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Abstract

Midrigan (2008) shows that if two-product firms have increasing re-
turns in their re-pricing technology, then nominal shocks can have real
effects – a result contradicting the findings of Golosov-Lucas (2007) in a
model of single-product firms. This paper builds a standard menu cost
model with two-product firms where the cost of changing the second price
(the “second menu cost”) can be anything between zero (as in Midrigan)
and the first menu cost (as in Golosov-Lucas), and shows that under rea-
sonably calibrated leptokurtic shocks the real effect of nominal shocks is
decreasing fast with the increasing relative size of the second menu cost.

To identify the size of the second menu cost, we use the distributional
characteristics (frequency, size, kurtosis) of micro-level price changes dur-
ing the natural experiment provided by a series of large value-added tax
increases in Hungary. We find that without further channels, the real
effects of monetary policy in these models are still limited.

Keywords: Menu Cost, Value-Added Tax, Store-Level Pricing, Real
Effects of Nominal Shocks

JEL Classification: E30

1 Introduction

This paper uses store-level consumer price data collected in a period of frequent
nominal (value-added tax) shocks in Hungary to investigate the real effects
of monetary shocks under menu costs. Despite the large number of studies,
there is still no consensus on this issue. A recent paper by Golosov–Lucas
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(2007) – calibrated to match micro data features in the US – argues that in an
environment where firms have to pay menu cost to change their prices and are
hit by idiosyncratic productivity shocks, monetary shocks perfectly pass through
to the aggregate price level and hence do not affect real output. The reason,
shortly, is selection: firms that adjust their prices after a monetary shock are
exactly those whose desired adjustment is the largest, and this makes up for the
non-adjustment of other stores.

On the other hand, Midrigan (2008) shows that if we calibrate the model to
match the entire distribution of store-level price change sizes, nominal shocks
do have real effects. Midrigan discusses two empirical regularities that the
Golosov-Lucas model is unable to match: the large proportion of small price
changes, and the leptokurtic distribution of price change sizes. In the Golosov-
Lucas model, homogenous menu costs prevent stores from changing their prices
by small amounts: the additional profit from doing so would not exceed the
marginal cost of it (i.e. the menu cost). The Golosov-Lucas model is also
unable to match the leptokurtic shape of the price change size distribution.

In order to make the model well equipped to account for these two additional
empirical observations, Midrigan modifies it in two respects: first he observes
that stores generally sell more than one product, and assumes that there is
increasing returns in the price change technology within these multi-product
stores. (This assumption is supported by the empirical observation of within-
store synchronization of price changes, see for example Levy et al (1997) and
Lach-Tsiddon (2007).) He then assumes that once the price of one of the goods
changes, the store can change any of its other goods’ prices for free. Second,
he assumes that the firms’ idiosyncratic productivity shocks are leptokurtic,
which then leads to the leptokurtic distribution of price change sizes. In such
an environment Midrigan shows that monetary shocks do have effect on real
output.

In this paper we develop a model which incorporates both the Golosov-Lucas
and the Midrigan models as special cases. We do this by assuming multi-product
firms, in which the cost of changing the price of the second good (given that
the price of the other good has changed) can be anything between zero (as in
Midrigan) and the first menu cost (as in Golosov-Lucas). As we demonstrate,
a positive second menu cost does not necessarily eliminate small price changes,
and therefore the model will still be able to match the empirical price change
size distributions. We then investigate how the magnitude of the second menu
cost affects the real effect of monetary shocks, i.e. the different results of the
Golosov-Lucas and Midrigan models.

In the empirical part, we use observations on the price change size distribu-
tions from subsequent episodes of Value-Added Tax (VAT) changes in Hungary
to identify the magnitude of the second menu cost. As VAT-changes induce un-
precedentedly large fraction of stores to adjust their prices (in Hungary, 50-67%
of stores adjusted in the month of the VAT-changes, see Gabriel-Reiff (2007)),
we think that these episodes are extremely well suited to address questions re-
lated to the distribution of price change sizes. Therefore we calibrate our model
parameters – i.e. the first and second menu costs and the distribution of id-
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iosyncratic productivity shocks – to match the (kurtosis of the) price change
size distributions at months of VAT-changes. Based on the calibrated param-
eters, we find that monetary shocks that have similar size to the Hungarian
VAT-changes have relatively small real output effects.

