP =
a(eccd + edcc)� E(bcc + bcd + cccd) + s(eccd + edcc)

b(e2 � e1)2 + e21c2 + e22c1
> � � (9)

Assuming the implicity production subsidy is strictly greater than zero, the permit price under
updating (and thus the marginal abatement cost on the supply side) is higher under updating
versus the benchmark case. It can also be shown that consumption levels will be higher under
symmetric updating:
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QS_UP �Q� =
Eeccd + Eedcc � 2aeced + ae2c + ae2d � sEcd � sEcc
be2c � 2beced + be2c + e2ccd + e2dcc � seccd � sedcc

� (10)

Eeccd � 2aeced + Eedcc + ae2c + ae2d
be2c � 2beced + be2d + e2ccd + e2dcc

(11)

=
�
Eeccd � sEcd � 2aeced � sEcc + Eedcc + ae2c + ae2d

�
� (12)�

Eeccd � 2aeced + Eedcc + ae2c + ae2d
�

(13)

=
�
E(eccd + edcc) + a(ec � ed)2 � E(scc + scd)

�
(E(eccd + Eedcc) + a(ec � ed)2)(14)

Note that the average emissions rate per unit of output when emissions are unconstrained is
eccd+ed+cc
cc+cd

: Assuming the cap is binding, s < eccd+ed+cc
cc+cd

: This implies that eccd + edcc > scc + scd:
Thus, QOBA > Q�:

Appendix 3

Pro�t maximization under symmetric updating yields lower consumer prices and higher supply
side abatement costs as compared to the �rst best case. To see this, I solve for the equilibrium
quantities and permit price in terms of the model parameters:

QA_UP =
Eeccd + Eedcc � 2aeced + ae2c + ae2d + e2csd + e2dsc � ecedsc � ecedsd

be2c + be
2
d + e

2
ccd + e

2
dcc � 2beced

(15)

qA_UPc =
bEec � bEed � aeced + Eeccd + ae2d + e2dsc � ecedsd

be2c � 2beced + be2d + e2ccd + e2dcc
(16)

q
A_UP
d =

bEed � bEec � aeced + Eedcc + ae2c + e2csd � ecedsc
be2c � 2beced + be2d + e2ccd + e2dcc

(17)

�A_UP =
a(eccd + edcc)� E(bcd + bcc + cccd) + becsc

b(ed � ec)2 + e2ccd + e2dcc
� (18)

becsd � bedsc + bedsd + eccdsc + edccsd
b(ed � ec)2 + e2ccd + e2dcc

(19)

If ec
ed
= sd

sc
; note that e2dsc = ecedsd and e2csd = ecedsc: Thus, if the production subsidies are set

such that the subsidy per unit of emissions are equal, the �rst-best production quantities and
product price is achieved. Although the product price in this case will be equal to P �;note that
the permit price will exceed � � (to compensate for the relatively high subsidy paid to the more
polluting �rm). If the subsidy per unit of pollution is higher for cleaner �rms (as is the case when
production subsidies are symmetric), e2dsc > ecedsd; e

2
csd > ecedsc, and consumption exceeds �rst

best levels. Alternatively, if the subsidy per unit of pollution is higher for the more polluting �rm,
the reverse will be true.

Appendix 4 : Unit-level operating characteristics

A more complete appendix 4 will be included in future versions of the paper:
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Emissions rates and heat rates are observed at the unit-level over thousands of hours. Table A1
decomposes the observed variation in hourly emissions rates and heat rates. Although the vast
majority of the observed variation is between units, there is some within-unit variation in both
operating attributes. This within-unit variation can be a result of production choices made by
the plant manager (i.e. choice of fuel characteristics, the capacity at which the plant is run-
ning, combustion tuning, etc.) or it can be a¤ected by purely exogenous factors (such as ambient
temperature).
One might be concerned if operational changes made to reduce a unit�s NOx emissions rate
have signi�cant impacts on heat rates. In fact, there is little evidence to suggest that emis-
sions rates and heat rates are systematically correlated once other factors- such as capacity factor
and temperature- are controlled for.

