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We propose a likelihood based method that relies on sequential importance sampling
to estimate dynamic discrete games of complete information with serially correlated
unobserved state variables. Our method is applicable to similar games that have a
Markovian representation of the latent dynamics and an algorithm to solve the game.
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entry on costs. Each entry on average reduces costs by 7% at the next market opportu-
nity; the average annual cumulative reduction is 51%. Our results provide evidence on
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path of the structure of the generic pharmaceutical industry.
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1 Introduction

In this paper we propose a likelihood based method relying on sequential importance sam-

pling to estimate dynamic discrete games of complete information with serially correlated

unobserved endogenous state variables. Although, there have been substantial recent de-

velopments in the empirical literature on estimation of dynamic games, incorporating unob-

served (to the researcher) state variables that are serially correlated and endogenous remains

prohibitively difficult.1 We apply the method to a dynamic oligopolistic model of entry for

the generic pharmaceutical industry. In this application the firm specific production costs

are serially correlated unobserved state variables that are endogenous to past entry deci-

sions. We describe our proposed method using this application as an expository device. Our

method is applicable to similar games that have a Markovian representation of the latent

dynamics and an algorithm to solve the game.

In our model production costs are a serially correlated unobserved endogenous state

variable which leads to severe computational difficulty in estimating the model. We overcome

this difficulty using sequential importance sampling techniques. The sequential importance

sampling method offers a drastic improvement in the speed of computing the likelihood which

makes the estimation of this dynamic model feasible. Our work is related to the seminal paper

by Keane (1994) that used sequential importance sampling to develop a computationally

feasible simulation based estimator for limited dependent variable panel data models in the

presence of serially correlated errors.2 A special case of that estimator is the well-known

Geweke-Hajivassiliou-Keane (GHK) estimator (see e.g., Hajivassiliou, McFadden, and Ruud

(1996), Geweke and Keane (2001)) that arises for a particular choice of importance sampling

densities.

Our paper also provides evidence on the dynamic spillover effects of experience in one

product market on subsequent performance in the market for another product. In spite of a

fairly extensive theoretical literature (see e.g., Spence (1981), Fudenberg and Tirole (1983),

1See Aguirregabiria and Mira (2008) for a recent survey of the literature on dynamic models of strategic
interactions. Other excellent surveys of discrete games of entry are Berry and Reiss (2006) and Berry and
Tamer (2006).

2Ackerberg (2001) has developed a method for using importance sampling coupled with a change of
variables technique to provide computational gains in estimating game theoretic and dynamic discrete choice
models.
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Cabral and Riordan (1994)) on the dynamic strategic effects of past industry experience there

is very little empirical examination of such spillovers in a dynamic oligopolistic context. An

exception is the pioneering work of Benkard (2004) on the role of learning by doing in the

aircraft industry.3

In order to evaluate the effects of current experience on future market performance as

measured by future costs and entry, we formulate and estimate a dynamic game theoretic

model of oligopolistic competition. Entry decisions of firms in a forward looking dynamic

environment are drastically different from those in a static competitive environment. In

a dynamic setting, current entry can have a potential spillover effect on future entry. In

the case of a generic pharmaceutical firm there can be economies of scope that come from

experience working with a particular ingredient, therapeutic class, or form of drug (e.g., oral

liquid or liquid injectable). Hence, a firm might enter a particular product market even if the

current opportunity is not profitable as long as the spillovers from entry sufficiently improve

the discounted stream of cumulative future profits. The model incorporates such dynamic

spillovers from experience due to entry on future costs. It allows for serially correlated

firm specific costs that evolve endogenously based on past entry decisions. Furthermore,

endogeneity of costs to past entry decisions induces heterogeneity among firms even if they

are identical ex ante, which they need not be.

We estimate the model parameters using Bayesian MCMC methods. We find that there

are significant dynamic spillovers of entry on costs; each entry on average reduces costs by 7%

at the next market opportunity, and the average annual cumulative reduction is 51%. Thus

the dynamic evolution of the production cost plays an important role in the equilibrium path

of the structure of the generic pharmaceutical industry. Our methods are more generally

applicable to estimating dynamic games in which (i) the choice set is discrete in nature, e.g.,

entry and exit from industry, expansion or reduction of product categories, introduction of

new or discontinuation of old brands, technology adoption or upgrades, relocation, start up

3Our paper differs from Benkard’s analysis in two important ways: (i) we allow for the payoffs to be
affected by serially correlated unobserved endogenous state variables (i.e., firm specific costs). This in turn
requires us to (ii) compute and impose the equilibrium conditions of the dynamic game when estimating
the spillover effects. In contrast to spillovers within a firm, Xu (2008) examines the spillover effects on a
firm’s productivity of its competitors’ R&D in a dynamic oligopolistic framework using data from the Korean
electric motor industry.
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or shut down decisions of stores, firms, or factories etc, (ii) when there are serially correlated

unobserved endogenous state variables, and (iii) an algorithm to solve the game is available.

The rest of the paper is organized as follows. We begin by discussing the related literature

in Section 2. Section 3 describes the background and data and Section 4 the model. The

method used to solve the model is discussed in Section 5 and the estimation procedure in

Section 6. The results are presented in Section 7 and Section 8 concludes.

2 Related Literature

There is a growing literature on the estimation of games. Static games under the incomplete

information assumption have been studied by, e.g., Bjorn and Vuong (1984), Bresnahan and

Reiss (1991a), Bresnahan and Reiss (1991c), Haile, Hortacsu, and Kosenok (2003), Aradillas-

Lopez (2005), Ho (2005), Ishii (2005), Pakes, Porter, Ho, and Ishii (2005), Augereau, Green-

stein, and Rysman (2005), Seim (2005), Sweeting (2005), Tamer (2003), Manuszak and Co-

hen (2004), Rysman (2004), Gowrisankaran and Stavins (2004), Ellickson and Misra (2007)

and Bajari, Hong, Krainer, and Nekipelov (2006). Dynamic games of incomplete informa-

tion have been studied by, e.g., Aguirregabiria and Mira (2002), Bajari, Benkard, and Levin

(2004), Berry, Pakes, and Ostrovsky (2003), Pesendorfer and Schmidt-Dengler (2003), Ryan

(2005), ?, Bajari, Chernozhukov, Hong, and Nekipelov (2007) and ?. The literature on esti-

mating games of incomplete information has mostly relied on a two step estimation strategy

building on the Conditional Choice Probability (CCP) estimator of Hotz and Miller (1993).

The two step estimation strategy requires the assumption that there is no market or

firm level unobserved heterogeneity other than a random shock that is independent and

identically distributed across both time and players. This assumption is restrictive because

it rules out unobserved dynamics in the latent state variables. It also rules out any private

information that a player might have about competing firms that the researcher does not

have. Arcidiacono and Miller (2008) have extended the literature on two step CCP estimation

of dynamic discrete models to allow for discrete forms of unobserved heterogeneity using the

EM algorithm. In contrast, our method is applicable even when the unobserved variable is

continuous. Moreover, while two step methods can be computationally attractive, we think

that a likelihood based method, as the one we are employing, has advantages when the model
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is potentially misspecified. In this case, the likelihood based approach still minimizes a well

defined Kullback-Leibler distance between the model and the data. On the other hand, it

is not clear whether two step methods minimize a well defined distance between the model

and the data if the model is potentially misspecified.

Static games of complete information have been estimated by, e.g., Bresnahan and Reiss

(1991b), Berry (1992), Tamer (2003), Ciliberto and Tamer (2003) and Bajari, Hong, and

Ryan (2004). The complete information assumption allows substantial unobserved hetero-

geneity at the level of the firms. These games typically require the use of a combinatorial

algorithm to search for an equilibrium instead of the continuous fixed point mapping used

in incomplete information models to compute equilibria. To our knowledge, we are the first

to estimate a dynamic game of complete information.

In the single agent dynamic framework, there is a considerable amount of research that

allows for time invariant unobserved heterogeneity, e.g., Keane and Wolpin (1997). How-

ever there is very little work that allows for serially correlated unobserved endogenous state

variables. In the context of a finite horizon dynamic discrete choice model, Khwaja (2001)

developed a simulation based method to integrate out such state variables from the like-

lihood exploiting the discrete nature and Markovian dynamic structure of the variables.

Bayesian approaches for single agent dynamic discrete choice models with unobserved state

variables that are serially correlated over time have been developed by Imai, Jain, and Ching

(2005) and Norets (2006). These papers use MCMC for integrating out the unobserved state

variables. In contrast, we use sequential importance sampling to integrate out the unob-

served state variables and use MCMC to iterate through the parameter space in estimating

the model. In addition we are the first to apply this method to estimate a dynamic game

whereas the previous literature has focussed on single agent models.

We use MCMC methods in estimating the model. In principle, we could use either

frequentist or Bayesian methods in the analysis because an MCMC chain can be used to

compute the statistics that relate to either approach as shown by Chernozhukov and Hong

(2003). However, our likelihood is nonlinear and is not differentiable making it extremely

difficult to compute and to conduct frequentist inference. Conversely, Bayesian inference is

both theoretically justified and computationally attractive under these conditions. Moreover,
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Bayesian methods facilitate use of prior information for identification. Therefore we apply

Bayesian methods in the application in this paper.

