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Abstract: One might expect that houses closer to an airport and those in higher minority 
population neighborhoods experience more airport noise. We find evidence supporting these 
conjectures when estimating a standard ordered probit model for houses sold near the Atlanta 
airport.  However, because the various neighborhood demographics surrounding the airport can 
be heterogeneous, and the noise contours are not necessarily correlated with distance in certain 
neighborhoods, we hypothesize that the impacts of explanatory variables on the probability of 
greater noise vary across space. We explore spatial heterogeneity by estimating ordered probit 
locally weighted regressions (OPLWR). These results differ from those using a standard ordered 
probit model.  Moreover, we find notable differences in parameter estimates for different 
observations (i.e., houses).  Even in relatively small areas, our results imply that the standard 
ordered probit model can generate biased estimates. 
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Introduction 

 Airport noise is an undesirable consequence of arriving and departing flights.  Much 

research effort has focused on how such noise affects the prices of houses located nearby and 

consistently finds that more noise is associated with lower housing prices.1

Sobotta, Campbell, and Owens (2007) is a notable example of a study focused on the 

determinants of airport noise. They regress airport noise, expressed as a qualitative dependent 

variable, on various independent variables, including the percentage of the neighborhood 

population that is Hispanic.  They find that households in neighborhoods with greater Hispanic 

population were subjected to higher noise levels than households in other neighborhoods. 

  On the other hand, 

few studies have examined the determinants of airport noise. 

2

The importance of addressing spatial effects has become clear in recent studies of airport 

noise (Cohen and Coughlin, 2008). In the present study, we focus on spatial heterogeneity in the 

context of the determinants of the geographic distribution of airport noise.  We postulate that 

there is substantial geographical variation in the determinants of airport noise, and that ignoring 

 One 

might wonder, however, whether a closer look might reveal some substantial differences across 

geographic locations. Such spatial heterogeneity could occur in the impacts of demographic 

variables, as well as other spatial variables including distance from the airport, on the 

probability of greater noise exposure. 

                                                 
1 See Cohen and Coughlin (2008; 2009) for numerous references. 
2 This finding led them to conclude that those with Hispanic ethnicity incurred an environmental injustice. 
Environmental justice is not an issue that we can address effectively with our dataset.  We lack sufficient data to 
assess whether a particular racial or ethnic group moved to a noisy neighborhood or airport noise encroached on a 
group to a disproportionate degree.  Thus, we reach no conclusions as to whether some groups are affected  unfairly 
by the decisions of others concerning airport noise.   
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such heterogeneity can lead to a misstatement of the true effects of demographic and other 

variables on the probability of a given level of noise exposure.  

Beyond incorporating spatial heterogeneity, our contribution includes several 

innovations directly relevant to the analysis by Sobotta, Campbell, and Owen (2007). In our 

study, we also confront the possibility of simultaneity between housing prices and noise.  In 

addition to the standard relationship of noise affecting housing prices, it is possible that housing 

prices affect noise.  Airport authorities may choose to direct flights so as to distribute relatively 

more noise over relatively less expensive houses.  This may be done for economic reasons, one 

of which is that compensation for harm might be less for lower-valued houses.  Political reasons 

may also be operative as those living in less valuable houses may lack the political power to 

resist higher noise levels. 

To address the issue of simultaneity, we use instrumental variables techniques to 

generate fitted values for housing prices by estimating an equation with housing prices as a 

function of housing characteristics.  Next, we estimate an equation in which airport noise is a 

function of the instrumented housing prices, demographic variables, and other variables.  This 

second equation, which is of primary interest, is estimated by ordered probit because airport 

noise is a qualitative dependent variable.  The dependent variable is ordered with three 

categories ranging from the least noisy to the greatest noisy area.  The three categories, based on 

yearly day-night sound levels (DNL) are: 1) buffer zone – houses are located in a less the 65 

DNL zone (i.e., less than 65 dB); 2) 65 DNL zone (i.e., 65 up to 70 dB); and 3) 70 DNL zone 

(i.e., 70 up to 75 dB).3

                                                 
3 The measure of noise, the yearly day-night sound level (DNL), is a standard measure of noise used by the Federal 
Aviation Administration.  A DNL of 65 decibels is the Federal Aviation Administration’s lower limit for defining a 
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In addition to estimating a standard ordered probit model, following McMillen and 

McDonald (2004), we estimate ordered probit locally weighted regressions (OPLWR).  This 

estimation approach allows us to explore the issue of spatial heterogeneity in the context of the 

determinants of airport noise, which to our knowledge has not been examined previously.  

