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Abstract

This paper uses a gravity framework to investigate the effects of distance as well as subna-
tional and national borders in knowledge spillovers. Drawing on the NBER Patent Citations
Database, we examine patent citations data at metropolitan level within the U.S. and the 38
largest patent-cited countries outside the U.S. Three key findings are documented. First, we
find strong subnational localization effects at the Metropolitan Statistical Area and state levels:
more than 90% of intranational border effects stem from the metropolitan level rather than
state. This is consistent with the artifact of geographic aggregation at the state level for trade
flows as in Hillberry and Hummels (2008). Second, border and distance effects decrease with
the age of cited patent, which implies that new knowledge faces the largest barriers to diffusion.
However, over time, border and distance effects are interestingly increasing. Finally, we find
that (assignee) self-citations and aggregation bias are two sources of overestimated aggregate
border effects of knowledge spillovers. While self-citations are only 11% of total citations, they
account for approximately 50% of MSA and national border effects. Decomposing the data
along geographic, age or industrial dimensions contributes to the reduction of border effects.
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1 Introduction

The degree of localization of intranational knowledge spillovers remains contentious. Recently

Thompson and Fox-Kean (2005) have argued that only national boundaries restrict knowledge

flows and that there is no strong evidence to support significant subnational barriers to knowledge

diffusion. While Henderson, Jaffe and Trajtenberg (2005) and others argue that even intranational

knowledge spillovers are indeed localized.1 Also, the sources of localization of knowledge spillovers

are not clear. Is this "nearby" effect more affected by physical distance or the national and sub-

national borders? How do borders and distance, as barriers to diffusion, affect knowledge flows?

Are there any time trends or other profiles of these effects? The answers to these questions have

significant implications for public policy on knowledge dissemination. Currently the importance of

geographic proximity has attracted a lot of attention in knowledge spillovers literature, but differ-

entiating the contribution from distance and borders and further analyzing their changing patterns

and sources have not been explicitly investigated.2

In order to better understand the frictions affecting knowledge diffusion, the present paper asks

three questions. First, how localized is intranational and international knowledge diffusion? To

what extent do national borders, subnational borders and distance affect diffusion? Second, how

does the pattern of knowledge diffusion change over time and with age? In this paper, "age" refers

to the "age" of knowledge flows, defined by the citation lag between the citing and cited patents.3

Third, what are the sources of border effects in knowledge diffusion?

To answer the above questions, we use a gravity framework to conduct a quantitative analysis of

the magnitude of and the changes in the border and distance effects. We also attempt to tackle the

"border puzzle" in the context of knowledge spillovers by examining the sources of overestimated

aggregate border effects. We follow the principle assumption in the literature using patent citations

that citations trace out knowledge flows: the fact that patents invented in region i cite patents

invented in region j is equivalent to the fact that knowledge flows from region j to region i.4

1For example, Peri (2005) finds that pooled citations are strongly localized at state level within one country.
Thompson (2006) and Alcácer and Gittelman (2006) find that inventor citations and examiner citations are both
localized.

2For example, Thompson and Fox-Kean (2005); Henderson, Jaffe and Trajtenberg (2005); Thompson (2006);
Griffith et al (2007) do not investigate distance. Only quite a few studies investigate distance explicitly in knowledge
flows (Peri, 2005; Alcácer and Gittelman, 2006), but they either use dummy variables for distance intervals or drop
internal distance, i.e., the distance from one region to itself is set to 0. No richer distance data have been investigated.

3Citation lag = the grant year of citing patent - the grant year of cited patent. For example, if patent A cites
patent B which is 20 years old (i.e., B was granted 20 years ago), this is a relatively "old" knowledge flow, and the
age of this knowledge flow is 20; if patent A cites patent B which was granted 2 years ago, this is a relatively "new"
knowledge flow, and its age is 2.

4It should be noted that this paper only addresses the "pure" knowledge flows embodied in patent citations and
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The advantage of using citations as a measure of knowledge flows is that citations leave a paper

trail of knowledge flows (Jaffe, Trajtenberg, and Henderson, 1993), so they can provide interesting

information tracking the direction and intensity of knowledge flows (see Section 3.3 for more detail).

By differentiating citations by age, we characterize age distribution of different types of knowledge

diffusion. We then estimate the subnational and national border effects as well as the distance effect

for knowledge flows at aggregate level and by different criteria (age, category, and year). Based on

those estimates, we analyze the changing patterns (age profiles and time trends) of the border and

distance effects. Finally, we propose two sources of border effects in knowledge diffusion.

We use the NBER Patent Citations Data set of cross-patent citations (consisting of more than

3 million patents and more than 16 million citations) to study the border and distance effects in

intranational and international knowledge flows across 319 MSAs (Metropolitan Statistical Areas)

in the U.S. and the 38 largest patent-cited nations outside the United States. These regions cover

more than 93% patents and citations in the NBER database between 1980 and 1997. We employ the

metropolitan level data because the study of the geography of innovation shows that the majority

of innovations are located in major cities indicating that innovation is an urban activity (Audretsch

and Feldman, 1999, 2004). This raises doubts about the validity of large state border effect in

previous literature.5 The finer data set at the metropolitan level allows us to more fully explore the

sources of subnational border effects and the nature of knowledge flow frictions.

Our findings support the strong subnational localization effects at the metropolitan and state

levels. We find that more than 90% of intranational border effects stem from the metropolitan level

rather than state. We also find that border and distance effects decrease with the age of knowledge.

This finding suggests that, compared to older knowledge, new knowledge flows face more frictions,

which is consistent with the nature of knowledge diffusion. However, over time, border and distance

effects are interestingly increasing. Furthermore, we propose two sources of overestimated aggregate

border effects of knowledge spillovers. One is self-citations, and the other is aggregation bias. Of

total citations, only 11% are self-citations, but they account for approximately 50% MSA and

national border effects.6 Also decomposing data contributes to the reduction of the aggregate

border effects.

This paper contributes to the emerging literature that explores the nature of knowledge diffusion

using patent citation data. Currently most studies of knowledge flows do not explicitly differentiate

all knowledge studied in this paper refers to that associated with patents and citations since the general concept of
"knowledge" contains extensive content and is difficult to quantify.

5Peri (2005) estimated that knowledge flows will be diminished to 20% when crossing state or province borders
within one country.

6Self-citations refer to those citing patents and cited patents belong to the same assignee.
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borders and distance in knowledge localization. Hence the contributing components of localization

(for example, distance and internal distance; national borders and, especially, subnational bor-

ders, etc.) have not been well studied. Specifically, little is known about how subnational and

international border effects and the effect of distance change in knowledge diffusion along different

dimensions (time and knowledge age). The novel findings of this paper are the age profiles for

aggregate border and distance effects of knowledge spillovers. The age profiles for friction factors

in knowledge diffusion have not been previously reported. Also, our findings concerning the time

trend of border and distance effects have not been extensively studied in the current literature.