Our implementation makes use of a sequential importance sampler. Fernandez-Villaverde

and Rubio-Ramirez (2005) used sequential importance sampling methods for estimating

macroeconomic dynamic stochastic general equilibrium models. The structure of dynamic

stochastic general equilibrium models is closely related to that of dynamic discrete choice

models. However, the discrete outcome and game theoretic strategic interaction aspects of

our model are novel. Blevins (2008) used the bootstrap filter to allow for serially correlated

unobservable state variables in estimating dynamic single agent models, and dynamic games

of incomplete information in a revealed preference framework. In a continuous time set-

ting, Nekipelov (2007) developed a flexible indirect inference estimator for continuous time

dynamic games in the context of eBay auctions without requiring the complete solution of

the dynamic game. This is a novel approach that has potential applications in dynamic

oligopolistic competition models.

3 Background and Data

Analysis of consumption and production decisions in the generic pharmaceutical firm in-

dustry has been an important topic of empirical research. Generic pharmaceutical sales in

the U.S. were valued at $58.5 billion in 2007. In the same year generics made up 65% of

all prescriptions in the U.S. Moreover, in 2007 generic equivalents existed for 8,730 of the

11,487 branded drugs approved by the FDA and listed in its “Orange Book.” In an impor-

tant paper Scott-Morton (1999) estimated a static entry model to show that entry can be

predicted by a firm’s organizational experience, size of the market and whether the entry

opportunity is similar to the firm’s existing portfolio of drugs. In subsequent work, Reiffen

and Ward (2005) provided evidence on various features of the industry such as: (i) prices of

generic drugs fall as the number of competitors increase but remain above long run marginal

costs for less than eight entrants, (ii) greater number of firms enter larger markets, and (iii)

profits first increase for early entrants and then decline with more entry.

Crawford and Shum (2005) estimated a dynamic matching model of anti-ulcer drug choice

for forward looking consumers. They provided evidence of (i) significant heterogeneity in
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drug efficacy across individuals and (ii) the benefits of learning from personal experience

with drugs in dealing with uncertainty about efficacy. Ching (2008a) in an analysis based on

a dynamic random utility model of demand for prescription drugs found that after patent

expiration (i) the rise in prices of brand name drugs can be explained by heterogeneity in

consumer preferences, and (ii) the slow diffusion of generics into the market by consumer

learning about product quality. In a companion paper, Ching (2008b) developed a finite

horizon dynamic4 oligopoly model to examine the effect of reducing the approval times for

generics. Estimating the model using data on the anti-hypertension drug Clonidine he found

that although the policy change reduces the time to entry it also reduces the number of

generic entrants in equilibrium as there tends to be greater entry in the early periods which

decreases the average profitability of firms. However, much remains to be understood about

the generic pharmaceutical industry, especially with regard to the entry decisions of firms

and whether past industry experience confers any strategic advantage when firms engage in

dynamic oligopolist competition.

In this paper we use the unique data assembled by Scott-Morton (1999) on the entry

decisions of generic drug manufacturers from 1984 to 1994.5 This time period is particularly

interesting because of the 1984 Waxman-Hatch Act which lowered barriers to entry for

generic firms by permitting Abbreviated New Drug Applications (ANDAs). This vastly

increased entry in to the generic market as it relaxed the requirements for generic firms to

gain FDA approval. Generic firms did not have to repeat all the tests that the manufacturer

of the pioneer branded product had undertaken but instead were only required to show that

the generic product was bioequivalent and had identical characteristics in strength, dosage

form and route. Also in 1989 there was a “generic scandal” in which some FDA reviewers

were caught accepting bribes to expedite ANDAs, and some firms were found to have used

the original branded drug in place of their own in the FDA review process. We refer the

reader to Scott-Morton (1999) for details of the data set and the institutional environment.

We summarize the facts relevant for our study here.

4Ching (2008b) focusses on the dynamics of demand and supply over time within a product market. In
contrast we focus on the dynamics that come from spillovers across product markets.

5We are grateful to Fiona Scott Morton for providing us with her data, and to Derek Gurney for answering
our questions about the data.
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The preparation of an ANDA takes months to years because it requires construction of

manufacturing facilities that need to be inspected and approved by the FDA prior to launch

of full scale operations. The sunk cost of submitting an ANDA is high even though it is

much less than a new drug invention. For example, the average revenues for generic firms

in one-firm markets are $10 million, while the costs of submitting an ANDA can range from

$250,000 to $20 million (Scott-Morton (1999)). Furthermore, the size and heterogeneity of

entry cost relative to the size of market revenue lead to a small number of entrants supported

by each market. In addition, the FDA does not reveal when and from whom it receives ANDA

applications.

As discussed in Scott-Morton (1999), announced entry is very rare, because firms do not

want to signal the common market value. They also fear that the delay in the approval

will invite competition. There are few late sequential movers who withdraw in response to

rivals’ approvals. Simultaneous moves in a dynamic context are an important feature of

this industry. These features of the data are consistent with our modeling assumption of

a dynamic simultaneous entry game among a small number of competing pharmaceutical

firms in which firms have to face substantial competition when they incur the sunk cost of

entry.

The original data used by Scott-Morton (1999) consists of all ANDA approvals between

1984 and 1994. There is data on 1,233 ANDAs, and 363 markets entry opportunities for a

total of 123 firms. In constructing our estimation sample we use the following information

for each market opportunity: ANDA submission date, ANDA approval date, characteristics

of drug (i.e., ingredient, concentration, route, form), characteristics of drug markets (i.e.,

drug therapeutic class, patent expiration date, revenue of brand name drug the year before

expiration), characteristics of firms (i.e., parent or subsidiary firm, whether firm was indicted

in a bribery scandal).

Based on our model specification and estimation strategy (described below) we only

need information on total market revenues and entry decisions of potential entrants at each

market entry opportunity to recover the model parameters. In estimating the model we

focus on the period after the FDA bribery scandal in 1989 because of the general upheaval

and uncertainty in the generic drug industry surrounding the scandal period. We take great
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care in processing the data between 1988 to 1993. We only study ANDAs for generic drugs

that are orally ingested in the form of pills. Thus, we focus on spillovers from experience in

producing drugs in the form of oral solids. In this category, for the sample period 1990-94,

there are 40 market openings for which there is no missing revenue information and 51 firms

who entered at least once. Each market category is defined as a unique combination of

primary ingredient, patent expiration date and total revenue for the branded drug for the

last year before patent expiration.6 The top ten dominant firms in the sample after 1989 are

(in descending order of dominance): Mylan, Novopharm, Lemmon, Geneva, Copley, Roxane,

Purepac, Watson, Mutual and Lederle. The top firm, Mylan, entered 45% of the markets,

the top two 48%, the top three 55%, the top four 60%, the top five 65%, and the top ten

73%. Individually, Novopharm entered 28%, and Lemmon and Geneva entered 25% of the

markets.

In our analysis we consider situations where the potential entrants are the top three or

four firms. In each case the remaining firms are combined into a category referred to as

“other.” The fraction of the market allocated to “other” is taken as given and is anticipated

by the top firms when considering entry. The procedure we use to implement this is described

in Section 4. On average 3.3 firms enter a market, with the minimum number of entrants

being one and the maximum being nine firms. The mean revenue in thousands of dollars

is 126,901, the std. dev. is 161,580, the minimum is 72, and maximum is 614,593. In our

estimation we use the log of revenue and in that case the mean is 10.47, std. dev. is 2.1,

minimum is 4.3, and maximum is 13.3.

Table 1 about here

4 Model

In this section we formally describe the dynamic oligopolistic game of entry. Although the

empirical specification we adopt is motivated by our data, the methods we develop to solve

and estimate the game are more generally applicable to other dynamic discrete games for

which there exists a Markovian representation of the latent dynamics and an algorithm to

6Some amount of hand editing was required in constructing the sample, e.g., when the revenue number
was different due to rounding error or there was a spelling error in the primary ingredient of the drug.
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solve the game. Firms maximize profits over an infinite horizon t = 1, . . . ,∞, where each

time the market is open counts as one time increment. A market opening is defined to be

an entry opportunity that becomes available to generic manufacturers each time a branded

product goes off patent. Since a time period uniquely identifies a market opening, in what

follows t is used interchangeably to denote a market opening or the time period associated

with it. One could also think of the dynamics arising from evolution of demand, revenues

and costs for a particular generic product as it diffuses through the market over time (see

e.g. Ching (2008a)). This would lead to two time indices, one for the sequence of product

markets opening over time and the other for profits over time within a product market. For

computational feasibility, we abstract from the latter and assume that once a firm enters a

market it realizes all the payoffs associated with that product market as a lump sum at the

date of entry.