The paper is organized as follows. Section 2 presents the model. Section 3
discusses how the second menu cost affects the real effects of monetary shocks.
Section 4 presents the calibration results, and Section 5 concludes.

2 The Model

Our starting point is a standard two-product menu cost model with idiosyncratic
productivity shocks, as in Midrigan (2008). In this model each firm produces
two different products, and firms have to pay fixed costs to change the price of
the products. However, the price change technology exhibits increasing returns
to scale: once the price of any products is changed, it is possible to change the
price of the other product for free.

We generalize this model by assuming that the cost of changing the price of
the second product (the “second menu cost”) is anywhere between zero and the
cost of changing the price of the first product (the “first menu cost”). Therefore
the Golosov-Lucas and the Midrigan models become special cases of our model:
in the former, the second menu cost is equal to the first, while in the latter it is
zero.

2.1 Consumers

The representative consumer consumes a Dixit-Stiglitz aggregate C of individual
goods C1(i) and C2(i), holds money balances M/P , and supplies labor L in such
a way that maximizes the present value of its expected utility. (Our notational
convention is that first and second products (j = 1, 2) are in superscripts, time
(t) is in subscripts, and firm identifiers (i = 1, ..., n) are in brackets.) Then the
representative consumer’s problem is

max
{C1

t (i),C2
t (i),Lt,Mt}

E

∞∑
t=0

βt
(

log
[
Ct ·

(
Mt

Pt

)ν]
− µ

1 + ψ
L1+ψ
t

)
, (1)

where the aggregate consumption Ct is determined by the CES-aggregator

Ct =

[
n∑
i=1

n−
1
θ

(
1
2
C1
t (i)

γ−1
γ +

1
2
C2
t (i)

γ−1
γ

) γ
γ−1

θ−1
θ

] θ
θ−1

,

where γ is the within-firm elasticity of substitution, θ is the between-firm
elasticity of substitution, with γ ≥ θ. We assume that the number of firms (n) is
large, so that firm i’s consumption goods C1(i) and C2(i) are only infinitesimal
parts of the consumer’s utility C.

The consumers budget constraint in each time period is
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n∑
i=1

(
P 1
t (i)C1

t (i) + P 2
t (i)C2

t (i)
)
+
∑
ht+1

Bt+1(ht+1)+Mt+1 = RtBt+Mt+w̃tL+Π̃t+Tt,

(2)
where P 1

t (i) and P 2
t (i) are nominal prices of the products of firm i, Bt

is a nominal Arrow-security with state-dependent gross return Rt, Mt is the
nominal money balance, w̃t is the nominal wage, Π̃t is the nominal profits
the representative consumer earns from ownership in firms, Tt is a lump-sum
transfer, and ht+1 is the history of events realized up to time t + 1 (history
dependence is suppressed for the sake of notational simplicity).

The firm-level and the aggregate prices are the CES-averages of individual
prices:

Pt(i) =
(

1
2
P 1
t (i)1−γ +

1
2
P 2
t (i)1−γ

) 1
1−γ

, Pt =

[
n∑
i=1

Pt(i)1−θ

n

] 1
1−θ

,

implying that the aggregate expenditure is PtCt.
The solution of the representative consumer’s problem is the consumer’s

demand function:

Cjt (i) =
1
n

(
P jt (i)
Pt(i)

)−γ (
Pt(i)
Pt

)−θ
Ct. (3)

The Euler-equation of the representative consumer implies that the stochas-
tic discount factor 1

Rt+1
is given by

1
Rt+1

= β
PtCt

Pt+1Ct+1
, (4)

the labor supply equation is

µLψt Ct =
w̃t
Pt
, (5)

and the money demand equation is

Mt

Pt
= νCt

it + 1
it

, (6)

where it is the nominal interest rate.

