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Abstract 

     We introduce a two-person “beauty contest” game played spatially on a two-

dimensional plane. Players choose locations and are rewarded by hitting "targets" 

dependent on opponents’ locations. By tracking subjects’ eye movements (termed the 

lookups), we infer their reasoning process. Analyzing both final choices and lookups, 

we classify subjects into various types based on a level-k model. More than a half of 

the subjects are classified into the same type for both final choices and lookups, 

supporting the level-k model as a complete model of choice and reasoning altogether. 

When classifications disagree, lookup data could provide additional separation of 

types. 
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A Window of Cognition: Eyetracking the Reasoning Process in 

Spatial Beauty Contest Games  

 

I. Introduction 

Most economic theories are tested by their predictions about people’s choices, 

since economists usually take the revealed preference approach when interpreting these 

choices. Moreover, empirical data on choices are relatively easier to obtain, either from 

the field or from laboratory experiments. Nonetheless, in many cases, the economic 

theory employed also predicts how people evaluate various situations to arrive at their 

final choices. For example, in extensive form games, subgame perfect equilibrium is 

typically solved by backward induction, a procedure that can be carried out step-by-step 

by players of the game. Since these theories provide clear predictions on people’s 

decision-making process, it is natural to ask whether one could test these predictions 

using some form of empirical data. 

One possible obstacle to this kind of test is the availability of data, since the 

decision-making process is usually unobservable. However, some experimental studies 

do attempt to investigate “information search” patterns in games, in order to capture part 

of the reasoning process. For example, Camerer, Johnson, Rymon, and Sen (1993) and 

Johnson, Camerer, Sen, and Rymon (2002) employ a mouse-tracking technology called 

“mouselab” (as a proxy of eyetracking) to study backward induction in three-stage 

bargaining games by requiring subjects to click on the box to see the pie size in different 

stages. Costa-Gomes, Crawford and Broseta (2001) and Costa-Gomes and Crawford 

(2006) employ a similar technology to study payoff lookups in normal form games and 

information search in two-person guessing (p-beauty contest) games. Gabaix, Laibson, 

Moloche and Weinberg (2006) also use mouselab to observe information acquisition and 

analyze aggregate information search patterns to test a heuristic “directed cognition” 

model. More recently, Wang, Spezio and Camerer (2009) employ advanced video-based 

eyetracking technology to observe the decision-making process of a deceptive sender in 

sender-receiver games. 
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All the studies mentioned above take advantage of the additional information 

acquisition data, gathered by some form of eyetracking technology, to test competing 

theories of behaviors. One crucial feature in these studies is that some information must 

be withheld, and “looked-up” by subjects during the experiment. Hence, these studies 

rely on information search to infer certain stages of the reasoning process, instead of 

directly observing the entire process itself. This begs the question whether decision-

making processes can be observed when there is no hidden information and if such 

observation is possible, whether economic theory can predict them. 

This paper is the first attempt, to our knowledge, that analyzes the reasoning 

process when there is no explicit hidden information. We design a new set of games, 

called (two-person) spatial beauty contest games, similar to the p-beauty contests (aka 

“guessing games”) studied by Nagel (1995), Ho, Camerer and Weigelt (1998), and Costa-

Gomes and Crawford (2006).  This new set of games, as its name suggests, is essentially 

a graphical simplification of the p-beauty contest games for two players.1 It is well 

known that initial responses in the standard p-beauty contest games can be explained by 

models of heterogeneous levels of rationality such as the level-k model (Stahl and Wilson 

(1995), Nagel (1995), and Costa-Gomes and Crawford (2006)) and the cognitive 

hierarchy model (Camerer, Ho and Chong (2004)). A key in these models of 

heterogeneous levels of rationality is that players of higher levels of rationality best 

respond to players of lower levels, who in turn best respond to players of even lower 

levels and so on. This best response hierarchy is the perfect candidate for modeling the 

reasoning process of a subject prior to making the final choice, since in a two-person 

game, the final choice should be a best response to the subject’s belief regarding the other 

player’s choice, which in turn is a best response to the subject’s belief about the other 

player’s belief about her choice, and so on.2  In other words, to figure out which choice to 

make, a subject has to go through an entire best response hierarchy. The graphical 

representation of the spatial beauty contest games induces subjects to go through this 

hierarchy of best responses by counting on the computer screen (instead of reasoning in 

their minds), leaving footprints that the experimenter can trace. 

                                                 
1 Two-person guessing games in which players are asymmetric are first proposed by Costa-Gomes and 
Crawford (2006). Grosskoph and Nagel (2008) also study two-person beauty contest games. 
2 To avoid confusion, the subject is denoted by her while her opponent is denoted by him. 
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We eyetrack each subject’s reasoning process by recording the entire sequence of 

locations she looks at or fixates at. In other words, we record not only her final choice, 

but also every location the subject has ever fixated at in an experimental trial real-time. 

Following the convention, we call this real-time fixation data the “lookups” even though 

there is really nothing to be looked up in our experiment. By wedding a level-k (Lk) 

constrained Markov-switching model (to describe changes between a subject’s thinking 

states of the best response hierarchy) and a logit error model (to describe eye fixations 

conditional on each thinking state), we construct a model for the lookup data to 

characterize how subjects think through various best response hierarchies as predicted by 

the level-k model, and classify them into various level-k types based on maximum 

likelihood estimation using individual lookup data. Moreover, we adopt an empirical 

likelihood ratio test proposed by Vuong (1989) to ensure the estimated type with the 

largest likelihood is distinctively separated from other competing types. Results show that 

among the seventeen subjects we tracked, one is level-0 (L0), six are level-1 (L1), four 

are level-2 (L2), four are level-3 (L3), and the remaining two are the equilibrium type 

(EQ) which coincides with level-4 (L4) or above in most games of our experiment. 

To check whether the estimation on the lookup data is robust, we further classify 

subjects by using their final choice data only. Following the literature, we adopt a 

procedure similar to Costa-Gomes and Crawford (2006) to classify subjects using the 

choice data, and compare the results with our lookup-based classification results. We find 

that choice-based and lookup-based estimations are pretty consistent, classifying ten of 

the seventeen subjects as the same type. Furthermore, among the seven subjects where 

the two classifications differ, for four subjects, results from applying Vuong’s test to 

lookup data indicate that the lookup-based classification types are better than the choice-

based ones, while the remaining three subjects have indistinguishable likelihoods (but the 

lookup-based types all have fewer parameters and may thus be argued to be better 

classifications should we wish to act conservatively to avoid overfitting). To the contrary, 

using choice data, for all but one subject, the choice-based classification types are not 

robust according to a resampling test, having a misclassification rate of at least 18% if 

one re-samples the choice data and performs the same estimation. 
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Consistency between choice-based and lookup-based estimations suggests that for 

a high percentage of subjects, if their final choices are classified as a particular level-k 

type, their lookups follow the best response hierarchy of that level-k type as well. This is 

a strong support to the level-k model. It means that the level-k model is not just a model 

on final choices. The best response hierarchy implied by the level-k model can also 

predict the reasoning process of subjects very well. In other words, the level-k model is 

quite complete in that it is a model of choice and reasoning process altogether. On the 

other hand, when estimation of types based on lookup data differs from that based on 

choice data, results suggest that lookup data may provide additional separation between 

competing level-k types even when choice data is not enough to distinguish between 

types. In other words, looking into players’ reasoning process gives us valuable 

information if we are to classify them properly. 

The remaining of the paper is structured as follows: Section II.A describes the 

spatial beauty contest game and its theoretical predictions; Section II.B describes details 

of the experiment; Section III.A reports level-k classification results based on final 

choices; Section III.B reports aggregate statistics on lookups; Section III.C reports 

classification results from the Markov-switching model based on lookups; Section III.D 

compares classification results based on choices with those based on lookups. Finally, 

Section IV concludes. 

 

II. The Experiment 

II.A The Spatial Beauty Contest Game 

We introduce a two-person guessing game similar to the “p-beauty contest,” in 

which players choose locations (instead of numbers) simultaneously on a 2-dimensional 

plane. Each player has a target location. The target location is defined as a relative 

location to the other player’s choice of location (just like p in p-beauty contest games) by 

a pair of coordinates (x, y). We use the standard Euclidean coordinate system. For 

instance, (0, -2), means the target location of a player is “two steps below the opponent,” 

and (-4, 0) means the target location of a player is “four steps to the left of the opponent.” 

Payoffs are determined by how many steps (the sum of horizontal distance and vertical 
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distance) a player is away from the target. The larger this number is, the lower her payoff 

is. Players can only choose locations on a given grid map, though one’s target may fall 

outside. For example, consider the 7x7 grid map in Figure 1. For the purpose of 

illustration, suppose a player’s opponent has chosen the center location labeled O ((0, 0)) 

and the player’s target is (-4, 0). Then to hit her target, she has to choose location (-4, 0). 

But since location (-4, 0) is not on the map, choosing location (-3, 0) is optimal among all 

49 feasible choices because location (-3, 0) is only one step from location (-4, 0). To go 

from any of all other possible 48 locations on the map to location (-4, 0) takes at least two 

steps. For instance, to go from location (-3,1) to (-4,0), one has to travel one step left and 

one step down and hence the sum of the number of steps is 2. 

The equilibrium prediction of this spatial beauty contest game is determined by the 

targets of both players (as is the case of the p-beauty contest games). For example, if the 

targets of the two players are (0, 2) and (4, 0) respectively, the equilibrium consists of 

both players choosing the Top-Right corner of the map. This conceptually coincides with 

both choosing zero (hitting the lower bound) in the p-beauty contest game where p is less 

than 1. Note that in general the equilibrium needs not be at the corner since targets 

themselves could be 2-dimensional. For example, when the targets are (4, -2) and (-2, 4) 

played on a 7x7 grid map, the equilibrium locations for the two players are both two steps 

away from the corner (labeled as EEEE in bold and E in italic and underlined for the two 

players respectively in Figure 1). 