The actions available to firm i when market t opens are to enter, Ait = 1, or not enter

Ait = 0. Empirically this is determined by whether a firm submits an ANDA or not. There

are I firms in total so that the number of entrants in market t is given by

Nt =
I

∑

i=1

Ait (1)

The primary source of dynamics is through costs. The evolution of current costs, Cit, is

determined by past entry decisions and random shocks. The past entry decisions account for

spillovers of past industry experience on production costs in the current entry opportunity.

We will follow the standard convention that a lower case quantity denotes the logarithm of

an upper case quantity, e.g., cit = log(Cit). The log cost of a firm is assumed to follow a

stationary autoregressive process of order one. The equation governing the log cost of firm

i at market t is

cit = µc + ρc(ci,t−1 − µc) − κcAi,t−1 + σceit, (2)

where eit is a normally distributed shock with mean zero and unit variance, σc is a scale

parameter, κc is the entry spillover or immediate impact on cost at market t if there was

entry in market t − 1, µc is a location parameter that represents the overall average of the

log cost over a long period of time. The autoregressive parameter ρc represents the degree

of persistence between the current cost and its long run stationary level. We assume that
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all firms are ex ante identical, with the effects of current decisions on future costs creating

heterogeneity between firms. Hence, none of these parameters are firm specific, i.e., indexed

by i. Alternatively put, heterogeneity arises endogenously in the model depending on the

past actions of the firms.

We assume, as in Scott-Morton (1999), that all firms observe each others’ costs and hence

this is a game of complete information. As far as the researcher is concerned the log cost

can be decomposed into a sum of two components, a known component (or observable to

the researcher based on past actions), ck,i,t, and a component unobservable to the researcher,

cu,i,t, as follows:

ci,t = cu,i,t + ck,i,t (3)

cu,i,t = µc + ρc (cu,i,t−1 − µc) + σceit (4)

ck,i,t = ρc ck,i,t−1 − κcAi,t−1 (5)

From these equations it is seen that the location parameter µc can be interpreted as the

stationary long run mean of the unobservable portion of log cost and that the total impact

of entry spillover at market t of a firm’s past entry decisions is ck,i,t = −∑∞
j=0 ρjκcAi,t−j−1.

Two implications of the specification in equations (3)-(5) are that irrespective of the

calendar time that has elapsed between any two adjacent market openings, (i) cost decreases

are of the same magnitude, and (ii) the discount rate is held constant between market

openings. These are plausible assumptions for our application as in our estimation sample

(described earlier in Section 3) there are 40 openings in the period 1990-94, i.e. on average

a market opens every 1.5 months. This convention avoids insurmountable computational

difficulties in solving for the equilibrium of the model that would arise if unequal spacing

between market openings were assumed. Moreover, with this convention, we are only required

to obtain a correct chronological order of the data rather than to determine market entry

dates precisely. We order markets according to the date when the first ANDA was received

by the FDA for a particular market opportunity.

Our timing convention underlying the dynamic cost process (equation (2)), i.e., each time

period t represents the sequence of market openings and not calendar time, implies that the

cost advantage of entry dissipates with additional entry rather than the passage of calendar
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time. This may happen due to capacity or resource constraints. As the resources required

for entry are stretched beyond their limits it may not be possible to expand the pool of

resources that can be devoted to additional projects easily. For example, a team that is

working on formulating a particular drug or guiding it through the FDA approval process

may only be able to work on a small number of projects at a given time and it may not be

easy to hire additional members for the team. Furthermore, in view of the excellent fit to the

data that we are able to achieve (Section 7 below) this timing convention appears reasonable

a posteriori. Also of note is that although we are calling the latent variable “cost” for

convenience, it represents any unobserved variable that could have dynamic spillover effects

of entry on profits. For example, the underlying sources of the spillover could be supply side

factors like learning by doing or economies of scope or for that matter demand side factors

like reputation about quality or development of distribution networks. As stated earlier, the

spillover effect estimated in this paper pertains to experience gained in producing drugs in

the form of oral solids. Quantifying other sources of spillovers is beyond the scope of this

paper as it would require expanding the state space leading to computational intractability.

The total (lump sum) revenue to be divided among firms who enter a market at time t

is Rt = exp(rt), which is realized from the following independent and identical distribution,

rt = µr + σreI+1,t , (6)

where eI+1,t is normally distributed with mean zero and unit variance. In equation (6), µr is

a location parameter that reflects the average total revenue for all the firms across all market

opportunities, and σr is a scale parameter. In our data the measure we have for total revenue

is from the last year the brand name drug was on patent. We interpret this value as being

exogenously determined solely by the firm manufacturing the branded product prior to the

entry decisions of the generic firms, and being proportional to the total discounted value of

the revenue flows to generic drugs after patent expiration.

A total of fifty one firms entered the market after the 1989 FDA bribery scandal. Com-

puting a solution to a dynamic game of strategic interactions between fifty one players is not

computationally feasible.7 Therefore, we consider only the dominant firms. In the following,

7See Benkard, Weintraub, and Roy (2007) for a discussion of the concept of oblivious equilibrium and
the associated method to compute the solution to dynamic games when the number of players is very large.
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Nt is used to denote the number of entering dominant firms. We consider the case of three

and four dominant firms. Nt is less than or equal to I, which is the total number of domi-

nant firms (i.e. 3 or 4), which is considered to be time-invariant. Nt is to be differentiated

from Na
t , which is used to denote the total number of entrant firms at time t including both

dominant and nondominant firms.

We allow for nondominant firms as follows. Regressions indicate that log Na
t = b log Rt,

with b ≈ 0.092, is a reasonable approximation to the total number of firms that enter

a market. The idea of this regression dates back to Bresnahan and Reiss (1991c) who

showed that there is a close relationship between the number of entrants and the total

market revenue. Therefore, when one of the dominant firms is considering entry, it can

anticipate that the revenue available to be divided among all dominant firms should be larger

than the average revenue available to each of the entering firms, which is log Ranticipated ≥
log R−log Na = log R−b log R = log

(

R1−b
)

. These considerations suggest that a reasonable

functional form for dominant firm i’s per period profit at time t is

Ait (Rγ
t /Nt − Cit) , (7)

with 1 − b = 0.908 being a reasonable lower bound for γ. The upper bound is one.

The firm’s total discounted profit at time t is

∞
∑

j=0

βjAi,t+j

(

Rγ
t+j/Nt+j − Ci,t+j

)

, (8)

where β is the discount factor, 0 < β < 1. The firm’s objective is to maximize the present

discounted value of its profit at each time period t taking as given the equilibrium action

profiles of other firms.

The Bellman equation for the choice specific value function, Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt),

for firm i′s dynamic problem at time t is given by

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) (9)

= Ait (Rγ
t /Nt − Cit)

+ β E
[

Vi(A
E
i,t+1, A

E
−i,t+1, Ci,t+1, C−i,t+1, Rt+1) |Ai,t, A−i,t, Ci,t, C−i,t, Rt,

]

,

where by convention −i represents the other players. The choice specific value function

represents the sum of current and future payoffs to firm i from a choice Ai,t at time t explicitly
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conditioning on the choices that would be made by other firms A−i,t at time t and with the

expectation that firm i and the other firms would be making equilibrium choices from period

t+1 onwards conditional on their current choices. The expectations operator here is over the

distribution of the state variables in time period t + 1 conditional on the realization of the

time t state variables and the action profile at time t. Therefore Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt)

represents the payoff of firm i at stage t of the game.

A stationary pure strategy Markov perfect equilibrium of the dynamic game is defined

by a best response strategy profile (AE
i,t, AE

−i,t) that satisfies

Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt) ≥ Vi(Ai,t, A

E
−i,t, Ci,t, C−i,t, Rt) ∀ i, t, (10)

where AE
i,t is the entry decision of firm i for market t, AE

−i,t the vector of entry decisions of

the other dominant firms.

This is a game of complete information. Hence, if the state, which includes the current

cost of all firms (Ci,t, C−i,t) and total revenue (Rt), is known, then the equilibrium is known.

Therefore, an ex ante value function can be computed from the choice specific value function

Vi(Ci,t, C−i,t, Rt) = Vi(A
E
i,t, A

E
−i,t, Ci,t, C−i,t, Rt). (11)

The ex ante value function satisfies the Bellman equation

Vi(Cit, C−i,t, Rt) (12)

= AE
it

(

Rγ
t /N

E
t − Cit

)

+ β E
[

Vi(Ci,t+1, C−i,t+1, Rt+1) |AE
i,t, A

E
−i,t, Ci,t, C−i,t, Rt

]

,

where NE
t is the number of firms that enter, which can be computed using equation (1),

i.e., NE
t =

∑I
i=1 AE

it . Equation (12) is different from the Bellman equation associated with

the choice specific value function (equation (9)) as it represents the sum of current and

future payoffs to firm i from an optimal choice AE
i,t at time t explicitly conditioning on

the equilibrium choices that would be made by other firms AE
−i,t at time t, and with the

expectation that all firms would be making equilibrium choices from period t+1 onwards. In

contrast to equation (9), the expectations operator here is over the conditional distribution

of the state variables in time period t + 1 with the value function evaluated at the best

response strategy profile.