OPLWR is a more tractable approach than parametric estimation approaches such as a spatial 

ordered probit model.  It also allows for heterogeneity in each individual parameter estimate by 

obtaining a separate parameter estimate for each data point. One might argue that because our 

dataset is limited to those sales near the airport spatial heterogeneity is likely to be unimportant.  

Such an expectation is not supported by our results. 

 We find notable differences in parameter estimates for different houses in our sample 

with the OPLWR estimates. In particular, for the majority of the observations the sign on the 

coefficient for the Hispanic explanatory variable differs from the sign for the ordered probit 

model. Also, the mean of the magnitudes of the coefficients for some of the other explanatory 

variables are larger with the OPLWR model, while for other coefficients the mean is smaller. 

These differences between the OPLWR and the ordered probit results imply that focusing 

exclusively on an ordered probit model for the determinants of noise can lead to biased 

estimates in our context due to ignored heterogeneity among individual houses in our sample. 

 Prior to providing details on our equations and results, we provide an overview of our 

dataset.  Next, we focus on the standard ordered probit model and the results.  This is followed 

by details on the ordered probit locally weighted regressions.  A discussion of our key findings 

completes the paper. 

                                                                                                                                                            
significant noise impact on people.  At 65 decibels and above, individuals experience the disruption of normal 
activities, such as speaking, listening, learning, and sleeping.  As a result, such noise levels are viewed as 
incompatible with residential housing. 
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Data 

We use data on airport noise levels surrounding the Atlanta airport in 2003. The airport 

noise contours were obtained from the Atlanta Department of Aviation, and are the same noise 

contours used by Cohen and Coughlin (2008).  For 508 houses near the Atlanta airport that were 

sold in 2003, we purchased housing sales prices and characteristics data from First American 

Real Estate.  These data include house sale price as well as detailed housing characteristics such 

as the number of bedrooms, bathrooms, fireplaces, stories and the lot size. 

Table 1 contains definitions of the variables in our regressions and Table 2 presents the 

descriptive statistics for the sales prices and characteristics of the data from 2003.4

The houses are located in either Fulton County or Clayton County.  In terms of cities, the 

houses are located in Atlanta, College Park, Conley, East Point, Forest Park, and Hapeville.  The 

average house sold for roughly $128,400, contained about 3 bedrooms and 1.78 bathrooms, and 

was located on a lot of 0.37 acres. Block group data on demographics, including percent black, 

percent Hispanic, and median income, were obtained from the 2000 U.S. Decennial Census. 

Because the demographic information was from 2000 while the noise levels were based on 2003 

estimates, we postulate that previous demographics influenced 2003 noise levels. 

 

Approximately 29 percent of our observations fall in the 65 DNL zone, about 4 percent fall in 

the 70 DNL zone, and the remainder are in a “buffer zone” extending 0.5 miles outside of the 65 

DNL zone. See Figure 1 for the locations on the contour maps of the houses in our sample. 

