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Abstract

We study whether the success of bargaining and the agreed upon terms depend on the
characteristics of the person who initiates negotiations (“the initiator”). We approach
this question in the context of high-stakes online poker tournaments, in which partic-
ipants often negotiate a division of the prize money rather than risk playing until the
end. Although initiators typically are in a worse than average position and are less well
known, negotiations initiated by better known and better performing agents are more
likely to lead to an agreement. This would suggest that gains to trade depend on who
the initiator is, but, surprisingly, initiating bargaining does not affect the initiator’s
payoff in a completed deal.

Additionally, we find strong evidence in support of Cramton, Gibbons, and Klem-
perer (1987), who argue that bargaining is more likely to succeed when parties’ stakes
in an enterprise are close to equal.
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1 Introduction

Bargaining and negotiations pervade many aspects of economic life and social interactions.

Although this topic has received a great deal of attention in the economics literature, we have

scarce empirical or experimental evidence on some its most important facets. We know little

about what determines when negotiations start, which agents are more likely to propose

to start bargaining, if the identity of the party initiating bargaining influences whether

an agreement is reached, or if the initiator’s payoff is systematically affected. Studying

these topics empirically is challenging, as many contexts involve agency conflicts, private

information, or payoffs or other features that are difficult to quantify and analyze. At the

same time, bargaining in experimental studies is rarely endogenous, which makes it difficult

to investigate its initiation.

This paper is an empirical examination of bargaining which arises endogenously between

parties that have uncertain claims on future payoffs. We analyze the initiation of bargaining:

when it occurs, who initiates it, and how the outcome of bargaining depends on the char-

acteristics of the initiator. The setting has the advantage that the potential negotiators are

principals, stakes are substantial, and the outside option and the payoffs under a successful

deal are clearly and unambiguously defined.

The context of our study is the negotiations that often occur near the end of high-

stakes online poker tournaments (in which total prize money averages more than $80,000

per tournament). Players begin the tournament with an equal number of chips and are

eliminated when they lose all their chips. Each tournament has a schedule of monetary prizes

to be awarded on the basis of the final ranking of players. However, once the tournament is

reduced to nine or fewer participants, any player can propose to end the tournament early

and to distribute the remaining prize money among the surviving participants. The terms

of such a division are the subject of negotiation, and the only constraints that players face

are that the sum of the payoffs be equal to the sum of the remaining prizes and that the

agreement be unanimous. The terms of the deal may depend on the number of chips each

player has, his past success, or anything else that affects bargaining power. Any player can
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veto a proposed division, in which case the tournament continues.1 The gains to trade from

a deal stem from the elimination of risk inherent in playing the game out. In the absence of

a deal, players face an uncertain outcome, although those who are currently leading in the

tournament (i.e., have more chips) have a greater likelihood of obtaining larger prizes.

This setting combines real-world bargaining with clarity usually found only in a labora-

tory. The payoffs and outside options (i.e., that the game continues) are well defined and

players in our sample are likely experienced enough to evaluate them meaningfully. More-

over, the stakes are substantial. In a typical deal, two or three players divide, on average,

more than $37,000, which suggests that players take the negotiations seriously.

In our sample of 1,246 online tournaments, 31% had a negotiated division of the prize

money prior to the end of the tournament. A further 34% had negotiations that ultimately

failed to reach an agreement. Of course, the fact that the agents in our sample often strike

deals to reduce risk indicates that they are risk averse, but their decision to participate in

poker tournaments in the first place implies that they also derive enjoyment from playing (or

are risk seeking over smaller gambles, as in Friedman and Savage, 1948). Their preference

for games of chance may make it less likely that they make a deal, but when examining

the cross section of bargaining, there is no reason to expect them to systematically behave

differently from managers, lawyers, or other economic agents who may initiate bargaining in

other contexts.

Our results are striking both in what they show and in what they do not show. We find

that the identity of the initiator affects whether or not a deal is completed, but does not

affect the terms of the deal. This is surprising because in simple models of bargaining, there

is no role for the initiator. If there are gains to trade, a deal will be made regardless of who

proposes it. There may be a role for the initiator in the presence of private information. In

such a case, the player initiating bargaining may be revealing a weakness – perhaps that he

does not believe he could win the tournament or that he has a high level of risk aversion.

This could conceivably hurt the initiator, who would then receive a smaller payoff in an

1Bargaining here has similarities to the n-player, one-cake model of Binmore (1985), and the “unanimous
game” of Krishna and Serrano (1996), Chatterjee and Sabourian (2000) and Ali (2006).
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agreed upon deal.2 So either the initiator’s identity should not matter, or, if it does matter,

his payoff in a completed deal should be systematically affected.

These two predictions, while intuitively plausible, are not supported by the data. First,

when the initiator has a stronger position at the bargaining table, (e.g., if he has more chips

than his opponents or if he has a successful track record in previous tournaments), then a

deal is more likely to be successfully completed. The second central result, which deepens

the puzzle, is that the initiator’s payoff in a completed deal is not affected. The estimated

impact of being the initiator is not only statistically insignificant, it is also economically

small over its entire 95% confidence interval.

We separate deals between two players and deals negotiated among three or more players.

In both cases, being the initiator does not affect a player’s payoff. But we find intriguing

results regarding the payoffs to the players with the most and the fewest chips at the table. In

deals that are agreed to when only two people remain, the player with fewer chips receives

a payoff greater than his expected value at the expense of the player with more chips.

In contrast, when deals are made among three or more players, both the player with the

fewest chips and the player with the most chips extract value from those in the middle. As

an implication for the experimental literature, this suggests that the results of two-person

bargaining games may not generalize directly to games with more than two players.3

A very robust result is that the distribution of wealth is important for the initiation and

success of bargaining.4 Bargaining tends to be initiated when chip holdings are relatively

equal, and, given a proposal, a deal is more likely to be completed when there is less inequal-

ity. In the context of dissolving a partnership, Cramton, Gibbons, and Klemperer (1987)

argue that an efficient division of the partnership stakes can only occur when the claims of

2Alternatively, the first concrete proposal can act as an “anchor” on which counterproposals will be based
(Tversky and Kahneman, 1974; Galinsky and Mussweiler, 2001). In this case, the first player to make a
proposal will have an advantage and will receive a higher payoff.

3There are few experimental papers studying multilateral bargaining. These include Knez and Camerer
(1995) and Okada and Riedl (2002) who study three-person variations of the ultimatum game. Guth and
van Damme (1998) and Kagel and Wolfe (2001) study a three-person ultimatum game in which one player
is completely passive. Some other recent experiments have more than two players bargaining, but with a
majority voting rule (e.g., Frechette, 2006 and Battaglini and Palfrey, 2007).

4Throughout this paper we use the terms “wealth,” “rich,” and “poor” to refer to the number of chips
each player has. These should not be confused with unobservable outside wealth.
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the parties are not too different from each other. We test that hypothesis against alternative

explanations and provide strong empirical support for their previously untested theory.

This paper proceeds as follows. In the next section we describe the bargaining environ-

ment and the data. Section 3 addresses the question of how the identity of the agent who

initiates bargaining affects the outcome. Section 4 investigates whether the initiator’s payoff

in a completed deal is affected. Section 5 discusses the impact of the distribution of wealth

at the table on bargaining, and Section 6 concludes.

2 Setting and data

The data in our study are a sample of 1,246 poker tournaments from one of the largest online

poker sites. The prize pool averages more than $80,000 per tournament, and the largest

tournaments have prize pools of well over $1 million. We first discuss the key features of the

tournament structure and then we describe the data.

2.1 Online poker tournaments

The data come from tournaments of a popular variety of poker called no-limit hold’em. The

mechanics and the strategies of hold’em poker are unimportant for this study. However,

the tournament structure is crucial. To participate in a tournament, players must pay a

“buy-in,” which is set aside for the prize pool. The total prize pool of a tournament is, in

general, the buy-in multiplied by the number of players participating.5

In the tournaments we consider, participants are assigned to virtual tables of nine players

each. Players start the tournament with the same number of chips and bet with others at

their table. When a player loses all of his chips, he is eliminated from the tournament. As

players drop out, the number of tables is reduced and remaining players are reseated so that

each table has nine or close to nine players. When a player is reseated, he takes his chips to

5In addition, each player pays a fee of up to 10% of the buy-in, which is kept by the “house.” In
some tournaments, players who are eliminated early are allowed to pay the buy-in again and reenter the
tournament. Such re-buys increase the total prize pool.
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the new table. Eventually, there are only nine players remaining, who together possess all

the original chips. They form the “final table.” Our analysis starts at that stage.

At the final table, players continue to bet until all but one are eliminated. The remaining

player wins first prize, and all others are ranked in the reverse order in which they were

eliminated. The prize structure varies, but in a typical tournament with 900 starting players,

81 players would be awarded prizes, with first prize receiving about 25% of the total prize

pool, second prize about 14%, etc.

The most important feature for the purposes of our study is that at the final table, before

the end of the tournament, players may make a deal in which they split the remaining prize

money in any mutually agreeable way. For example, if there are three players remaining and

the top three prizes are $20,000, $10,000, and $6,000, respectively, the players might agree

to take $12,000 each, regardless of the final outcome of the tournament. The terms of the

deal are entirely up to the players, so if player A has more chips than players B and C, and

thus is likely to win the tournament, the split may be $18,000 for A and $9,000 each for B

and C. The key restriction is that all remaining players must agree to the terms of any deal

(i.e., each player has veto power).

We refer to the individual who starts the discussion about dividing the prize money as

the “initiator” of bargaining. The initiator may propose specific terms, but generally the

details do not arise until later in the negotiations. Often a deal is vetoed before any specific

terms are proposed.

When bargaining commences, the tournament is paused between hands (when no cards

are in play), so the specifics of any hand do not affect bargaining. After a deal is made, play

continues until one player has all the chips, allowing players to compete for any nonmonetary

benefits of winning the tournament. Thus, for the purposes of our analysis of bargaining,

such nonmonetary benefits can be ignored.

The software used by the online casino presents all player communication in a “chat win-

dow” that is also visible to tournament observers.6 Deal negotiations are conducted via this

6Communication among players via other channels is unlikely. Such communication during play is con-
sidered cheating and expressly forbidden by the online casino. Moreover, other than their on-line nicknames,
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chat window and are finalized by the tournament support personnel. The support person-

nel do not suggest, encourage or discourage any particular deal but merely ensure that all

players agree and then execute the deal. No structure is imposed on the negotiation process

in the sense that there are no a priori defined “rounds,” no order in which players make

offers and respond to them, etc. Thus, the only major differences between the bargaining

process and negotiations in other contexts are that the players cannot see one another and

that their information about one another is largely limited to what they can infer from the

game played thus far.