We derive the equilibrium predictions for the general case as follows. Formally, 

consider a spatial beauty contest game with targets ( , )i ia b  and ( , )j ja b . With some abuse 

of notation, suppose player i chooses location ),( ii yx  on a map satisfying { ,..., }ix m m∈ − , 

{ ,..., }iy n n∈ −  where (0, 0) is the center of the map. For instance, ),(),( nmyx ii =  means 

player i chooses the Top-Right corner of the map. The other player j also chooses a 

location ( , )j jx y  on the same map: { ,..., }jx m m∈ − , { ,..., }jy n n∈ − . The payoff to player 

i in this game is (the payoff to player j is defined similarly) 

( )( , ; , ; , ) ( ) ( )  where  is a constant.i i i j j i i i j i i j ip x y x y a b s x x a y y b s= − − + + − +  
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Notice that payoffs are decreasing in the number of steps a player is away from the 

target, which in turn depends on the choice of the other player. There is no interaction 

between the choices of ix  and iy . Hence the maximization can be obtained by choosing 

ix  and iy  separately to minimize the two absolute value terms. We thus consider the case 

for ix  only. The case for iy  is analogous. 

To ensure uniqueness, in all our experimental trials,  0i ja a+ ≠ . (Otherwise, if 

0 >=−= aaa ji , any feasible ji xx ,  satisfying axx ji  =−  constitutes an equilibrium.3)   

Without loss of generality, we assume that  0i ja a+ <  so that the overall trend is to move 

leftward.4  Suppose 0ia < . If  0i ja a ≤ , implying player i would like to move leftward 

but player j would like to move rightward, since the overall trend is to move leftward, it 

is straightforward to see that the force of equilibrium would make player i hit the lower 

bound while player j will best respond to that. The equilibrium choices of both, denoted 

by ( , ), e e
i jx x  is characterized by  mxe

i −=  and e
j jx m a= − + ;5 if 0 >ji aa , since both 

players would like to move leftward, they will both hit the lower bound. The equilibrium 

is characterized by  mxx e
j

e
i −== . To summarize, when  0i ja a+ < , only the player 

whose target is greater than zero will not hit the lower bound. Therefore, 

 

Proposition 1. In a spatial beauty contest game with targets ( , )i ia b and ( , )j ja b  where 

both players choose a location( , )x y  satisfying { ,..., }, { ,..., },x m m y n n∈ − ∈ −  , 2i ja a m≤  

and , 2i jb b n≤ , the equilibrium choices ( , )e e
i ix y  are  characterized by: 

                                                 
3 Note that this corresponds to the case where 1=αβ  in the two-person guessing (p-beauty contest) game 

in which one subject would like to choose α  of her opponent’s choice and the opponent would like to 

choose β  of her choice. 
4 Due to symmetry, all other cases are isomorphic to this case. 
5 In all our games, since 2ja m≤ , we do not need to worry about the possibility that e

jx  lies outside the 

upper bound m  (i.e., e
j jx m a m= − + > ).  In general, if 2ja m> , we have instead ejx m= . 
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{ 0}  0

{ 0}  0

e
i i i i j

e
i i i i j

x m a I a if a a

x m a I a if a a

 = − + ⋅ > + <
 = − ⋅ < + >

 and 
{ 0}  0

{ 0}  0

e
i i i i j

e
i i i i j

y n b I b if b b

y n b I b if b b

 = − + ⋅ > + <
 = − ⋅ < + >

 where 

{}I ⋅  is the indicator function. 

In addition to the equilibrium prediction, one may also specify various level-k 

predictions. A natural assumption is that an L0 player will either choose the center (0,0) 

or choose any location on the map according to the uniform distribution. An L1 player i 

with the target ),( ii ba  would best respond to an L0 opponent who either exactly chooses 

the center or chooses the center on average. If an L0 player chooses the center, to best 

respond, an L1 player would choose the location ),( ii ba  when m, n is big enough so that 

we do not need to worry about falling outside the map.6 Similarly, for an L2 opponent j 

with the target ( , )j ja b  to best respond to an L1 player i who chooses ),( ii ba , he would 

choose ),( jiji bbaa ++  (when m, n is big enough). Repeating this procedure, one can 

determine the best responses of all higher level-k (Lk) types. Figure 1 shows the various 

level-k predictions of a 7x7 spatial beauty contest game for two players with targets (4, -2) 

and (-2, 4) labeled in bold and italic and underlined respectively. 

To account for the possibility that choices may fall outside the map, we define the 

adjusted choice ( , ; ( , )).R m n a b  Formally, the adjusted choice is given by 

( , ; ( , )) (min( ,max( , )),min( ,max( , ))).R m n a b m m a n n b≡ − − In words, if the ideal best 

response (which hits the target) is location ),( ba , the adjusted choice ( , ; ( , ))R m n a b  gives 

us the closest feasible location on the map so the choice ( , ) x y  is constrained to lie 

within the range { ,..., }, { ,..., }x m m y n n∈ − ∈ − . This adjusted choice is the best feasible 

choice on the map since payoffs are decreasing in the distance between the ideal best 

response (target) and the final choice. Moreover, as shown in Appendix A2, since the 

grid map is of a finite size, eventually when the level of reasoning for a level-k type is 

large enough, the Lk prediction will coincide with the equilibrium. This is similar to the 

convergence to zero in the p-beauty contest. To summarize, we have 

 

                                                 
6 Appendix A1 proves that if an L0 player chooses any location on the grid map according to the uniform 

distribution, to best respond to such L0, an L1 player would still choose the same location ),( ii ba . This is 

true because our payoff structure is point symmetric by (0,0) over the grid map. 
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Proposition 2. Consider a spatial beauty contest game with targets ( , )i ia b and ( , )j ja b  

where both players choose a location( , )x y  satisfying { ,..., }, { ,..., },x m m y n n∈ − ∈ −  

, 2i ja a m≤  and , 2i jb b n≤ . Denote the choice of a level-k player i by ( , )k k
i ix y , then  

(1) 1 1( , ) ( , ;( + , + ))k k k k
i i i j i jx y R m n a x b y− −=  for 1,2,...,k = and 0 0 0 0( , ) ( , ) (0,0)i i j jx y x y= ≡ ; 

(2) there exists a smallest positive integer k  such that for all k k≥ , ( , ) ( , ) k k e e
i i i ix y x y= . 

PROOF: See Appendix A2. 

 

In Table 1 we list all the 24 spatial beauty contest games used in the experiment, 

their various level-k predictions, equilibrium predictions and the minimum k ’s. Notice 

that in the first 12 games, targets of each player are 1 dimensional while in the last 12 

games, targets are 2 dimensional. Also, Games (2n-1) and (2n) (where n=1, 2, …, 12) are 

the same but with reversed roles of the two players, so for instance, Games 1 and 2 are 

the same, Games 3 and 4 are the same, etc. 

The k ’s for our 24 games are almost always 4, but some are 3 (Games 1, 10, 17) or  

5 (Games 5, 6, 11, 12). This indicates that as long as we include level-k types with k up to 

3 and the equilibrium type, we will not miss the higher level-k types much since higher 

types coincide with the equilibrium most of the time. Moreover, as evident in Table 1, 

different levels make different predictions. In other words, various levels are strongly 

separated on the map.7 

Since our games are spatial, players can literally count (using their eyes) how many 

steps on the map they have to move to hit their targets. This indicates that a natural way 

to use lookups is to take the level-k reasoning processes literally in the following sense: 

For instance, for an L2 player, the level-k model implies that she best responds to an L1 

opponent, who in turn best responds to an L0. Therefore, for the L2 player to make a final 

choice, she has to figure out what an L0 would choose since her opponent thinks of her as 

an L0. She then needs to figure out what her opponent, an L1, would choose. Finally, she 

has to make a choice as an L2. It is possible that this process is carried out solely in the 

mind of a player. Yet since the games are spatial, one can simply figure all these out by 

                                                 
7 The only exceptions are L3 and EQ in Games 1, 10, 17, L2 and L3 in Games 2, 6, 9, and L2 and EQ in 
Game 18. See the underlined in Table 1. 
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looking at and counting on the map. This has the advantage of reducing much memory 

load and being much more straightforward. If this hypothesis is true, an L2 player would 

look at the center (where an L0 player would choose), her opponent’s L1 choice and her 

own final choice as an L2.  In other words, the hotspots of an L2 player in her lookups 

would consist of these three locations on the map. This is probably the most natural 

prediction on the lookup data one can make when the underlying model is the level-k 

model. Hence we formulate Proposition 3 and base our econometric analysis on this.8 

 

Proposition 3. For a spatial beauty contest game with targets ( , )i ia b and ( , )j ja b  where 

both players choose a location( , )x y  satisfying { ,..., }, { ,..., }x m m y n n∈ − ∈ − , , 2i ja a m≤  

and , 2i jb b n≤ .  Denote the choice of a level-k player i by ( , )k k
i ix y . Assuming one carries 

out the reasoning process on the map, a level-k player i will look at the following 

locations in the level-k best response hierarchy 0 0( , )x y , …, 2 2( , )k k
i ix y− − , 1 1( , )k k

j jx y− − , 

( , )k k
i ix y .9 

 

II.B Experimental Procedure 

We conduct 24 spatial beauty contest games (with various targets and map sizes) 

without feedback at the Social Science Experimental Laboratory (SSEL), California 

Institute of Technology. Each game is played twice, once on the two-dimensional grid 

map as shown in Figure 2A (which we denote as the GRAPH presentation), the other 

time as two one-dimensional choices chosen separately (See Figure 2B, denoted as the 

SEPARATE presentation).10 Half of the subjects are shown the two-dimensional grid 

maps first, while the rest are shown the maps later. The results of the two presentations 

are quite similar, so we focus on the results of the two-dimensional presentation.11 

                                                 
8 Note that this prediction is a bold one, and requires many assumptions.  One should be surprised if it turns 
out to be a valid prediction. 
9 The player subscript of 0 0( , )x y  is dropped since both L0 players would choose the center. 
10 Note that these two presentations are mathematically identical. However, the GRAPH presentation 
allows us to trace the decision-making process through observing the lookups. 
11 A comparison between final choices under these two representations is shown in the Appendix (Table 
S2). 
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In addition to recording subjects’ final choices, we also employ Eyelink II 

eyetrackers (SR-research Inc.) to track the entire decision process before the final choice 

is made. The experiment is programmed using the Psychophysics Toolbox of Matlab 

(Brainard, 1997), which includes the Video Toolbox (Pelli, 1997) and the Eyelink 

Toolbox (Cornelissen, Peters and Palmer, 2002). Since there is no hidden information in 

this game, the main goal of eyetracking is not to record information search. Instead, the 

goal is to record how subjects think before making their decision (and in fact test whether 

they think through the best response hierarchy implied by the level-k model). 