This paper also contributes to the framework of the studies of knowledge spillovers, and in

particular, subnational knowledge localization issues. The knowledge flow literature mostly ex-

ploits matching methodology, and it is difficult to reconcile the previous quantitative findings (e.g.,

Thompson and Fox-Kean, 2005; Henderson, Jaffe and Trajtenberg, 1993, 2005) due to the differ-

ent criteria of selecting control groups.7 Hence in this paper we use a gravity framework to avoid

selecting control group and to estimate border and distance effects directly. Closely related work

in empirical methodology is Peri (2005), who employs the gravity-like equation to study knowledge

flows, using the subnational patent citation data at the state (or province) level. Peri’s findings

suggest large state border effects.8 We use a finer, newly constructed data set at the MSA level

to show that most subnational border effects exist at the metropolitan level, rather than at the

state level. Knowledge diffusion is much more localized than we expect. When the MSA border is

considered, the state border effect is very small.

Finally, we contribute to a large literature on gravity application and border effects. This paper

presents the compelling empirical evidence for the resolutions of the border puzzle in knowledge

flows. Part of the proposed resolutions might be extended and linked to border effects in trade

flows. For example, when we decompose data from state level to MSA level, the state border effect

is substantially reduced; if we further use disaggregated data at the category level, some state border

effects are not significant at all. This is consistent with the findings of Hillberry and Hummels (2005),

who argue that the state level home bias in trade flows is largely artifact of geographic aggregation.

The remainder of the paper is organized as follows. Section 2 briefly reviews the relevant

literature on knowledge spillovers and border effect. Section 3 sets out the basic framework of

analysis and details the empirical specification and data. Section 4 presents main results and
7Matching method was first used by Jaffe, Trajtenberg, and Henderson (1993) to study the geography of knowledge

flows using patent citations. They matched each citing patent to a non-citing patent, which shares the same location
with the citing patent, so as to control for the existing concentration of knowledge production.

8Peri (2005) estimates that only 20% of average knowledge is learned outside the average region of origin, i.e.,
there is around 80% of initial knowledge flows would be lost when they cross state border.

4



section 5 examines robustness. Section 6 concludes.

2 Literature Review

2.1 Knowledge Spillovers Literature

The last two decades have seen the development of a significant body of research on knowledge

spillovers or knowledge flows. It is useful to distinguish between two branches of literature, one

which focuses on measurement issues and another which focuses on the study of knowledge flows.

Measuring knowledge flows in a consistent, systematic way is a difficult task. Currently the first

branch of literature contains three main measures of knowledge flows: R&D expenditures, royalties

and license fees, and patent citations. Moreover, some alternative approaches consider trade flows

or foreign direct investments as proxies for knowledge flows.9 We briefly review the three main

measures as follows.

First, some studies examine the spillover effect of international R&D on domestic productivity.

The weakness of this approach is in distinguishing the effect of "pure" knowledge flows from the

effect of technology flows embodied in advanced capital goods sold from one country to another

(Jaffe and Trajtenberg, 1998). Another problem is finding an appropriate way to weight the for-

eign R&D. For example, Coe and Helpman (1995) find potent international R&D spillovers using

trade volume weighted foreign R&D. But Keller (1998) challenges their results using the Coe and

Helpman (1995) database, by weighting foreign R&D with randomly created trade patterns. At

the firm level, Branstetter (1996) finds a strong intranational spillover effect but very small or even

negative international knowledge spillovers, using technology proximity to weight other firms’ R&D.

This implies that R&D expenditures as a proxy for knowledge flows usually diffuse only within an

economy and not across national borders. We need a direct and explicit measure of knowledge flows

other than R&D expenditures if we want to investigate international and intranational knowledge

spillovers simultaneously.

Second, using the international payments and receipts of royalties and license fees provides a

precise measure of the value of knowledge flows. But so far there are no bilateral data with wide

international coverage. The intranational data is even more difficult to find than international data.

Only aggregate data for a few countries or firm-level data within a very restricted scope are available.

For instance, Giummo (2003) examines the royalties received by the inventors/patentholders at nine

major German corporations.
9See Peri (2005) for a brief review of this literature.
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Third, using patent citations can give a direct paper trail of knowledge spillovers across different

types of boundaries. Griliches (1990) and some other seminal works (for example, Jaffe, Trajtenberg

and Henderson, 1993) started this line. Aggregated citation flows have recently been extensively

used as proxies for knowledge spillover intensities. At the firm level, Hall, Jaffe and Trajtenberg

(2005) explore the usefulness of patent citations as a measure of the "importance" of a firm’s patents,

as indicated by the stock market valuation of the firm’s intangible stock of knowledge.

The second branch is the literature on the nature of knowledge flows using patent citations.

Most studies focus on the geographic or institutional determinants. However, when they investi-

gated geographic determinants, usually only geographic units (proximity) were examined without

explicit distance measures. For example, Jaffe, Trajtenberge and Henderson (1993) and Jaffe and

Trajtenberg (1998) find that citations are geographically localized. Inventors in the same country

are 30 to 80% more likely to cite each other than foreign inventors. Griffith et al (2007) examine

the home bias of international knowledge spillovers as measured by the speed of patent citations be-

tween countries and find that home bias is stronger in the pre-1990 period than the post-1990 period.

Similar to previous studies using matching methodology, Griffith et al (2007) employ econometric

duration models with fixed effects, in which a distance measure is not exploited. Recently only a

few papers investigate distance and borders at the same time, but they do not capture the changing

patterns and potential sources for these effects. For instance, Peri (2005) estimates the percentage of

knowledge learned outside the region of origin using the data from subnational (state and province)

regions in Europe, Canada and the United States. Compared to international spillovers, intrana-

tional knowledge flows are relatively less studied and the localization of intranational knowledge

flows remains contentious in the literature.

2.2 Border Effect Literature

Another root of relevant literature stems from the large border effect in international trade, which

remains a key puzzle in this field. Obstfeld and Rogoff (2000) refer to the "McCallum Home Bias in

Trade" puzzle as one of the six leading puzzles in modern international macroeconomics. Anderson

and Van Wincoop (2003) develop a theoretical gravity model to correct the bias in McCallum’s

(1995) estimates. In this paper, building on the gravity framework by Anderson and Van Wincoop

(2003), we derive a gravity equation of knowledge flows (see Appendix) to investigate border and

distance effects in knowledge diffusion. We use fixed effects estimation method as in Anderson and

Van Wincoop (2003) and Feenstra (2002).
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3 Empirical Specification and Data

3.1 Basic Framework of Analysis

We employ a gravity framework to analyze the friction factors in knowledge flows because we want

to investigate the contribution of different types of borders and distance in knowledge diffusion,

rather than the combined "localization effect". As stated in Combes (2008), "in addition to the

reliable estimates of the impact of distance they lead to, the success of gravity models is due to their

great explanatory power for flows, and this holds true whatever the geographical scale (countries,

large or small regions), the period of study or the goods considered".

Let cij denote how many citations region j receives from region i, i.e., the number of citations

region i makes to use the existing knowledge created by region j ’s patents, or, the quantity of

knowledge flows from j to i. Let yj be the total number of citations region j receives from all

regions in the world. Hence yj captures the size of region j ’s knowledge production capacity.