2.2 Firms

Firms maximize the present value of their expected future profits, net of menu
costs they have to pay whenever they adjust their prices. Their key decision is
therefore whether to adjust prices or not. The menu costs are assumed to be
proportional to the firms’ revenues.
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The net present value of future expected profits is

maxE
∞∑
t=0

1∏t
q=0Rq

Π̃t(i), (7)

where the periodic profit function is

Π̃t(i) =
2∑
j=1

(
P jt (i)Y jt (i)− w̃tL

j
t (i)
)
. (8)

In the profit function, revenues are determined by demand from the con-
sumers, described in equation (3). The costs are derived from the firms’ linear
technology, which uses labor as a single input:

Y jt (i) = ZtA
j
t (i)L

j
t (i), (9)

where Zt is an aggregate productivity shock, and Ajt (i) are idiosyncratic
productivity shocks (j = 1, 2). We assume that the growth rate of the aggregate
productivity shock, gZ is constant,1 and the log of idiosyncratic shocks Ajt (i)
follow independent AR(1) processes with zero-mean i.i.d. innovations εjt (i) (j =
1, 2):

lnAjt (i) = ρAlnA
j
t−1(i) + εjt (i), (10)

where the standard deviation of the i.i.d. innovations is σε.
The individual labor demands are therefore

Ljt (i) =
Y jt (i)
ZtA

j
t (i)

. (11)

Substituting the representative consumer’s demand function (equation (3))
and the firms labor demand function (equation (11)) to the periodic profit func-
tion, and using the goods market clearing condition Cjt (i) = Y jt (i), we have

Π̃t(i) =
2∑
j=1

(P jt (i)
Pt(i)

)(1−γ)(
Pt(i)
Pt

)(1−θ)
PtYt
n

− w̃t
Yt
nZt

(
P jt (i)
Pt(i)

)−γ (
Pt(i)
Pt

)−θ .
We assume that the central bank follows a nominal income targeting rule by

holding the growth rate of the nominal aggregate output PtYt constant. Then
normalizing this profit function with the per-firm nominal GDP PtYt

n , we obtain
a stationary “normalized”profit function

Πt =
Π̃tn

PtYt
.

1In a more general version, we could let gZ to follow an AR(1) process around its mean
µgZ .
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Let us denote the product-level relative prices P j
t (i)
Pt

by pjt (i), the firm-level

relative prices Pt(i)
Pt

by pt(i), the normalized wage w̃t

PtYt
by wt, and the sectoral

cost factor w(t) Yt

nZt
by ζt. The normalized profit function becomes

Πt

[
p1
t (i), p

2
t (i), A

1
t (i), A

2
t (i), ζt

]
= pt(i)(γ−θ)

2∑
j=1

(
pjt (i)

(1−γ) − ζtp
j
t (i)

−γAjt (i)
−1
)
− φ1 − φ2,

where the firms has to pay the first menu cost φ1 if at least one price is
changing, and the second menu cost φ2 if both prices change.

For each firm i,
[
A1
t (i), A

2
t (i)
]

and
[
p1
t−1(i), p

2
t−1(i), ζt, πt,Γt

]
are the exoge-

nous and endogenous state variables, respectively, with πt being the inflation
rate, and Γt being the distribution of relative prices. For notational conve-
nience, we express the set of state variables as

[
p1
t−1(i), p

2
t−1(i),Ωt

]
, where Ωt is

the vector of state variables other than the two relative prices.
Given these state variables, the value of the firm is determined by the max-

imum it can achieve by changing both prices (V CC), by changing the price of
good 1 only (V CN ), by changing the price of good 2 only (V NC), and by not
changing any of the prices (CNN ):

V (p−1,Ω) = max
{CC,CN,NC,NN}

(
V CC(p−1,Ω), V CN (p−1,Ω), V NC(p−1,Ω), V NN (p−1,Ω)

)
.

(12)
The value functions on the right-hand side of this equation are given by

V CC(p1
−1, p

2
−1,Ω) = max

{p1,p2}

[
Π(p1, p2, A1, A2, ζ) + βEV (p1, p2,Ω)

]
, (13)

V CN (p1
−1, p

2
−1,Ω) = max

p1

[
Π
(
p1,

p2
−1

1 + π
,A1, A2, ζ

)
+ βEV

(
p1,

p2
−1

1 + π
,Ω
)]

,(14)

V NC(p1
−1, p

2
−1,Ω) = max

p2

[
Π
(
p1
−1

1 + π
, p2, A1, A2, ζ

)
+ βEV

(
p1
−1

1 + π
, p2,Ω

)]
,(15)