In each round, when subjects use their eyes to fixate at a location, it will light up as 

red (as Figures 2A and 2B show). If they decide to choose that location, they could hit the 

space bar. Subjects are then asked to confirm their choices (“Do you confirm?”). They 

then have a chance to confirm their choice (“YES”) or restart the process (“NO”). 

 

III. Results 

This section analyzes subjects’ lookups and final choices. We first report level-k 

classification using final choices. This gives us, for each subject, her choice-based type. 

Then, we summarize subjects’ lookups and demonstrate the plausibility of Proposition 3, 

namely, subjects do look at and count on the map during their reasoning process. Thirdly, 

we analyze subjects’ lookups with a Markov-switching model to classify them into 

various level-k types. As a part of the estimation, we employ Vuong’s test to ensure 

separation between competing types. This gives us, for each subject, her lookup-based 

type. Finally, we compare choice-based types with lookup-based ones. We show that for 

more than a half of the subjects these two classifications coincide. When they differ, 

Vuong’s test largely favors the lookup-based types if we look at the lookup data, while a 

resampling test casts doubts on the robustness of choice-based types if we look at the 

choice data. This demonstrates how lookup data can help us perform a sharper empirical 

classification of level-k types. 
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III.A Level- k Classification Based on Final Choices 

We classify subjects into various (level-k) behavioral types based on their final 

choices, using the econometric analysis developed by Costa-Gomes and Crawford (2006). 

To evaluate the robustness of the classification, a resampling procedure is employed. 

 

1. Econometric Analysis  

We follow a procedure similar to Costa-Gomes and Crawford (2006) and perform a 

maximum likelihood estimation to classify each individual subject into a particular 

behavioral level-k type using the following logit error structure.12 Let all possible level-k 

types be 1,...,k K= and each subject goes through round 1,..., .n N=  For a given round n ,  

according to Proposition 2, a level-k subject’s theoretic final choice is denoted as k
n nc G∈ , 

where nG  is a finite countable choice set specified for round n . The choice set nG  

depends on the map size of the game in that particular round, and n nG M=  is the 

number of elements in nG .13 Because of the logit error, a level-k subject may not choose 

k
nc  in round n  with certainty. Instead, the logit error predicts a probabilistic choice 

( )k
n n nr c G∈  which we will describe soon. Let

1 2
, ,...,

Mn
n n ng g g  be typical elements of nG . 

Define the distance 
m mn ng g

′
−  as the “steps” on the map (the sum of vertical and 

horizontal distance) between 
mng  and 

mng
′
. Then, if a subject chooses a location ,g  her 

payoff (had k
nc  been her target) in this round is ( )k k

n nS g c s g c− = − −  where s  is a 

fixed initial payoff (endowment). We consider a logit error model and construct the 

choice density function d  with precision kλ  as 

( )
( )

( )
( )

exp (|| ( ) ||) exp || ( ) ||
( ( ))

exp (|| ||) exp || ||
n n

k k k k
k n n n k n n nk k

n n k k
k n k n

g G g G

S r c c r c c
d r c

S g c g c

λ λ
λ λ

∈ ∈

× − − × −
= =

× − − × −∑ ∑
 

                                                 
12 Since we do not have a large choice set as in Costa-Gomes and Crawford (2006), we employ a “logit” 
specification instead of a “spike-logit” specification to describe the error structure of subjects’ choices. 
13 For instance, suppose in round n, the grid map is as shown in Figure 1, then the choice set nG  consists 

of all 49 locations on the map. 
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In words, this means that the probability a level-k subject chooses a particular location 

( )k
n nr c  depends on how far this location is away from ,k

nc  which is what a level-k player 

would choose according to the level-k model. Locations farther away from k
nc  are less 

likely. When 0kλ → , the subject  randomly chooses from the choice set nG . As kλ → ∞ , 

the choice of the subject approaches to the level-k choice k
nc . The log likelihood over all 

rounds can then be expressed as 

                                                            ( )
1

ln ( ) .
N

k k
n n

n
d r c

=
∏                                                      (1) 

For each k, we estimate the precision parameterkλ   by fitting the data with the logit error 

model to maximize empirical likelihood. Then we choose the k which maximizes 

empirical likelihood and classify the subject into this type. 

We consider all the level-k types separable in our games: L0, L1, L2, L3, and EQ.  

Results shown in column (A) of Table 2 indicate, among the 17 subjects, there are two L0, 

four L1, four L2, four L3, and three EQ. The average number of thinking steps is 2.12, 

similar to results of the standard p-beauty contest games using Caltech subjects (but 

higher than normal subjects).14  Moreover, to incorporate all empirically possible 

behavioral types, we follow Costa-Gomes and Crawford (2006) and include 17 

pseudotypes, each constructed from one of our subject’s choices in 24 trials. This is to 

see whether there are clusters of subjects whose choices resemble each other’s and thus 

their choices are better explained by each other’s than by the pre-specified level-k types. 

Denoting pseudo-i the pseudotype constructed form subject-i, the results are reported in 

Appendix (Table S1). We find that two subjects (subject 3 and subject 17) have 

likelihoods for each other’s pseudotype higher than all other types. So, based on the same 

criteria of Costa-Gomes and Crawford (2006), they could be classified as a cluster 

(pseudo-17).  In other words, there may be a cluster of pseudo-17 type subjects (subjects 

3 and 17) whose behaviors are not explained well by the predefined level-k types. Despite 

of this, there are still 15 subjects out of 17 who can be classified into level-k types. Table 

2 lists the classification with and without pseudotypes in columns (B) and (A) 

                                                 
14 We treat the EQ type as having a thinking step of 4  in calculating the average number of thinking steps. 
As a comparison, Camerer (1997) reports that Caltech students play an average of 21.88 in a p-beauty 
contest game with p=0.7. This is between L2’s choice of 24.5 and L3’s choice of 17.15.   
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respectively.  The distribution of level-k types does not change much even if we include 

pseudotypes, having two L0, three L1, four L2, three L3, and three EQ (see column (B) of 

Table 2). The average of thinking steps is 2.13, nearly identical to that without 

pseudotypes.15 This suggests that in our games, the level-k classification is quite robust to 

empirically omitted types. 

 

2. Resampling Test for Robustness of Types 

The above econometric model based on maximum likelihood estimation may not 

have enough power to distinguish between various types. For example, reading from 

Table S1, subject 14’s log likelihood is -98.89 for L0, -84.17 for L1, -96.99 for L2, -76.67 

for L3, and -74.45 for EQ. Maximum likelihood estimation classifies her as EQ, although 

the likelihood of L3 is also close. In this case, classifying this subject as EQ based on 

maximum likelihood alone may be questionable. To the best of our knowledge, there has 

not been any proposed test in experimental economics for evaluating the robustness of 

maximum likelihood-based type classifications. Hence we propose a resampling 

procedure to attempt to deal with the issue of robustness. 

Imagine that from the maximum likelihood estimation, a subject is classified as a 

particular level-k type. We evaluate the robustness of this classification with the 

following resampling test. Since our econometric estimation assumes each subject’s 24 

rounds of observations are independent, it is natural to maintain this assumption when 

resampling. Hence, we resample the data by randomly drawing one round out of the 24 

rounds observed for each subject. By drawing (with replacement) 24 times, we obtain a 

new (resampled) dataset for this particular subject. Then, we estimate the subject’s type 

with this resampled data. Since the resampled data is expected to resemble the empirical 

distribution, we should expect the maximum likelihood procedure gives us the same 

level-k type for sufficiently many resampled datasets. If the type estimated from a 

resampled dataset is not the same level-k type, we view this as a “misclassification,” and 

count it against this particular classification k. By resampling 1000 times and calculating 

the total misclassification rate, we can measure the robustness of the original 

                                                 
15 In calculating the average number of thinking steps, we ignore the two pseudo-17 subjects. For these two 
pseudo-17 subjects, one is re-classified as L1, and the other L3 when pseudotypes are not included. 
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classification (against resampling error). This resampling test is in the spirit of the test 

reported in Salmon (2001), which evaluates the robustness of the parameters estimated in 

a EWA learning model using simulated data. 

The results of resampling test are listed in Table 3. For each subject, we report the 

number of times that a subject is classified into L0, L1, L2, L3 or EQ in the 1000 

resampled datasets. The misclassification rate (percentage of times one classifies the 

subject as a type different from her original type having the largest likelihood using final 

choices) is listed in the last column. For example, subject 14 is originally classified as EQ, 

but is only re-classified as EQ 587 times during the resampling test. Subject 14 was 

instead classified as L3 228 times and as L1 185 times.  Hence, the distribution on the 

number of times that subject 14 is classified into L0, L1, L2, L3 or EQ in the 1000 

resampled datasets is (0, 185, 0, 228, 587) and the corresponding misclassification rate is 

0.413. 

 The classification is not as good as one would hope, since only 8 subjects passed 

this resampling test with misclassification rate lower than 5% and could thus be 

unambiguously classified into a certain type. This suggests that choice data might not be 

enough to perform sharp classification. We turn to consider how the lookup data could 

help us further. 