"Region" is defined flexibly in this paper, using MSAs within the U.S. and 38 countries outside the

U.S. We use subnational borders, national borders, distance and internal distance to proxy for the

friction factor tij in knowledge flows between region i and region j. We follow the convention in

gravity literature in hypothesizing that tij is a loglinear function of observables, bilateral distance

dij , and whether there is a national border Bn
ij (1 if crossing countries, 0 otherwise), a state border

Bs
ij (1 if crossing states within the U.S., 0 otherwise) and a MSA border Bm

ij (1 if crossing MSAs

within the U.S., 0 otherwise). Other factors can also be added to knowledge flow frictions, such as

adjacency and linguistic identity. Here we have chosen borders and distance for simplicity as well

as to stay as close as possible to Anderson and Van Wincoop (2003), so that potentially we are able

to compare the frictions in trade flows and knowledge flows under a common framework. Building

on Anderson and Van Wincoop (2003), we derive a theoretical gravity equation of knowledge flows:

(see Appendix for the derivation)

ln(
cij

yiyj
) = k + αlndij + β1B

m
ij + β2B

s
ij + β3B

n
ij + ln(Qi)σ−1 + ln(Qj)σ−1 + (1 − σ)εij (1)

where σ is the elasticity of substitution between all knowledge products (patent citations); k is a

constant; Qi and Qj are quantity indices, referring to the measures of "multilateral knowledge flow

resistance" variables as they depend on all bilateral resistances tij . Equation (1) is the theoretical

gravity equation where we start our empirical work.
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3.2 Empirical Gravity Equation

Equation (1) is hard to estimate since the multilateral resistance terms are not observable. We have

two ways to handle this problem. One is to use region-fixed effects terms in place of the region-

specific multilateral resistance terms; the other is applying structure estimation by constrained

nonlinear least squares, as in Anderson and Van Wincoop (2003). In the current paper we use the

fixed-effects estimator for the following reasons: (1)reducing the computation intensity; (2)leading

to consistent estimates of model parameters (Hummels, 1999); (3)giving similar results to structure

estimates (Anderson and Van Wincoop, 2003); (4) the fixed-effects method produces consistent

estimates of the average border effect (Feenstra, 2002).

We use region-specific terms to control for the unobserved multilateral resistance terms. The

empirical gravity equation then becomes

ln(
cij

yiyj
) = k + αlndij + β1B

m
ij + β2B

s
ij + β3B

n
ij + ri

1CIi + rj
2CEj + (1 − σ)εij (2)

where CIi is equal to 1 if i is the citing region (destination region of knowledge flows) and 0

otherwise, and CEj is equal to 1 if j is the cited region (source region of knowledge flows) and 0

otherwise. In general, the fixed effects control for any citing- and cited-region-specific characteristics.

This is our baseline regression for cross-sectional data. We also construct the panel data to identify

the time trend of effects of borders and distance.

3.3 Description of the Data

Patent and citation data originate from NBER Patent and Citation Database, which is publicly

available and described in detail by Hall, Jaffe and Trajtenberg (2001). This data set contains all

the patents (more than 3 million) granted by the U.S. patent office (USPTO) and, since 1975, all

citations (more than 16 million) made by each patent of other patents, in which more than 40%

patents granted to foreigners and more than 40% citations generated by foreigners (see Figure 1).

The most useful information is the inventors’ geographic location by their registered residence

and citations made and received by each patent. In the data set, we can identify in which country

the inventor is located. If the inventor resides in the U.S., we also know in which state the inventor

resides. Furthermore, we want to locate each patent at the MSA level. Among all inventors, 15%

of them report the zip code of their residence in the U.S. and all inventors report the town/city

or place name of their residence. We first locate inventors to MSAs by zip code and then locate

the rest by town/city or place name. The matching was done using correlation files provided by
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the Office of Social and Economic Data Analysis (OSEDA) of the University of Missouri. We use

MSAs as defined by the U.S. Census Bureau in 1990.10 We also created 49 phantom MSAs, one

for each state (except for New Jersey), containing all locations in non-metro areas.11 Finally, we

matched more than 93% U.S. inventors to 319 MSAs.12 Then the region of a patent is denoted by

the residence of its first inventor.13 For a patent invented within the U.S., the region is the MSA

of its location. For a patent invented outside the U.S. (we call it a "foreign" patent), the region is

the country of its location. If a region i ’s patent cites a region j ’s patent, we assume that there is

"one" knowledge flow from j to i at the first glance. Then, we aggregate the quantity of bilateral

citation flows between each region pair ij every year as a measure of knowledge flows.

We use patent citations to measure knowledge flows for several reasons. Patents embody new

ideas associated with knowledge. A patent awards to inventors the right to exclude others from

the unauthorized use of the disclosed invention. The applicant has the legal duty to disclose any

knowledge of the "prior art" hence citations to previous patents are included in the patent docu-

ments. Intuitively speaking, if patent B cites patent A, it implies that patent A represents a piece of

previously existing knowledge upon which patent B builds, and over which B cannot have a claim.

When patents generate citations, they leave a paper trail of knowledge flows (Jaffe, Trajtenberg,

and Henderson, 1993). Thus, patent citations, rather than the patent stock itself, can provide in-

teresting information tracking the direction and intensity of knowledge flows. Previous studies also

find that the estimated value of a patent is correlated with subsequent citations, and that the most

highly cited patents are very valuable (Giummo, 2003). This further suggests that patent citations

is a good measure of knowledge flows.

We choose the sample of citations between 1980 and 1997 associated with each citing and cited

patent pair whose inventors are residents of one of the 357 regions (319 MSAs within the U.S. and

other main 38 countries). We choose the other 38 countries by their rank of knowledge production

as well as the importance of their economy.14 The time of citation is defined by the grant year of

the citing patent. The cited patents in the sample are restricted to patents granted after January

1, 1976. Our final sample covers more than 93% patents and citations between 1980 and 1997 in
10The definition of MSAs evolves over time and there is slight difference between the definition of MSAs in 1990

and in 2000. We choose the definition in 1990 since our sample period is 1980-1997.
11In our sample, no citations come from non-metro area of New Jersey.
12These 319 MSAs include 270 MSAs as defined by the U.S. Census Bureau in 1990 and 49 artificial MSAs.
13The rule of "location by the first inventor" is designed by the constructor of NBER Patent and Citation Database.
14The sample (except for U.S.) is constructed by the following procedure: First, rank all countries by the total

number of citations production and the total number of patents production, and choose the 30 largest countries in
both ranking list. Second, use the intersection of these two groups of 30 largest countries. Third, plus all other
OECD countries (which are not included in the first set except for Slovakia). Fourth, plus the OECD Non-Member
Economies (China, Russia, Brazil) and India.
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the world, which contains more than 1.6 million patents and more than 6.6 million citations. The

present sample is more comprehensive than other recent knowledge flow studies.15

Table 1 presents the largest 20 countries by knowledge production capacity in terms of number of

citations received. Not surprisingly, the U.S. ranks as the most productive and innovative country in

the world. Japan, Germany, the United Kingdom and France are also at the top of the table. Table

2 reports some characteristics of the most and least innovative regions in our sample. The largest

innovator is Japan, which receive more than 59,000 citations per year. We find that usually most

innovative MSAs are those crossing multiple states. Hence it is useful to investigate state border and

MSA border separately. The bottom of the list is occupied by Turkey, Iceland, and some low-cited

MSAs, each with very small number of received citations. Usually the least innovative regions in

the U.S. are located restrictively within one state.