2.2 Data

We collected data over a period from April 2007 to July 2007. Because of the technological

limitations of collecting data in real time over the Internet, we captured only a subset of

available tournaments. We chose those with the largest prize pools. The data consist of all

activity at the final table of each tournament, including hand-by-hand data on the number

of chips each player has and the outcome of each hand, from the start of the final table

until the completion of the tournament. The data also include all communication between

players (or “chat”). We manually process the chat transcript to identify when proposals to

negotiate are made, the bargaining process, and the terms of any agreed upon deal.

In Table 1, Panel A, we display the summary statistics of our data set. The total

prize pool averages $82,034 per tournament (and the median is $47,855). The largest 5%

of tournaments in our sample boast prize pools of $200,000 and up, and the very largest

prize pools exceed $1 million. On average, almost 950 players start in a tournament, and a

tournament lasts more than 6 hours. The price to play (buy-in plus fee paid to the online

casino) averages $77.50.

In all tournaments in our sample all nine players at the final table get monetary prizes,

but the prize structures are heavily skewed toward top finishers. First prize averages $17,628,

and second averages $10,273. Therefore, if there are only two players left in the game, they

can negotiate over the $7,000 difference, on average. When there are n players remaining in

players are anonymous and their contact information is unavailable.
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the game, they effectively negotiate over the sum of the top n prizes minus n times the nth

highest prize, since each remaining participant is already guaranteed to receive at least the

nth highest prize.

The point of dividing the remaining prizes before the end of a tournament is to reduce

the risk inherent in playing the game out until the end. For example, suppose there are

two players remaining in a tournament, each with an equal probability of winning and each

with log utility, who agree to divide first and second prizes equally. The gain to each player

from this deal is the difference between the negotiated payoff and the certainty equivalent of

continuing to play. The sample averages for first and second prizes imply a per player value

creation of:

CE(equal split)− CE(no deal) =
17, 628 + 10, 273

2
− e0.5(ln(17,628)+ln(10,273)) = $493.44.

Of course, the value created varies depending on the actual prize structure, the number of

players involved, their utility functions, and so forth, reduced by the value that each player

puts on his enjoyment of the game.

We argue that the value created by successful negotiations in the tournaments in our

sample is economically interesting and compares favorably to the stakes in typical bargaining

experiments. Moreover, the substantial variation in the prize pools in our sample helps us

determine the importance of stakes in starting negotiations and closing deals.

Finally, although players are anonymous and can only be recognized via their on-screen

pseudonyms, we use a ranking of player nicknames, computed by a third-party website,

based on players’ previous tournament success. Of the 50,000 nicknames recorded as having

positive profits, we classify the top 200 as “highly ranked” (or “famous”) players.7 As a

second proxy for reputation, we identify players (or, more specifically, player nicknames)

who reach the final table multiple times in our sample. We conjecture that such “repeat

offenders” are famous or perhaps skilled players.

7This ranking was recorded before our main tournament data and is not influenced by players’ performance
in our sample. The rankings are roughly based on the dollar winnings and the number of tournaments
played. Unfortunately, we could not obtain the exact algorithm used for computing the rankings. We reran
our analysis using the top 100, 500, and 1000 players with very similar results.
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3 The initiator and the success of negotiations

3.1 When does bargaining occur?

Before we carry out a detailed analysis of the impact of the initiator, we study when bar-

gaining occurs and when it is successfully leads to a deal using tournament-level variables.

The second panel of Table 1 breaks down tournaments in our sample by the outcome

of bargaining. In 386 tournaments (30.98%), players agreed to split the prize money before

the end of the tournament; in 429 (34.43%) there were negotiations, but no agreements were

reached; and in 431 tournaments (34.59%), no bargaining occurred. Thus, even though the

prize pools are often substantial, deals are not the norm. Moreover, in about one-third of

cases, no one even tries to open negotiations.

The average amount of money at stake, as measured by the total prize pool, is consid-

erably higher for the tournaments with a deal than for those without one. Moreover, the

average decreases from tournaments with a deal to tournaments with some negotiations (al-

beit not successful) to tournaments in which a deal is not even mentioned. However, the

prize pool may not be the best measure of the potential gains of making a deal. As we

discuss below, deals typically occur when only two or three players remain at the final table.

Thus, a better measure may be the difference between the first and the second prize, i.e.,

the amount the last two players could bargain over. We obtain the same result with this

measure: The average difference between the top two prizes is highest for tournaments with

a successful deal and lowest for those without any proposals.

Skewness of the prize structure is correlated with whether a deal occurs. We apply the

usual skewness estimator to the top nine prizes to measure how much the top winners of

the tournament get relative to players who are eliminated earlier. Skewness is highest for

tournaments with a deal and lowest for tournaments without any bargaining. This suggests

that in our setting risk aversion plays a larger role than any preference for skewness that

players may have (as in, e.g., Alderfer and Bierman, 1970). The more the tournament looks

like a lottery with highly skewed payoffs, the more likely making a deal becomes.
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Successful deals are more likely in tournaments with more players and with smaller buy-

ins (which may be related to players’ utility from playing high-stakes tournaments or to their

risk aversion). Of course, these two variables are mechanically tied to the size of the prize

pool, which may drive the relation.

The next two variables in Table 1 are the number of highly ranked players at the final

table and the number of “repeat offenders” – players who appear multiple times at final tables

in our sample. Both these variables, which may capture reputation, indicate that there are

fewer such players in tournaments with a deal. Finally, the last variable summarizes the

number of times negotiations occur in each tournament. The first attempt at negotiations

typically fails to result in an agreement; the per-tournament average is 1.84 negotiations and

the (unreported) median is 2.

Table 2 refines our analysis in a multivariate setup. We use logit specifications to model

the probability that a deal occurs (Panel A) and that bargaining takes place regardless of

whether it results in a completed deal (Panel B). We compute standard errors using White’s

(1980) method to control for potential heteroscedasticity.8 We report the estimation results

in the form of marginal effects as they are easier to interpret; the signs and the patterns of

statistical significance are very similar for the logit coefficients.

Panel A explains the probability of a completed deal in a given tournament. We begin

with perhaps the most obvious variable: the stakes, proxied by the logarithm of the dollar

difference between the two top prizes. The estimated coefficient of this variable is positive and

statistically significant, which suggests that the larger the stakes, the easier it is to achieve a

deal. However, the economic impact of the stakes is rather limited. If the difference between

the first and the second prize doubles, the probability of reaching an agreement increases

by approximately 0.073× ln(2) = 5.1% (given the estimates in regression (1) ). This effect,

while noticeable, is perhaps not as strong as expected.

The amount players pay to participate in the tournament is negatively related to the

likelihood of making a deal. When it doubles, the probability of a deal is reduced by about

8We also compute standard errors using bootstrap and jacknife procedures. The results are very similar
to these presented here.
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3%. Skewness of the prize schedule has a positive coefficient, but it is not always statistically

significant. Other variables in Table 2 include the number of highly ranked players and the

number of repeat offenders at the beginning of the final table. Deals are less likely when

many players have a high ranking; the number of repeat offenders has a negative coefficient

as well, but it is not statistically significant. We speculate that ranked players believe that

they are highly skilled and only agree to a deal if they receive a disproportionately large

portion of the prize pool. If other players disagree with the ranked player’s assessment of

his skill, a deal is less likely to materialize. We come back to this issue in four subsequent

analysis.

The last variable in Table 2, Gini coefficient, measures the inequality in the distribution

of chips among players at the beginning of the final table. The Gini coefficient, which is

often employed in other contexts to capture income or wealth inequality, is defined as

n

n− 1

∑n
i=1

∑n
j=1 |si − sj|
2n2s̄

,

where si denotes player i’s chip holdings, s̄ is the average chip holdings, and n is the number

of players remaining.9 The virtue of this variable is its appealing interpretation. It measures

the expected difference in wealth between two randomly selected players, normalized by the

average wealth of all players. Gini coefficients are always between zero and one and are

increasing in inequality.

We find that deals are significantly less likely when inequality between players’ chip

holdings increases. We consider other measures of inequality in Section 5, where we analyze

the impact of inequality in more detail.

The impact of stakes implied by regressions (1) through (4) is perhaps surprisingly low.

To investigate it further, we estimate regression (5) on the subsample of tournaments with

total prize pools below $100,000 (84% of our sample). Even these smaller tournaments

involve large sums of money across a wide range. The total prize pool in this subsample

varies from just under $12,000 to almost $100,000 (average of $43,433), and the difference

9We multiply the usual formula for the Gini coefficient by n/(n− 1) to correct for bias.
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between the two top prizes ranges from roughly $1,000 to $10,000 (average of $4,225).

The results are striking. In the restricted sample the magnitude of prizes is statistically

insignificant. Moreover, even if we take the point estimate at face value, its economic sig-

nificance is tiny. In the univariate specification (not reported in the table), the estimate on

the size of the prize pool is even lower: 0.015 (t-statistic of 0.56). This result is consistent

with the existing literature, which generally finds that stakes have little effect on bargaining

behavior in an experimental framework (see Camerer and Hogarth, 1999). However, our ear-

lier results show that the size of the stakes does have an effect when we include tournaments

with truly large prizes.

Panel B of Table 2 uses similar specifications to explain the probability of observing

bargaining, regardless of whether a deal is ultimately reached. The results are broadly

similar to those from Panel A. In the full sample, negotiations are more likely when the

stakes are larger, the buy-in is lower, and the prize structure is more skewed. As in the

case of completed deals, the probability of bargaining is affected by the amount of money at

stake – the size of the tournament – only when the prize pool is extremely large.

3.2 Who initiates bargaining?

We now describe the environment at the onset of bargaining and the characteristics of the

initiator of bargaining. In the next sections we study how the initiator’s characteristics affect

the outcome of negotiations.

Table 3 provides a summary of the state of the game at the onset of bargaining. The first

column of Panel A is a snapshot of the “typical” state of the game, computed by averaging

over all hands played at all final tables in tournaments which did not have any bargaining.

This serves as a benchmark for comparison with the initiation of bargaining. The variables

in Panel B, which measure the characteristics of the initiator (or rejector for proposals that

fail) are normalized to have a benchmark of zero.