Ordered Probit Model  

The first model we estimate, a standard ordered probit (OP) model, is as follows: 

                                                 
4 While Table 2 presents the descriptive statistics for the sale price in 2003 dollars, in our regressions we use the log 
of the adjusted sale price, which is adjusted for the increase in average housing prices in Atlanta (1995=100). 
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Noise = f(X, Z, u)    (1) 

where Noise is a categorical variable for a house sold in one of three noise level groupings 

ordered from least to most noisy; X represents a set of variables measuring: 1) the age of the 

house in logs – AgeLog, 2) the distance in logs from the house to the airport – DistanceLog, 3) 

the percentage of the houses in the neighborhood in which the house was sold with a black head 

of household – BlkHH00, 4) the percentage of houses in the neighborhood in which the house 

was sold with a Hispanic head of household – HispHH00, and 5) the median household income 

in the neighborhood in which the house was sold – MedHHInc00; Z is the log of the adjusted 

sales price of the house; and u is an error term with a normal distribution with zero mean and 

constant variance.  In studies focused on the determinants of housing prices, such as Cohen and 

Coughlin (2008), Z is the dependent variable.  In the current study, Z is an endogenous variable.  

Thus, we use an instrumental variables approach to obtain a fitted value for Z. 

In our quest for the appropriate instruments for Z, we started with a subset of the 

independent variables used in Cohen and Coughlin. Because we desire instruments that are 

correlated with the price but uncorrelated with the error term in equation (1), we chose as 

instruments the variables in the Cohen and Coughlin regression equation that were both 

significant and not included in equation (1) of the present study. After running some preliminary 

regressions of the log of price against characteristics that were not included as explanatory 

variables in the model of our equation (1), we eliminated those variables that were not 

statistically significant. Ultimately, the remaining instruments for log of price were dummies for 

2 baths (Baths2d) and 3 baths (Baths3d), 2 or more fireplaces (Fire2d), the log of acres of land 

(AcresLog), and a constant. We took the fitted value for the log of price based on these 
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regressors, Z*, and used this fitted value in place of Z in equation (1).5

Ordered Probit Results 

 We denote this estimated 

equation as (1’).  

The results produced by estimating equation (1’) by ordered probit are presented in 

Tables 3 and 4.  The results in Table 3 indicate that all the variables except the fitted price 

(PriceLog-fitted) are statistically significant. The lone exception may be attributable to 

multicollinearity: the correlation coefficient between log age and log of fitted price is -0.7.   

Another possible explanation for the insignificant fitted price parameter estimate is that there 

may be spatial autocorrelation unaccounted for in our model. Because ignoring significant 

spatial autocorrelation can lead to inefficient parameter estimates, this could be a source of the 

insignificant parameter estimates in our models.   

The results in Table 3 must be transformed before interpreting them as marginal effects.6

                                                 
5 The results of this estimation are not reported, but will be provided upon request. 

   

Because there are three categories for the dependent variable, each can be ordered on a line 

segment under the normal distribution curve, and the width of each sub-segment would depend 

on the frequency of the observations for each noise level. The probability of each value of the 

dependent variable is the area under the curve between the boundaries of each particular sub-

segment. The marginal effects of an increase in an exogenous variable on the predicted 

probabilities of each possible value of the dependent variable can be assessed in the context of a 

normal distribution that shifts in response to the change in the exogenous variable. This shift 

leads to a different area under the normal distribution for each of the three possible outcomes. 

6 See Greene (2003). 
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When there is a positive relationship between the dependent variable and the exogenous 

variable causing the shift, there will be less area under the normal curve for the lowest outcome 

(noise less than 65 dB), so this probability will decrease. For the largest outcome (noise greater 

than 70 dB), the area under the normal curve will increase, so the probability that a house is 

exposed to noise greater than 70 dB increases. The outcome of an increase in an exogenous 

variable on the area in the middle range (65 up to 70 dB) is ambiguous, as the probability of 

being in this noise range may either increase or decrease. 

After transforming the results in Table 3, an examination of Table 4 reveals that the 

marginal effects are negative and significant in the buffer zone (noise less than 65 dB) for the 

black (BlkHH00), Hispanic (HispHH00), and income (MedHHInc) variables. Because of their 

positive coefficients in Table 3, increases in any of these three exogenous variables will shift the 

entire probability distribution to the right, which decreases the probability of being in the buffer 

zone.7

                                                 
7 Using different estimation methods and a different model, Sobotta, Campbell, and Owens (2007) find, similar to 
our result, that increased Hispanic percentages are significantly associated with more noise.  While they find a 
positive association between higher “non-white” percentages in a neighborhood and more noise, the relationship is 
not statistically significant.  Finally, they find a positive, statistically significant association between the percentage 
of households at or below the poverty rate in a neighborhood and more noise.  Contrary to expectations, but 
somewhat similar to our results, they also found a positive association between the percentage of high-income 
households and more noise.  However, this association was not statistically significant. 