Distance data come from CEPII’s worldwide geographical database for countries and we use

geodesic distances which are calculated following the great circle formula, using latitudes and lon-

gitudes of the most important cities/agglomerations (in terms of population). Within the U.S., we

use coordinates of the largest city (by 1990 population) to locate MSAs. We also use the area-

based internal distance formula to investigate the intra-regional knowledge flows (Head and Mayer,

2002).16

4 Main Results

We present in this section the estimates from equation (2) with different specifications to solve the

previous three questions. We find that subnational border effect mainly comes from MSA level,

rather than state level. We also find that movement of these friction factors (border and distance

effect) in knowledge flows is falling with the age of knowledge but rising over time. Furthermore, we

propose the compelling empirical evidence for the resolutions of border puzzle in knowledge flows

by examining the sources of overestimated aggregate border effects.
15For instance, Juan Alcácer and Michelle Gittelman (2006) uses the sample of 1,456 patents and 16,095 citations;

Peri (2005) uses the sample of 1.5 million patents and 4.5 million citations; Griffith, Lee and Van Reenen (2007) uses
approximately 2.1 million cited patents.

16An often used measure of average distance between producers and consumers in a country, see Head and Mayer
(2002), Illusory Border Effects, CEPII Working Paper No. 2002-01. We follow their formula: dii = 0.67(area/π)1/2

in the context of flexible "region" to calculate the internal distance. Hence in our sample, dii ̸= 0.
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4.1 Basic Estimates of Border and Distance Effects

Table 3 is the basic estimates of border and distance effects for the whole sample (357 regions

and 18 years) on aggregate knowledge flows. All coefficients are significant at the 1% level. To

interpret the economic meaning of those coefficients, we take specification (1) as an example. For

the whole sample, the distance effects are approximately -13% in the period of 1980-1997, which

means that the knowledge flows will decrease 13% associated with a 1% increase in the distance

holding everything else constant. In other words, halving distance will increase knowledge flows by

6.5%. Distance effect in knowledge flows is much smaller than that in trade flows. Halving distance

increases trade by approximately 45% (Disdier and Head, 2006). This implies that knowledge flows

are less affected by physical distance than trade flows. To examine border effects, we need to use

the exponential formula. Specification (1) shows that, the intranational knowledge flow is 13.32 (=

e2.589) times higher than cross-nation-border knowledge flow; the intra-MSA knowledge flow is 8.45

(= e2.134) times higher than cross-MSA-border knowledge flow; and the intra-state knowledge flow

is 1.25 (= e0.224) times higher than cross-state-border knowledge flow. Here we use the average

border effects which is calculated as the exponent of the (absolute value of the) coefficient on the

border indicator (Feenstra, 2002).17 In other words, national border effect implies that 92.5% (=

1- e−2.589) of initial knowledge flow is lost passing the country border, holding all other factors

constant; 88.2% (= 1- e−2.134) knowledge flow is lost crossing the MSA border; 20.1% (= 1- e−0.224)

knowledge flow is lost crossing the state border. We can see that MSA and national border effects

are very significant, and substantially impede knowledge flow. The magnitude of state border effect

is very small compared to the other two borders. On average, national border effect is larger than

MSA border effect, and MSA border effect is much larger than state border effect. However, for

aggregate knowledge flows, state border effect is still statistically significant.

When we use different specifications with MSA border and year effect included (see specification

(1) and (2)), we find that the coefficients for log distance, MSA border and national border are quite

stable, which belong to [-0.13, -0.15], [-2.13, -2.25], and [-2.43, -2.59] respectively. Dropping state

border does not change the results much. It implies that MSA border captures most of intranational

border effect in knowledge spillovers. However, if we only use state border to represent intranational

border effect as in specification (3), we find that the magnitude of border and distance effects is much

different with that in previous specifications. This implies some artifact of geographic aggregation

at state level(see Section 4.3 for details). Also including year dummies substantially improve the

estimation results and it implies that year heterogeneity is significant in the panel.
17Feenstra (2002) proves that this simple method can produce the consistent estimates with the structural estimates

in Anderson and Van Wincoop (2003).
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Another issue here is whether we use the normalization of dependent variable. Following Ander-

son and Van Wincoop (2003) and other previous literature on estimating border effect, we prefer

the normalization method. Normalization makes the regression more robust. With normalization,

the distribution of dependent variable will shape better than without normalization (see Figure 2

and 3). We also estimate the border and distance effects without normalization, i.e., treating lnyi

and lnyj as independent variables. We find that the magnitude of border and distance effects does

not change much.

We also consider the impact of self-citations on border and distance effects because presum-

ably self-citations represent transfers of knowledge that are mostly internalized (Hall, Jaffe and

Trajtenberg, 2001) but they are not necessarily locked in the same location. Hence investigating

self-citations has important implications for the study of barriers to knowledge spillovers. Table 4

presents aggregate border and distance effects with and without self-citations. We find that self-

citations partly exaggerate border and distance effects. After excluding self-citations, 85% of initial

aggregate knowledge flows will be lost crossing national borders; 78% will be lost crossing MSA

borders; and 12% will be lost crossing state border (see specification (7)). Including self-citations

approximately doubles the aggregate MSA and national border effects, but does not change the

order of importance of three types of border effects.

We use specification (7) as our baseline regression since most previous studies exclude self-

citations and it is more convenient to compare the estimates without self-citations to previous

literature. Peri (2005) excludes self-citations and finds that only 20% of average knowledge is

learned outside the state (or province) of origin, i.e., 80% of initial knowledge is lost crossing

the state border. The magnitude of the state border effect in Peri (2005) is similar to our MSA

border effect. We show that it is not a true magnitude of state border, and 92% (=0.78/0.85) of

intranational border effects come from metropolitan level, rather than state. Peri (2005) also finds

that national borders diminish knowledge flows to 9% of the initial level. Our estimates show the

relatively smaller national border effect, and there are still 15% of initial knowledge which can spill

over to other countries.

4.2 The Changing Patterns of Border and Distance Effects

One might think that new knowledge and old knowledge might be different in diffusion. Hence,

we expect that the different types of knowledge flow (e.g., international, intra-state, and intra-

MSA, etc.) have different age distribution. We draw on the proportion of citation received in its

total (lifetime) citations at each age to characterize the age distribution for each type of knowledge
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flow (see Figure 4 and 5). Figure 4 shows that there is approximately a 5-year lag between local

and non-local knowledge flows, within-MSA and cross-MSA flows, as well as intranational and

international flows.18 Figure 5 presents the age distribution of knowledge flows without self-citations.

By comparing Figure 4 and 5, we find that excluding self-citation substantially reduces the gap

between the age distribution lines of local and non-local, within-MSA and cross-MSA as well as

intranational and international knowledge spillovers. It suggests part of the border effects from

self-citations. This has been confirmed by our previous estimates.