Unit-speci�c, season-speci�c (i.e. ozone season or o¤-season) measures of these two important
operating parameters are obtained by estimating regression equations separately for each unit and
season. The following general speci�cation is estimated:

zits = �is +X
0
its�is + "its;

where zi is the operating characteristic of interest (i.e. heat rate or emissions rate) and X is a
matrix of variables that a¤ect a unit�s operational performance (ambient temperature and capacity
factor). Because the variables in X are demeaned, the intercept ai can be interpreted as the
unit-speci�c. season-speci�c value of z under average operating conditions for unit i: Table A2
summarizes these results.

These equations are estimated using all available data and data from hours when units�capacity
factors exceeded 5%. As electricity generating units increase production, they run more e¢ ciently
and reduce fewer emissions per unit of output.

Appendix 5 : The Unit Commitment Problem

The unit commitment problem (UCP) confronting electricity system operators has been exten-
sively studied in the operations research literature. The problem obtains decisions for a sequence
of time periods (typically 24 hours of a day). What happens in one hour a¤ects what can happen
in subsequent hours; optimal unit commitment in one hour is not independent of solutions in other
hours. The following UCP speci�cation was adapted from Hobbs et al. (2001)
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min
X
it

zitFi +
X
it

qitci +
X
it

yitUi

s:t:X
i

qit = Dt 8tX
i

rit = SDt 8t

qit � zitMINi 8i; t
qit + rit � zitMAXi 8i; t

rit � zitMAXSPi 8i; t
qit � qit�1 +MxINCi 8i; t
qit � qit�1 +MxDECi 8i; t
zit � zit�1 + yit 8i; t
zit � zit�1 = xit 8i; tX

aki(qit) �MxFlowit 8 k; i; t

where the decision variables are:
qit the MW produced by unit i in hour t
rit the MW of spinning reserves provided by unit i in hour t
zit A binary variable indicating whether unit i is dispatched in hour t:
yit A binary variable indicating whether unit i starts up (having been switched o¤ in hour t� 1) in hour t:
xit A binary variable indicating whether unit i shuts down (having been on in hour t� 1) in hour t:

The parameters of the problem are:
Dt Electricity demand in period t:
SDt Demand for spinning reserves in period t.
Fit Fixed costs of operating unit i in period t (measured in $/hour).
cit Variable operating costs at unit i in period t (measured in $/MWh).
Uit The costs of starting up unit i (measured in $).
MAXi The maximum production capacity of unit i.
MINi The minimum production capacity of unit i (assumed to be 0 for all i)
MxINCi Maximum ramp-up rate for increasing production at unit i
MxDECi Maximum ramp-down rate for decreasing production at unit i.
aki Linearized coe¢ cient relating bus i injection to line k �ow.
MxFlowit Maximum MW �ow on line k in period t.

In the restructured electricity markets considered in this paper, market participants submit bids to
an independent system operator (ISO). Unit-level production activities are coordinated via a two-
settlement market system. A day ahead forward market schedules resources and determines hourly
prices for the following day; a balancing market ensures that supply meets �uctuating demand
in real time. Once generators have submitted their supply bids, independent system operators
identify unit commitment schedules to minimize the cost of meeting electricity demand subject
to thousands of unit-level and system-level operating constraints.1 If �rms act as price-takers,
submitting bids that re�ect true costs and operating constraints is a likely to be a pro�t maximizing

1The di¤erent regional electricity markets require generators to submit bids in di¤erent forms. For example, the
New York ISO separates energy bids into start-up cost curves and an energy curve which can be a three part step
function or a 6 segment piecewise linear curve.
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strategy (G.Gross and D.J.Finlay, �Optimal bidding strategies in competitive electricity markets,�
Proceedings of lp Power Systems Compuwion Conference (PSCC�96), Dresden, August 19-23,
1996, pp.815-823). Bidding strategies become more complicated in imperfectly competitive market
settings.
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