14



Reny (1999) demonstrated the complexity of the conditions required to guarantee exis-

tence of pure strategy equilibria in games in which payoffs are discontinuous in strategies,

as in our case. A comprehensive discussion of several results for existence of equilibria in

Markovian games is provided by Dutta and Sundaram (1998). More results on existence of

equilibria in dynamic oligopolistic models are to be found in Doraszelski and Satterthwaite

(2007). When the state space can only take on a finite set of values, Theorem 3.1 of Dutta

and Sundaram (1998) implies that this game has a stationary Markov perfect equilibrium

in mixed strategies. Parthasarathy (1973) showed that this baseline case can be relaxed

to include a state space with countable values. The regularity conditions of Theorem 5.1

of Dutta and Sundaram (1998) come closer to the problem as we have posed it, notably

that the revenue and cost do not have to be discrete but they do need to be bounded. The

equilibrium strategy profiles provided by Theorem 5.1 may depend on periods t and t− 1 of

the state vector.

We could modify our problem to meet the requirements of Theorem 3.1 that the state

space be finite and countable. However we rely on Theorem 5.1 instead as we do not have

trouble computing pure strategy equilibria for the problem as posed with a continuous state

space. Theorem 3.1 is of interest to us because its proof relies on a dynamic programming

approach that motivates our computational strategy, discussed below in Section 6 (see also

Rust (2006) for a discussion of a similar computation strategy). We find that we can always

compute pure strategy equilibria that depend only on period t of the state vector, and hence

automatically satisfy the regularity conditions of Theorem 5.1. While the results described

above imply that a slightly modified version of the game proposed by us has equilibria, we

rely mostly on the fact that we have no difficulty computing equilibria. In fact the key

hurdle we face is not the lack of existence of equilibria but instead multiplicity of equilibria.

In Section 6 we discuss how we resolve this problem.

5 Solving the Model

Our estimation strategy is based on a nested approach wherein the solution of the dynamic

game is computed for each evaluation of a likelihood function that depends on both observ-

able and latent variables. To compute a likelihood that depends only on observable variables
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in the data, the latent state variables are integrated out using sequential importance sam-

pling. Using the likelihood that depends only on observable data, an MCMC algorithm

generates draws from the posterior distribution of the parameters. The broad outline of

the computational strategy is as follows: (1) Generate a parameter value by means of an

MCMC algorithm. (2) For that parameter value, generate values for the latent variable over

the sample period by means of the importance sampler. (3) Solve the dynamic game to

compute the equilibrium outcome as function of the observed and unobserved state variables

and the parameter value. (4) Use the equilibrium outcome generated from the solution to

compute a likelihood that depends on the observed data and latent state variables (at the

given parameter value). (5) Integrate out the latent state variables by averaging the log

likelihood over repetitions of the importance sampler to obtain a log likelihood that depends

only observed variables (at the given parameter value).8 (6) Use the likelihood that depends

only on observed variables to make the accept/reject decision of the MCMC algorithm. Cy-

cling through steps (1) to (6) generates an MCMC chain that is a sample from the posterior

distribution of the parameters from which the posterior mean, mode, standard deviation,

etc. can be computed.

In this section we describe the method used to solve for the equilibrium of the dynamic

game given the observed and latent state variables and a set of parameter values. In Section 6

we describe how the likelihood is computed using the solution of the dynamic game and the

MCMC algorithm. Since we use an infinite horizon model we look for a stationary Markov

perfect equilibrium which entails finding the fixed point of the Bellman equation (12).

Let the entry decisions of all i = 1, . . . , I firms for a market opening at time t, i.e., the

strategy profile of the dynamic game, be denoted by

At = (A1t, ..., AIt) . (13)

As discussed in Section 4, the strategy profile At at time t of the dynamic game is a function

of the current period state variables (C1t, ..., CIt) and Rt. The vector of the log of the state

variables at time t is

st = (c1t, ..., cIt, rt) . (14)

8As the name suggests, the sequential importance sampler does this by averaging sequentially as one
progresses through the sample rather than storing all latent variable trajectories prior to averaging them.
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In particular, equations (9) and (12) can be expressed in terms of st using Cit = exp(sit) for

i = 1, . . . , I and Rt = exp(sI+1,t). We describe the solution algorithm for a given parameter

vector θ and a given state st at time t.

We begin by defining a grid on the state space which determines a set of (I + 1)-

dimensional hyper-cubes. For each hyper-cube we use its centroid as its index or key K.

A state st within hyper-cube can be mapped to its key K.9 Let the vector VK(st) have as

its elements the ex ante value functions Vi,K(st), i.e., VK(st) = (V1,K(st), . . . , VI,K(st)) (see

equations (11) and (12). To each K associate a vector bK of length I and a matrix BK of

dimension I by I + 1. A given state point st is mapped to its key K and the value function

at state st is represented by the affine function VK(st) = bK + (BK)st.
10 A value function

VK(st) whose elements satisfy equation (12) is denoted V ∗
K(st) = b∗K + (B∗

K)st.

The game is solved as follows:

1. Given a state point s, get the key K that corresponds to it. (We suppress the subscript

t for notational convenience.)11

2. Check whether the fixed point V ∗
K(s) of the Bellman equations (12) at this key has

already been computed, i.e., whether the (b∗K , B∗
K) for the K that corresponds to s has

been computed. If not, then use the following steps to compute it.

3. Start with an initial guess of the ex ante value function V
(0)
K (s). An initial guess of the

value function is represented by the coefficients (b
(0)
K , B

(0)
K ) being set to 0.

4. Obtain a set of points sj, j = 1, . . . , J , that are centered around K. The objective

now is to obtain the ex ante value functions associated with these points to use in a

9Grid increments are chosen to be fractional powers of two so that the key has an exact machine repre-
sentation. This facilitates efficient computation through compact storage of objects indexed by the key. The
rounding rules of the machine resolve which key a state on a grid boundary gets mapped to, although lying
on a boundary is a probability zero event in principle. The entire grid itself is never computed because all
we require is the mapping s 7→ K, which is determined by the increments. The end points of a hyper-cube
on the grid in order to find the appropriate key K are computed as needed.

10Keane and Wolpin (1997) adopt a similar approach for a single agent model. Our approach differs
from Keane and Wolpin (1997) in that we let the coefficients of the regression depend on the state variables,
specifically the key K, whereas Keane and Wolpin (1997) use an OLS regression whose coefficients are not
state specific. Thus, our value function, unlike theirs, need not be continuous. Our value function can be
thought of as an approximation by a local linear function.

11In fact, because it is a stationary game, the subscript t does not really matter
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regression to recompute (or update) the the coefficients (b
(0)
K , B

(0)
K ).

5. Ex ante value functions are evaluated at best response strategies. In order to com-

pute these we must, for each sj, compute the choice specific value function (9) at as

many strategy profiles A as are required to determine whether or not the equilibrium

condition in equation (10) is satisfied. In this process we need to take expectations to

compute the continuation value β E
[

V
(0)
K,i (st+1) |Ai,t, A−i,t, Ci,t, C−i,t, Rt,

]

that appears

in equation (9), where we have used equation (11) to express equation (9) in terms

of V
(0)
K (s). To compute expectations over the conditional distribution of the random

components of next period state variables, we use Gauss-Hermite quadrature. To do

this, we obtain another set of points centered around each sj, i.e., sjl
, l = 1, . . . , L.

These points are the abscissae of the Gauss-Hermite quadrature rule which are located

relative to sj but shifted by the actions A under consideration to account for the dy-

namic effects of current actions on future costs (see equation (5)). Expectations are

computed using a weighted sum of the value function evaluated at the abscissae (more

details are provided below).

6. We can now compute the continuation value at sj for each candidate strategy A. We

compute the best response strategy profile AE
j corresponding to sj by checking the

Nash equilibrium condition (equation 10). As just described, the choice specific value

function evaluated at (AE
i , sj) is computed using V

(0)
K (s) and equation (9), and denoted

by V
(1)
K (AE, sj) = (V

(1)
1,K(AE, sj), . . . , V

(1)
I,K(AE, sj)).

7. Next we use the “data” (V
(1)
K (AE, sj), sj)

J
j=1 to update the ex ante value function

to V
(1)
K (sj). This is done by updating the coefficients of its affine representation to

(b
(1)
K , B

(1)
K ) via a multivariate regression on this “data” (as described in detail below).12

8. We iterate (go back to step 5) over the ex ante value functions V
(0)
i,K (s), V

(1)
i,K (s), . . . by

finding a new equilibrium strategy profile AE for each sj until convergence is achieved

for the coefficients (b
(0)
K , B

(0)
K ), (b

(1)
K , B

(1)
K ), . . .,(b

(∗)
K , B

(∗)
K ). This gives us V ∗

K(s) = b∗K +

(B∗
K)s for every s that maps to key K.