Bargaining occurs relatively late in the game, as measured by time and by the number

of remaining players. On average, only 3.66 players remain when bargaining is initiated,
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compared to nine players at the beginning of the final table and to an average of 4.89 players

across hands drawn randomly from tournaments without any negotiations.10 Moreover, on

average, just over one player is eliminated in the 10 hands preceding bargaining. In fact, 33%

of the time, bargaining is initiated immediately (i.e. within one hand) after a player loses

all his chips and is eliminated from the tournament. In 67% of cases at least one player is

eliminated in the 10 hands prior to bargaining. Negotiations occur when the distribution of

chips is relatively equal; the average Gini coefficient at the time of the initiation of bargaining

is significantly below the benchmark. Lastly, bargaining is more likely when there are few

highly ranked players left at the table. As a benchmark, just over 10% of players at final

tables are highly ranked at any given time.11 In contrast, when bargaining occurs only 6.3%

of remaining players are ranked. Similarly, there are fewer repeat offenders than in the

benchmark at the time of bargaining.

Panel B presents characteristics of the player who initiates bargaining. These variables

capture his wealth (in chips), his recent performance, and whether or not he is highly ranked.

For player wealth, the first variable we consider is a dummy that takes the value one when

the player has the most chips at the table and zero otherwise. If players were to propose

at random, the expected value of this variable would depend on the number of players.

Therefore, we subtract the inverse of the number of remaining players from the chip leader

dummy so that its expected value is equal to zero regardless of the number of players.12 The

second measure of wealth is simply the number of chips the player has divided by the total

number of chips at the table. We also normalize this variable by subtracting one divided by

the number of remaining participants.

We find that the initiator of bargaining tends to have fewer chips than his opponents.

The normalized chip leader dummy averages -0.072, corresponding to the initiator being the

chip leader only 42.8% of the time in two-person negotiations. Similarly, the initiator has

10Reported t-statistics of differences are based on standard errors robust to heteroscedasticity and clustered
at the tournament level, which allow for dependence between hands played in the same tournament.

11The percentage of ranked players may be high because of their higher skill, but also because they
participate in many more tournaments than do typical players.

12We disregard situations when more than one player holds the highest number of chips. These situations
are rare; in our entire sample of 177,663 hands played, in only 3 cases (0.002%) did two players have equal
chip holdings.
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fewer chips than would otherwise be expected. For proposals that were vetoed, the player

who refuses the deal is in a stronger than average position.

It is not clear why the player in the weaker position first suggests dealmaking. It might be

understandable if deals were always an equal split of the prize money. But, as we will discuss

later, the terms of completed deals tend to be closely related to each player’s expected value.

Similarly, it’s not clear why the richer player vetoes – he could always suggest terms that

compensate him for his strong position rather than dismiss bargaining out of hand.

For recent performance, we use two seemingly similar measures that in fact have different

interpretations. First, we measure the change in a player’s chip holdings over the past 10

hands, divided by the total number of chips outstanding. We find that on average, both

the initiator and the rejector have increased their wealth by about 5% of all outstanding

chips. When interpreting this measure, one should recall that in a large percentage of cases,

one or more participants would have been eliminated within the previous ten hands. Thus,

simply by remaining alive and winning the chips of the eliminated player(s) the remaining

participants should be expected to have increased wealth. Therefore, we also use a second

measure in which we take the change in wealth and subtract the change in the inverse of the

number of players remaining, to correct for any reduction in the number of players. Under

this measure, we find that the initiator (as well as the rejector) has reduced wealth.13 In

other words, the initiator of bargaining tends to have increased his wealth recently, but not

as much as one would expect given that another player may have been recently eliminated.

Both measures indicate that the initiator’s and the rejector’s change in wealth are similar.

Another measure of recent performance is the number of hands recently won (divided by

the number of hands won by all surviving players and normalized for the number of players).

With this measure we find no evidence of abnormal performance by the initiator, but the

rejector is likely to be someone who has recently won more hands than his opponents.

The last two variables in Table 3 are the ranked player and repeat offender indicators,

normalized by subtracting the fraction of remaining players who are ranked or are repeat

13The adjustment term in this measure implicitly assumes that any eliminated players previously had
1/nth of all chips. If instead eliminated players start from a weaker position, we should expect the measure
to show negative change in wealth for surviving players.
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offenders. Ranked players are significantly less likely to initiate bargaining and are more

likely to reject deals proposed by others. The results are similar for repeat offenders, but

the tendency not to initiate bargaining is statistically insignificant.

To summarize, while in principle bargaining could occur at any time at the final table

and could be initiated by any player, in practice it occurs late in the game, when there are

few players remaining, often immediately after one or more participants are eliminated. The

initiator of bargaining is likely to be poorer than his opponents and less likely to be highly

ranked. When deals are refused, the rejector is likely to be richer and more likely to be a

highly ranked player.

3.3 Does the initiator affect the success of negotiations?

We are now ready to investigate the circumstances under which negotiations lead to an

agreed deal.

Table 4 breaks down negotiations into those that successfully led to a deal and those that

failed. Among failed negotiations, we further separate them into those had at least some

discussion among the players, and those that were initiated by one player but ignored by the

others. As in Table 3, we present two sets of variables: Those that characterize the state of

the game, such as the number of players remaining (Panel A), and those that characterize the

initiator (Panel B). We compare the averages of these variables, conditional on the outcome

of the proposal. The differences in averages and the corresponding t-statistics appear in the

last three columns of the table. In unreported analysis, we also compute the medians with

similar results.

The outcome of negotiations strongly depends on the number of players remaining in the

tournament. On average, 2.7 players remain when a deal is achieved compared to about

4 players in failed negotiations. In 55% of successful deals only the final two players are

involved, and in 30% of deals three players divide the prize money. Even among negotiations

that fail to result in a deal, the initiation of bargaining is more likely to to be followed by

discussions when there are fewer remaining players.
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Deals are more likely to be successful when chips are relatively evenly distributed among

the remaining players. When inequality increases, bargaining is less likely to result in an

accepted deal, but may still be discussed. As inequality grows further, even discussions

become less likely and the initiation of bargaining is often ignored. This monotonic pattern

is highly statistically significant. Differences in medians (unreported) are similarly significant

according to the Wilcoxon rank-sum test.

As in Table 2 we find that the number of ranked players is negatively related to the like-

lihood of a successful deal. The percentage of remaining players at the time bargaining who

are highly ranked increases from 3.9% for successful deals to 7.1% for discussed but rejected

deals and to 7.3% for ignored ones. However, this effect is not present when considering the

number of repeat offenders.

Panel B of Table 4 focuses on the initiator’s characteristics. While one might argue that

the identity of the initiator should be unrelated to the success of bargaining, here we find

otherwise. Initiators tend to be wealthier in negotiations that are successful. This result

contrasts with the earlier finding (also apparent here) that initiators tend to be poorer than

the average player. The initiator is poorer on average, but the negotiations he begins are

more likely to be successful when he is relatively richer. There is also weak evidence that

even among failed negotiations discussions are more likely when the initiator has more chips.

Moreover, initiators who have recently become more wealthy (whose ∆si/S is high) are more

likely to initiate successful bargaining. However, when the change in wealth is adjusted for

recently eliminated players (∆(si/S− 1/n)), this relationship becomes statistically insignifi-

cant. Finally, the reputation of the initiator matters. Recall that negotiations are less likely

to be initiated by ranked players or repeat offenders. Here we find that when highly ranked

players or repeat offenders do initiate bargaining, it is more likely to lead to a deal.

We refine this analysis in a multivariate framework in Table 5 by estimating the proba-

bility of reaching a deal given the initiation of bargaining (Panel A) or at least discussing

that proposal (Panel B) using a logit specification. As in Table 2, we report marginal effects

rather than logit coefficients. Robust standard errors are clustered at the tournament level
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to control for the dependence between multiple proposals made in the same tournament.14

According to the univariate results of regressions (1) through (5), a deal is more likely

when the initiator is wealthier (as measured by his share of the chips) and better known

(i.e., is ranked or is a repeat offender). The economic impact of these variables can be

substantial. For example, when two players remain and the initiator has twice as many chips

as his opponent, the probability of reaching agreement increases by 5.4%. If the initiator is

a ranked player, the likelihood of a successful bargain goes up by 7%.

These findings are important. Although the results may seem intuitive, it is difficult

to explain them in a traditional modeling framework. Note that the terms of the deal are

entirely up to the players and could – and, as we show in Section 4, indeed do – compensate

richer or ranked players regardless of who starts the negotiations. We are not aware of any

theoretical work that predicts that the characteristics of the player who initiates bargaining

are related to the success of negotiations. Some of the findings could be explained if infor-

mation is asymmetric. For example, experienced players could have a higher probability of

winning the tournament and could rationally demand higher payoffs in the deal. If other

players are not aware of their opponent’s skill, they may not consent and bargaining may

break down. However, this mechanism cannot explain all our results. Chip holdings are

apparent to all players, so it is unlikely that a player would reject deal because he is unaware

of his opponent’s chip count. Yet, the number of chips the initiator has is important for the

outcome of bargaining.

Regressions (6) through (10) add additional explanatory variables. In line with the

earlier results, the probability of coming to an agreement strongly depends on the number of

players remaining in the game. When the number of players decreases from three to two, the

probability of reaching agreement increases by about 15%.15 The presence of highly ranked

players at the table discourages deals. The impact of this variable is almost as high as that

of the number of players. For example, if there are two (four) players left and one of them

14In unreported analysis, we experiment with other specifications designed to capture this dependence.
For example, we introduce dummy variables for the second, third, and more-than-third proposal in a given
tournament without qualitatively changing the results.

15Further illustrating this result, about 58% of two-person proposals in our sample culminate in a deal,
whereas only 16% of four-player proposals are accepted.

16



is highly ranked, the probability of reaching agreement drops by approximately 16% (8%).

Equality of chip holdings is also important. When the Gini coefficient drops from its average

value by one standard deviation (0.164 measured across all proposals), the probability of

reaching agreement increases by about 9%.

The last control variable measures the gains to trade. Recall that the gains to trade of

a successful deal come from the elimination of risk to the players. We use a simple model

(described in Section 4 and formally presented in the Appendix) to calculate the expected

value and standard deviation (in dollars) of each player’s payoffs if the game continues, given

the number of chips each player holds and the monetary prizes of taking each place. We

proxy for the gains to trade by taking the logarithm of the average standard deviation across

remaining players. While this variable has a positive coefficient, it is not significant with a

t-statistics of about 0.7-0.8. In unreported analysis, we experimented with other measures

of gains to trade (e.g., the dollar amount to be divided in a deal) with similarly insignificant

results.