Another message conveyed by Figure 4 and 5 is that border and distance effects are expected to

decrease with the age of knowledge since the integrals of the different age distributions converge with

the age of knowledge. To verify this prediction, we decompose the whole sample to 5 subsamples

by age group, using 5 years as an interval. The results are very significant as we expected and are

presented in Table 5: distance and border effects are decreasing with age of knowledge. Hence new

knowledge flows face the largest distance and border effects. The only exception is the state border

effect. For old knowledge groups (more than 15 years old), state border effects are not significant

and slightly deviate from the decreasing age profiles. However, the age profiles for MSA and national

borders as well as for distance effect are very significant (all at 1% level). Also, we find that on

average, national borders effect is larger than subnational border effect, and this holds true for each

age group.

The age profiles of border effects and distance effect is not a surprising result and it is consistent

with the nature of knowledge diffusion process in the real world. But the current literature abuses the

geographical localization effect and usually use "time" instead of "age". When people argue that over

time the tacit information embodied in knowledge is codified and is more easily to be transmitted

across distance or borders, they actually mean over the age of knowledge. If we seriously differentiate

the time effect and age effect, our findings suggest that new patents have a larger number of local

citations than older patents. This would seem to make sense – new patents may be cited more often

initially either by their owner (since they be part of an ongoing research agenda) or they may be

known to other local firms/researchers before their formal patenting - which again would give local

researchers/firms a head start. We think that "age" might be a good dimension complementary

to "time" in examining the changing pattern of barriers in knowledge diffusion since knowledge

diffusion involves two parties - the predecessor (cited) and the successor (citing), and "age" can

capture the impact of the lag between these two sides. Only looking at the changing pattern over

time might omit important information in knowledge transmission.
18Local knowledge flows refer to all intra-region flows, i.e., intra-MSA flows within the U.S. and intranational flows

within a country outside the U.S. Within MSA and cross-MSA flows are specific to the knowledge within the U.S.
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Now we turn to time trends of border effects and distance effect. In recent trade literature,

whether distance is dying over time is an interesting topic which has already attracted lots of

attention. However, in knowledge flow literature, only quite recently have economists started to

concern this question (e.g., Griffith et al, 2007), and some conjectures are proposed which need

serious empirical work to verify. For example, Henderson, Jaffe, and Trajtenberg (2005) proposed

that localization effects are likely to fade over time, but they didn’t give empirical evidence to

support this conjecture in that paper.19 In this paper we can investigate this issue through border

effects and distance effects. So far no researchers investigate the time trend of border effects,

probably due to the lack of a common framework of analysis and the difficulty of accessing the

relevant data.

Figure 6 and 7 show the time trends of border and distance effects based on cross-sectional

estimates for each year in our sample period (1980-1997). MSA and national border effects as well

as distance effect are all increasing over time, while state border effects are very small and almost

flat. For some years, the state border is not statistically significant. However, all MSA and national

borders as well as distance are significant for each year. Again, border and distance effects with

self-citations are always larger than those without self-citations, and national border effects are

larger than subnational for each sample.

Why are border and distance effects increasing over time? There are two possible reasons.

First, the proportion of self-citations in total citations is increasing over time (Hall et al, 2001).

This might explain the increasing time trend of border and distance effects with self-citations since

we know that self-citations exaggerate the magnitude of those effects. Second, the proportion of

new knowledge flows is increasing over time. Since new knowledge faces larger barriers in diffusion,

this will lead to upward slope of time trends of both border and distance effects.

4.3 Sources of Border Effects

We have shown that part of border effects come from self-citations. Of total citations in our sample,

only 11% are self-citations, but they account for approximately 50% MSA and national border

effects.20 In other words, including self-citations approximately doubles those border effects.

The second source of overestimated aggregate border effects is aggregation bias. We find that

there are at least three types of aggregation bias in the context of knowledge flows: geographic

aggregation bias, age aggregation bias and category aggregation bias.
19In Jaffe, Trajtenberg and Henderson (1993), they argue that localization fades over time, but only very slowly.
20This proportion (11%) is consistent with the lower bound of the mean percentage of self-citations in the entire

NBER database (Hall, Jaffe and Trajtenberg, 2001).
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First, geographic aggregation bias substantially overestimated subnational border effects. The

experiment is to decompose data only to state level and to compare the result with previous esti-

mates. We find that the magnitude of state border effect is similar to the previous MSA border

effect. However, if we further decompose data to the MSA level as in Table 4, we find that the state

border effect almost vanishes as long as the MSA border is included. Also, if we estimate state bor-

der as the only subnational border using MSA level data as in specification (3) and (9) of Table 4,

the magnitude of both subnational and national border effects becomes much smaller. This further

suggests the existence of geographic aggregation bias for border effects in knowledge flows. Also, we

have shown that more than 90% of subnational border effects come from metropolitan level rather

than state. It implies that state border effect for knowledge flow is largely an artifact of geographic

aggregation. This is consistent with the findings of trade flow in Hillberry and Hummels (2005),

who argue that the state level home bias in trade flow is largely artifact of geographic aggregation.

Second, we find that decomposing data by different age group also reduces the size of border

effects (see Table 5). The estimate of aggregate national border effect is around 1.14 to 2.69 larger

than the estimates by age group, and the estimate of aggregate MSA border effect is around 1.22

to 2.27 larger than the disaggregated estimates. It is to some extent surprising since we have shown

that new knowledge faces the largest barriers (border and distance effects) in diffusion. Hence we

should expect that the magnitude of aggregate border effects is between the estimates from newest

and oldest age groups. However, the aggregate border effect is always larger than the estimates

in each age group, even the newest age group. It is hard to explain this phenomenon without age

aggregation bias.

Third, decomposing data by category also helps to reduce border effects (see Table 6). This

category aggregation bias might be related to some industrial "specialization" effect. Is that the

case that the specialization matters rather than the true border matters? If we decompose the

knowledge flows by category or by industry, can we eliminate the border effects? To answer this

question, we need to look at the knowledge flows at the industry level. At a first glance, the rough

category level result will give us some insights. In NBER Patent Citations Database, we have 6

rough categories: Chemical, Computers and Communications, Drugs and Medical, Electronics and

Electricity, Mechanical, and Others. If border effects mostly stem from the specialization effect,

then we should see a substantial decrease when we use decomposed data by category. We find

that border effects do decrease, but not too much. Border effects are still there and significant.

When we use the subsamples by category, the border effects are smaller. It means that some part

of border effects come from the "specialization" effects. Once we split the sample by category, we

alleviate some part of the border effects through ruling out the specialization effects. But the point
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is, specialization cannot explain all border effects. Also, specialization varies by industry. We prefer

to call this type of bias "category aggregation bias" and it captures all bias due to the category or

industry decomposition.

5 Robustness to Alternative Specifications

To see whether the time trend and the age profile of border and distance effects are robust, we

examine several different specifications.

First, we verify the time trend of these effects. It is reasonable to take into account that there

might be some interactions between time effect and age effect. For the whole sample, the time trend

of border and distance effects are increasing. But if we only look at one particular subsample with

similar age, does the time trend still hold? Figure 8, 9 and 10 illustrate the time trend of border and

distance effects for each age group without self-citations. We find that border and distance indeed

increase over time. Time trends are robust, even for different age group. However, the distance

effect is more volatile in the upgrading trend. For very old knowledge flows (age greater than 20

years), distance effect is not significant. We also draw the time trends for different category without

self-citations (see Figure 11, 12 and 13). The results show that for all 6 different categories, all

border and distance effects are increasing over time. This again confirms the robust time trends.