V NC(p1
−1, p

2
−1,Ω) = Π

(
p1
−1

1 + π
,
p2
−1

1 + π
,A1, A2, ζ

)
+ βEV

(
p1
−1

1 + π
,
p2
−1

1 + π
,Ω
)
.(16)

2.3 Equilibrium

The equilibrium is a collection of allocations
{
Cjt (i), P

j
t (i),Mt, L

j
t (i), Bt, w̃t, Y

j
t (i)

}
such that:

1. The representative consumer chooses Cjt (i),Mt, Lt to optimize (1) under
its budget constraint (2), taking prices P jt (i), interest rates Rt and wages
w̃t as given,
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2. The firms set prices P jt (i) to maximize the value function (12) given the
current exogenous state variables, the law of motion of the idiosyncratic
productivity shocks, and having correct beliefs about the endogenous state
variables,

3. The central bank sets it and Mt to keep the growth rate of the nominal
output, gPY constant,

4. Goods markets clear: Cjt (i) = Y jt (i),

5. Assets are in zero net supply: Bt = 0,

6. Labor markets clear: the representative consumer’s labor supply in equa-
tion (5) equals the sum of aggregate labor demands in (11).

2.4 Computing the steady-state

In our model, we assume that the central bank keeps a constant nominal output
growth gPY , and that the aggregate productivity Zt is growing at a constant rate
gZ . These two assumptions imply that the steady-state inflation is π = gPY −gZ .

The other two endogenous state variables, the aggregate cost factor (ζ) and
the steady-state distribution of relative prices (Γ) are determined simultane-
ously. To solve for these, we apply an iterative procedure:

1. We choose an arbitrary value for the aggregate cost factor ζ. In the first
step, we start from the flexible price equilibrium value of ζ.

2. We solve the value function (12) under the steady-state inflation rate
gPY − gZ and the chosen ζ, with value function iteration.

3. With the resulting value and policy functions, we simulate an artificial
data set and obtain the corresponding relative price distribution.

4. In the artificial data set, we compute the resulting aggregate cost factor ζ
(nothing ensures that this ζ is the same that we have chosen in the first
step).

5. If the resulting ζ is different from the initial one, then we start again this
procedure. We do this until the resulting ζ is equal to the initial value we
have chosen.

3 The effect of the second menu cost on the real
effects of nominal shocks

In this section we investigate the real effect of nominal shocks in the model. For
the sake of simplicity, we examine the inflation effect of a transitory 1% nominal
shock.
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3.1 Modelling the real effect of nominal shocks

We model the nominal shock by a one-time, 1 %-point increase in the gPY
growth rate of the nominal output. To compute the inflation (and output)
effect of this nominal shock, we use the shooting algorithm, which is an iterative
procedure in the resulting inflation path. The time horizon (T ) in which we study
the inflation effect is long enough to reach again the steady-state. (Therefore,
our notational convention is that the nominal shock hits at t = 1, and its effect
vanishes after t = T .)

The shooting algorithm consists of the following steps:

1. We choose an initial inflation path {π1, π2, ..., πT } as the provisional in-
flation effect of the nominal shock. Again, we start with the flexible-price
case, i.e. when there is immediate and full pass-through.

2. We calculate the resulting path of the aggregate cost factor: {ζ1, ζ2, ..., ζT }.
As we defined ζ = Yt

nZt
, it follows that gζ = gY − gZ = gPY − π − gZ ,

which is easy to compute given our assumptions and the provisional infla-
tion path.

3. As we reach the steady state after T periods, the (T +1)-st period’s value
function will be the steady-state value function: VT+1

(
p1, p2,Ω

)
= V SS .

Knowing this, we can use equations (12)–(16) to compute the T -th period’s
value function, and with backward induction, we can also calculate all the
value functions back to the 1-st period, i.e. when the nominal shock hit.

4. With all the value and policy functions, we can simulate an artificial data
set and calculate the resulting inflation path.

5. If the resulting inflation path is different from the one we started from,
we update the inflation path and start over the iteration.

3.2 A calibration exercise

Golosov-Lucas (2007) and Midrigan (2008) have different assumptions about the
magnitude of the menu cost of changing the second price. The former assumes
that this second menu cost is the same as the first, while in the latter it is zero.