 

III. B Lookup Summary Statistics  

Aggregate data regarding empirical lookups for all 24 Spatial Beauty Contest games 

are presented in Figures 3A and 3B: games with 1-dimensional target are presented in 

Figure 3A, and those with 2-dimensional targets in Figure 3B. For each game, we 

calculate the percentage of time a subject spent on each location. The radius of the circle 

is proportional to the average percentage of time spent in each location, so bigger circles 

indicate longer time spent. The level-k choice predictions are labeled as O    (L0), L1 (L1), 

L2 (L2), L3 (L3), E (EQ) for each game. 

If Proposition 3 were true, the empirical lookups would concentrate on locations 

predicted by the level-k best response hierarchy. In fact, many big circles in Figures 3A 
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and 3B do coincide with locations of the level-k best response hierarchy. We attempt to 

quantify this concentration of attention. First, for every level-k type, we define the Hit 

area which is the minimal convex set enveloping the locations predicted by this level-k 

type’s best response hierarchy. For instance, for an L2 subject i (with opponent j), the 

best response hierarchy consists of  0 0( , )x y , 1 1( , )j jx y , 2 2( , )i ix y . Thus we can construct a 

minimal convex set enveloping these three locations. We then take the union of the Hit 

areas of all level-k types and see if subjects’ lookups are indeed within the union. Figure 

4 shows an example of Hit areas for various level-k types in a 7x7 spatial beauty contest 

game with target (4, -2) and the opponent’s target (-2, 4) (Game 16). 

Figure 5 shows the empirical percentage of time spent on the union of Hit areas 

(aka “hit time”). Across the 24 games, average hit time is 0.62, ranging from 0.81 (in 

Game 9), to 0.36 (in Game 21). Since on average more than 60% of the lookup time is 

spent on the union of Hit areas, empirical lookups are indeed concentrated on locations 

predicted by the best response hierarchies of various level-k types. 

However, hit time depends on the size of the area. If subjects only look at locations 

on the level-k best response hierarchy, the empirical hit time would be 1. However, even 

if subjects scan over the map uniformly, the empirical hit time would not be zero. Instead, 

it would be proportional to the size percentage of the union of Hit areas (aka “hit area 

size”). To correct for this hit area size bias, we calculate Selten’s (1991) (linear) 

“difference measure of predicted success,” i.e. the difference between empirical hit time 

and hit area size, and report it in Figure 6. These measures are all positive (except for 

Game 21), reflecting large hit area sizes alone cannot account for the high empirical hit 

time. This suggests that subjects indeed spent a disproportionally long time in the union 

of Hit areas.16  With this aggregate result in mind, we now consider whether individual 

lookup data can be used to classify subjects into various level-k types and helps reduce 

the possible misclassifications based on final choices alone. 

 

                                                 
16 In fact, sometimes subjects have hit time nearly 1. For example, Figure 7 shows the lookups of subject 2 
in round 17, acting as a Member B. The diameter of each fixation circle is proportional to the length of 
each lookup. Note that these circles fall almost exclusively on the best response hierarchy of L2, which is 
exactly her level-k type (based on lookups) according to the last column of Table 4. 
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III.C A Markov-Switching Model for Level- k Reasoning  

According to Proposition 3, a level-k type subject i goes through the best response 

hierarchy during the reasoning process, and fixates at locations 0 0( , )x y , …, 2 2( , )k k
i ix y− − , 

1 1( , )k k
j jx y− − , ( , )k k

i ix y . As subjects reason through the hierarchy from 0 0( , )x y  to ( , )k k
i ix y , 

we may consider lookups as a serially correlated time-series. We define some state 

variables to help us characterize the stage of the best response hierarchy the subject i is at.  

Define Lk as the state which indicates that she is (reasoning as) an Lk and hence her 

fixation is concentrated on the location ( , )k k
i ix y . In general, we use the apostrophe to 

denote it is about the opponent. Hence, L(k-1)’  is defined as the state which indicates that 

she is reasoning that her opponent j is an L(k-1) and hence her fixation is concentrated on 

the location 1 1( , )k k
j jx y− − . Lower states L(k-2), L(k-3)’ ,..., etc. are defined similarly. Then, 

states corresponding to subject i’s level-k best response hierarchy of Proposition 3 can be 

expressed as “L0, …, L(k-2), L(k-1)’ , Lk.” For instance, the reasoning process of an L2 

subject i consists of three stages: First, she would be in state L0 and fixate at 0 0( , )i ix y  

since she believes her opponent is L1, who believes she is L0. Then, she would be in state 

L1’  and fixate at 1 1( , )j jx y , thinking through her opponent’s choice as an L1. Finally, she 

would be in state L2 and best respond to the belief that her opponent is an L1 by making 

her choice fixating at 2 2( , )i ix y . These three states as L0 (fixating at the location of 

0 0( , )i ix y ), L1’  (fixating at the location of 1 1( , )j jx y ), L2 (fixating at the location of 2 2( , )i ix y ) 

are expected to be passed through during the reasoning process of an L2 subject. To 

account for the transitions of states, we employ a Markov switching model first used in 

macroeconomics by Hamilton (1989) to describe business cycles and characterize the 

transition of states by a Markov transition matrix. 

We do not require a level-k subject to “strictly” obey a monotonic order of level-k 

thinking. In other words, they are not required to necessarily go from a lower state to a 

higher state. i.e., always moving upwards through the sequence L0, …, L(k-2), L(k-1)’ , 

Lk. Instead, we allow subjects to move back from higher states to lower states. This is to 

account for the possibilities that subjects may go back to double check as may be typical 

in experiments. However, since a level-k type best responds to a level-(k-1) opponent, it 
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is difficult to imagine a subject jumping from the reasoning state of say L(k-2) to that of 

Lk without first going through the reasoning state of L(k-1)’ . Thus, the transition 

probability should be restricted to zero for all transitions that involve a jump in states. 

To perform the classification using lookups on a subject-by–subject basis, we 

assume that each subject is the same level-k type in all rounds and the error structure 

under each state follows the same logit distribution. We perform a maximum likelihood 

estimation to obtain the transition probabilities and the logit error parameter λ , and 

classify subjects into various level-k types based on lookups. 

 

1. Econometric Analysis  

Let all possible level-k types be 1,...,k K= and there are N rounds of games in 

which each round is indexed by 1,...,n N= . In round n, Let nG  be the (finite) choice set 

which depends on the size of the map in that round, and n nG M=  is the number of 

elements in nG . Elements of nG  are denoted by 
1 2
, ,...,

Mn
n n ng g g . Since every element in 

nG  is a location on the map, each can be represented by a pair of coordinates. Recall that 

payoff is decreasing in the distance (or steps). Suppose ( , )
m n nm m

n g gg x y=  and 

( , )
m n nm m

n g gg x y
′ ′ ′
= , as before, we define the distance as the sum of vertical and  horizontal 

distance,      
m m n n n nm m m m

n n g g g gg g x x y y
′ ′ ′

− = − + −  . 

For a level-k  subject, we consider the state space kΩ  consisting of all stages in the 

best response hierarchy with (k+1) states {L0, …,L(k-1)’ , Lk}. We then define a state-to-

lookup mapping :n k nl GΩ →  for round n which assigns each state to a corresponding 

lookup location in nG . For instance, if a level-2 player in round n is in state L0 at a point 

of time, the nl  mapping would give us the location which a level-0 player would choose 

since at this particular point of time, when an L2 is thinking about what an L1 thinks an 

L0 would choose, she would fixate at the location that an L0 would choose. Similarly, if a 

level-2 player in round n is in state L1’  (L2), then the nl  mapping would give us the 

location which a level-1 opponent (a level-2 subject) would choose. 
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In each game, we observe a sequence of lookups. We would like to infer, for each 

lookup in the sequence, which state a subject is in when her lookup is on that particular 

lookup location. However, the current state of a subject crucially depends on previous 

states since we assume a level-k subject goes through stages of the best response 

hierarchy (but allowing her to go back to double check). Therefore, we assume this 

transition is Markov, depending on the immediate previous state only, and estimate a 

constrained Markov transition matrix. We constrain the Markov model since the level-k 

model requires one to move up the hierarchy one step at a time (but has no restriction 

moving down). In other words, if we list the previous state in the row and the current 

state in the column and states are ordered from lower to higher, elements of the transition 

matrix have to be zero if they are more than one element above the diagonal (i.e. their 

column index is greater than the row index plus one). 

In addition, we estimate a logit error model to describe the relationship between 

states and lookups. Suppose a level-2 player is inferred to be in state L1’ , then by the 

mapping nl , her lookup should fall exactly on the location nl ( L1’ ). If her lookup is not 

on that location, we interpret this as an error. We assume a logit error structure for such 

errors so that looking at locations farther away from nl (L1’ ) is less likely, and to estimate 

a precision parameter for this error structure. 

To summarize, we estimate a state transition matrix and a precision parameter. Thus 

for any initial distribution of the states, we know the probability distribution of states at 

any point of time using the state transition matrix. Moreover, at any point of time, the 

mapping nl  from the state to the lookup gives us the lookup location corresponding to 

any state when there is no error. Coupled with the precision parameter, we can calculate 

the probability distribution of various errors and therefore the distribution of predicted 

lookup locations when errors are permitted. Using the state transition matrix and the 

precision parameter, we can calculate how well we are able to explain any observed 

sequence of lookups. The final step is to select the k in various level-k models that best 

explains the observed sequence of lookups for each subject. 

Formally, the lookup sequence in round n is a time series over 1,..., nt T= . Because 

of the logit error, a level-k subject may not look at a location with certainty. Therefore, 
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for time t (i.e. the t-th lookup), let the random variable 
t
nR  be the probabilistic lookup 

location in nG  and its realization be tnr . Denote the lookup history up to time t by 

t
n ≡R { 1

nr , …, 1t
nr

− , t
nr }. 