12V
(1)
K (AE , sj) will not equal V

(1)
K (sj) because the former is “data” and the later is a regression prediction.
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To summarize, the process of solving for the equilibrium begins with a conjecture (b
(l)
K =

0, B
(l)
K = 0) for the linear approximation of the value functions at a given state at iteration

l = 0. These guesses are then used in computing the choice specific value functions at

iteration l + 1 using equation (9). This computation involves taking expectations over the

conditional distribution of the future state variables, which is accomplished using Gaussian-

Hermite quadrature. Once we have the choice specific value functions we compute the

equilibrium strategy profile at iteration l+1 using equation (10). The best response strategy

profile at iteration l + 1 is then used to compute the iteration l + 1 ex ante value functions

via a regression that can be viewed as iterating equation (12). The iteration l + 1 ex ante

value functions are then used to compute the iteration l + 2 choice specific value functions

using equation (9), and the entire procedure is repeated till a fixed point of equation (12)

is obtained. This iterative procedure solves the dynamic game. We next provide additional

details about the steps of the algorithm described above to solve the model.

To describe the Gauss-Hermite quadrature procedure used in Step 5, note that if one

conditions upon st and At, then the elements of st+1 are independently normally distributed

with means µi = µc+ρc(cit−µc)−κcAit for the first I elements (see equation 2), mean µI+1 =

µR for the last element (see equation 6), standard deviations σi = σc for the first I elements,

and standard deviation σI+1 = σR for the last. Computing a conditional expectation of

functions of the form f(st+1) given (At, st) such as appear in equations (9) and (12) is

now a matter of integrating with respect to a normal distribution with these means and

variances which can be done by a Gauss-Hermite quadrature rule that has been subjected

to location and scale transformations. The weights wj and abscissae xj for Gauss-Hermite

quadrature may be obtained from tables such as Abramowitz and Stegun (1964) or by direct

computation using algorithms such as Golub and Welsch (1969) as updated in Golub (1973).

To integrate with respect to sj,t+1 conditional upon At and st the abscissae are transformed

to s̃t+1,j = µj +
√

2σjxj, and the weights are transformed to w̃j = wj/
√

π, where π = 3.142.13

13These transformations arise because a Hermite rule integrates
∫

∞

−∞
f(x) exp (−x2)dx. Hence we need

to do a change of variables to get our integral
∫

∞

−∞
g(σz + µ)(1/

√
2π) exp (−0.5z2)dz to be of that form. A

change of variables puts the equation in the line above in the form
∫

∞

−∞
g(
√

2σx + µ)(1/
√

π) exp (−x2)dx,
which is where the expressions for s̃t+1,i and w̃i come from.
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Then, using a 2L + 1 rule,

E [f(st+1) |At, st] ≈
L

∑

j1=−L

· · ·
L

∑

jI=−L

L
∑

jI+1=−L

f(s̃t+1,j1 ,· · · , s̃t+1,jI
, s̃t+1,jI+1

)w̃j1· · ·w̃jI
w̃jI+1

. (15)

If, for example, there are three firms and a three point quadrature rule is used, then

E [f(st+1) |At, st] ≈
1

∑

i=−1

1
∑

j=−1

1
∑

k=−1

1
∑

l=−1

f(s̃i, s̃j, s̃k, s̃l)w̃iw̃jw̃kw̃l.

We use three point rules throughout. A three point rule will integrate a polynomial in st+1

up to degree five exactly.14

Step 7 involves updating the ex ante value function using a regression. We next describe

how we do this. As stated above, we have a grid over the state space whose boundaries are

fractional powers of two over the state space.15 We approximate the value function V (st)

by a locally indexed affine representation as described above. For the the grid increments

that determine the index of hyper-cubes we tried a range of values from 4 to 16 times the

standard deviation of the state variables rounded to a nearby fractional power of two to

scale the grid appropriately. The results are effectively the same. Hence in estimating the

model we set the grid increments at 16 times the standard deviation of the state variables.16

We compute the coefficients bK and BK as follows. They are first initialized to zero. We

then generate a set of abscissae {sj} clustered about K and solve the game with payoffs (9)

to get corresponding equilibria {AE
j }. We substitute the (AE

j , sj) pairs into equation (9) to

get {V (AE
j , sj)}J

j=1. Using the pairs {(V (AE
j , sj), sj} as data, we compute bK and BK by

multivariate least squares. We repeat until the bK and BK stabilize. We have found that

approximately twenty iterations suffice for three firms and thirty for four firms.17 The easiest

14If the s̃t+1 cross a grid boundary when computing (9) in Step 5, we do not recompute K because this
would create an impossible circularity due to the fact that the value function at the new K may not yet be
available. Our grid increments are large relative to the scatter of abscissae of the quadrature rule so that
crossing a boundary will be a rare event, if it happens at all.

15Recall that grid increments are chosen to be fractional powers of two so that the key has an exact
machine representation. This facilitates efficient computation through compact storage of objects indexed
by the key.

16The set of keys that actually get visited in any MCMC repetition is about the same for grid increments
ranging from 4 to 16 times the standard deviation of the state variables in our data. For a three firm game
the number of hyper-cubes that actually are visited in any one repetition is about six.

17An alternative is to apply a modified Howard acceleration strategy as described in Kuhn (2006); see also
Rust (2006) and Howard (1960). The idea is simple: The solution {AE

t } of the game with payoffs (9) will
not change much, if at all, for small changes in the value function V (s). Therefore, rather than recompute
the solution at every step of the (bK , Bk) iterations, one can reuse a solution for a few steps.
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way to get a cluster of points {sj} about a key is to use abscissae from the quadrature rule

described above with s set to K and A set to zero. However, one must jiggle the points so

that no two firms have exactly the same cost (see next paragraph for the reason for this).

Of importance in reducing computational effort is to avoid recomputing the payoff (equation

(9)) when checking equilibrium condition (10). Our strategy is to (temporarily) store payoff

vectors indexed by A and check for previously computed payoffs before computing new ones

in checking condition (10).

There will, at times, be multiple equilibria in solving the game. We therefore adopt an

equilibrium selection rule as follows. Multiple equilibria usually take the form of a situation

where one or another firm can profitably enter but if both enter they both will incur losses

whereas if neither enters then one of them would have an incentive to deviate. In the three

firm game the frequency of multiple equilibria is about 4%. We resolve this situation by

assuming an explicit equilibrium selection rule. We pick the equilibrium with the lowest

total cost. This idea is similar to that used by Berry (1992) and Scott-Morton (1999). That

is, the strategy profiles At are ordered by increasing aggregate cost, C =
∑I

i=1 AitCit and

the first At that satisfies the equilibrium condition (10) is accepted as the solution. Note

that our distributional assumptions on st guarantee that no two C can be equal so that this

ordering of the At is unique. Moreover, none of the Cit can equal one another; and when

that is true we have never failed to be able to compute a pure strategy equilibrium.

6 Likelihood Computation and Parameter Estimation

In this section we describe our estimation strategy. The parameters of the model are

θ = (µc, ρc, σc, κc, µr, σr, γ, β, pa). (16)

The meaning of the first eight parameters has been discussed in Section 4. The meaning of pa

will be discussed immediately below. In our data set we observe Rt and At = (A1t, . . . , AIt)

for firms i = 1, . . . , I in time period t. Log cost, ci,t = log Ci,t, is the sum of two components.

The first is log Cu,i,t, which is known by all firms but not by us. The second is log Ck,i,t, which

is known by all firms and by us as it depends only on the past actions which are observable

(see equation (21) below). Both evolve as a Markov process.
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Denote the part of the state vector that is unobservable to us by

Xt = (Cu,1,t, . . . , Cu,I,t). (17)

Denote the variables that we can observe by

Yt = (A1t, . . . , AIt, Ck,1,t, . . . , Ck,I,t, Rt). (18)

As previously, a lower case variable denotes the logarithm of an upper case variable

with the exception that at = At. With these conventions, xt = (cu,1,t, . . . , cu,I,t), and

yt = (a1t, . . . , aIt, ck,1,t, . . . , ck,I,t, rt). Recall that cost evolves as

ci,t = cu,i,t + ck,i,t (19)

cu,i,t = µc + ρc (cu,i,t−1 − µc) + σceit (20)

ck,i,t = ρc ck,i,t−1 − κcAi,t−1 (21)

and revenue evolves as

rt = µr + σreI+1,t. (22)

We have data for both the pre- and post-scandal periods. The pre-scandal period is

indexed by t = −n0, . . . , 0 and the values of Yt over the pre-scandal period are denoted by

Ypre. The post-scandal period is indexed by t = 1, . . . , n with values over it denoted by Ypost.

While the scandal changed the market structure thus rendering the pre-scandal data

unsuitable for general estimation, it can still be used for two purposes: The entry decisions

{Ait}0
t=−n0

can be used to compute the last two pre-scandal values ck,i,−1 and ck,i,0 of the

observable part of log cost for each firm; and the pre-scandal log revenue {rt}0
t=−n0

can be

used to help identify the parameters µr and σr.

We compute the initial values ck,i,−1 and ck,i,0 for each firm by running the recursion on

equation (21) started at −n0 over the observed choices {Ait}0
t=−n0

. This gives us the vectors

y−1 and y0 because (R−1, A−1) and (R0, A0) are in Ypre.