In this subsection we make a series of calibrations of the theoretical model,
where the second menu cost increases gradually. Initially, we do the calibration
when φ2/φ1 = 0 (as in Midrigan), and at subsequent calibrations we contin-
uously increase this ratio until we reach φ2/φ1 = 1 (as in Golosov-Lucas). In
order to be able to compare the real effects of nominal shocks across calibrations,
we will keep the monthly inflation rates, and the average frequency and absolute
size of price changes fixed throughout the calibrations, by changing parameters
φ1 and σε. Based on the results reported in Midrigan (2008) and Golosov-Lucas
(2007), we expect the real effect of nominal shocks to be decreasing in the φ2/φ1

ratio.
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According to Table 1, the other model parameters (other than the menu
costs and shock standard deviations) and calibration targets are similar in the
two papers: they both calibrate the model to a monthly inflation rate of approx-
imately 0.2%, a monthly price change frequency of 22-24%, and to an average
absolute size of approximately 12%.2 Out of the deep parameters of the model,
the discount factors (β) and the idiosyncratic shock persistences (ρA) are almost
identical, the only difference being in the elasticity parameters (θ, γ).

Table 1: Model parameters and some calibrated moments in Golosov-Lucas
(2007) and Midrigan (2008)

Model parameters Midrigan Golosov-Lucas Our choice

Between-firm elasticity (θ) 3 7 5
Within-firm elasticity (γ) 11.5 7 11
Discount factor (β) 0.997 0.9966 0.9966
First menu cost (φ1) 0.0111 0.0025 to calibrate
Second menu cost (φ2) 0 0.0025 to calibrate
Idios. shock stdev. (σε) 0.065 0.105 to calibrate
Idios. shock persistence (ρA) 0.473 0.45 0.5
Beta distr. 1st param. α1 0.046 n.a. 0.05
Beta distr. 2nd param. (α2) 1.057 n.a. 1

Calibrated values Midrigan Golosov-Lucas Our choice

Monthly inflation (π) 0.002 0.0021 0.002
Frequency of price change 0.24 0.219 0.23
Average size of price change 0.12 0.095* 0.12

The fourth column of Table 1 shows our choices for the model calibrations
under different φ2/φ1 ratios. We wanted to be as close to both the Golosov-
Lucas and the Midrigan-calibrations as possible. Therefore we calibrate the
model to a monthly inflation rate of 0.2%, a monthly frequency of 23% and to
an average absolute size of 12%. Also, we have fixed some model parameters
in advance to stay close to both papers’ parametrization: the elasticity of sub-
stitution are θ = 5 and γ = 11, the discount factor is β = 0.9966 = 0.961/12,
and the shock persistence is ρA = 0.5. Regarding the distribution of the id-
iosyncratic shock innovations, we follow Midrigan and assume beta distribution
with parameters α1 = 0.05 and α2 = 1. The two menu cost parameters (φ1, φ2)
and the idiosyncratic shock standard deviation (σε) are calibrated to match the
average frequency and size figures just discussed.

Table 2 contains the inflation effect of a 1 %-point nominal shocks for differ-
ent ratios of the second and the first menu cost. We find that if the second menu
cost is zero, then we have substantial real effect of nominal shocks in the short-
run. This is consistent with the findings of Midrigan. However, if we increase
the magnitude of the second menu cost, the real effect of the nominal shocks

2Golosov-Lucas calibrate the average size of price increases, which is generally smaller than
the average size of price changes. In empirical studies, an average increase of 9.5% is generally
consistent with an average absolute size of 10-13%.
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quickly decreases: if φ2/φ1 > 0.3, then the inflation effect is approximately 80%
and 90% after 1 and 2 months, respectively, implying that the real effect after
1 month is merely 20%, and it is smaller than 10% after 2 months.

Table 2: Inflation effect of a 1%-point nominal shock under different second
menu costs

Calibrated Inflation effect after
φ2/φ1 frequency size 1 mth 2 mth 3 mth 4 mth

0 (M) 0.2287 0.1201 0.42% 0.66% 0.75% 0.81%
0.2 0.2311 0.1197 0.63% 0.67% 0.77% 0.80 %
0.3 0.2323 0.1199 0.78% 0.86% 0.88% 0.95 %
0.5 0.2300 0.1194 0.81% 0.91% 0.96% 1.00%

1 (GL) 0.2320 0.1198 0.77% 0.86% 0.92% 0.99%

Targets 0.2300 0.1200

Therefore we can conclude that the size of the second menu cost affects the
real effect of the nominal shocks. This naturally leads to the question of whether
we could identify the size of this second menu cost.