Second, we want to examine whether the age profiles hold within each category. The results

are noisy. Cat 6 (Others) still has decreasing border and distance effects with age. But other

categories do not show the continuous decreasing age profiles. Some of the border and distance

effects decrease with age first, but then start to increase in their very old life time periods. Also,

some estimates for border and distance effects are not statistically significant. This implies that

the category heterogeneity is huge in knowledge flows. Knowledge spillovers of different category

or technological class behave very differently. The classification by category might be too broad

to capture the industry level heterogeneity. Finer industry level data will be helpful to further the

study. Controlling for technological difference between regions might be also helpful to examine this

issue.

So far our results stem from the conventional estimation method in gravity literature without

considering the zero flows. In the above results, we only include the positive citation flow. Hence,

we only observe the knowledge flows with positive citation flow, i.e., cij is left censored at zero. But

if a region doesn’t make any, nor receive any citations, it also conveys an important information:

the barriers of knowledge flows between these two regions are too high such that the barriers
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completely impede the knowledge flows. Hence it is better to take into account all zero flows to our

basic framework. There are several ways to handle this problem. First, we can use a left-censored

Tobit model. We find that Tobit estimates for aggregate border and distance effects are significant

and they decrease with the age of knowledge. But Tobit estimates are biased due to a fundamental

problem: if we use Tobit model, we assume that there might be some negative zero flows, just we

cannot observe them and all observations are left-censored at zero. But in reality, we only have zero

flows and positive flows. The quantity of knowledge flows is never negative. Hence, only using left-

censored Tobit model is not the best choice to the question we study here. However, our aggregate

level results are robust using Tobit estimates. The second method is developed by Helpman, Melitz,

and Rubinstein (2007). They use two steps: first, estimate the probability of positive knowledge

flows between each region pair; then, use predicted value to estimate the new gravity equation. To

do this, we need to modify our simplest framework to include the zero citations between inventors

in different locations. This has not been done in the current paper and it is one of the objectives of

future work.

6 Conclusion

This paper employs a gravity framework to investigate the distance and border effects in knowledge

spillovers, using evidence from patent citations panel data at metropolitan level within the U.S.

and the 38 largest patent-cited countries outside the U.S. We present three key findings. First, we

find strong subnational localization effects at the Metropolitan Statistical Area and state levels:

more than 90% of intranational border effects stem from the metropolitan level rather than state.

This contributes to the literature on subnational knowledge localization. Second, we characterize

the age distribution of different types of knowledge spillovers and find that aggregate border and

distance effects decrease with the age of cited patent. It implies the largest barriers in diffusion

for new knowledge transmission, which is consistent with the intuition. However, over time, border

and distance effects are interestingly increasing. We think that the increasing proportion of self-

citations and new knowledge flows might explain this phenomenon. The age profiles and time trends

of border and distance effects in knowledge spillovers are novel findings in the literature. Finally,

we find that self-citations and aggregation bias are two sources of overestimated aggregate border

effects of knowledge spillovers. Of total citations, only 11% are self-citations, but excluding self-

citations approximately halves the MSA and national border effects. Decomposing data to finer

geographic levels, by different age group and by different category substantially reduces the size of

border effects. Among the three types of aggregation bias, geographic aggregation bias especially

exaggerates the state border effect.
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Appendix: Derivation of Gravity Equation of Knowledge Spillovers

We construct a simple gravity model of patent citations as exchange of ideas. We use patent

citations, rather than patents themselves, as a proxy for knowledge products because (i)the number

of citations constructs a flow variable we want while patent is usually treated as a stock variable

in the previous literature;21 (ii)citations carry information on the value of patents and concern

inventors more than patents.22

Following the convention of gravity literature, in the benchmark model, we assume that: (1)

Knowledge is differentiated by place of origin. Each region specializes in the production of a single

knowledge product.23 This assumption is widely used in the trade literature using gravity model,

due to some simple observations, for example, Japanese rice is different from Thailand rice. It might

be transplanted to knowledge flows, since it is not too hard to imagine that a citation to a German

auto patent is not as same as a citation to a French auto patent. (2) All regions have the same

tastes for the existing knowledge, i.e., identical, homothetic preferences, approximated by a CES

function. (3) There exist barriers/frictions in knowledge flows. We have in mind information costs,

design costs, and various legal and institutional costs, distance, organizational boundaries, language,

etc. When inventors of new knowledge (patents) use the previous knowledge embodied in existing

patents ("prior art"), they need to pay various forms of costs, for example, the translation of the

foreign prior art, the examine fee for the patent examiners, and so on. (4) Markets for all knowledge

products clear. (5) For each region, "inward" knowledge (citations made) from all source regions

(including itself) is equal to its "outward" knowledge (citations received from all regions including

itself). In other words, "exchange of knowledge" is balanced. This assumption is consistent with

some observations in knowledge flows. The region citing more existing knowledge is also the region

being cited more by others. For example, the U.S. is the largest knowledge both destination country

and source country. The balance assumption is conventionally used in the gravity literature for trade

flows, and the ratio of net outward knowledge to the sum of outward and inward of knowledge is

even smaller than the net export to the sum of export and import of trade.24 For example, the

ratio of knowledge for the U.S. is -0.5% between 1975 and 2000 while the ratio of goods trade for

the U.S. is -14.8% in 2000. Assumption (5) may be relaxed in future.

In the benchmark model, we only investigate one market: knowledge products market. In
21See Hall, Jaffe and Trajtenberg (2005), Bottazzi and Peri (2005). They consider the discount problem of the

patent stock in their papers.
22See Trajtenberg (1990), Lanjouw and Schankerman (2004), Harhoff et al. (1999), Hall, Jaffe and Trajtenberg

(2005).
23With this assumption we can suppress finer classifications of knowledge flows.
24I calculated the ratio of net outward knowledge to the sum of outward and inward of knowledge for main countries

and found that most of them belong to [-20%, 10%].
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this market, the individual inventor is both the consumer of existing knowledge products and the

producer of new knowledge products. To keep things simple, in the current paper, we abstract

from the heterogeneity of inventors and focus on the consumption behavior of knowledge products,

since introducing the production behavior of knowledge needs to take into account other inputs (for

example, the R&D expenditure and human capital) which we put into the future work.

When region i uses the previous knowledge, the citations occur, generating knowledge flows

from region j to i. Through this way, representative inventors in region i "consume" these inward

knowledge products from region j. Recall that we denote knowledge products by patent citations,

then the problem for region i is to choose how many knowledge products to consume from each

source region j, i.e., how many citations to make from each region j (citation cij) by maximizing its

consumption of existing knowledge products in the world wide base:

max
cij

(
∑

j c
σ−1

σ
ij )

σ
σ−1

subject to ∑
j

cij = yi.

were σ is the elasticity of substitution between all knowledge products (patent citations); cij is the

citation quantity from region j to region i ; yi is region i ’s total knowledge products which refer to

the received citations (i.e., the total citations received by region i ’s patents). By assumption (5), yi

is equal to i ’s total outward knowledge (total citations j makes from all sources).