 The marginal effects for the exogenous variables of age of the house (AgeLog), distance 

from the airport (DistanceLog), and the fitted value for price (PriceLog-fitted) are all positive, 

but only the first two are statistically significant. Because of their negative coefficients in Table 

3, the positive sign for the buffer zone partial derivatives in Table 4 reflects the fact that 

increases in these explanatory variables shift the buffer zone probability distribution to the left.  

Thus, higher values of these variables increase the probability of being in the buffer zone. For 

all six of our explanatory variables, the signs of the marginal effects for the buffer zone and the 
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most noisy (noise greater than 70 dB) part of the probability distribution are opposite each other, 

and the interpretations for houses in the most noisy zone follow accordingly. 

We also examine the marginal effects for the 65 up to 70 dB noise contour. For percent 

black and Hispanic households, the signs of their marginal effects imply that for the average 

house in the 65 up to 70 dB zone, higher percentages of either of these populations in the 

neighborhood leads to a higher probability that houses in the neighborhood will be exposed to 

65 up to 70 dB of noise. A similar finding holds for median household income – for the average 

house in the 65 up to 70 dB zone, higher household income in the neighborhood leads to a 

higher probability of exposure to 65 up to 70 dB of noise. On the other hand, the age and 

distance marginal effects are negative and significant for the 65 up to 70 dB dependent variable. 

Larger values of either age of a house or distance from the airport lead to a lower probability 

that a house is exposed to 65 up to 70 dB of noise.  Finally, the fitted price marginal effect is 

negative; however, recall that this variable is not statistically significant. 

 

Ordered Probit Locally Weighted Regressions: Locally Weighted Maximum Likelihood 

It is possible that some of our variables affect the probability of a given level of airport 

noise nonlinearly. In other words, the neighborhood characteristics of different houses may have 

different impacts on the probability of a given level of noise exposure. A standard ordered 

probit model does not adequately account for such nonlinearities because the parameter 

estimates are constrained to be equal across all data observations. Thus, ignoring the spatial 

heterogeneity in the parameter estimates can lead to inaccuracies in interpretation of the 
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magnitude and direction of the distance and the demographic variables on the probability of 

greater noise. 

McMillen and McDonald (2004) propose an estimation approach that allows for 

heterogeneity, which we call ordered probit locally weighted regressions (OPLWR).8

Σj wij [ D0j log Φ (- βi’Xj) + D1j log Φ (yi - βi’Xj) + D2j log Φ (-yi + βi’Xj)] ,    (2) 

 They 

specify a “pseudo log-likelihood function” to estimate a separate set of parameters for each 

observation, and they call this a locally weighted ordinal probit pseudo log-likelihood function. 

For the case where there are 3 possible “regimes” in the ordered probit, the pseudo log-

likelihood function is: 

where Φ ( ) is the standard normal cumulative density function; βi is the parameter vector for 

observation i; D0j , D1j and D2j are dummy variables taking the value of 1 if observation j is 

either 0, 1, or 2, respectively, and 0 otherwise; yi is the value of the dependent variable for 

observation i; and wij is the weight that house j has on house i. 