When we control for the above variables, two characteristics of the initiator – wealth

and the status of being a ranked player – remain significant. They are still significant in

regression (11), where we include all characteristics and all other variables at the same time.

In Panel B of Table 5 we model the probability that players at the table will discuss a

deal once bargaining is initiated (i.e., that the initiation of bargaining will not be ignored).

Most of the results are similar to those in the top panel. A deal is more likely to be discussed

when the initiator is wealthier, when there are fewer players remaining, when there are fewer

ranked players, and when players’ chip holdings are more equal. Interestingly, whether the

initiator is ranked or not does not influence the probability of discussing the proposal. There

is also some evidence that initiators who have had good performance in the previous 10 hands

are more likely to start a discussion, but this variable is only significant in regression (7).

The overall risk of continuing the game, measured by the logarithm of the average stan-

dard deviation of players’ payoffs, is significantly related to the probability of discussing a

proposal. (We obtain similar results with other measures of gains to trade, such as the dollar

value to be divided in a deal.) Thus, gains to trade are important in determining the interest
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players exhibit in evaluating a proposal (in Panel B), but not for the final outcome of bar-

gaining (in Panel A). A possible explanation is that stakes-related variables (including the

average standard deviation) are correlated with the number of number of times bargaining

occurs in a given tournament. High-stakes tournaments are likely to have multiple occur-

rences of bargaining but, by construction, only one of these can lead to a deal. To the extent

that our measure of gains to trade has similar values within a tournament, our specification

may downplay its effect on the probability of a completed deal.16

4 The payoff to the initiator

The previous sections analyze whether negotiations lead to a successful deal. Here, we

condition on a deal being made and analyze the determinants of how the money is divided.

Our goal is to complement the previous findings by testing whether the initiator’s payoff is

affected, and to find how players’ characteristics influence their shares in a completed deal.17

There are two focal equilibria for the division of surplus, each occurring in about a third

of completed deals. The first is an equal division, in which each remaining player gets the

same amount. The second focal equilibrium is a proportional split: Each player first receives

the lowest prize remaining in the tournament, and the remaining prize money is then split

proportionally to the number of chips each player has. Although this second focal point is

a traditional way to split prizes in both online tournaments and physical casinos, it is not

supported by any theoretical construction. Indeed, a proportional split can lead to bizarre

outcomes that players would never agree to.18

Neither of the above two types of division is a default option or is suggested by the online

casino. However, players are comfortable enough with them to choose one of them in about

16A similar argument holds for other tournament-level variables, e.g., the skewness of the prize schedule
or the buy-in. These variable were important in Table 2; when they are added to Table 5, their coefficients
are of the same sign, but are no longer significant.

17For recent studies on the effect of individuals’ characteristics on bargaining power see Harding, Rosenthal,
and Sirmans (2003) and Scott Morton, Zettelmeyer, and Silva-Risso (2004).

18For example, in one of the tournaments in our sample, a proportional split was discussed and it turned
out that such a division would have given more than the first prize money to the chip leader. This proposal
was quickly renegotiated.
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two-thirds of all deals in our sample. In the remaining one-third of cases players might start

by considering one of the two focal points, and then one player may try to increase his share

at the expense of other players. Sometimes, the divisions terms are ad hoc, for example, a

player may demand $10,000 and suggest that the other players split the remainder equally.

To meaningfully compare the amounts players obtain in different tournaments, we con-

struct a benchmark for expected value. The model and the probability calculations are

described in the Appendix, where we also present evidence that the model fits the data on

tournament outcomes well. Our model assumes away the strategic elements of the game,

such as the ability to vary bets depending on the cards dealt or on other players’ actions.

However, it enables us to compute a player’s probability of winning each of the remaining

prizes and the expected payoff as a function of the number of chips each player has. Below,

we discuss the robustness of our results to a potential misspecification of the model.

Table 6 relates the amount obtained in a deal to each player’s expected value and to his

characteristics. We standardize the amount a player gets by the average amount awarded

in a given deal. Each observation corresponds to a payoff in a deal, so the total number of

observations (1,019) is equal to the total number of players who participated in all deals in

our sample.19 Therefore, in each tournament with a division of prizes there is a dependence

between observations corresponding to different players. For example, if we know the share

of a player in a two-person deal, we can infer the share of the other player as well. Thus, the

effective number of observations we have is lower than 1,019. To correct the standard errors

accordingly, we cluster them at the tournament level. To make sure that the fitted values

from the regression are logically consistent (i.e., that the predicted shares sum to one in each

tournament), we demean both left- and right-hand side variables within each tournament

and estimate the regression without an intercept. This way, for each tournament, the fitted

values sum up to zero regardless of the estimated parameters, and thus coincide with the

sum of the dependent variables (also demeaned tournament by tournament).20

19We lose one deal observation because we could not meaningfully identify the time the proposal was
made; thus, we cannot identify the exact chip holdings on which the deal is based.

20We also estimated all regressions from Table 6 without demeaning the variables and with a constant
term. This specification does not constrain the fitted values. All results are very similar to those from the
constrained model.
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The main variable in all regressions is the initiator indicator. Depending on the specifica-

tion or the subsample used, the point estimates of the initiator’s coefficient vary from -0.5%

to 0.3%. The signs of the estimates differ across specifications. Moreover, the estimates

are not statistically significant in any of the regressions; in all cases, they are less than one

standard error away from zero. Even if the point estimates are taken at face value, their

economic impact is limited compared to the effect of other characteristics (being a ranked

player, the chip leader, etc.). For example, regression (4) indicates that initiators’ shares are,

on average, 0.1% lower than the average share. In contrast, ranked players (chip leaders) get

2.3% (1.3%) more of the pie than the average player. To put these numbers into perspective,

2.3% (1.3%) corresponds to an additional $325 ($184) in the average deal. Compared to

this, the penalty for being the initiator is inconsequential: just $14 in the average deal (in

other specifications, e.g., (5), the initiator gets a premium of a similar magnitude). Thus,

Table 6 shows that an initiator’s share in a completed deal is not different, statistically or

economically, from shares of other players.

This finding goes against the hypothesis that initiating bargaining signals a high level of

risk aversion, low skill, or impatience that could be penalized by other players. Recall that

we previously found that the identity of the initiator affects whether or not the deal will

be successful (e.g., a deal is more likely when the initiator has more chips). In our view,

that result can only be rationalized if the decision to initiate bargaining reveals some private

information. However, the revealed information should be accounted for in the terms of the

deal and the initiator’s payoff should systematically affected. Puzzlingly, we find that it is

not. To the best of our knowledge, there are no models that could explain this result.

To ensure that the finding above is not driven by the way we model the expected values,

we carried out additional model-free analysis. As described at the beginning of this section,

players in our sample often choose an equal or a proportional division. For the initiator’s

outcome to be systematically affected, we would expect that the type of division chosen be

correlated with the characteristics of the initiator. For example, if initiators were system-

atically hurt, we would observe that the average wealth of the proposing player is lower in

proportional divisions (which favor richer players) than in equal divisions (which hurt richer
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players). In fact, the average wealth of the initiator is almost exactly the same for these two

types of divisions (in equal (proportional) divisions, the initiator holds 98.9% (98.7%) of the

average number of chips per player).

The terms of the deal are strongly related to the expected payoffs (normalized by the

average expected payoff of remaining players). This variable alone explains about 89% of the

variation in our sample. However, the coefficient of expected payoff is significantly greater

than one, which indicates that having many chips, and hence higher expected winnings, gives

the player extra bargaining power to extract more value from the deal. Of course, this extra

value comes at the expense of players with smaller chip holdings.21

We find positive coefficients on indicator variables both for the chip leader and for the

player with the fewest chips. (Recall that the regressions already control for the number

of chips via the expected payoff variable.) Thus, players at both extremes of the chip

distribution receive more in the deal, at the expense of players with medium holdings. One

possible explanation for the premium to the small stack player is that he may find it relatively

inexpensive to hold up the deal and use his veto power to extract rents. There is also some

evidence that recent increases in chips (over previous 10 hands) have a negative effect on a

player’s negotiated payoff. The total number of chips is already captured in the expected

value variable, but the regression suggests that the parties to the negotiation discount the

value of the recently acquired chips of the “nouveau riche.” This finding contrasts with the

“hot hands” phenomenon (Gilovich, Vallone, and Tversky, 1985, or Croson and Sundali,

2005), which predicts an overweighing of recently acquired chips.

Ranked players achieve better outcomes in the deal. Controlling for other factors, they

get an extra 2.4% of the average award. Combined with the results from previous tables,

this finding suggests that ranked players may be somewhat less likely to propose a deal,22

21In an unreported analysis we find the same result when we use the fraction of chips a player has instead
of expected value. Interestingly, when both enter the regression, only expected value is important and the
number of chips becomes insignificant.

22One possible explanation is that ranked players are skilled and have a higher probability of winning
(which is not known to other players), or that they have a greater risk tolerance, or they simply derive more
pleasure from playing. In these cases, the perceived gains to trade will be lower. Additionally, skilled and
unskilled players may differ in their notions of fair compensation for skill, thus hindering deals, as in Babcock
and Loewenstein (1997).
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and, when somebody else initiates negotiations, they demand a larger fraction of the pie.

This is frequently not acceptable to other players (hence the high number of rejections with

highly ranked players at the table). In the deals that eventually get made, highly ranked

players extract sizable premiums for their (perceived) skill and fame.

In Regressions (5) through (11) we break up the analysis into two subsamples: deals

between two players and deals between three or more players. (Of course, we cannot have

dummies for both fewest chips and chip leaders in the regressions limited to two-player deals.)

The most striking result is that for two-player deals, the coefficient of expected value is

significantly lower than one, whereas in deals with three or more players it is significantly

greater than one. Furthermore, in the two-player regression (7), the coefficient of the fewest

chips dummy suggests that the poorer player extracts an additional 1.3% from his counter-

party. Thus, when bargaining occurs between two players, the richer player sacrifices some

wealth in favor of his opponent. This finding is reminiscent of the well-known result in two-

person ultimatum games: More powerful players willingly deviate from the Nash equilibrium

and cede part of the surplus to their partners. (See Roth, 1995, for a review of these results.)