In the current model, the quantity of patent citation flows differ between the citing region and

the cited region due to the existence of knowledge flow barriers that are not directly observable,

and the main objective of the empirical work in this paper is to illustrate various patterns of these

barriers and to identify them. If there are no barriers in knowledge flows, each region will get the

same opportunity, based on their knowledge production capacity, to use the existing knowledge

products in the world wide base. If the quantity of patent citations from region j (to an average

destination region) is cj , it will be cij = cjtij in region i when it arrives at region i. Here cj denotes

the cited region’s supply quantity, net of knowledge flow frictions, cij is the real quantity from j to

i and tij denotes the friction factor between j and i. Isoelastic demands imply that knowledge flows

from j to i are given by,

cij = yi(
tijcj

Qi
)1−σ

19



where Qi is the knowledge flow quantity index of i, given by

Qi = (
∑

j

(tijcj)1−σ)
1

1−σ

The general-equilibrium structure of the model imposes market clearance, which implies,

yj =
∑

i

cij =
∑

i

(
tijcj

Qi
)1−σyi = c1−σ

j

∑
i

(
tij
Qi

)1−σyi, (∀j).

Proposition 1: If we further assume that knowledge flow frictions are symmetric, so that

tij = tji, ∀(i, j), then the supply quantities cj ’s that are solution to previous equations are such

that,

sj ≡
yj

yw
= (cjQj)1−σ

where the total quantity of knowledge production in the world is given by yw =
∑

j yj and the

knowledge production shares of region j is given by sj .

Proof: If ∀j,c1−σ
j = sj/Q1−σ

j , then,

∑
i

(
tijcj

Qi
)1−σyi =

∑
i

yj

ywQ1−σ
j

(
tij
Qi

)1−σyi =
yj

Q1−σ
j

∑
i

si(
tij
Qi

)1−σ =
yj

Q1−σ
j

∑
i

(citij)1−σ

by symmetry, tij = tji, so that,

∑
i

(
tijcj

Qi
)1−σyi =

yj

Q1−σ
j

∑
i

(tjici)1−σ =
yj

Q1−σ
j

Q1−σ
j = yj .

Q.E.D.

With Proposition 1, we achieve a very useful simplification of gravity equation prediction for

bilateral knowledge flows:

cij =
yjyi

yw
(

tij
QjQi

)1−σ

with the quantity indices solution to,

20



Q1−σ
i =

∑
j

Qσ−1
j sjt

1−σ
ij ,∀i.

This provides an implicit solution to knowledge flow quantity indices as a function of all bilateral

knowledge flow barriers and knowledge production shares. The quantity indices Qj are referred

to measures of "multilateral knowledge flow resistance" variables as they depend on all bilateral

resistances tij .

This constructs our basic gravity model for knowledge flows. The gravity model tells us that

bilateral knowledge flows, after controlling for size, depend on the bilateral knowledge flow frictions

between i and j, relative to the product of their multilateral resistance indices.

The final step is to model the unobservable knowledge flow friction factor tij . We follow the

convention in trade literature in hypothesizing that tij is a loglinear function of observables, bilateral

distance dij , and whether there is a border bij :

lntij = τij + ρlndij + εij (3)

where τij is any other "border effect" associated with knowledge flows from region j to i. Generally

tij is meant to include all effects limiting knowledge flows between i and j. Then we decompose τij

to subnational and national border indicators. lntij = Bm
ij +Bs

ij +Bn
ij +ρlndij +εij . Then following

Anderson and Wincoop (2003) and Feenstra (2002), we get the theoretical gravity equation:

ln(
cij

yiyj
) = k+(1−σ)ρlndij +(1−σ)Bm

ij +(1−σ)Bs
ij +(1−σ)Bn

ij +ln(Qi)σ−1+ln(Qj)σ−1+(1−σ)εij

where k is a constant. Then we can rewrite the above equation as

ln(
cij

yiyj
) = k + αlndij + β1B

m
ij + β2B

s
ij + β3B

n
ij + ln(Qi)σ−1 + ln(Qj)σ−1 + (1 − σ)εij

This is our theoretical gravity equation of knowledge flows.
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Figure 1. The share of patents granted to foreigners and citations generated by foreigners.
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Figure 4. The age distribution of knowledge diffusion (with self-citation).
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Figure 5. The age distribution of knowledge diffusion (without self-citation).
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Figure 8. Time Trend of National Border Effects for Different Age Group.
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Figure 9. Time Trend of MSA Border Effects for Different Age Group.
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Figure 10. Time Trend of Distance Effects for Different Age Group.
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Figure 11. Time Trend of National Border Effects for Different Category.
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Figure 12. Time Trend of MSA Border Effects for Different Category.
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Table 1. Rank of Knowledge Production Capacity (1980-1997)

Rank Economy Yearly received citations Rank Economy Yearly received citations
(with self-citation) (without self-citation)

1 U.S. 218531 1 U.S. 194310
2 JAPAN 70553 2 JAPAN 59932
3 GERMANY 26024 3 GERMANY 23095
4 UNITED KINGDOM 11586 4 UNITED KINGDOM 10748
5 FRANCE 9782 5 FRANCE 9031
6 CANADA 6392 6 CANADA 6044
7 SWITZERLAND 4867 7 SWITZERLAND 4253
8 ITALY 3386 8 ITALY 3161
9 NETHERLANDS 3312 9 SWEDEN 3074
10 SWEDEN 3210 10 NETHERLANDS 2935
11 AUSTRALIA 1333 11 AUSTRALIA 1296
12 TAIWAN 1304 12 TAIWAN 1269
13 BELGIUM 1198 13 BELGIUM 1039
14 AUSTRIA 1053 14 AUSTRIA 937
15 ISRAEL 951 15 ISRAEL 898
16 FINLAND 703 16 FINLAND 648
17 DENMARK 664 17 DENMARK 622
18 RUSSIA 621 18 RUSSIA 618
19 SOUTH KOREA 596 19 SOUTH KOREA 534
20 SOUTH AFRICA 353 20 SOUTH AFRICA 342

Table 2. Representative Regions (1980-1997)

Panel A: Representative High-Cited Regions
Region Yearly received citations Yearly received citations

(with self-citation) (without self-citation)
Japan 70553 59932
Germany 26024 23095
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA (U.S.) 23630 21058
San Francisco-Oakland-San Jose, CA (U.S.) 16548 14838
Los Angeles-Riverside-Orange County, CA (U.S.) 13427 12619
Chicago-Gary-Kenosha, IL-IN-WI (U.S.) 12017 10705
United Kingdom 11586 10748
Boston-Worcester-Lawrence, MA-NH-ME-CT (U.S.) 9950 9193
France 9782 9031
Philadelphia-Wilmington-Atlantic City, PA-NJ-DE-MD (U.S.) 8675 7269

Panel B: Representative Low-Cited Regions
Region Yearly received citations Yearly received citations