4 Calibration of the second menu cost

4.1 Simple facts from VAT-changes

To calibrate the model and the second menu cost parameter, we use store-level
data from Hungary in 2002-2006, when the Hungarian authorities implemented
a series of Value-Added Tax (VAT) changes: within a period of 32 months, the
initial VAT-rates of 5%, 12% and 25% were changed three times.

1. In January 2004, the middle rate was increased to 15%.

2. In January 2006, the top rate was cut to 20%.

3. In September 2006, the middle rate was again increased to 20%.

Gabriel-Reiff (2007) investigates the store-level responses for the various
VAT-changes in detail. The main conclusions are the following:

1. The frequency of price changes increased dramatically. For example,
in January 2004 and September 2006 the frequency of price changes of
the affected items were 59.0% and 66.3%, much higher than in any other
months (fluctuating between 17-29% in our sample).

2. The average absolute size of price changes decreased significantly. In
January 2004 and September 2006 the average absolute sizes among the
affected items were 9.6% and 10.8%, clearly smaller than in any other
months (the average absolute size in regular months is 13.3%, the range
being 11.2%–14.9%).
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3. The extra price changes (i.e. those which probably would not have
been made in the absence of VAT-change) were highly concentrated
around the exact size of the VAT-shock. For example, Figure 1 depicts
the distribution of price changes (conditional on not being zero) in January
2003 and September 2006 for the products affected by the September 2006
VAT-increase of 5 percentage points. Most of the additional price changes
in September 2006 (relative to January 2003) have a size of 3-7 percent,
i.e. close to the size of the shocks. This indicates that the desired price
change of these price-changing stores would have been close to zero, if
there were no VAT-change in this month.

Figure 1: Size distributions in January 2003 and September 2006
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In what follows, we use empirical evidence from the September 2006 VAT-
change to calibrate the theoretical model. The reason is that this was the
biggest VAT-shock affecting the highest number of products in our sample. We
will consider evidence from other VAT-changes in future versions of the paper.

4.2 Calibration

[PRELIMINARY]
In this subsection we calibrate the model to match the frequency and average

absolute size of price changes in regular months, and also the frequency in a
month with a 5% nominal shock. This is similar to what we have done in section
3, the difference being that now we also calibrate to the frequency response after
the nominal shock. Also, instead of the US figures now we calibrate to match
the statistics calculated from Hungarian data: the frequency of price changes is
20.3%, the average absolute size of price changes is 13.3%, and the frequency of
price changes when the shock hits is 66.3%.
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To be able to hit the extra statistics we are calibrating for, by changing the
α1 parameter we also calibrate the shape of the idiosyncratic shock distribution.
The intuition is the following: in the previous calibration, the Midrigan-model
(i.e. when φ2/φ1 = 0) implied a very modest frequency response – from 23% to
approximately 35% – for the 5% nominal shock. This is much smaller than what
we see in the data. The reason is that in the previous calibration, the (first)
menu cost is relatively high, which prevents most of the stores from adjusting
even when a 5% nominal shock hits. Therefore in order to generate a much
higher frequency response for the nominal shock, we have to decrease the (first)
menu cost. But then the frequency of price changes in regular times would
increase. One way to avoid this is changing the shape of the distribution of the
idiosyncratic productivity innovations: if they are more concentrated around
zero, the frequency of price changes will decrease. This can be achieved by
decreasing the parameter α1 of the shock-generating beta-distribution.

Table 3 contains the results of this calibration. The first three columns in-
dicate that we can hit the empirical values quite well. In the last three columns
there are the calibrated model parameters. Note the calibrated shape parame-
ter (α1): for small φ2/φ1 ratios, it is smaller than 0.05 in the previous section,
indicating more leptokurtic idiosyncratic productivity innovations, which is nec-
essary to compensate for the frequency-increasing smaller first menu cost. For
higher φ2/φ1 ratios, the first menu cost is already small enough not to prevent
the big frequency response for the nominal shock, and we do not have so lep-
tokurtic shock innovations to achieve the same frequency of price changes in
regular months.