The weight structure is somewhat different than for typical spatial econometric 

weighting matrices. One possibility, which we use in our analysis, relies on the “Gaussian 

function”, and is represented as: 

wij = φ (dij/(sib))                                                                                              (3) 

                                                 
8 See Fotheringham, Brunsdon, and Charlton  (1998; 2002) for general background on locally weighted regressions. 
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where φ is the standard normal (Gaussian) density function; dij is distance (as the crow flies) 

between house i and house j; si is the standard deviation of the distances between house i and all 

other houses j; and b represents the “bandwidth”.9

Many locally weighted regression applications have used the Gaussian function.  The 

determination of the bandwidth tends to be more important than the choice of the weighting 

function.  For example, the results in Thorsnes and McMillen (1998) are essentially invariant to 

choosing among several different weighting functions.  McMillen and McDonald (2004) 

suggest the “cross-validation” approach for selecting the appropriate bandwidth. This approach 

consists of estimating the OPLWR model for several different bandwidths (and setting wii = 0), 

and choosing the bandwidth for which the pseudo-likelihood function is maximized. In the 

present context, we estimated the pseudo-likelihood model for bandwidths of 0.4, 0.6, 0.8, and 

1.0. Cross-validation implied that b = 0.4 was the preferred bandwidth. 

  

Ordered Probit Locally Weighted Regressions: Results 

Table 5 contains results for the OPLWR estimations, based on the preferred bandwidth 

of b = 0.4. Prior to examining the results for specific variables, we summarize some of our 

findings.  Most noteworthy is that significant heterogeneity is found.  For some of our 

explanatory variables, the estimated coefficients differ substantially between the OP and 

OPLWR models.  Moreover, in some cases, the estimated coefficients for the OPLWR model 

exhibit both positive and negative values.  For some of our explanatory variables, the estimated 

coefficients are similar in sign and magnitude in the OP and OPLWR models.  Even with this 

similarity, the range of estimated coefficients for some variables exhibits much diversity. 

                                                 
9 See Thornes and McMillen (1998) and McMillen and McDonald (2004) for details on the Gaussian function. 
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Turning to the results for specific variables, the mean estimate from the OPLWR for the 

household income (MedHHInc00) is roughly the same as the coefficient estimate from the OP.  

The range seems reasonable and does not seem especially large.  Thus, the insights associated 

with this variable are similar across the two estimation procedures. 

The mean OPLWR estimate is virtually identical to that of the OP for the fitted price 

variable (PriceLog-fitted).  The range of the estimates for the OPLWR suggests a tight fit.  Once 

again, the insights associated with this variable are similar across the two estimation 

procedures.  

Results associated with the remaining explanatory variable suggest the additional 

insights and value provided by OPLWR.  The mean OPLWR estimate for the age variable 

(AgeLog) is nearly double the coefficient estimate of the OP.  The range of estimates, which 

contains only negative values, is much larger than the distribution suggested by the OP results. 

The results for the three remaining variables exhibit much heterogeneity.  For the 

variable measuring the percentage of houses in the neighborhood in which a house was sold 

with a black head of household (BlkHH00), the mean from the OPLWR is roughly the same as 

the coefficient estimate of the OP.  The range of the OPLWR results includes a value of -0.094, 

but this is clearly an outlier as it is the only negative value.  The next smallest value is 0.022.  A 

closer look at the results for this variable indicates the estimated coefficient tends to increase 

with the value of BlkHH00.  Using a ranking from lowest (1) to highest (508) of both the 

estimated coefficient and the level of BlkHH00, the rank correlation is 0.35, which is 
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statistically significant at the one percent level.10

  For the distance variable (DistanceLog), the mean OPLWR has a different sign and a 

different magnitude than the coefficient estimate of the OP.  Moreover, the range includes 

negative (207) and positive (301) values.  The shape of the noise contours, in conjunction with 

the location of the houses that were sold, provides some information for understanding these 

results.  Given the location of some of the houses in our sample and the weights function, 

distances closer to the airport can mean that houses are subjected to less rather than more noise. 

  Combining this positive correlation with the 

positive parameter estimates suggests that houses sold in neighborhoods with higher percentages 

of households headed by a black are less likely to be in the buffer zone and more likely to be 

subjected to the highest noise level. 