(with self-citation) (without self-citation)
Eugene-Springfield, OR (U.S.) 8 7
Turkey 7 7
Laredo, TX (U.S.) 7 7
Grand Forks, ND-MN (U.S.) 6 6
Iceland 5 5
Anniston, AL (U.S.) 5 5
Jacksonville, NC (U.S.) 4 4
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Table 3. Basic Estimation Results for Aggregate Border and Distance Effects

Specification: (1) (2) (3) (4) (5) (6)
lndij -0.131** -0.154** -0.211** -0.167** -0.198** -0.259**

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003)
Bm

ij -2.134** -2.245** -2.431** -2.574**
(0.014) (0.013) (0.021) (0.020)

Bs
ij -0.224** -0.655** -0.289** -0.780**

(0.009) (0.009) (0.014) (0.013)
Bn

ij -2.589** -2.433** -0.858** -2.897** -2.697** -0.926**
(0.018) (0.017) (0.015) (0.027) (0.026) (0.022)

Bm
ij effect 8.449** 9.440** 11.375** 13.120**

(0.119) (0.126) (0.240) (0.263)
Bs

ij effect 1.252** 1.925** 1.335** 2.181**
(0.011) (0.017) (0.018) (0.028)

Bn
ij effect 13.316** 11.390** 2.360** 18.126** 14.829** 2.525**

(0.243) (0.196) (0.034) (0.498) (0.383) (0.055)
Citing-region fixed effects yes yes yes yes yes yes
Cited-region fixed effects yes yes yes yes yes yes
Year dummies yes yes yes
constant yes yes yes yes yes yes
No. of observations (ij,t) 473294 473294 473294 473294 473294 473294
F-statistics 1826 1825 1714 458 458 428
Adjusted R2 0.74 0.74 0.73 0.41 0.41 0.39

Notes: ** Significant at 1% level.

Table 4. Aggregate Border and Distance Effects (with and without self-citations)

Specification: (1) (2) (3) (7) (8) (9)
With self-citation Without self-citation

lndij -0.131** -0.154** -0.211** -0.116** -0.128** -0.167**
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Bm
ij -2.134** -2.245** -1.509** -1.573**

(0.014) (0.013) (0.015) (0.014)
Bs

ij -0.224** -0.655** -0.124** -0.433**
(0.009) (0.009) (0.009) (0.009)

Bn
ij -2.589** -2.433** -0.858** -1.903** -1.821** -0.695**

(0.018) (0.017) (0.015) (0.019) (0.018) (0.015)
Bm

ij effect 8.449** 9.440** 4.524** 4.823**
(0.119) (0.126) (0.067) (0.067)

Bs
ij effect 1.252** 1.925** 1.132** 1.542**

(0.011) (0.017) (0.011) (0.014)
Bn

ij effect 13.316** 11.390** 2.360** 6.707** 6.178** 2.003**
(0.243) (0.196) (0.034) (0.126) (0.109) (0.029)

Citing-region fixed effects yes yes yes yes yes yes
Cited-region fixed effects yes yes yes yes yes yes
Year dummies yes yes yes yes yes yes
constant yes yes yes yes yes yes
No. of observations (ij,t) 473294 473294 473294 467205 467205 467205
F-statistics 1826 1825 1714 1721 1723 1672
Adjusted R2 0.74 0.74 0.73 0.73 0.73 0.72

Notes: ** Significant at 1% level.

32



Table 5. Estimates by Age of Knowledge (without Self-citation)
Specification: whole age age age age age

sample [0,5) [5,10) [10,15) [15,20) [20,more)
lndij -0.116** -0.092** -0.091** -0.079** -0.065** -0.059*

(0.002) (0.003) (0.004) (0.005) (0.008) (0.028)
Bm

ij -1.509** -1.312** -1.167** -0.991** -0.866** -0.691**
(0.015) (0.020) (0.024) (0.034) (0.057) (0.192)

Bs
ij -0.124** -0.108** -0.095** -0.069** -0.071† 0.066

(0.009) (0.014) (0.016) (0.023) (0.039) (0.138)
Bn

ij -1.903** -1.769** -1.530** -1.315** -1.191** -0.913**
(0.019) (0.026) (0.030) (0.043) (0.070) (0.229)

MSA border effect 4.524** 3.713** 3.214** 2.694** 2.379** 1.996**
(0.067) (0.074) (0.077) (0.092) (0.136) (0.382)

state border effect 1.132** 1.114** 1.099** 1.071** 1.074† 1.068
(0.011) (0.016) (0.018) (0.025) (0.041) (0.148)

national border effect 6.707** 5.863** 4.618** 3.726** 3.289** 2.492**
(0.126) (0.151) (0.140) (0.159) (0.229) (0.570)

Citing-region effect yes yes yes yes yes yes
Cited-region effect yes yes yes yes yes yes
Year dummies yes yes yes yes yes yes
constant yes yes yes yes yes yes
No. of observations (ij,t) 467205 283980 285081 169010 83960 14258
F-statistics 1721 824 710 399 232 46
Adjusted R2 0.73 0.68 0.65 0.63 0.66 0.69

Notes: ** Significant at 1% level. * Significant at 5% level. † Significant at 10% level.

Table 6. Border and Distance Effects by Category (without Self-citation)

Whole Cat 1 Cat 2 Cat 3 Cat 4 Cat 5 Cat 6
sample Chemical C.&C. D.&M. E.&E. Mechanical Others

lndij -0.116** -0.055* -0.056** -0.020 -0.047** -0.057** -0.084**
(0.002) (0.009) (0.015) (0.014) (0.009) (0.006) (0.004)

Bm
ij -1.509** -0.843** -0.425** -0.527** -0.771** -0.903** -0.901**

(0.015) (0.057) (0.100) (0.088) (0.061) (0.035) (0.028)
Bs

ij -0.124** -0.143** -0.047 -0.096 -0.091* -0.094** -0.090**
(0.009) (0.044) (0.074) (0.070) (0.046) (0.026) (0.020)

Bn
ij -1.903** -1.323** -0.849** -0.876** -1.152** -1.421** -1.330**

(0.019) (0.070) (0.117) (0.103) (0.073) (0.044) (0.035)
Bm

ij Effect 4.524** 2.323** 1.530** 1.693** 2.162** 2.467** 2.461**
(0.067) (0.131) (0.153) (0.149) (0.132) (0.086) (0.068)

Bs
ij Effect 1.132** 1.154** 1.048 1.101 1.096* 1.098** 1.094**

(0.011) (0.050) (0.077) (0.077) (0.050) (0.028) (0.021)
Bn

ij Effect 6.707** 3.753** 2.338** 2.402** 3.164** 4.142** 3.781**
(0.126) (0.263) (0.273) (0.247) (0.231) (0.184) (0.132)

Citing effect yes yes yes yes yes yes yes
Cited effect yes yes yes yes yes yes yes
Year effect yes yes yes yes yes yes yes
constant yes yes yes yes yes yes yes
No. of observations (ij,t) 467205 128987 84978 94177 123681 169061 222546
F-statistics 1721 214 177 174 233 413 554
Adjusted R2 0.73 0.55 0.59 0.57 0.58 0.64 0.65

Notes: ** Significant at 1% level. * Significant at 5% level. † Significant at 10% level.
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