Suppose the subject is a particular level-k. Let tZ  be the random variable 

representing the state, drawn from the state space kΩ = { L0, …,L(k-1)’ , Lk},  and its 

realization be tz  at time t. Denote the state history up to time t by 1 1{ ,..., , }t t tz z z−≡Z .17  

 Since lookups may be serially correlated, we model this by estimating a 

constrained Markov stationary transition matrix of states. Denote the transition 

probability from state 1 1t tz− −=Z  to t tz=Z  by 

1

1 1Pr( | ) t t

t t t t

z z
z z π −

− −
→

= = =Z Z
 

(1) 

Thus, the state transition matrix kθ  is 

0 0 0 1

0 0 0

0 1

0

0 0

0 .
k

k

k k k k k

k k k

π π
π π

θ
π π π

π π

→ →

→ →

→ → − →

→ →

 
 

   
   = =    
   

 
 

⋯

… ⋮ ⋱ ⋱ ⋱ ⋮

⋮ ⋱ ⋮ ⋮ ⋱ ⋱

⋯ ⋮ ⋱

⋯ ⋯ ⋯

 

where 0i jπ → =  for all j>i+1 since we do not allow for jumps. 

Conditional on t tz=Z , the probability distribution of a level-k  subject’s 

probabilistic lookup t
nR  is assumed to follow a logit error quantal response model 

(centered at ( )t
nl z ), independent of lookup history tnR . In other words, 

( )
( )

1
exp ( )

Pr( , ) .
exp ( )

n

t t
k n nt t t t t

n n n t
k n

g G

r l z
r z

g l z

λ

λ
−

∈

− −
= = =

− −∑
R Z| R

 
(2) 

where [0, )kλ ∈ ∞  is the precision. If 0kλ = , subjects randomly look at locations in nG .  

As kλ → ∞ , subjects’ lookups concentrate on the lookup location ( )t
nl z  predicted by the 

                                                 
17 In the experiment, subjects could look at the entire computer screen.  Here, we only consider lookups that 
fall on the grid map and drop the rest. 
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level-k model. Combining the state transition matrix and the logit error lookup model, we 

can calculate the probability of observing lookup t
nr  conditional on past lookup history 

1t
n

−
R : 

1 1 1Pr( | ) Pr( | ) Pr( , )
t

k

t t t t t t t t t t t
n n n n n n n

z

r z r z− − −

∈Ω

= = = ⋅ = =∑R Z R ZR R R|  

(3) 

where  

1

1

1

1

1 1 1 1 1 1

1 1 1

Pr( | )

Pr( | ) Pr( | , )

Pr( | ) .

t
k

t t

t
k

t t t
n

t t t t t t t t
n n

z

t t t
n z z

z

z

z z z

z π

−

−
−

−

− − − − − −

∈Ω

− − −
→

∈Ω

=

= = ⋅ = =

= = ⋅

∑

∑

Z

Z Z Z

Z

R

R R

R

 

(4) 

The last equality follows since according to the Markov property, 1 1t tz− −=Z is sufficient 

to predict t tz=Z . Note that (4) depends on the Markov transition matrix and the second 

term on the right hand side of (3) depends on the logit error. Hence, for a given round n, 

coupled with the initial distribution of states, the joint density of a level-k subject’s 

empirical lookups, denoted by 
1 11 1

11 2 1 3 1 2 1 2

( ,..., , ) Pr( ,..., , )

Pr( ) Pr( | )Pr( | , )...Pr( | , ,..., ),

n n n n

n n

T T T Tk
n n n n n n n

T T
n n n n n n n n n n

f r r r r r r

r r r r r r r r r r

− −

−

≡

=  

(5)
 

can be derived. Assuming a level-k subject’s lookups independently follow the same 

Markov process across all rounds, the log likelihood over N rounds is 

11

1
( , ) ln ( ,..., , ) .n n

N
T Tk

k k n n n n
n

L f r r rλ θ −

=

 = ∏  
                                       

 (6) 

To estimate kλ  and the Markov transition matrix kθ , by (6), we need to start with an 

initial distribution of states. Since level-k reasoning starts from the lowest state (here L0), 

we assume this initial distribution degenerates to a mass point at the lowest state 
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corresponding to L0.18 With this assumption, we estimate kλ  and the constrained Markov 

transition matrix kθ  using maximum likelihood estimation for each k, and classify 

subjects into the particular level-k type which has the largest likelihood.  

 

2. Model Selection using the Vuong’s Test  

The above econometric model may be plagued by an overfitting problem since 

higher level-k types have more states and hence more parameters. It is not surprising if 

                                                 
18 Formally, we start with the assumption that 0 0Pr( ) 1z= =Z  when the initial state 0z  is L0 and zero 

otherwise. Then we derive the following step by step. First, 0

1 0 1 0Pr( ) Pr( )Pr( | ) ,
kz

z z z z
∈Ω

 =  ∑  

where 0Pr( )z  is given by the initial distribution of states and 1 0Pr( | )z z  is given by the Markov 

transition matrix. Second, 1

1 1 1 1Pr( ) Pr( )Pr( | ) ,
k

n nz
r z r z

∈Ω
 =  ∑  where 1Pr( )z  is given by the first 

step and 1 1Pr( | )nr z  is given by the logit error. Third, we update the state by the current lookup or 

1 1 1 1 1 1Pr( | ) Pr( ) Pr( | ) Pr( ) ,n n nz r z r z r =    where terms in the numerator and the denominator are both 

derived in the second step. Fourth, we derive the next state from the current lookup or 

1 1

2 1 1 1 2 1 1 1 1 2 1Pr( | ) Pr( | ) Pr( | , ) Pr( | )Pr( | ) ,
k k

n n n nz z
z r z r z r z z r z z

∈Ω ∈Ω
   = =   ∑ ∑  where the 

second equality follows because by Markov, the transition to the next step only depends on the current state. 

Moreover, 1 1Pr( | )nz r  is derived in the third step and 2 1Pr( | )z z  is given by the Markov transition 

matrix. Fifth, we derive the next lookup from the current lookup or 

2

2 1 2 1 2 1 2Pr( | ) Pr( | ) Pr( | , ) ,
k

n n n n nz
r r z r r r z

∈Ω
 =  ∑  where 2 1Pr( | )nz r  is given by the fourth step and 

2 1 2 2 2Pr( | , ) Pr( | )n n nr r z r z=  is given by the logit error. Sixth, as in the third step, we update the state by 

the lookups up to now or 2 1 2 2 1 2 1 2 2 1Pr( | , ) Pr( | )Pr( | , ) Pr( | ) ,n n n n n n nz r r z r r r z r r =    where terms in the 

numerator and the denominator are both derived in the fifth step.  Seventh, as in the fourth step, we derive 
the next state from the lookups up to now or 

2 2

3 1 2 2 1 2 3 1 2 2 2 1 2 3 2Pr( | , ) Pr( | , ) Pr( | , , ) Pr( | , ) Pr( | ) ,
k k

n n n n n n n nz z
z r r z r r z r r z z r r z z

∈Ω ∈Ω
   = =   ∑ ∑  

where 2 1 2Pr( | , )n nz r r  is derived in the sixth step and 3 2Pr( | )z z  is given by the Markov transition 

matrix. Eighth, as in the fifth step, we derive the next lookup from the lookups up to now or 

3

3 1 2 3 1 2 3 1 2 3Pr( | , ) Pr( | , )Pr( | , , ) ,
k

n n n n n n n nz
r r r z r r r r r z

∈Ω
 =  ∑  where 3 1 2Pr( | , )n nz r r  is given by the 

seventh step and  3 1 2 3 3 3Pr( | , , ) Pr( | )n n n nr r r z r z=  is given by the logit error. Continuing in this fashion 

and multiplying altogether the second step, the fifth step, the eighth step, and so on, we will be able to 

derive 11 2 1 3 1 2 1 2Pr( )Pr( | )Pr( | , )...Pr( | , ,..., )n nT T
n n n n n n n n n nr r r r r r r r r r −  or (5). Regarding the assumption on 

the initial state, alternatively, we could follow the tradition in the Markov literature and assume uniform 

priors, or 0 0Pr( ) 1 ( 1)z k= = +Z  for all 0
kz ∈Ω . But this raises the question how subjects could 

figure out locations of higher states without even actually going through the best response hierarchy. This is 

the reason why we employ the current assumption that 0 0Pr( ) 1z= =Z  when the initial state 0z  is L0 

and zero otherwise. 
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one discovers that models with more parameters fit better. In particular, the Markov-

switching model for level-k has (k+1) states with a ( 1) ( 1)k k+ × +  transition matrix. This 

gives the model 
( 3)

2

k k + 
  

 parameters in the transition matrix alone.19  For example, a 

level-2 subject has 3 states (L0, L1’ , and L2) and five (Markov) parameters, but a level-1 

subject has only 2 states (L0’  and L1) and two (Markov) parameters. Hence, we need to 

make sure our estimation does not select higher levels merely because it contains more 

states and more parameters (and predicts more lookup locations).20 

However, usual tests for model restrictions may not apply, since the parameters 

involved in different level-k types could be non-nested. For instance, the state space of a 

level-1 type, (L0’ , L1), is nested in the state space of a level-3 type, (L0’ , L1, L2’ , L3), 

but is not nested in the state space of a level-2 type, (L0, L1’ , L2). 

In order to evaluate the classification, we follow Vuong’s test for overlapping 

models (1989). Let Lk∗  be the type which has the largest likelihood with corresponding 

parameters ( , ).
k k

λ θ∗ ∗  Let aLk  be an alternative type with corresponding parameters 

( , ).a ak k
λ θ  We want to test if these two competing types, Lk∗  and aLk , are equally good 

at explaining the true data, or it is the case that one of them is a better model. In order to 

do so, we choose a critical value from the standardized normal distribution. If the 

absolute value of the test statistic is no larger than the critical value, then we conclude 

that Lk∗  and aLk  are equally good at explaining the true data.21 If the test statistic is 

higher than the critical value, then we conclude that Lk∗  is a better model than aLk . 