For the model with the b = 0.4 bandwidth, the houses with negative coefficients on the 

distance variable are plotted in black in the top panel of Figure 2, while the houses with positive 

coefficients for the distance variable are in red. For the red houses, moving closer to the airport 

(i.e., the value of the distance variable declines) increases the probability of those houses being 

in the buffer zone. For the black houses, moving closer to the airport lowers the probability of 

those houses being in the buffer zone. 

 In Figure 2, the red houses are almost exclusively on the east side of the airport, while 

the black houses are almost exclusively on the west side of the airport. This split, however, 

might not hold the key to understanding our results.  Comparing the houses in red with the 

houses in black, one observes relatively more red houses directly east of the airport than black 

                                                 
10 A rank correlation coefficient is a non-parametric measure of correlation indicating the strength between two 
variables of a monotonic function.  The Spearman rank correlation (ρ) is: 2

i

2 = 1 - (6 d  / (n(n - 1)))ρ Σ where di is 
the difference between the ranks of the two variables and n is the number of observations of each variable. 
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houses directly west of the airport. Moving directly toward the airport from these red houses and 

these black houses, noise tends to increase.  This effect is more pronounced for the red houses 

overall because of the relatively higher number of these red houses than the corresponding 

number of black houses.  For houses not located directly east or west of the airport, moving 

closer to the airport may or may not lead to higher noise levels.  For example, for houses located 

northwest of the airport in the 65 DNL, moving closer to the airport in the northeasterly 

direction puts one in the buffer zone and, thus, subjected to less noise. 

This observation is reinforced by the lower panel in Figure 2, which is calculated using a 

bandwidth of 0.8.  Recall that relative to the bandwidth of 0.4, a bandwidth of 0.8 causes the 

weights to decline more slowly as distance from a given house increases. In this panel, the 

houses with positive coefficients are primarily clustered in the southeast corner of the map, with 

a smaller number of houses scattered in the northeast part of the map. Note that the houses with 

negative coefficients are primarily clustered directly to the north of the airport, while there are a 

smaller number of houses scattered to the southwest of the airport. Comparing the two panels, 

the use of the b = 0.8 bandwidth causes the number of negative parameter estimates to increase, 

with the increase occurring for houses immediately northeast of the airport. 

In the lower panel, it appears as if many of the red houses in the southeast would 

actually be exposed to less noise if they were to move closer to the airport, given the shapes of 

the noise contours in that region. Also, for the black houses that are concentrated to the north of 

the airport, it appears as if these houses would be exposed to more noise if they were to move 

closer to the airport, given the shapes of the noise contours directly to the north of the airport. 

Thus, in this figure the shapes of the different parts of the noise contours, and the concentrations 
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of the majority of each type of house (those with positive and negative distance coefficients), 

are consistent with each other in terms of the likely potential noise outcome if houses were to 

move closer to the airport. Overall, the results for distance demonstrate the heterogeneity among 

the houses in different neighborhoods surrounding the airport. 

The results for the variable measuring the percentage of houses in the neighborhood in 

which a house was sold with a Hispanic head of household (HispHH00) also exhibit 

heterogeneity.  The mean from the OPLWR has a different sign and a far different magnitude 

than the positive estimate based on OP.  In fact, 439 of the coefficient estimates from the 

OPLWR are negative, while only 69 are positive.  The locations of these houses are shown in 

Figure 3.  Clearly this demonstrates spatial heterogeneity, even though this variable is 

statistically significant for the OP. 

For the houses with negative coefficients on the Hispanic variable, this negative sign 

implies that an increase in the Hispanic population leads to a higher probability of a house being 

in the buffer zone. In the lower panel of Figure 3, for the houses in relatively low Hispanic 

population neighborhoods, it appears that on average they would likely end up exposed to less 

than 65 dB of noise if they were to move closer to houses in higher Hispanic population 

neighborhoods. The higher Hispanic population neighborhoods are identified by the dots that 

have shaded colors. For those houses with positive coefficients on the Hispanic variable, greater 

Hispanic population in their neighborhood decreases the probability of a house being in the 

buffer zone. The data appear to confirm this empirical result, as the white dots in the upper 

panel of Figure 3 are nearly all in the buffer zone, but if they were to move to the locations of 



 16 

houses in higher Hispanic population neighborhoods those houses (on average) would be 

exposed to greater noise levels.  