While the scandal may have affected which firms participated in the market post-scandal,

there is no reason to believe that market opportunities were different pre- and post-scandal.

Therefore the pre-scandal data can be used to help identify the revenue distribution. From

Ypre we can compute a normal likelihood for log revenue over the period −n0, . . . , 0. Although
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this likelihood actually only depends on two elements (µr, σr) of θ, we denote it as p(Ypre | θ)
for convenience.

Since we are estimating a game of pure strategy, a density for the strategy profile At,

which would be a function of (xt, rt, yt−1, θ), would puts mass one on a single value of At.

The implication is that a likelihood over the post-scandal data would be one if we predict

every entry decision perfectly and zero otherwise. We resolve this problem by assuming a

measurement error.18 Therefore, we adopt the following density for At

p(At | rt, xt, yt−1, θ) =
I

∏

i=1

(pa)
I(Ait=Ac

it
)(1 − pa)

I(Ait 6=Ac

it
) (23)

where 0 < pa < 1 and Ac
it is the predicted entry decision computed from the model using

the methods described in Section 5 for given (xt, rt, yt−1, θ).

Douced, de Freitas, and Gordon (2001) present a concise description of the sequential

importance sampler that we follow in describing our analysis. The densities relevant to a

sequential importance sampler are the transition density of the hidden state vector

p(xt |xt−1, θ), (24)

which is defined by recursion equation (20), the initial density

p(x0 | θ), (25)

which, from equation (20), is normal with mean µc and standard deviation σc/
√

1 − ρ2
c , and

the observation density

p(yt | yt−1, xt, θ) = p(At | rt, yt−1, xt, θ) p(rt | yt−1, xt, θ), (26)

where, from equation (22), p(rt | yt−1, xt, θ) is normal with mean µr and standard deviation

σr.

The sequential importance sampler is as follows:

1. For t = 0

18Our approach is similar to that frequently adopted in likelihood based inference when estimating reser-
vation wages in labor search models, and in estimating models of option pricing and yield curves.
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(a) Start N particles by drawing x
(j)
0 for j = 1, . . . , N from the initial density equa-

tion (25).

(b) Compute

p(y0 | θ) =
∫

p(y0 | y−1, x0, θ) p(y−1, x0 | θ) dx0

.
=

1

N

N
∑

j=1

p(y0 | y−1, x
(j)
0 , θ).

2. For t = 1, . . . , n

(a) For each particle, draw x̃
(j)
t from the transition density equation (24) and set

x̃
(j)
0:t = (x

(j)
0:t−1, x̃

(j)
t ).

(b) For each particle compute the particle weights ŵ
(j)
t using the observation density

equation (26); i.e.

w̃
(j)
t = p(yt | yt−1, x̃

(j)
t , θ).

The parametrization in equation (23) eliminates the problem that the weights

could all be zero.

(c) Normalize the weights so that they sum to one

ŵ
(j)
t =

w̃
(j)
t

∑N
j=1 w̃

(j)
t

.

(d) For j = 1, . . . , N sample with replacement the particles x
(j)
0:t from the set {x̃(j)

0:t}
according to the weights {ŵ(j)

t }. (Note the convention: Particles with unequal

weights are denoted by {x̃(j)
0:t}. After resampling the particles are denoted by

{x(j)
0:t}.)

(e) Compute

p(yt | y1:t−1, θ, pa) =
∫

p(yt | yt−1, xt, θ) p(yt−1, xt | y1:t−1, θ) dxt

.
=

1

N

N
∑

j=1

p(yt | yt−1, x
(j)
t , θ).
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Note that p(yt | yt−1, x
(j)
t , θ) does not have to be recomputed here if the weights

w̃
(j)
t are associated to x

(j)
t in the resampling step and saved. If each firm’s entry

decisions are similarly associated, then classification error rates can be computed

at this step.

3. The likelihood is

L(θ) = p(y0:t | θ) = p(Ypre | θ, pa)p(y0 | θ)
n

∏

t=1

p(yt | y0:t−1, θ).

Figure 1 about here

Figure 2 about here

Figure 3 about here

Figure 4 about here

The log likelihood surface is plotted on a fine grid in Figure 1 and on a coarse grid in

Figure 2 for the three firm model. Figures 3 and 4 are for the four firm model. The endpoints

of the horizontal axes are tenth of a standard deviation to the left and right of the maximum

in Figure 1 and 24 standard deviations to the right and left in Figure 2. For Figures 3

and 4 they are a tenth and 48. These are profile likelihoods; i.e., in each panel the indicated

parameter is moved and all others are fixed at the values that maximize the likelihood.

As seen from Figures 1 and 3, the surface is, basically, a step function so that curvature

at the maximum will not provide a reliable basis for inference. The reason, of course, is

that small changes in the parameters do not cause the decisions of the firms to change. In

this situation, accurate frequentist inference would be difficult and would be prohibitively

computationally intensive if bootstrapping were involved. On the other hand, Bayesian

inference in this situation is conceptually straightforward and computationally feasible.

However, Figures 2 and 4 do suggest that implementing a Bayesian strategy that explores

the surface well will be a challenge. They also suggest that the standard deviations of the
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posterior will be extremely tight. The horizontal line is at three orders of magnitude below

the maximum. If an MCMC chain is near the maximum, the chance that it will move to a

point below the horizontal line line is less than 0.001.

An MCMC chain that uses a move-one-at-a-time random walk proposal density will

usually do a good job of exploring surfaces such as seen in Figures 2 and 4; see Gamerman

and Lopes (2006). However this comes at a cost because an MCMC chain that uses a move-

one-at-a-time random walk proposal strategy is usually inefficient relative to those that use

other proposal strategies. Briefly, the method is as follows: The proposal density q(θo, θ∗)

defines a distribution of potential new values θ∗ given an old value θo. Denote the likelihood

by L(θ) and the prior by π(θ). Given the value θo at the end of the MCMC chain, one moves

the chain forward one step to θ′ as follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Let α = min
(

1, L(θ∗) π(θ∗) q(θ∗, θo)
L(θo) π(θo) q(θo,θ∗)

)

.

3. With probability α, set θ ′ = θ∗, otherwise set θ′ = θo.

For our particular q, one randomly chooses an element j of θo to move and then proposes

a new value by replacing θo
j with a draw from the normal distribution with mean θo

j and

scale σj, where σj is chosen such that acceptance at Step (3) occurs with a frequency of

about 30% (see e.g., Gelman, Roberts, and Gilks (1996), Roberts and Rosenthal (2001)).

The vertical lines in Figures 2 and 4 indicate the range of the MCMC chain’s excursions

after the transient elements of the chain have died out.

The likelihood is hierarchical in that given model parameters and conditional upon the

latent cost variables, it can be evaluated by solving the game. Given this structure, estima-

tion can be viewed as a double-layer nesting of the conditional likelihood within an outer

MCMC loop and an inner importance sampling loop. The MCMC proposal density fixes θ

in the outer loop. The sequential importance sampler generates a cost trajectory within the

inner loop. Solving the game both evaluates the conditional likelihood along this trajectory

and provides the importance sampler with the information needed to adjust costs sequen-

tially along the trajectory to take into account the effect of entry decisions on the trajectory.

26



When one falls through the inner loop, the likelihood has been averaged over costs thereby

averaging out the latent cost distribution. At this point the MCMC accept/reject decision

is made and the MCMC chain is moved forward. One iterates through the outer loop to

obtain the complete MCMC chain.

We implement our computational algorithm using code that is in the public domain

and available at http://econ.duke.edu/webfiles/arg/emm. This code is based on Cher-

nozhukov and Hong (2003). Full details regarding the proposal density and other conventions

are in the User’s Guide distributed with the code. One needs enough draws to accurately

compute averages such as standard deviations, histograms, and other characteristics of the

posterior distribution. Our chains are highly correlated so that very long chains with a

stride (sampling rate) of 375 are required to break the dependence. As explained in the

User’s Guide, computations can be accelerated if the values of θ visited by the chain are

restricted to (fractional) powers of two. We impose this restriction on the chain.

The parameter pa can either be estimated or be fixed at various values. We tried values

from 0.75 to 0.95. We find that estimates of the other elements of θ are hardly affected.

What we do find is that varying pa affects the rate at which particles die out at Step (2d)

in the sequential importance sampler. Since we are not using the sequential importance

sampler as a smoother, the rate at which particles die out is of no concern. We always

have a large number of points available at Step (2e) of the sequential importance sampler;

we experimented with different number of particles till the results were not sensitive to

the choice of number of particles. When pa is treated as a parameter to be estimated,

the performance of the MCMC algorithm is degraded somewhat. We think that fixing pa

is preferred because doing so improves performance and permits a cleaner comparison of

results across the cases I = 3, 4 that we consider in Section 7.