Lastly, if the test statistic is less than the negative of the critical value, then we conclude 

that aLk  is a better model than Lk∗ . 

Equation (6) can be rearranged as 

                                                 
19 Since each row sums up to one and elements with the column index greater than the row index plus one 

are zero, we have in total ( 1) ( 1) ( 1) [ ( 1)] 2 [ ( 3)] 2k k k k k k k+ × + − + − − = +   parameters. 
20 Overfitting is an issue pertaining to lookup data since higher level-k types have more parameters. This is 
not an issue in choice data since every type has only one logit error parameter and makes only one final 
choice anyway. 
21 Since overfitting may be a problem, when both models are equally good, we consider the number of 
parameters in each model, and conservatively select the model with the lower number of parameters to 
avoid the possibility that we may select a higher type simply because it has more parameters. 
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1

( , ) ( , ),
N

k k n k k
n

L lrλ θ λ θ
=

=∑  

where 11( , ) ln ( ,..., , ).n nT Tk
n k k n n n nlr f r r rλ θ −≡  This indicates that subject’s lookups are 

independent across rounds and follow the same Markov switching process, although each 

round’s lookups sequence may be serially-correlated. 

To perform the Vuong’s test, we construct the log-likelihood ratio round by round 

and define 

( , ) ( , )a an n nk k k k
m lr lrλ θ λ θ∗ ∗= −  for round n=1,…, N. 

Let 
1

1 N

n
n

m m
N =

= ∑ . Vuong (1989) proposes a sequential procedure (p.321) for 

overlapping models.  Its general results describes the behavior of  
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= −∑ is significantly different from zero (the 

variance test).  If the variance test is passed (which is the case for all of our subjects), V 

has the property that (under standard assumptions): 

(V1) If Lk∗ and aLk are equivalently good at fitting the data, 

(0,1)DV N→ ; 

(V2) if Lk∗  is better than aLk  at fitting the data, 

. .A SV →∞ ; 

(V3) if aLk  is better than Lk∗  at fitting the data, 

. .A SV →−∞ . 

Hence, the Vuong’s test is performed by calculating V, and applying the above three 

cases depending on whether V c< − , V c< , or V c> .  ( 1.96c = for p-value = 0.05.) 

Recall that in our case Lk∗  is the type with the largest likelihood based on lookups. 

Let the alternative type aLk  be the type having the next largest likelihood among all 
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lower types.22 If according to Vuong’s test, (V2) applies so that Lk∗  is a better model 

than 
aLk , we can be assured that the maximum likelihood criterion does not pick up the 

reported type (instead of the second largest type) by mere chance.  Thus, we conclude 

that the lookup-based type is * .Lk   If instead we find that according to Vuong’s test, (V1) 

applies so that Lk∗  and aLk  are equally good, then we conservatively classify the subject 

as the second largest lower typeaLk .  (V3) does not apply since 0V >  by construct. 

Table 4 shows the results of the maximum likelihood estimation and Vuong’s test 

for each subject. For each subject, we list her *Lk  type, her aLk  type and her lookup-

based type according to the Vuong’ test in the last column. Six of the seventeen subjects 

(subjects 1, 5, 6, 8, 11, 13) pass the Vuong’s test and have their lookup-based type as 

* .Lk  The remaining eleven subjects are conservatively classified as aLk . The overall 

results are summarized in column (C) of Table 2. After employing the Vuong’s test, the 

type distribution for (L0, L1, L2, L3, EQ) is (1, 6, 4, 4, 2). 23  The distribution is slightly 

higher than typical type distributions reported in previous studies. In particular, there are 

two EQ’s and four L3’s, accounting for more than one third of the data. The average 

number of thinking steps is 2.00.24 

                                                 
22 Recall that the reason why we look at the Vuong’s test is to avoid overfitting. Hence, if the alternative 
type has a larger transition matrix (more parameters) but a lower likelihood, there is no point to perform a 

test, since Lk∗  will not suffer from the problem of overfitting because it has fewer parameters but has a 
higher likelihood. This leads us to consider only lower level types as the alternative type. 
23 If we ignore the two pseudo-17 subjects (subjects 3 and 17, both classified as L1 based on lookups) since 
their choices suggest that they may not behave according to the level-k theory, then the type distribution for 
(L0, L1, L2, L3, EQ) is (1, 4, 4, 4, 2). 
24 Two points are worth noting here. First, one might worry about non-identification issues caused by 

nuisance parameters when the two competing types are strictly nested and if the subject were truly aLk . 
Hence, we also perform the Hansen’s test (Hansen, 1992).  Results are reported in columns of Table S3, 
and are nearly identical to those based on the Vuong’s test. The only potential difference is subject 6 having 
a marginally significant p-value of 0.053 (while in Vuong’s test the test statistic is V=2.40>1.96, significant 

at the 5% level). In other words, even when we switch to use Hansen test when Lk∗  and aLk  are strictly 
nested, the result is almost the same.  Secondly, note that we only perform the Vuong’s test once, and if we 

find Lk∗  and aLk  explain the data equally well, we classify subjects as aLk , the lower type that has the 
next largest likelihood. It is possible that the lower type with the next largest likelihood is still not different 
from the even lower type with the even next largest likelihood (and so on). Hence, one might wonder 
whether we should stop here. Nonetheless, even if we employ an iterative Vuong’s test and classify 
subjects as the type that is, for the first time, significantly different from a lower type of which the 
likelihood is immediate lower, we can re-classify only two L2 subjects as L1, one L2 subject as L0 and two 
L1 subjects as L0, making the average number of thinking steps drop to 1.65. This provides a lower bound 
to the possible type distribution. The iterative Vuong’s test result is reported in the sixth column of Table 
S3. 
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There are several possible explanations to why we observe higher than typical type 

distributions reported in previous studies. First of all, as stated before, Caltech subjects 

are reported to have more steps of thinking than usual subjects. Moreover, the spatial 

beauty contest game is intuitive and does not require mathematical multiplication (as 

compared with say, the standard p-beauty contest game). Hence, this may explain why 

subjects could perform more steps of reasoning in this easier task.25  

However, one might wonder whether the results reported in Table 4 is due to a 

misspecification of possible types. After all, many assumptions are required for 

Proposition 3 to hold. Unfortunately, we cannot perform a pseudotype test as in Costa-

Gomes and Crawford (2006) since the length of the lookup sequence differs across 

subjects. However, we can compare the classification based on lookups with those using 

final choices alone, and see if types are aligned between the two classifications. We turn 

to this now. 

 

III.D Final Choices vs. Lookups 

In Table 2, the choice-based and lookup-based classification results look similar, 

though the choice results indicate slightly more steps of reasoning (2.12 for choice-based 

types without pseudotypes instead of 2.00 for look-up based types with Vuong’s test). 

This suggests that the lookup-based estimation (and the underlying Proposition 3) is not 

completely out of the ballpark. 

In fact, if we consider the classification results on a subject-by-subject basis, the 

similarity between the two estimations are even more evident. For each subject, using the 

lookup data, we consider her lookup-based type (denoted by lLk , as reported in the last 

column of Table 4) and her choice-based type (denoted by cLk , as reported in the second 

column of Table 3). We perform the Vuong’s test between these two types (using the 

lookup data) and report the V statistics for Vuong’s test in the second to last column of 

Table 5.  For the ease of comparison, in Table 5 we also reproduce the misclassification 

rate of choice-based types in the last column for each subject (reported originally in the 

                                                 
25 For example, Chou et al. (2009) show that a graphical presentation of the standard p-beauty contest game 
yields results closer to equilibrium. 
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last column of Table 3). Overall, using the lookup data, for ten of the seventeen subjects, 

their lookup-based types and the choice-based types are the same. Such alignment in 

classification results would be surprising if one thought Proposition 3 was too strong a 

claim. Nevertheless, given that for more than half of the subjects, both classifications are 

the same, it is hard not to accept the conclusion that Proposition 3 (and its underlying 

assumptions) does have some prediction power. Moreover, for these ten subjects, all but 

three of them have (choice-based) misclassification rates lower than 0.05, suggesting that 

their classifications are truly sharp.26 

On the other hand, among the seven subjects whose lookup-based classification and 

choice-based classification differ, using lookup data, results of Vuong’s tests suggest that 

the lookup-based classifications are significantly better models than the choice-based 

models for four subjects (see the column labeled as Vuong’s statistic V in the bottom 

panel of Table 5). This suggests that based on lookup data, the lookup-based types indeed 

can separate well from the choice-based types for these four subjects. For the remaining 

three subjects (whose two classifications fit equally well), the lookup-based 

classifications all have fewer parameters than choice-based models. Hence if we worry 

about overfitting using the lookup data, since according to Vuong’s test, the lookup-based 

models and the choice-based models are equally good but the lookup-based ones have 

fewer parameters, this, in a conservative sense, makes the lookup-based models better 

models to explain the lookup data. Moreover, among these seven subjects (except subject 

8), for six subjects, if we use the choice data, their choice-based type all have 

misclassification rates higher than 18.4%, suggesting that misclassifying these subjects 

into the wrong types using choice data alone (due to insignificantly larger likelihoods) is 

possible. A closer look at Table 3 would in fact reveal that for these six subjects, they are 

actually classified into lookup-based type not so infrequently when we resample their 

choices. Their lookup-based types are almost always the second most frequent type they 

                                                 
26 One of the three subjects (subject 17) is a pseudotype.  The remaining two subjects (subjects 2 and 4) 
have a misclassification rate of 0.076 and 0.110. These are marginally higher than 0.05. In contrast, except 
for subject 8, all other six subjects whose lookup-based types are different from their choice-based types 
have misclassification rates at least 0.184. This suggests that when the lookup-based types and the choice-
based types are the same, the classification is quite sharp. On the other hand, when they differ, the 
classification based on choice is not that sharp. 
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are classified into in the resampling test.27  This provides another piece of evidence that 

the lookup-based types can explain part of their choices, suggesting that their lookup-

based types might not be a bad candidate if we are to classify them properly.28 

Altogether, when lookup-based types differ from choice-based types, using lookup 

data, lookup-based types are either better models than choice-based types or they have 

fewer parameters than choice-based types. On the other hand, using choice data, choice-

based type typically have misclassification rate not so low. Moreover, the lookup-based 

types are typically the second most frequent types they are classified into if we resample 

their choices. From these we probably can conclude lookup data do have some truth in 

classifying subjects properly and may help us separate types. 