Note also, as can be seen in Figure 3, that for neighborhoods with relatively low 

percentages of households headed by a Hispanic, positive as well as negative values are 

generated using OPLWR.  These findings contrast with those from the OP estimation, so it is 

clear that exploring heterogeneity in different neighborhoods generates additional insights that 

are masked in the OP model estimates.11

Conclusion 

 

 Using OPLWR, we find noteworthy spatial heterogeneity in the determinants of the 

geographic distribution of airport noise.  One implication is that standard ordered probit in the 

present case generates misleading and biased estimates due to the ignored heterogeneity among 

individual houses.  This implication arises despite the fact that our analysis is restricted to a 

relatively small geographic area near the Atlanta airport.  One might reasonably expect spatial 

heterogeneity to become even more pronounced for larger geographic areas. 

The impact of distance from the airport on airport noise varies in sign depending on 

geographic location. The use of OPLWR is especially well-suited to identify such heterogeneity.   

For the preferred bandwidth of 0.4, the estimated coefficient tends to be negative for houses 

located west of the airport and positive for houses east of the airport. 

                                                 
11 Due in part to this heterogeneity, we are unable to make any general statements about the presence of 
environmental justice (or injustice) with respect to airport noise in Atlanta. This is because the heterogeneity 
implies no clear pattern in the effects of demographics on noise levels. 
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We also find heterogeneity depending on the composition of neighborhoods.  

Specifically, we find, for a given neighborhood, that the higher the percentage of households 

headed by a black, the higher the estimated coefficient.  We also find, for a given neighborhood, 

that the percentage of households headed by a Hispanic appears to matter for the estimated 

coefficient to varying degrees.  The coefficient is more likely to be negative when the 

percentage of Hispanic heads of households in a neighborhood is relatively large, but appears to 

be of little importance for relatively low percentages. In contrast, it is not possible to generate 

such detailed insights in an ordered probit model, so the OPLWR model enhances the 

interpretative potential by generating different parameter estimates for each house in our 

sample. 
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Table 1 

Variables in Regressions 

Name Definition 

PriceLog Adjusted house sales price in dollars (in natural logs) – adjusted by average housing 
prices in Atlanta (1995=100). 

PriceLog-fitted Estimate of adjusted house sales price in dollars (in natural logs) 
Baths2d Dummy variable equal to one for houses with two bathrooms; zero otherwise. 
Baths3d Dummy variable equal to one for houses with three or more bathrooms; zero 

otherwise. 

Fire2d Dummy variable equal to one for house with two or more fireplaces; zero otherwise. 
AcresLog Lot size in acres (in natural logs). 

Noise Ordered categorical variable with three noise levels for houses in the buffer zone (least 
noise), 65 decibel day-night sound level noise contour, and 70 decibel day-night sound 
level noise contour. 

DistanceLog Distance in miles from house to airport (in natural logs). 
AgeLog Age of house (in natural logs). 

B1kHH00 Percentage of houses in the neighborhood in which a house was sold with a black head 
of household. 

HispHH00 Percentage of houses in the neighborhood in which a house was sold with a Hispanic 
head of household. 

MedHHInc00 Median household income in the neighborhood in which a house was sold. 
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Table 2: Summary Statistics -- 508 Observations 

  Count Percentage 

House Sales  in the buffer zone – 2003 contours 343 67.5 
House Sales  in 65 db zone -- 2003 contours 146 28.7 
House Sales  in 70 db zone -- 2003 contours 19 3.7 
   
House Sales in Atlanta 49 9.6 
House Sales in College Park 147 28.9 
House Sales in Conley 60 11.8 
House Sales in East Point 66 13.0 
House Sales in Forest Park 136 26.8 
House Sales in Hapeville 50 9.8 
   