The firm’s discount rate β is extremely difficult to estimate in studies of this sort (see

e.g., Magnac and Thesmar (2002) and Rust (1994)) and we find this to be the case here.19 A

common rule of thumb in business is not to undertake a project whose internal rate of return

is less than 20%. Grabowski, Vernon, and DiMasi (2002) state that estimates of internal rates

19See ? and ? for more results on nonparameteric identification of single agent dynamic discrete choice
models.
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specific to the drug industry range “from 13.5% to over 20%.” Theoretically, a firm should

not undertake a project whose rate of return is less than its cost of capital. The historical risk

premium in the drug industry is 12.55%, (e.g., Gebhardt, Lee, and Swaminathan (2001)).

Adding to this a nominal borrowing rate of 5% one arrives at the value 17.55%. Grabowski,

Vernon, and DiMasi (2002) arrive at a nominal cost of capital of 14% using a CAPM method

that they regard as biased downward. On the basis of these considerations we set the firm’s

discount rate at 20%. There are 40 market entry opportunities in our five years of data. That

implies an expected time increment of 0.125 years between prospective projects for the firms

in our data. Therefore, using an annual internal rate of 20%, allowing for compounding, and

rounding to a nearby fractional power of two, we set β = 0.96875.

Examination of equation (9) indicates that were γ to enter as a linear factor then γ would

not be identified. That in fact it enters to the first order as (1+γ log R) does not help matters

much. Attempts to estimate γ anyway yield estimates that meander about 0.93. Therefore,

based on the plausible lower bound of 0.908 derived in Section 4 and our experience from

trying to estimate γ, we take 0.93 to be a reasonable value. Rounding to a nearby fractional

power of two, we set γ = 0.9375.

For the remaining parameters we use flat, noninformative priors that impose these sup-

port conditions: −1 ≤ ρc ≤ 1, 0 ≤ κc, 0 < σc, and 0 < σr.
20

7 Results

We estimate the model for two cases: (1) the top three dominant firms are the only potential

entrants that are strategic competitors (the actions of the remaining 48 firms are accounted

for by the parameter γ), and (2) the top four dominant firms are only potential entrants

(the actions of the other 47 entrants are accounted for by γ). The mode and standard

deviations of the posterior distribution are reported in Table 2. We focus on the mode of the

multivariate posterior distribution because it actually corresponds to a value at which the

model has been evaluated. Other measures of central tendency of the posterior distribution

can be misleading when studying the behavior of a structural model because they may have

20Open ended ranges actually should have large upper and lower bounds to assure stationarity of the
MCMC chain. As seen from our histograms, Figures 5 and 6, bounds do not interfere with the chain.
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never appeared in the MCMC chain and could give a distorted view of the model were it to be

evaluated at such a point. Histograms of the marginal posterior distributions are displayed

in Figures 5 and 6 for the three and four firm cases, respectively.

Table 2 about here

Figure 5 about here

Figure 6 about here

Figure 7 about here

Figure 8 about here

Figure 9 about here

The parameters are tightly estimated21 and, as seen from the extremely low classification

error rates, model predictions are quite accurate. The large value of ρc implies costs are

persistent. A value of κc of 0.07 implies that an immediate cost reduction of 7% going into

the next market opening, and the average annual cumulative reduction computed using the

AR(1) cost process (equation (2)) is 51%. However, σc is large, so that this reduction can

easily be eliminated by a cost shock.22

Figure 7 plots the log cost of the three dominant firms in the three firm model in the upper

three panels. The circles indicate that the firm entered that market. The logarithm of cost

is computed by averaging at Step (2e) of the importance sampler. The bottom panel shows

log total revenue; the numbers at the bottom of this panel are the number of dominant firms

21Despite the small standard deviations shown in Table 2, the profile likelihoods in Figures 2 and 4
suggest that the MCMC chain adequately explored the posterior density. The likelihood is proportional to
the posterior because priors are flat.

22One source of this large standard deviation may be organizational forgetting (see e.g., Benkard (2000),
Besanko, Kryukov, Doraszelski, and Satterthwaite (2007)). However, since we do not explicitly model
forgetting in the AR(1) cost process we are cautious in making this interpretation.
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who entered the market at that time point. The top firm, Mylan, has a clear cost advantage

over its competitors. Broad trends in cost are about the same for all firms.

Figure 8 plots together the log cost of the three dominant firms from both the 3 and 4

firm models. The circles at the bottom of the upper panel indicate which markets Mylan

entered, the crosses in the middle panel are the same for Novopharm, and the asterisks in

the lower panel are the same for Lemmon. The construction of the plots is the same as

for Figure 7. The salient feature of this plot is that costs for the three dominant firms are

estimated as being about the same in the three and four firm models.

Figure 9 displays the entry decisions of the dominant firms, period by period, as circles

and the model’s average prediction of their entry, period by period, as crosses. The average

prediction is computed by averaging game solutions at Step (2e) of the importance sampler

at the mode of the posterior density. The classification error rates shown in Table 2 can be

viewed as the errors that would obtain if decisions were predicted by using a threshold of

0.5 to predict entry (i.e., entry if predicted probability ≥ 0.5; no entry otherwise) for the

average predictions shown in Figure 9.

Another way is to assess results is to directly explore the possibility that the firms play

a different game than the game we propose rather than inferring the importance of the

dynamics from the estimate of κc. Consider two other games that might be played instead

of the game with payoffs (9). They could play a game with payoffs

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) = Ait (Rγ
t /Nt − Cu,i,t) , (27)

where no attention at all is paid to the cost reductions arising from past market entries (κc =

0) or to dynamic spillovers of entry (β = 0). We call this the myopic game (β = 0, κc = 0).

Or they could play a game with payoffs

Vi(Ai,t, A−i,t, Ci,t, C−i,t, Rt) = Ait (Rγ
t /Nt − Cit) (28)

where they take cognizance of the effect of entry on costs but ignore the continuation value

of the game, i.e., β = 0. We call this the static game (β = 0, κc > 0).

For the three firm game the myopic game (β = 0, κc = 0) has an equilibrium that agrees

with the solution of the game we propose (i.e., the game with payoffs (9)) in 49% of the cases.
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The game that ignores the continuation value (β = 0, κc > 0) has an equilibrium that agrees

in 81% of the cases. For the four firm game, these values are 31% and 68%, respectively.

These values were computed by using the posterior modes shown for the game in Table 2

and finding all equilibria for the three games for all costs that obtained at Step (2b) of the

sequential importance sampler. Incidentally, we can also compute the incidence of multiple

equilibria for these three games. For the three firm game they are 5% (β = 0, κc = 0), 5%

(β = 0, κc > 0), and 4% (β > 0, κc > 0), respectively. For the four firm game they are 5%,

7%, and 4%, respectively. As discussed earlier, we adopt an explicit equilibrium selection

rule, i.e., we pick the equilibrium with the lowest total cost.

These computations suggest that the myopic and static games would do a poor job of

rationalizing the data. To check, we use our parameter estimates, impose β = κc = 0, and

find that the overall classification error rate for the myopic game exceeds the overall value

in Table 2 by a factor of 3.8 for the three player game and 3.6 for the four player game.

Similarly, imposing β = 0, we find that the classification error rate for the static game

exceeds the values in Table 2 by a factor of 2.0 for both the three and four player games.

It is worth asking the question whether what is recovered is the dynamic spillover effect

of entry, i.e., entry reduces costs or whether the causality is reversed and it is low cost

firms that enter. In the latter case one could think of a situation where there is persistent

heterogeneity in costs across firms and the low cost firms always enter and the high cost

firms stay out. Recall that in our model all firms are the same ex ante. Heterogeneity in

costs arises endogenously based in part on past actions. Therefore Figures 7, 8, and 9 are to

be viewed as ex-post reconstructions of the history of the game. However, one might surmise

from the volatility of the plots that too much emphasis is being placed on the trajectory of

equation (4) (i.e., the “unknown” component of costs) and not enough on (5) (i.e., “known”

component of costs). Stated differently, one might surmise that the effect of the random

shocks (operating through σc) is too large and of the dynamic spillovers (through κc) is too

small or that more generally σc and κc are correlated. One way to check this is to set σc to

smaller values and re-run the MCMC chain. Setting σc to 0.25, 0.125, and 0.0625 has very

little effect on κc although it does dramatically reduce the likelihood evaluated at the mode.

Thus we conclude that we are estimating the effect of entry on costs and not vice versa.
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8 Conclusions

We develop a procedure based on sequential importance sampling to estimate a dynamic

discrete game that includes serially correlated unobserved endogenous state variables. Our

application is a dynamic oligopolistic model of the generic pharmaceutical industry that

incorporates dynamic spillover effects of entry on future costs. Our paper contributes to the

estimation of the oligopolistic dynamic games. We also provide evidence on the dynamic

spillover effects of past industry experience in one product market on performance in other

product markets for the generic pharmaceutical industry. Our stylized model fits the data

well, i.e., the classification error rates are small. Our results also enhance understanding

of entry decisions in the pharmaceutical industry. We find evidence that past entry affects

current costs and that the dynamic evolution of the production cost plays an important role

in the equilibrium path of the generic pharmaceutical industry structure.