To summarize, these results show that lookup data can help us confirm 

classification results based on choices alone and even provide better classification results. 

In particular, without the lookup data, we could have classified subjects into certain types 

based on insignificantly larger likelihoods. 

Moreover, lookup data provide a chance to put the level-k model to an ultimate test, 

asking if the model can not only predict final choices, but also describe the decision-

making process employed by subjects by going through the best response hierarchy 

specified in Proposition 3. Results in Table 5 show that the level-k model does indeed 

hold up under this test. One ought to keep in mind that explaining the reasoning process 

is a hard one, if not harder than explaining choices. The result that in our dataset, for 

more than a half of subjects, their lookup-based types are aligned with their choice-based 

types could be read as a strong support to the level-k model. This may be due to the 

graphical nature of the spatial beauty contest games. How general this result is should be 

tested in future experiments in which the reasoning process can somehow be analyzed. 

                                                 
27 For instance, for subject 6, her lookup-based type is EQ while her choice-based type is L2. In 1000 times 
of resampling of choices, she is classified to EQ 228 times.  The only exception is subject 14, whose 
choice-based type is EQ, but is reclassified as L3 228 times and as L1 (her lookup-based type) 185 times. 
28 If we ignore the two pseudo-17 subjects (subjects 3 and 17) since their choices suggest that they may not 
behave according to the level-k theory, the results are even stronger.  Among the remaining fifteen subjects, 
for nine subjects, their lookup-based types and the choice-based types are the same. Among these nine 
subjects, except for subjects 2 and 4, the misclassification rates of their choice-based types are all lower 
than 0.05 For subjects 2 and 4, the misclassification rates are 0.076 and 0.110, both at the margin. For the 
six subjects whose lookup-based types differ from their choice-based types, for four of them, using the 
lookup data, their lookup-based types are better models than their choice-based types according to Vuong’s 
test. For two of them, using the lookup data, their lookup-based types and their choice-based types are 
equally good according to Vuong’s test. But their lookup-based types have fewer parameters. 
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Finally, one might wonder if it is the case that subjects in fact do perform lookups 

that resemble higher levels of strategic thinking, but somehow “downgrade” their choices 

to a lower level, possibly realizing that even if they could perform higher levels of 

thinking, their opponents may not.  However, among the seven subjects whose lookup-

based classification disagrees with the choice-based one, three of them have higher 

lookup-based types (subjects 6, 9, 11), while the remaining four (subjects 3, 8, 14, 15) 

have higher choice-based types. So, this explanation could at most account for only half 

of the disagreements in our data. 

 

IV. Conclusion 

We introduce a new spatial beauty contest game, and provide theoretical predictions 

based on the equilibrium and the level-k theory. The theoretical predictions of the level-k 

theory yield a plausible conjecture on the decision-making process when people actually 

play the game. We then conduct laboratory experiments using video-based eyetracking 

technology to test this conjecture, and fit the eyetracking data on lookups using a 

constrained Markov-switching model of level-k reasoning. Results show that based on 

lookups, experimental subjects could be classified into various level-k types, which for 

more than a half of them coincide with types that they were classified into using final 

choices alone. Moreover, when the two classifications differ, a resampling test shows that 

we might misclassify subjects into their choice-based types due to insignificantly larger 

likelihoods. On the other hand, Vuong’s test on lookups shows that lookup-based types 

are either better models than choice-based types or have fewer parameters than choice-

based types. This suggests that lookups may give us a stronger separation of types. 

Comparing the distribution of level-k types based on final choices with that based 

on lookups, we find that some subjects have higher level-k types using lookup data. This 

could be due to imprecise choice-based classification. Another possibility is that subjects 

may perform lookups that resemble high levels of strategic thinking, but decide to 

“downgrade” their choices to a lower level, possibly realizing that their opponents may 

not perform equally high levels of thinking. Our eyetracking data show that the latter 

explanation can at most account for a half of the difference between the two distributions. 
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However, this explanation is of special interest for future research because it is 

inconsistent with the cognitive hierarchy model, as in Camerer and Ho (2004), which 

assumes subjects’ beliefs about others are tied with their own levels of cognition. 

However, this could be explained by other level-k models, such as Stahl and Wilson 

(1995), Costa-Gomes, Crawford and Broseta (2001) and Costa-Gomes and Crawford 

(2006), which assume that subjects are fully rational (capable of any high level thinking), 

but their beliefs about others may not be consistent with the choices of others. Therefore, 

this explanation points to a subtle difference between the two classes of level-k models in 

the literature, and should be explored with more experimental evidence in the future. 
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Figure 1: Equilibrium and Level-k Predictions of a 7x7 Spatial Beauty Contest Game 

with Targets (4, -2) and (-2, 4) (Game 16).  Predictions for the player with Target (4,-2) 

are in bold, and predictions for the player with Target (-2,4) are in italic and underlined. 

O stands for the prediction of L0 for both players.  Note that Lk  and Lk are the best 

responses to L(k-1) and L(k-1) , respectively.  For example, L2’s choice (2,1) is the best 

response to L1 since (-2,3) + (4, -2) = (2, 1). 
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Figure 2A: Screen Shot of the GRAPH Presentation 

 

Figure 2B: Screen Shot of the SEPARATE Presentation 
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Figure 3A:  Aggregate Empirical Percentage of Time Spent on Each Location for Games with 1-dimensional 
Targets (GAME 1- GAME 12). The radius of the circle is proportional to the average percentage of time spent on 
each location, so bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of 
various level-k types. 
GAME1 GAME 2 GAME 3 GAME 4 

    

size Player i Player j size Player i Player j size Player i Player j size Player i Player j 
9×9 (-2,0) (0,-4) 9×9 (0,-4) (-2,0) 7×7 (2,0) (0,-2) 7×7 (0,-2) (2,0) 

GAME 5 GAME 6 GAME 7 GAME 8 

    

size Player i Player j size Player i Player j size Player i Player j size Player i Player j 

11×5 (2,0) (0,2) 11×5 (0,2) (2,0) 9×7 (-2,0) (0,-2) 9×7 (0,-2) (-2,0) 

GAME 9 GAME 10 GAME 11 GAME 12 

    

size Player i Player j size Player i Player j size Player i Player j size Player i Player j 

7×9 (-4,0) (0,2) 7×9 (0,2) (-4,0) 7×9 (2,0) (0,2) 7×9 (0,2) (2,0) 



 36

 

Figure 3B –Aggregate Empirical Percentage of Time Spent on Each Location for Games with 2-dimensional 
Targets (GAME 13- GAME 24). The radius of the circle is proportional to the average percentage of time spent on 
each location, so bigger circles indicate longer time spent. O, L1, …, E are player i’s predicted choices of 
various level-k types. 
GAME 13 GAME1 4 GAME 15 GAME 16 

    

size Player i Player j size Player i Player j size Player i Player j size Player i Player j 
9×9 (-2,-6) (4,4) 9×9 (4,4) (-2,-6) 7×7 (-2,4) (4,-2) 7×7 (4,-2) (-2,4) 

GAME 17 GAME 18 GAME 19 GAME 20 

    

size Player i Player j size Player i Player j size Player i Player j size Player i Player j 
11×5 (6,2) (-2,-4) 11×5 (-2,-4) (6,2) 9×7 (-6,-2) (4,4) 9×7 (4,4) (-6,-2) 

GAME 21 GAME 22 GAME 23 GAME 24 

    

size Player i Player j size Player i Player j size Player i Player j size Player i Player j 
7×9 (-2,-4) (4,2) 7×9 (4,2) (-2,-4) 7×9 (-2,6) (4,-4) 7×9 (4,-4) (-2,6) 
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Figure 4: Hit Areas for Various Level-k Types in Game 16 (7x7 with Target (4, -2) and 

the Opponent Target (-2, 4). Hit area is the minimal convex set enveloping the locations 

predicted by each level-k type’s best response hierarchy. 

Hit area 

 
 
Note: In general, if we use the apostrophe to denote it is about the opponent and follow the notations 
defined in  III.C, the minimal convex set enveloping the locations (L0, …, L(k-2), L(k-1)’ , Lk) predicted by 
various level-k types are illustrated. 

 
 
 

Figure 5: Aggregate Empirical Percentage of Time Spent on the Union of Hit Areas (“Hit 
Time”) in Each Game 
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Figure 6: Aggregate Linear Difference Measure of Predicted Success in Each Game. It 
measures the difference between hit time and the size percentage of the union of the Hit 
area. 