Table 3: Calibrated model parameters and moments to match the frequency
and size effect of nominal shocks

Moments Calibrated
Matched Non-matched parameters

φ2/φ1 frNT dpNT frT kurtNT kurtT φ1 σε α1

0.05 0.202 0.133 0.681 3.570 11.390 0.057 0.078 0.046
0.1 0.204 0.132 0.679 3.193 10.125 0.053 0.075 0.055
0.17 0.203 0.133 0.668 2.858 8.999 0.051 0.073 0.065
0.2 0.203 0.134 0.651 2.685 8.296 0.051 0.073 0.070
0.3 0.202 0.133 0.656 2.471 8.178 0.046 0.071 0.078

Targets 0.203 0.133 0.663 3.970 8.770

Using the different model calibrations in Table 3, in Figures 2–5 in the
Appendix we depict the same size distribution histograms in the model as we
saw in Figure 1 for the data. Several features emerge: first, the size distribution
in the VAT-months (right panels) are quite similar to each other, although these
distributions become less concentrated as the φ2/φ1 ratio increases. Second,
the regular months’ size distributions (left panels) differ considerably “in the
middle”. This is because for higher φ2/φ1 ratios, the very small price changes
become much less frequent. However, for small values of φ2/φ1, they are very
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much concentrated around the small price changes, something we do not observe
empirically. So based on simple visual inspection, we can generate the empirical
size distribution when the φ2/φ1 ratio is around 0.1-0.2.

One possibility to describe the shape of a distribution is kurtosis (this is
what Midrigan (2008)) uses. Therefore in column 4-5 of Table 3 we can see the
simulated kurtosis values (as “non-matched moments”), as well as the empirical
values of these kurtosis.3 These figures indicate that the calibrated kurtosis
values in the VAT-months are approximately equal to the observed kurtosis
when the φ2/φ1 ratio is around 0.17 (however, the kurtosis of the regular months’
size distributions are non hit in this case).

Of course, matching the kurtosis of the size distribution does not do a perfect
job in matching the whole size distribution. The exploration of possibilities to
match the whole distributions as well as possible is subject of future research.

Finally, we investigate the real effect of nominal shock in the calibrated model
(where the parameters were calibrated as in Table 3, for φ2/φ1 = 0.17). Model
simulations indicate that the inflation effect of a 5 %-point nominal shock is 4.8%
in the first month, which means that the real effect is only 0.2%. This result
may be driven by the large frequency effect that we calibrated for. Investigating
the real effect of smaller nominal shocks (and the ratio of the output volatility
and shock volatility) is subject of future research.

5 Conclusion

In this paper we set up a standard menu cost model with multi-product firms
that contained the model of Midrigan (2008) and Golosov-Lucas (2007) as spe-
cial cases. In the model we allowed the cost of changing the stores’ second
goods’ prices to be anything between zero (as in Midrigan) and the first menu
cost (as in Golosov-Lucas).

We then showed that the second menu cost is important for the real effects
of nominal shocks: when the second menu cost is small, nominal shocks have
relatively larger real effects than in case of large second menu cost. These results
are in line with the results of Midrigan and Golosov-Lucas.

Next we calibrated our model to match simple facts (e.g. frequency, size)
from a series of Value-Added Tax shocks in Hungary. To identify the second
menu cost, we used the kurtosis of the distribution of the price change sizes.
We found that the second menu cost is a non-trivial fraction of the first menu
cost, approximately 16-17%. In this case, however, a 5% nominal shock has very
little effect on real output.

3When calculating the kurtosis from empirical data, we followed Midrigan’s approach and
eliminated all price changes that were bigger than 100% in absolute value. The way we treat
these outliers matters a lot for the calculated kurtosis figures.
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Figure 2: Size distributions in the model for φ2/φ1 = 0.05
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Figure 3: Size distributions in the model for φ2/φ1 = 0.10
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Figure 4: Size distributions in the model for φ2/φ1 = 0.20
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Figure 5: Size distributions in the model for φ2/φ1 = 0.30
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