1 story 425 83.7 
2 or more stories 83 16.3 
   
2 or less bedrooms 138 27.2 
3 bedrooms  258 50.8 
4 bedrooms  99 19.5 
5 or more bedrooms 13 2.6 
   
1 bathroom 246 48.4 
2 bathrooms  151 29.7 
3 or more bathrooms 111 21.9 
   
0 or 1 fireplace 494 97.2 
2 or more fireplaces 14 2.8 
   
  Mean Range 
Price (dollars)  128,442   32,378-460,500  
Distance (miles) 3.29 1.06-6.06 
Acres 0.37 0.03-3.88 
Age (years) 39.85 0-100 
B1kHH00 (percent) 56.96 0-97.5 
HispHH00 (percent) 8.64 0-30.1 
MedHHInc (hundreds of dollars) 319.4 116.7-606.3 
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TABLE 3:  Estimation Results (1’) 

 
Variable 

 
Ordered Probit 

 
AgeLog 

 
-0.236* 

(-4.15) 
DistanceLog -0.564* 

(-2.96) 
PriceLog-fitted -0.421 

(-1.44) 
B1kHH00 0.030* 

(8.14) 
HispHH00 0.034* 

(3.20) 
MedHHInc 0.003* 

(4.15) 
  
Log likelihood 
LR χ2 (6) 
Prob > χ2  
Pseudo R2 
Observations 

-311.40 
135.58 

0.00 
0.18 

508 

 

*Denotes significance at the 5 percent (two-tailed) level. 
        

Notes:  t-statistics are in parentheses.  Dependent variable is an ordered, categorical noise variable with 
three noise levels starting from least noise (lowest level). 
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TABLE 4:  Partial Derivatives (t-statistics) – Ordered Probit 

 
Variable 

 
Buffer Zone 

 
65DB 

 
70DB 

 
AgeLog 

 
0.081* 

(4.13) 

 
-0.074* 

(-4.01) 

 
-0.008* 

(-2.86) 
DistanceLog 0.195* 

(2.98) 
-0.177* 

(-2.94) 
-0.018* 

(-2.34) 
PriceLog-fitted 0.145 

(1.44) 
-0.132 

(-1.43) 
-0.014 

(-1.35) 
B1kHH00 -0.010* 

(-8.26) 
0.010* 

(7.58) 
0.001* 

(3.44) 
HispHH00 -0.012* 

(-3.22) 
0.011* 

(3.18) 
0.001* 

(2.44) 
MedHHInc -0.001* 

(-4.15) 
0.001* 

(4.05) 
0.00009* 

(2.81) 
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TABLE 5:  Ordered Probit Models for Noise 

 
Variable 

 
Standard Ordered Probit1 

 
Locally Weighted Ordered 

Probit2 

 
AgeLog 

 
-0.236 

(-4.15) 
 

 
-0.401 
(0.192) 

[-1.187, -0.179] 
 

DistanceLog -0.564 
(-2.96) 

 

0.291 
(0.665) 

[-0.873, 2.036] 
 

PriceLog-fitted -0.421 
(-1.44) 

 

-0.415 
(0.008) 

[-0.436, -0.386] 
 

B1kHH00 0.030 
(8.14) 

 

0.039 
(0.010) 

[-0.094, 0.058] 
 

HispHH00 0.034 
(3.20) 

 

-4.928 
(13.920) 

[-117.043,  0.112] 
 

MedHHInc 0.003 
(4.15) 

 

0.002 
(0.001) 
[0.000,  0.008] 

   
Log likelihood 
 
Observations 

-311.40 
 

508 

-1539.52 
 

508 

 

 1 Parameter estimates with t-statistics in parenthesis. 

2 The average of the 508 parameter estimates for the variable is listed on the first of the three lines, the 
standard deviation in parenthesis is on the middle line, and the range of parameter estimates in brackets is 
provided on the third line.  The log-likelihood value is the sum of the log likelihoods for the 508 
regressions.  Bandwidth = 0.4. 
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