The situation changes when more than two players remain in the game. In this case, the

richest player extracts an additional 2% from the other players. At the same time, the player

with the fewest chips also receives a premium, again meaning that players at both extremes

of the wealth distribution are financed by the people in the middle.

The fact that the richest player loses some of his bargaining power in two-person nego-

tiations suggests that the hold-up problem changes between two- and more-than-two-player

bargaining. This finding is particularly interesting and deserving of further study, especially

because most of the existing experimental evidence is limited to two-player bargaining games.

5 Equality and the success of negotiations

The evidence in Tables 2, 3, 4, and 5 indicates that equality in the distribution of chips

across players is an important determinant of when negotiations are initiated and when they

lead to a completed deal. In this section we take a closer look at this result and show that
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it is strong and robust to the measure of inequality used. Next, we interpret it within the

context of theoretical literature on bargaining.

The previous tables used the Gini coefficient to measure inequality. To ensure that the

results are not driven by that choice, we replicate the main analysis using other variables:

the Herfindhal index (often used to measure industry concentration) and the Theil (1967)

index T0.
23 The former is defined as:

Normalized Herfindhal index =

∑n
i=1

s2
i

S2 − 1
n

1− 1
n

,

where S is the sum of all chips, si is the number of chips player i holds, and n is the number

of remaining players. Note that this formula normalizes the measure so that it is always

between 0 and 1, regardless of the number of players.24 Theil’s index T0 is defined as:

T0 =
1

n

n∑
i=1

ln

(
S

n si

)
.

When all chip holdings are equal, the index takes the value of zero and is increasing in

inequality.

Table 7 presents the measures of inequality as well as the number of players remaining in

the game. Panel A corresponds to Table 3 and compares the initiation of bargaining to typical

situations in tournaments without negotiations. For all measures, initiations are associated

with a lower than usual level of inequality. Moreover, unreported analysis indicates that the

inequality tends to decrease before the initiation of bargaining (although this tendency may

be related to the recent elimination of players with very few chips). This contrasts with

the typical dynamics of the game: inequality tends to increase as the game progresses, for

example, the average change in the Gini coefficient over 10 sequential hands is positive for

the benchmark tournaments. This effect is quite pronounced in that only 31% of the time

does bargaining commence after an increase in the Gini coefficient.

23We have experimented with additional proxies for inequality, such as Theil’s index T1 (see Theil, 1967)
or the sum of absolute deviations of each player’s share of all chips from the average share (one over the
number of players). All results are equally strong when these alternative measures are used.

24When the Herfindhal measure is defined as the sum of squared shares, it can take values between 1/n
and 0. In our case n is small, so the correction in the formula is necessary.
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Panel B of Table 7 corresponds to Table 4 and compares the outcome of negotiations,

given that bargaining was initiated. Again, for all measures, the more equal the chip distri-

bution, the more likely it is that bargaining will culminate in a successful deal.

Thus, equality fosters initiation of bargaining, and, once bargaining is in progress, makes

a completed deal more likely. It is not immediately clear why this phenomenon occurs.

Recall that players can agree to any division of the surplus and could easily address any

differences in chip holdings in the terms of the deal. In our view, the best explanation for

the role of equality is that of Cramton, Gibbons, and Klemperer (1987), who argue from a

mechanism design perspective that bargaining is more likely to succeed when parties’ stakes

in an enterprise are close to equal. However, before we discuss this theory, we analyze

alternative explanations for why chip distribution may matter. First, the risk of continuing

the game, measured as the sum of the standard deviations of future payoffs, is highest when

chip holdings are equal (assuming equal skill across players). Because the benefit of agreeing

to a deal is a reduction in risk, the total gains to trade (assuming equal weight on each

player’s risk reduction) are highest when all chip counts are the same. Second, when players

have a similar number of chips, the terms of the deal may gravitate toward the equal division,

which, as discussed in Section 4, is a natural focal point. Thus, it may simply be easier to

reach agreeable terms when there is more equality. Moreover, if players have a natural

preference for equal divisions out of a sense of fairness (as discussed in Roth, 1995, and

modeled by Fehr and Schmidt, 1999 and Bolton and Ockenfels, 2000), unequal chip counts

make it more likely that one player will be disadvantaged enough by an equal split to veto

the deal.

These alternative hypotheses fit the data poorly. It is unlikely that the level of equality

simply proxies for the gains to trade. In Table 5 we control for gains to trade using estimated

standard deviations of players’ payoffs and find no effect on the likelihood of successful

bargaining. In unreported analysis we also experimented with other measures, such as the

prize pool, total amount of money to be distributed in a deal and its per-player average, etc.

Our measures of inequality remain important after the addition of these variables, and the

estimated coefficients on inequality change little in statistical or economic significance.
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Moreover, while equal splits are undoubtedly more frequent when chip holdings are about

equal, chip equality makes it easier to reach a deal even excluding equal divisions. In Panel C

of Table 7, we consider only completed deals that had an unequal division of the prize money.

By focusing on those deals that were ex-post unequal, we are biasing the analysis against

finding a relationship between equality of chips and the success of bargaining. Excluding

equal splits, the average value of the Gini coefficient at the time of bargaining is 0.251.

This value is still significantly below the benchmark Gini coefficient of 0.349. Moreover, it

is also statistically significantly smaller than the average Gini for unsuccessful negotiations

(0.298). As an alternative to this test we also re-estimated the logit regressions from Table

5 excluding equal splits. The Gini coefficient’s estimate is still negative and statistically

significant (depending on the specification, it ranges from -0.188 to -0.247, with t-statistics

between -2.785 and -3.880). Thus, even after removing equal deals (which occur when chip

holdings are particularly close to even), less inequality leads to more bargaining and to more

successful deals.

Given that these alternative hypotheses do not fit the data, we now come back to our

favored explanation, taken from Cramton, Gibbons, and Klemperer (1987). The context of

their theory is dividing a partnership. In their model, a number of partners jointly own a

partnership, each with a potentially different share of ownership, and each having private

information about his valuation. Using a mechanism design approach they show that efficient

dissolution is only possible when the partners’ claims center around equality. When their

claims are very unequal, no agreement is possible. The intuition for this result is that for

a mechanism to be incentive compatible, extra value must be left for agents who truthfully

reveal their private information. If the claims on the partnership are very unequal, it may be

impossible to transfer enough value from those with small claims to induce truthful revelation

by the partner with a large claim.

In the context of our tournaments, the remaining players can be viewed as partners in an

enterprise that will pay out the prize pool. At a given time, each player has expected winnings

based on the number of chips he possesses. These expected values can be interpreted as the

players’ shares in the partnership. The private information that each player has can be his
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risk aversion, skill level, etc. Dissolving the partnership consists of finding a set of payoffs for

each player – i.e., a negotiated division of the prize money. We argue that this constitutes a

close mapping between our setting and the Cramton, Gibbons, and Klemperer (1987) model

and we view our results that successful deals are strongly negatively related to inequality

in chips as important evidence supporting their theoretical arguments. To our knowledge,

there has not been empirical confirmation of Cramton et al until now, in spite of that paper’s

influential contribution to economic theory.

6 Conclusion

We use a unique data set to investigate the start and outcome of bargaining. We consider

high-stakes poker tournaments in which players can agree to a negotiated division of the

prizes instead of playing until the end. The force driving the gains to trade is risk aversion,

and our observation that deals occur indicates that at some point risk aversion is stronger

than the pleasure of continuing the game.

Our main result is that the identity of the initiator of bargaining matters. While most

negotiations are initiated by relatively poorer agents, the more chips the initiator has, the

more likely it is that a negotiations will lead to a deal. A similar effect occurs when the

initiator has had success in previous tournaments. These effects, while perhaps in line

with common wisdom, are difficult to explain. The terms of the deal are entirely up to

the bargaining agents, who can compensate rich or well-known players regardless of who

originally proposed the division. Indeed, we find that the terms of the deal compensate

players with more chips and highly-ranked players. In contrast, there is no evidence that

the initiator’s share in a completed deal is affected, which means that opening negotiations

is not a signal of weakness. We are not aware of any theoretical work that would generate

this set of predictions, and we hope that our paper will spur investigations in this direction.

Although the data in this paper comes from poker tournaments, there are many other

contexts in which similar bargaining arises. For example, in litigation, parties can choose to

come to a negotiated settlement rather than risk the ruling of a court. More generally, in
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any commercial transaction, parties can negotiate a deal or, as an outside option, face the

uncertainty of finding another counterparty. Economic agents who appear in our sample are

obviously not representative of the population at large. Their preference for games of chance

(revealed by paying to participate in tournaments) may be behind some of our findings,

such as the relatively low frequency of deals. However, our main results on the identity of

the initiator, determinants of the division in deals that do occur, etc., are unlikely to be

driven by such preferences. Moreover, agents in other situations also frequently display a

tendency to disregard risks and “keep playing:” Managers may take excessive risks rather

than negotiate with their creditors, plaintiffs may insist on excessive payouts which make

out-of-court settlement less likely, and so forth. All in all, our results should not be viewed

in the narrow context of poker tournaments, but instead as providing insights into when and

how economic agents negotiate.
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Appendix: Expected value of the tournament

We use the Independent Chip Model (ICM) to measure the expected value to each player

of continuing the tournament. ICM is used by more sophisticated players to estimate the

marginal value of a chip when making strategic decisions. While imperfect, it is considered

the best available model that can be applied to general situations.25 Below we present the

model and compare its predictions to the empirically observed outcomes of tournaments that

did not end prematurely with a deal.

Suppose that there are n players remaining and that player i has si chips. The total

number of chips in the game is S =
∑

i si. Each chip is viewed as a lottery ticket to win the

tournament. Thus, the probability of player i winning first place is si/S. (In the two-player

game, this is the solution to the well-known gambler’s ruin problem.) After first prize is

drawn, second prize is drawn from the remaining lottery tickets (excluding those of the first

prize winner), so that the probability of winning second prize is the number of chips a player

has divided by the total number of remaining chips. Lower ranked prizes are sequentially

awarded in the same manner. This leads to the following probabilities:

Pr(i wins first) =
si

S
.

Pr(i wins second) =
∑

j 6=i

Pr(j wins first)× Pr(i wins second|j first)

=
∑

j 6=i

sj

S
× si

S − sj

.