 

 
 

Figure 7: Subject 2’s Eye Lookups in Round 17 (as Member B). The radius of the circle 
is proportional to the length of that lookup, so bigger circles indicate longer time spent. 
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Table 1: Level-k, Equilibrium Predictions and Minimum k ’s in All Games 

Game 
Map 
size 

Player 1 
target 

Player 2 
target 

L0 L1 L2 L3 EQ k  

1 9 × 9 -2 , 0 0 , -4 0 , 0 -2 , 0 -2 , -4 -4 , -4 -4 , -4 3 
2 9 × 9 0 , -4 -2 , 0 0 , 0 0 , -4 -2 , -4 -2 , -4 -4 , -4 4 
3 7 × 7 2 , 0 0 , -2 0 , 0 2 , 0 2 , -2 3 , -2 3 , -3 4 
4 7 × 7 0 , -2 2 , 0 0 , 0 0 , -2 2 , -2 2 , -3 3 , -3 4 
5 11 × 5 2 , 0 0 , 2 0 , 0 2 , 0 2 , 2 4 , 2 5 , 2 5 
6 11 × 5 0 , 2 2 , 0 0 , 0 0 , 2 2 , 2 2 , 2 5 , 2 5 
7 9 × 7 -2 , 0 0 , -2 0 , 0 -2 , 0 -2 , -2 -4 , -2 -4 , -3 4 
8 9 × 7 0 , -2 -2 , 0 0 , 0 0 , -2 -2 , -2 -2 , -3 -4 , -3 4 
9 7 × 9 -4 , 0 0 , 2 0 , 0 -3 , 0 -3 , 2 -3 , 2 -3 , 4 4 
10 7 × 9 0 , 2 -4 , 0 0 , 0 0 , 2 -3 , 2 -3 , 4 -3 , 4 3 
11 7 × 9 2 , 0 0 , 2 0 , 0 2 , 0 2 , 2  3 , 2 3 , 4 5 
12 7 × 9 0 , 2 2 , 0 0 , 0 0 , 2 2 , 2 2 , 4 3 , 4 5 
13 9 × 9 -2 , -6 4 , 4 0 , 0 -2 , -4 2 , -2 0 , -4 2 , -4 4 
14 9 × 9 4 , 4 -2 , -6 0 , 0 4 , 4 2 , 0 4 , 2 4 , 0 4 
15 7 × 7 -2 , 4 4 , -2 0 , 0 -2 , 3 1 , 2 0 , 3 1 , 3 4 
16 7 × 7 4 , -2 -2 , 4 0 , 0 3 , -2 2 , 1 3 , 0 3 , 1 4 
17 11 × 5 6 , 2 -2 , -4 0 , 0 5 , 2 4 , 0 5 , 0 5 , 0 3 
18 11 × 5 -2 , -4 6 , 2 0 , 0 -2 , -2 3 , -2 2 , -2 3 , -2 4 
19 9 × 7 -6 , -2 4 , 4 0 , 0 -4 , -2 -2 , 1 -4 , 0 -4 , 1 4 
20 9 × 7 4 , 4 -6 , -2 0 , 0 4 , 3 0 , 2 2 , 3 0 , 3 4 
21 7 × 9 -2 , -4 4 , 2 0 , 0 -2 , -4 1 , -2 0 , -4 1 , -4 4 
22 7 × 9 4 , 2 -2 , -4 0 , 0 3 , 2 2 , -2 3 , 0 3 , -2 4 
23 7 × 9 -2 , 6 4 , -4 0 , 0 -2 , 4 1 , 2 0 , 4 1 , 4 4 
24 7 × 9 4 , -4 -2 , 6 0 , 0 3 , -4 2 , 0 3 , -2 3 , 0 4 

Note: Each row corresponds to a game and contains the following information in order: (1) the game 
number, (2) the size of the grid map for that game, (3) the target of player 1, (4) the target of player 2, 
(5) the theoretic prediction of L0, (6) the theoretic prediction of L1, (7) the theoretic prediction of L2, 

(8) the theoretic prediction of L3, (9) the theoretic prediction of EQ, and (10) the minimum k  such 
that as long as the level is weakly higher, the choice of that type is the same as the choice of EQ. 
Non-separating types are underlined. 
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Table 2: Distribution of Types under Various Specifications 
 (A) Choice-based (B) Choice-based (C) Lookup-based 

 without Pseudotypes with Pseudotypes w/ Vuong’s test 

L0 2 2 1 

L1 4 3 6 

L2 4 4 4 

L3 4 3 4 

Equilibrium 3 3 2 

Pseudo-17 - 2 - 

Aver. step 2.12  2.13 2.00 

Note: In each row we list the number of subjects of that particular type based on various 
classifications. In the bottom row we list the average of thinking steps. We consider three 
ways to classify subjects. The first classification, reported in column (A), uses the choice 
data in which pseudotypes are not included. The second classification, reported in column 
(B), also uses the choice data but in addition, pseudotypes are included. The third 
classification, reported in column (C), is based on the lookup data and we classify subjects 
to the type with the largest likelihood if according to Vuong’s test, this type is a better model 
than the type with the next largest likelihood among all lower types (and to the type with the 
next largest likelihood among all lower types otherwise). 
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Table 3. Distribution of Types in 1000 Times of Resampling of Choice Data 

subject cLk  L0  L1  L2  L3  EQ  
misclassification 

rate 
1 L3 0  0  0  1000 + 0  0.000* 
2 L2 1  0  924 + 75  0  0.076 
3 L3 0  233 + 1  756  10  0.244 
4 L1 63  890 + 11  36  0  0.110 
5 EQ 0  0  1  11  988 + 0.012* 
6 L2 0  3  764  5  228 + 0.236 
7 L0 966 + 0  12  17  5  0.034* 
8 EQ 0  0  0  0 + 1000  0.000* 
9 L0 528  3  440 + 4  25  0.472 
10 L1 0  1000 + 0  0  0  0.000* 
11 L2 0  0  635  363 + 2  0.365 
12 L1 0  990 + 6  4  0  0.010* 
13 L3 0  1  3  996 + 0  0.004* 
14 EQ 0  185 + 0  228  587  0.413 
15 L3 0  9  165 + 816  10  0.184 
16 L2 0  0  1000 + 0  0  0.000* 
17 L1 0  768 + 1  231  0  0.232 

Note:  * indicates misclassification rate less than 0.05. 
+ indicates each subject’s lookup-based classification of type in Table 4.  Notice 
that the lookup-based types are typically the second most frequent types subjects 
are classified into (if not the most frequent types) if we resample their choices. The 
only exceptions are subject 7 and 14.  
Each row corresponds to a subject and contains the following information in order: 

(1) the subject number, (2) her choice-based level-k type denoted by cLk , (3) the 
number of times that she is classified as an L0  in 1000 times of resampling of her 
choice data, (4) the number of times that she is classified as an L1 in 1000 times of 
resampling of her choice data, (5) the number of times that she is classified as an 
L2 in 1000 times of resampling of her choice data, (6) the number of times that she 
is classified as an L3 in 1000 times of resampling of her choice data, (7) the 
number of times that she is classified as an EQ in 1000 times of resampling of her 
choice data, and (8) the misclassification rate, i.e., the number of times that she is 

not classified as her choice-based level-k type or cLk  in 1000 times of resampling 
of her choice data divided by 1000. 
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Table 4: Distribution of Types Based on Lookup Data 

subject Lk* Lka 
Vuong’s 

statistic V 
 Lkl  

1 L3 L2 4.425 + L3 
2 L3 L2 0.689  L2 
3 L3 L1 1.577  L1 
4 L3 L1 1.597  L1 
5 EQ L2 2.977 + EQ 
6 EQ L2 2.400 + EQ  
7 L2 L0 1.582  L0 
8 L3 L1 2.812 + L3 
9 EQ L2 1.001  L2 
10 L3 L1 1.226  L1 
11 L3 L2 2.087 + L3 
12 L3 L1 0.853  L1 
13 L3 L1 3.939 + L3 
14 L3 L1 1.692  L1 
15 L3 L2 1.470  L2 
16 L3 L2 1.342  L2 
17 L3 L1 1.778  L1 

Note: + indicates the Vuong statistic V is significant or |V|>1.96. 
Lk*  denotes the type with the largest likelihood. 
Lka denotes the alternative lower type which has the second-largest likelihood. 
Lkl denotes the classified type based on Vuong’s test result. 
Each row corresponds to a subject and contains the following information in order: (1) 
the subject number, (2) based on her lookups, the type with the largest likelihood, (3) 
based on her lookups, the alternative lower type which has the next largest likelihood, 
(4) Vuong’s statistic in testing whether Lk*  and Lka are equally good models, (5) 
subject’s lookup type based on Vuong’s test result. Notice that in (5) we classify a 
subject as her Lk*  type if according to Vuong’s test, Lk* is a better model than Lka. 
On the other hand, if Lk*  and Lka are equally good models, since Lka has fewer 
parameters, to avoid overfitting, we classify a subject as her Lka type. The result in (5) 
is summarized in column (C) of Table 2.  
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Table 5: Comparison between Choice-based and Lookup-based Classifications 

subject lLk  cLk  
Vuong’s 
statistic V  

Misclassification 
Rate of cLk  

1 L3 L3 . 0.000* 
2 L2 L2 . 0.076 
4 L1 L1 . 0.110 

5 EQ EQ . 0.012* 

7 L0 L0 . 0.034* 
10 L1 L1 . 0.000* 
12 L1 L1 . 0.010* 
13 L3 L3 . 0.004* 
16 L2 L2 . 0.000* 
17 L1 L1 . 0.232 

3 L1 L3 -1.577 0.244 
6 EQ L2 2.400+ 0.236 
8 L3 EQ 2.636+ 0.000* 
9 L2 L0 2.981+ 0.472 

11 L3 L2 2.087+ 0.365 

14 L1 EQ 1.395 0.413 
15 L2 L3 -1.470 0.184 

Note: + indicates the Vuong statistic V is significant or |V|>1.96. 
* indicates p-value less than 0.05. 

lLk  denotes a subject’s lookup-based type. 
cLk  denotes a subject’s choice-based type. 

Each row corresponds to a subject and contains the following information in order: (1) the 
subject number, (2) her lookup-based type (as reported in the last column of Table 4), (3) her 
choice-based type (as reported in the second column of Table 3), (4) Vuong’s statistic on 
whether her lookup-based type and her choice-based type are equally good models (based on 
lookup data), (5) the misclassification rate of her choice-based type in 1000 times of 
resampling (as reported in the last column of Table 3). Subjects whose lookup-based and 
choice-based classifications coincide are listed in the top panel; those who differ are listed in 
the bottom. 