Pr(i wins third) =
∑

j 6=i

∑

k 6=i,j

Pr(j wins first)× Pr(k wins second|j first)

×Pr(i wins third|j first, k second)

=
∑

j 6=i

∑

k 6=i,j

sj

S
× sk

S − sj

× si

S − sj − sk

.

The probabilities of fourth and lower places are computed similarly. The expected value (and

standard deviation) can be calculated using these probabilities and the tournament prizes.

25See Nelson, Streib, and Lee (2007) for a more in-depth discussion of ICM and comparisons to simulations
of other models.
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Even though the model abstracts away from the detailed features of poker, it fits the data

well. Figure 1 presents the comparison between the model’s predictions of a player’s final

rank in a tournament and empirically observed frequencies. We consider all tournaments

without a deal and compute model-implied probabilities of a particular outcome using the

chip holdings observed the first time only two players remain (top row) or only three players

remain in the tournament (two bottom rows). We divide theoretical probabilities into 20

bins, each covering 5% of possible values. The left column of Figure 1 presents a histogram

summarizing the number of tournaments that fall within each bin.26 Graphs in the right

column plot the theoretical probability of taking first place (or one of the top two places)

against the frequency of that event actually occurring, computed using tournaments within

each bin.27 Overall, Figure 1 indicates that the model describes the empirical frequencies

well.

To further investigate this result, we considered the following test. Let yi be a binary

variable that takes value 1 if a given player takes first place (or one of the top two places).

For each tournament, we compute squared deviations of that variable from model-implied

probabilities. The average of squared deviations is a measure of how well our model describes

the data. Under the null hypothesis that the model holds, we calculate the expected value

and variance of each squared deviation and standardize it accordingly. By the central limit

theorem, the average of the standardized quantities is asymptotically standard normal.28 For

two players and for the probability of taking first place, the test statistic is -0.497. For three

player remaining and the probability of taking first place (or one of the top two places), the

test statistic is -0.247 (0.156). Hence, we cannot reject the null hypothesis that the ICM

model proposed here holds.

A different model (a generalization of the gambler’s ruin problem) could be as follows:

With n players remaining, each wins a hand with probability 1/n. The winning player

26The bi-modality of the histogram obtained for two players is driven by deal making. Players tend to
make deals when their chip holdings and hence the probabilities of winning the tournament are similar.
Tournaments with deals are not included in the analysis here.

27We also obtained similar graphs by estimating the relationship nonparametrically, using local linear
regression.

28We compute the test statistic using one player from each tournament (the player with the lowest seat
number; seat numbers are assigned randomly), which gives us an i.i.d. sample of players.
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increases his chips by n− 1, and all others lose one chip. When a player’s chip holdings are

reduced to zero he is eliminated, and the game continues with n − 1 players. This process

is repeated until only one player remains. Unfortunately, to the best of our knowledge, this

well-known model has not been solved for the general case of n players.29 For this reason,

we use the first model to calculate expected values. Luckily, simulations show that the two

models give similar probabilities, and in the two-player game the predictions are identical.

An alternative approach would be to use the empirical probabilities of outcomes as a

benchmark. However, the probability of a player finishing in any particular position poten-

tially depends on the entire vector of chip holdings of all remaining players. For more than

two players, meaningful estimates of the probabilities of finishing in each position would

require far more data than we presently have.

29See Bruss, Louchard, and Turner (2003). Swan and Bruss (2006) propose a solution for the probability
that a player is the first eliminated, but not for the probabilities of finishing in any other position.
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Table 1. Summary statistics. This table presents summary statistics for the tournaments
in our sample. Prize pool is the total value of all prizes awarded in the tournament. Buy-in
+ fee is the amount paid by each player to participate in the tournament. Number of players
is the total number of tournament participants. Tournament duration is the time, measured
in hours, from the start of the tournament until the finish. Final table time is measured
in minutes from the start of the final table until the end of the tournament. Panel B is
broken down by tournaments in which deals were successfully negotiated, those in which
negotiations occurred but did not lead to a completed deal, and those in which bargaining
was not even attempted. Skewness is measured based on the number of chips held by each
player at the start of the final table. Ranked players are those among the top 200 based
on performance in previous tournaments. Repeat offenders are those that are in more than
one final table in our sample. Number of negotiations is the number of times a deal was
attempted in a given tournament.

Panel A: Summary of Tournaments

Avg Std 5th perc Median 95th perc
Number of tournaments 1,246
Prize pool ($000) 82.0 171.3 17.2 47.9 206.4
1st prize ($000) 17.6 26.9 4.1 11.3 48.7
2nd prize ($000) 10.3 14.1 2.4 6.2 27.8
Buy-in + fee ($) 77.5 107.2 5.5 55.0 215.0
Number of players 947.1 1,295.0 154 750 2,104
Tournament duration (h) 6.4 1.3 4.7 6.3 8.5
Final table duration (m) 70 23 38 67 112

Panel B: By Deal Outcome (averages)

All Completed Unsuccessful No
tournaments deals bargaining bargaining

# tournaments 1246 386 429 431
Fraction of all 100% 31% 34.4% 34.6%

Prize pool ($000) 82.0 109.1 74.4 65.4
Prize1-Prize2 ($) 7,355 9,294 6,985 5,988
Prize skewness 1.338 1.375 1.341 1.300
Buy-in + fee ($) 77.5 75.4 78.2 78.8
Number of players 947.1 1,256.4 930.9 686.2
Ranked players at final table 0.7 0.5 0.7 0.8
Repeat offenders at final table 4.8 4.5 4.8 5.1
Number of negotiations 1.2 1.8 1.7 0
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Table 2. Probability of a deal (or bargaining) as a function of tournament characteris-
tics. This table presents the estimated marginal effects of a logit model that relates the probability
of achieving a deal (Panel A) or initiation of negotiations regardless of whether a deal is ultimately
achieved (Panel B) to tournament characteristics. Each panel presents full sample estimation re-
sults, as well as results for the subsample of tournaments with prize pools below $100,000. The
last row reports the fraction of tournaments that resulted in a deal (Panel A) or which had bar-
gaining (Panel B). Independent variables are as defined in Tables 1 and 2, and the Gini coefficient
is computed based on the number of chips held by each player at the beginning of the final table.
T-statistics are obtained using robust standard errors and are reported in parentheses. ***, **,
and * denote that an estimate is significant at the 1%, 5%, and 10% level, respectively.

PANEL A: Probability of a Successful Deal (logit)

all tournaments prize pool
< $100K

(1) (2) (3) (4) (5)

Log(1st Prize – 2nd Prize) 0.073*** 0.096*** 0.081*** 0.098*** 0.035
(2.698) (3.363) (2.883) (3.420) (0.857)

Log(buy-in + fee) -0.043** -0.044** -0.043** -0.047** -0.049**
(-2.209) (-2.258) (-2.202) (-2.382) (-2.417)

Prize skewness 0.479*** 0.293* 0.396** 0.290* 0.392**
(2.967) (1.681) (2.189) (1.668) (2.001)

# of ranked players -0.051*** -0.051*** -0.050**
at final table (-2.946) (-2.979) (-2.288)
# of repeat offenders -0.008
at final table (-0.981)
Gini coefficient -0.352** -0.362**
at start of final table (-2.141) (-2.079)
Pseudo R2 0.039 0.045 0.040 0.048 0.054
N 1246 1246 1246 1246 1045
% tournaments w/deals 31.0% 31.0% 31.0% 31.0% 29.6%

PANEL B: Probability of Bargaining (logit)

all tournaments prize pool
< $100K

(1) (2) (3) (4) (5)

Log(1st Prize – 2nd Prize) 0.078*** 0.092*** 0.085*** 0.092*** 0.051
(2.677) (2.939) (2.746) (2.955) (1.156)

Log(buy-in + fee) -0.036* -0.037* -0.036* -0.038* -0.040*
(-1.812) (-1.845) (-1.822) (-1.906) (-1.855)

Prize skewness 0.625*** 0.529*** 0.559*** 0.532*** 0.626***
(3.787) (2.988) (2.967) (3.005) (3.095)

# of ranked players -0.024 -0.025 -0.020
at final table (-1.531) (-1.553) (-1.052)
# of repeat offenders -0.006
at final table (-0.739)
Gini coefficient -0.270 -0.277
at start of final table (-1.611) (-1.504)
Pseudo R2 0.044 0.045 0.044 0.047 0.048
N 1246 1246 1246 1246 1045
% tournaments w/bargaining 65.4% 65.4% 65.4% 65.4% 63.9%
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Table 3. State of the game and initiator/rejector characteristics at the time of
bargaining. Panel A compares the state of the game at the initiation of bargaining to a
benchmark averaged over all hands of tournaments without bargaining. Panel B compares
the initiator and the player who rejects a proposal to the benchmark at the time of the
proposal or rejection, respectively. T-statistics are based on robust standard errors clustered
at the tournament level and are reported in parentheses. The Gini coefficient is computed
using the number of chips held by each remaining player. The number of ranked players and
repeat offenders are normalized by dividing by the number of remaining players (n). “Chip
leader indicator” is a dummy for whether a given player has the most chips at the table, and
is normalized by subtracting 1/n. si is the number of chips a player has and is normalized
by dividing by the total number of chips at the table (S) and by subtracting 1/n. ∆si is
the increase in a player’s chip holdings over the previous 10 hands and is normalized in two
different ways. HWi is the number of hands won by a player in the previous 10 hands, and is
normalized by the average number of hands won by all remaining players and by subtracting
1/n. Ranked player (repeat offender) indicator is normalized by subtracting the proportion
of ranked players (repeat offenders) at a given table. ***, **, and * denote that an estimate
is significant at the 1%, 5%, and 10% level, respectively.

Bargaining
Benchmark Initiation of minus

(no bargaining) bargaining Benchmark
Number of remaining players (n) 4.889 3.663 -1.227***

(-18.894)
Gini coefficient 0.349 0.272 -0.077***

(-12.805)
# of players recently eliminated 0.582 1.036 0.454***
(previous 10 hands) (17.980)
# of ranked players/n 0.101 0.063 -0.037***

(-3.827)
# of repeat offenders/n 0.598 0.534 -0.064***

(-3.501)
Time since start of final table (m) 38.0 48.164 10.145***

(9.332)
Initiator Rejector
minus minus

Benchmark Initiator Benchmark Rejector Benchmark
Chip leader indicator - 1/n 0 -0.072 -0.072*** 0.113 0.113***

(-6.278) (4.804)
si/S − 1/n 0 -0.024 -0.024*** 0.031 0.031***

(-6.678) (4.593)
∆si/S 0 0.052 0.052*** 0.050 0.050***
(previous 10 hands) (16.165) (8.570)
∆(si/S − 1/n) 0 -0.033 -0.033*** -0.036 -0.036***
(previous 10 hands) (-9.939) (-6.126)
HWi/

∑
j HWj − 1/n 0 -0.004 -0.004 0.016 0.016**

(previous 10 hands) (-0.965) (2.198)
Ranked player indicator – # ranked/n 0 -0.016 -0.016*** 0.047 0.047***

(-2.904) (4.278)
Repeat offender indicator – # rep off/n 0 -0.013 -0.013 0.070 0.070***

(-1.076) (3.606)

35



T
ab

le
4.

S
u
cc

es
s
of

a
b
ar

ga
in

in
g

ve
rs

u
s
st

at
e

of
th

e
ga

m
e

an
d

in
it

ia
to

r
ch

ar
ac

te
ri

st
ic

s.
N

eg
ot

ia
ti

on
s
ar

e
di

vi
de

d
in

to
th

os
e

th
at

su
cc

es
sf

ul
ly

le
ad

to
a

de
al

an
d

th
os

e
th

at
ar

e
un

su
cc

es
sf

ul
.

U
ns

uc
ce

ss
fu

ln
eg

ot
ia

ti
on

s
ar

e
fu

rt
he

r
di

vi
de

d
in

to
th

os
e

th
at

w
er

e
di

sc
us

se
d

an
d

re
je

ct
ed

an
d

th
os

e
th

at
w

er
e

ig
no

re
d.

V
al

ue
s

pr
es

en
te

d
he

re
ar

e
av

er
ag

es
co

m
pu

te
d

at
th

e
in

it
ia

ti
on

of
ba

rg
ai

ni
ng

.
V

ar
ia

bl
es

ar
e

as
de

sc
ri

be
d

in
pr

ev
io

us
ta

bl
es

.
T

-s
ta

ti
st

ic
s,

ba
se

d
on

ro
bu

st
st

an
da

rd
er

ro
rs

cl
us

te
re

d
at

th
e

to
ur

na
m

en
t

le
ve

l
ar

e
re

po
rt

ed
in

pa
re

nt
he

se
s.

**
*,

**
,
an

d
*

de
no

te
th

at
an

es
ti

m
at

e
is

si
gn

ifi
ca

nt
at

th
e

1%
,
5%

,
an

d
10

%
le

ve
l,

re
sp

ec
ti

ve
ly

.

Su
cc

es
sf

ul
U

ns
uc

ce
ss

fu
l

D
is

cu
ss

ed
ba

rg
ai

ni
ng

ba
rg

ai
ni

ng
an

d
re

je
ct

ed
Ig

no
re

d
(S

)
(U

)
(D

)
(I

)
S-

U
S-

D
D

-I

P
an

el
A

:
St

at
e

of
th

e
ga

m
e

#
ob

se
rv

at
io

ns
38

6
10

67
49

9
56

8
N

um
be

r
of

re
m

ai
ni

ng
pl

ay
er

s
(n

)
2.

68
7

4.
01

6
3.

52
3

4.
44

9
-1

.3
29

**
*

-0
.8

37
**

*
-0

.9
26

**
*

(-
17

.6
4)

(-
9.

78
)

(-
8.

39
)

G
in

i
co

effi
ci

en
t

0.
20

1
0.

29
8

0.
28

4
0.

31
0

-0
.0

97
**

*
-0

.0
84

**
*

-0
.0

26
**

*
(-

10
.7

5)
(-

7.
99

)
(-

2.
60

)
#

of
pl

ay
er

s
re

ce
nt

ly
el

im
in

at
ed

1.
07

0
1.

02
3

1.
08

8
0.

96
2

0.
04

7
-0

.0
18

0.
12

6*
*

(p
re

vi
ou

s
10

ha
nd

s)
(0

.9
7)

(-
0.

32
)

(2
.3

4)
#

of
ra

nk
ed

pl
ay

er
s/

n
0.

03
9

0.
07

2
0.

07
1

0.
07

3
-0

.0
33

**
*

-0
.0

32
**

*
-0

.0
01

(-
3.

98
)

(-
3.

27
)

(-
0.

15
)

#
of

re
pe

at
off

en
de

rs
/n

0.
52

7
0.

53
6

0.
54

0
0.

53
3

-0
.0

09
-0

.0
13

0.
00

8
(-

0.
47

)
(-

0.
60

)
(0

.4
0)

T
im

e
si

nc
e

st
ar

t
of

fin
al

ta
bl

e
(m

)
58

.8
35

44
.3

04
48

.9
27

40
.2

43
14

.5
31

**
*

9.
90

8*
**

8.
68

4*
**

(1
0.

30
)

(6
.2

0)
(6

.1
2)

P
an

el
B

:
In

it
ia

to
r

ch
ar

ac
te

ri
st

ic
s

C
hi

p
le

ad
er

in
di

ca
to

r
-

1/
n

-0
.0

50
-0

.0
81

-0
.0

83
-0

.0
79

0.
03

1
0.

03
3

-0
.0

04
(1

.1
6)

(1
.0

9)
(-

0.
15

)
s i

/S
−

1/
n

-0
.0

04
-0

.0
31

-0
.0

24
-0

.0
36

0.
02

6*
**

0.
02

0*
*

0.
01

2
(3

.8
6)

(2
.4

4)
(1

.5
6)

∆
s i

/S
0.

08
3

0.
04

1
0.

05
8

0.
02

5
0.

04
2*

**
0.

02
5*

**
0.

03
3*

**
(p

re
vi

ou
s

10
ha

nd
s)

(5
.5

0)
(2

.7
9)

(4
.6

3)
∆

(s
i/

S
−

1/
n
)

-0
.0

31
-0

.0
34

-0
.0

31
-0

.0
37

0.
00

3
0.

00
0

0.
00

6
(p

re
vi

ou
s

10
ha

nd
s)

(0
.4

2)
(0

.0
1)

(0
.8

1)
H

W
i/

∑
j
H

W
j
−

1/
n

0.
00

3
-0

.0
06

0.
00

4
-0

.0
16

0.
00

9
-0

.0
01

0.
02

0*
*

(p
re

vi
ou

s
10

ha
nd

s)
(1

.0
1)

(-
0.

13
)

(2
.1

3)
R

an
ke

d
pl

ay
er

in
di

ca
to

r
–

#
ra

nk
ed

/n
0.

00
2

-0
.0

22
-0

.0
33

-0
.0

13
0.

02
5*

*
0.

03
5*

**
-0

.0
20

*
(2

.5
6)

(3
.1

2)
(-

1.
66

)
R

ep
ea

t
off

en
de

r
in

di
ca

to
r

–
#

re
p

off
/n

0.
02

5
-0

.0
27

-0
.0

34
-0

.0
20

0.
05

2*
*

0.
05

9*
*

-0
.0

14
(2

.3
1)

(2
.2

8)
(-

0.
55

)

36



T
ab

le
5.

P
ro

b
ab

il
it
y

of
su

cc
es

s
of

b
ar

ga
in

in
g

as
a

fu
n
ct

io
n

of
th

e
in

it
ia

to
r’

s
ch

ar
ac

te
ri

st
ic

s
an

d
th

e
st

at
e

of
th

e
ga

m
e.

T
hi

s
ta

bl
e

pr
es

en
ts

es
ti

m
at

ed
m

ar
gi

na
le

ffe
ct

s
of

a
lo

gi
t

m
od

el
th

at
re

la
te

s
th

e
pr

ob
ab

ili
ty

of
ac

hi
ev

in
g

a
de

al
(P

an
el

A
)

or
at

le
as

t
di

sc
us

si
ng

a
de

al
(a

s
op

po
se

d
to

ig
no

ri
ng

th
e

pr
op

os
al

to
ne

go
ti

at
e,

P
an

el
B

)
to

st
at

e
of

th
e

ga
m

e
an

d
in

it
ia

to
r

ch
ar

ac
te

ri
st

ic
s.

T
-s

ta
ti

st
ic

s,
ba

se
d

on
ro

bu
st

st
an

da
rd

er
ro

rs
an

d
cl

us
te

re
d

at
th

e
to

ur
na

m
en

t
le

ve
la

re
re

po
rt

ed
in

pa
re

nt
he

se
s.

E
xp

la
na

to
ry

va
ri

ab
le

s
in

th
e

to
p

ha
lf

of
ea

ch
pa

ne
lr

ef
er

to
th

e
in

it
ia

to
r
of

ba
rg

ai
ni

ng
an

d
ar

e
as

de
fin

ed
in

pr
ev

io
us

ta
bl

es
.

E
xp

la
na

to
ry

va
ri

ab
le

s
in

th
e

bo
tt

om
ha

lf
of

ea
ch

pa
ne

lr
ef

er
to

th
e

st
at

e
of

th
e

ga
m

e
at

th
e

in
it

ia
ti

on
of

ba
rg

ai
ni

ng
.

∑
σ

i/
n

is
th

e
av

er
ag

e
do

lla
r

st
an

da
rd

de
vi

at
io

n
of

re
m

ai
ni

ng
pl

ay
er

s’
ex

pe
ct

ed
va

lu
e,

co
m

pu
te

d
us

in
g

th
e

m
od

el
de

sc
ri

be
d

in
th

e
A

pp
en

di
x.

A
ll

ot
he

r
in

de
pe

nd
en

t
va

ri
ab

le
s

ar
e

as
de

fin
ed

in
pr

ev
io

us
ta

bl
es

.
T

he
nu

m
be

r
of

ob
se

rv
at

io
ns

va
ri

es
fo

r
di

ffe
re

nt
sp

ec
ifi

ca
ti

on
s

be
ca

us
e

so
m

e
of

th
e

va
ri

ab
le

s
ca

n
no

t
be

co
m

pu
te

d
fo

r
al

l
pr

op
os

al
s

(e
.g

.,
if

ba
rg

ai
ni

ng
be

gi
ns

w
it

hi
n

th
e

fir
st

10
ha

nd
s

of
th

e
fin

al
ta

bl
e)

.
T

he
la

st
ro

w
re

po
rt

s
th

e
fr

ac
ti

on
of

ne
go

ti
at

io
ns

th
at

re
su

lt
ed

in
de

al
s

(P
an

el
A

)
or

di
sc

us
si

on
s

(P
an

el
B

).
**

*,
**

,a
nd

*
de

no
te

si
gn

ifi
ca

nc
e

at
th

e
1%

,5
%

,a
nd

10
%

le
ve

l,
re

sp
ec

ti
ve

ly
.

PA
N

E
L

A
:
P

ro
ba

bi
lit

y
of

a
C

om
pl

et
ed

D
ea

l
(l

og
it

)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

C
ha

ra
ct

er
is

ti
cs

of
th

e
in

it
ia

to
r:

s i
/
S
−

1/
n

0.
32

3*
**

0.
27

2*
**

0.
35

8*
*

(3
.6

96
)

(2
.8

75
)

(2
.2

54
)

∆
(s

i/
S
−

1/
n
)

0.
04

4
0.

14
1

0.
03

5
(0

.4
14

)
(1

.4
52

)
(0

.3
19

)
C

hi
p

le
ad

er
in

di
ca

to
r

-
1/

n
0.

03
3

0.
04

1
-0

.0
31

(1
.1

60
)

(1
.6

34
)

(-
0.

81
3)

R
an

ke
d

pl
ay

er
in

di
ca

to
r

0.
13

9*
*

0.
14

8*
*

0.
13

8*
*

m
in

us
#

ra
nk

ed
/n

(2
.2

14
)

(2
.1

07
)

(1
.9

71
)

R
ep

ea
t

off
en

de
r

in
di

ca
to

r
0.

06
6*

*
0.

04
3

0.
03

5
m

in
us

#
re

p
off

/n
(2

.2
49

)
(1

.3
81

)
(1

.0
91

)

C
ha

ra
ct

er
is

ti
cs

of
th

e
en

vi
ro

nm
en

t:

L
og

(#
of

re
m

ai
n.

pl
ay

er
s)

-0
.3

75
**

*
-0

.3
78

**
*

-0
.3

73
**

*
-0

.3
69

**
*

-0
.3

70
**

*
-0

.3
74

**
*

(-
11

.7
94

)
(-

11
.7

46
)

(-
11

.7
89

)
(-

11
.7

56
)

(-
11

.7
63

)
(-

11
.7

17
)

#
of

ra
nk

ed
pl

ay
er

s/
n

-0
.3

50
**

*
-0

.3
59

**
*

-0
.3

58
**

*
-0

.3
29

**
*

-0
.3

48
**

*
-0

.3
17

**
*

(-
3.

95
7)

(-
4.

02
3)

(-
4.

02
0)

(-
3.

74
4)

(-
3.

92
8)

(-
3.

64
1)

G
in

i
co

effi
ci

en
t

-0
.5

44
**

*
-0

.5
67

**
*

-0
.5

76
**

*
-0

.5
90

**
*

-0
.5

80
**

*
-0

.5
42

**
*

(-
7.

21
0)

(-
7.

52
5)

(-
7.

78
5)

(-
8.

01
8)

(-
7.

93
2)

(-
7.

16
4)

#
pl

ay
er

s
re

ce
nt

ly
el

im
.

0.
02

0
0.

02
3

0.
01

8
0.

01
9

0.
01

7
0.

02
2

(p
re

vi
ou

s
10

ha
nd

s)
(1

.3
77

)
(1

.5
51

)
(1

.2
68

)
(1

.3
31

)
(1

.1
79

)
(1

.4
75

)
L
og

(∑
σ

i/
n
)

0.
01

1
0.

01
1

0.
01

2
0.

01
1

0.
01

1
0.

01
0

(0
.8

06
)

(0
.7

74
)

(0
.8

33
)

(0
.7

57
)

(0
.7

83
)

(0
.7

33
)

P
se

ud
o

R
2

0.
00

7
0.

00
0

0.
00

1
0.

00
3

0.
00

3
0.

16
7

0.
16

3
0.

16
3

0.
16

5
0.

16
3

0.
17

1
N

14
51

13
99

14
51

14
51

14
51

13
99

13
99

13
99

13
99

13
99

13
99

%
co

m
pl

et
ed

de
al

s
26

.5
27

.4
26

.5
26

.5
26

.5
27

.4
27

.4
27

.4
27

.4
27

.4
27

.4

37



T
a
b
le

5
,
co

n
ti

n
u
e
d

PA
N

E
L

B
:
P

ro
ba

bi
lit

y
of

D
is

cu
ss

in
g

a
P

ro
po

sa
l
(l

og
it

)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0)

(1
1)

C
ha

ra
ct

er
is

ti
cs

of
th

e
in

it
ia

to
r:

s i
/
S
−

1/
n

0.
32

3*
**

0.
34

5*
**

0.
48

9*
**

(2
.8

58
)

(3
.0

30
)

(2
.5

95
)

∆
(s

i/
S
−

1/
n
)

0.
09

9
0.

36
4*

**
0.

20
0

(0
.9

40
)

(2
.7

41
)

(1
.3

08
)

C
hi

p
le

ad
er

in
di

ca
to

r
-

1/
n

0.
01

4
0.

03
9

-0
.0

87
*

(0
.4

46
)

(1
.1

76
)

(-
1.

67
0)

R
an

ke
d

pl
ay

er
in

di
ca

to
r

-0
.0

31
-0

.0
60

-0
.0

57
m

in
us

#
ra

nk
ed

/n
(-

0.
41

0)
(-

0.
79

5)
(-

0.
74

9)
R

ep
ea

t
off

en
de

r
in

di
ca

to
r

0.
01

9
-0

.0
31

-0
.0

26
m

in
us

#
re

p
off

/n
(0

.5
16

)
(-

0.
82

1)
(-

0.
69

7)

C
ha

ra
ct

er
is

ti
cs

of
th

e
en

vi
ro

nm
en

t:

L
og

(#
of

re
m

ai
n.

pl
ay

er
s)

-0
.4

00
**

*
-0

.4
08

**
*

-0
.3

90
**

*
-0

.3
89

**
*

-0
.3

89
**

*
-0

.4
13

**
*

(-
10

.9
85

)
(-

10
.9

06
)

(-
10

.8
44

)
(-

10
.7

74
)

(-
10

.8
40

)
(-

11
.0

19
)

#
of

ra
nk

ed
pl

ay
er

s/
n

-0
.2

99
**

*
-0

.3
07

**
*

-0
.3

05
**

*
-0

.3
20

**
*

-0
.3

09
**

*
-0

.3
15

**
*

(-
3.

56
8)

(-
3.

58
8)

(-
3.

59
8)

(-
3.

60
6)

(-
3.

63
2)

(-
3.

58
7)

G
in

i
co

effi
ci

en
t

-0
.4

04
**

*
-0

.4
30

**
*

-0
.4

66
**

*
-0

.4
68

**
*

-0
.4

75
**

*
-0

.3
63

**
*

(-
4.

55
1)

(-
4.

91
2)

(-
5.

33
6)

(-
5.

31
3)

(-
5.

41
0)

(-
4.

00
7)

#
pl

ay
er

s
re

ce
nt

ly
el

im
.

0.
04

3*
**

0.
05

1*
**

0.
04

1*
*

0.
04

0*
*

0.
04

1*
*

0.
04

9*
**

(p
re

vi
ou

s
10

ha
nd

s)
(2

.5
87

)
(2

.9
77

)
(2

.4
51

)
(2

.3
99

)
(2

.4
63

)
(2

.8
60

)
L
og

(∑
σ

i/
n
)

0.
06

1*
**

0.
06

1*
**

0.
06

2*
**

0.
06

3*
**

0.
06

2*
**

0.
06

2*
**

(3
.1

96
)

(3
.2

08
)

(3
.2

49
)

(3
.2

74
)

(3
.2

61
)

(3
.1

87
)

P
se

ud
o

R
2

0.
00

5
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

11
9

0.
11

8
0.

11
5

0.
11

4
0.

11
4

0.
12

3
N

14
51

13
99

14
51

14
51

14
51

13
99

13
99

13
99

13
99

13
99

13
99

%
di

sc
us

se
d

60
.9

62
.3

60
.9

60
.9

60
.9

62
.3

62
.3

62
.3

62
.3

62
.3

62
.3

38



T
a
b
le

6
.

T
e
rm

s
o
f
a

d
e
a
l
a
s

a
fu

n
ct

io
n

o
f
p
la

y
e
r

ch
a
ra

ct
e
ri

st
ic

s.
T

h
is

ta
b
le

re
p
or

ts
re

gr
es

si
on

co
effi

ci
en

ts
re

la
ti

n
g

th
e

ea
ch

p
la

ye
r’

s
sh

ar
e

(a
m

ou
n
t

aw
ar

d
ed

in
a

d
ea

l
d
iv

id
ed

b
y

th
e

av
er

ag
e

p
ay

off
)

to
p
la

ye
r

ch
ar

ac
te

ri
st

ic
s.

T
o

en
su

re
th

at
fi
tt

ed
va

lu
es

w
it

h
in

ea
ch

to
u
rn

am
en

t
su

m
u
p

to
th

e
va

lu
e

of
th

e
d
ep

en
d
en

t
va

ri
ab

le
,

ea
ch

va
ri

ab
le

is
d
em

ea
n
ed

at
th

e
to

u
rn

am
en

t
le

ve
l

an
d

th
e

re
gr

es
si

on
s

ar
e

es
ti

m
at

ed
w

it
h
ou

t
a

co
n
st

an
t

te
rm

.
T

-s
ta

ti
st

ic
s,

b
as

ed
on

ro
b
u
st

st
an

d
ar

d
er

ro
rs

,
ar

e
cl

u
st

er
ed

at
th

e
to

u
rn

am
en

t
le

ve
l

an
d

ar
e

re
p
or

te
d

in
p
ar

en
th

es
es

.
E

V
i/

Ē
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Figure 1. Model probabilities vs empirical frequencies. The graphs compare the
theoretical probabilities of tournament outcomes implied by the model in the Appendix
to empirically observed frequencies. The first row presents the probability of finishing in
first place when there are two players remaining, and the second (third) row presents the
probability of finishing in first (first or second) place when there are three players remaining.
Empirical frequencies are based on all tournaments that did not have a deal. In the first
(second and third) row, model probabilities are computed using chip stacks right after a
third (fourth) player is eliminated and are divided into 20 bins. Histograms in the first
column depict the number of tournaments with model probabilities that fall within each bin.
The second column plots theoretical probabilities against the empirical frequencies computed
using tournaments from each bin that contains at least five tournaments. A 45-degree line
is superimposed on the graphs for comparison.
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