Our method is more generally applicable to estimating dynamic discrete games in which

heterogeneity between agents arises from serially correlated unobserved endogenous state

variables. All that is required is a method for solving the game and a Markovian repre-

sentation of the latent dynamics. The spillover effect estimated in this paper is related to

experience gained in producing drugs in the form of oral solids. It may be worthwhile in

future work to quantify other sources of spillovers. Another important extension would be to

allow for estimation of dynamic games where the strategy set is mixed discrete-continuous,

e.g., introduction of a new brand and the associated decision about advertising expenditure.

Our method may also have potential in estimating dynamic games of incomplete informa-

tion.
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Table 1. Data

Dominant Firms
(enter = 1, not enter = 0)

Drug / Active Ingredient ANDA Date Mylan Novopharm Lemmon Geneva Total Revenue
Entrants ($’000s)

Sulindac 03 Apr. 90 1 0 1 1 7 189010
Erythromycin Stearate 15 May 90 0 0 0 0 1 13997
Atenolol 31 May 90 1 0 0 0 4 69802
Nifedipine 04 Jul. 90 0 1 0 0 5 302983
Minocycline Hydrochloride 14 Aug. 90 0 0 0 0 3 55491
Methotrexate Sodium 15 Oct. 90 1 0 0 0 3 24848
Pyridostigmine Bromide 27 Nov. 90 0 0 0 0 1 2113
Estropipate 27 Feb. 91 0 0 0 0 2 6820
Loperamide Hydrochloride 30 Aug. 91 1 1 1 1 5 31713
Phendimetrazine 30 Oct. 91 0 0 0 0 1 1269
Tolmetin Sodium 27 Nov. 91 1 1 1 1 7 59108
Clemastine Fumarate 31 Jan. 92 0 0 1 0 1 9077
Cinoxacin 28 Feb. 92 0 0 0 0 1 6281
Diltiazem Hydrochloride 30 Mar. 92 1 1 0 0 5 439125
Nortriptyline Hydrochloride 30 Mar. 92 1 0 0 1 3 187683
Triamterene 30 Apr. 92 0 0 0 1 2 22092
Piroxicam 29 May 92 1 1 1 0 9 309756
Griseofulvin Ultramicrocrystalline 30 Jun. 92 0 0 0 0 1 11727
Pyrazinamide 30 Jun. 92 0 0 0 0 1 306
Diflunisal 31 Jul. 92 0 0 1 0 2 96488
Carbidopa 28 Aug. 92 0 0 1 0 4 117233
Pindolol 03 Sep. 92 1 1 0 1 7 37648
Ketoprofen 22 Dec. 92 0 0 0 0 2 107047
Gemfibrozil 25 Jan. 93 1 0 1 0 5 330539
Benzonatate 29 Jan. 93 0 0 0 0 1 2597
Methadone Hydrochloride 15 Apr. 93 0 0 0 0 1 1858
Methazolamide 30 Jun. 93 0 0 0 1 3 4792
Alprazolam 19 Oct. 93 1 1 0 0 7 614593
Nadolol 31 Oct. 93 1 0 0 0 2 125379
Levonorgestrel 13 Dec. 93 0 0 0 0 1 47836
Metoprolol Tartrate 21 Dec. 93 1 1 0 1 9 235625
Naproxen 21 Dec. 93 1 1 1 1 8 456191
Naproxen Sodium 21 Dec. 93 1 1 1 1 7 164771
Guanabenz Acetate 28 Feb. 94 0 0 0 0 2 18120
Triazolam 25 Mar. 94 0 0 0 0 2 71282
Glipizide 10 May 94 1 0 0 0 1 189717
Cimetidine 17 May 94 1 1 0 0 3 547218
Flurbiprofen 20 Jun. 94 1 0 0 0 1 155329
Sulfadiazine 29 Jul. 94 0 0 0 0 1 72
Hydroxychloroquine Sulfate 30 Sep. 94 0 0 0 0 1 8492

Mean 0.45 0.28 0.25 0.25 3.3 126901

Shown is the post-scandal data used in the study. The entry decisions of the four
dominant firms are indicated by 1 for entry and 0 for no entry. Total Entrants are
how many of the fifty-one potential entrants entered, including the dominant firms.
Revenue is in thousands of dollars, and is the revenue of the branded product in
the year before patent expiration.
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Table 2. Posterior Distribution

Number of Potential Entrants
(excluding “other” firms)

Parameter 3 firms 4 firms

µc 10.05 10.07
(0.017) (0.0014)

ρc 0.9866 0.9873
(0.00086) (5.6e-05)

σc 0.3721 0.3675
(0.026) (3.0e-04)

κc 0.06655 0.07067
(0.0015) (1.1e-04)

µr 9.906 10.008
(0.083) (0.0037)

σr 1.591 1.682
(0.060) (0.0023)

γ 0.9375 0.9375

β 0.96875 0.96875

pa 0.9375 0.9375

CER firm 1 0.09 0.12
CER firm 2 0.08 0.09
CER firm 3 0.10 0.11
CER firm 4 0.14

CER all firms 0.09 0.11

MCMC Reps 3000000 3000000

stride 375 375

Shown is the mode of the multivariate posterior distribution not the modes
of the marginal posterior distributions. The multivariate posterior mode
does correspond to a set of parameter settings that actually occur in the
MCMC chain whereas other measures of central tendancy such as the
mean or marginal medians might not. Standard deviations are shown in
parentheses. CER is the classification error rate when the parameters
are set to the posterior mode. They are computed at Step 2e of the
importance sampler. At that point in the algorithm the predicted actions
Ac

i,t,j are known for each firm i at each time t for each particle j and can
be compared to the observed actions Ait. The CER is the the proportion
of the cases where Ait 6= Ac

i,t,j computed both by firm and overall.
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Figure 1. Profile Log Likelihood, Three Firm Model. Shown is the logarithm

of the profile likelihood plotted for a tenth of the posterior standard deviation to the

left and right of the maximum of the likelihood.
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Figure 2. Profile Log Likelihood, Three Firm Model. Shown is the logarithm of

the profile likelihood plotted for 24 posterior standard deviations to the left and right

of the maximum of the likelihood. Points that violate support conditions and points

below 10−6 of the maximum of the likelihood are not plotted. The horizontal line is

at 10−3 of the maximum. The vertical lines indicate the range of the MCMC chain’s

excursions after the transient elements of the chain have died out.
43



10.06455 10.06460 10.06465 10.06470 10.06475 10.06480

−
44

0
−

43
0

−
42

0

Profile log likelihood of mu_c

0.987242 0.987244 0.987246 0.987248 0.987250 0.987252 0.987254

−
43

0
−

42
0

Profile log likelihood of rho_c

0.36746 0.36747 0.36748 0.36749 0.36750 0.36751

−
44

0
−

43
0

−
42

0

Profile log likelihood of sigma_c

0.070660 0.070665 0.070670 0.070675 0.070680

−
44

0
−

43
0

−
42

0

Profile log likelihood of kappa_c

10.0080 10.0082 10.0084 10.0086

−
43

0
−

42
0

Profile log likelihood of mu_r

1.6817 1.6818 1.6819 1.6820 1.6821

−
43

5
−

42
5

−
41

5

Profile log likelihood of sigma_r

Figure 3. Profile Log Likelihood, Four Firm Model. Shown is the logarithm of

the profile likelihood plotted for a tenth of a posterior standard deviations to the left

and right of the maximum of the likelihood.
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Figure 4. Profile Log Likelihood, Four Firm Model. Shown is the logarithm of

the profile likelihood plotted for 48 posterior standard deviations to the left and right

of the maximum of the likelihood. Points that violate support conditions and points

below 10−6 of the maximum of the likelihood are not plotted. The horizontal line is

at 10−3 of the maximum. The vertical lines indicate the range of the MCMC chain’s

excursions after the transient elements of the chain have died out.
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Figure 5. Marginal Posterior Distributions, Three Firm Model. Shown are

histograms constructed from an MCMC chain for the three firm model with 3,000,000

repetitions at a stride of 375 for 8000 net. The salient feature of this graphic is the

contrast of the histogram for the parameter κc compared to that shown in Figure 6.
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Figure 6. Marginal Posterior Distributions, Four Firm Model. Shown are

histograms constructed from an MCMC chain for the four firm model with 1,400,000

repetitions at a stride of 375 for 3733 net. The salient feature of this graphic is the

contrast of the histogram for the parameter κc compared to that shown in Figure 5.
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Figure 7. Cost, Revenue, and Entry Decisions. Plotted as a solid line in the

first three panels is the logarithm of cost for the three dominant firms in the three firm

model. The logarithm of cost is computed by averaging at Step 2e of the importance

sampler at the maximum likelihood estimate. The circles in these plots indicate that

the firm entered the market at that time point. The bottom panel shows the logarithm

of total revenue. The numbers at the bottom are the count of the number of dominant

firms who entered the market at that time point.
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Figure 8. Cost and Entry Decisions of the Dominant Firms. Plotted is the

logarithm of cost for the three dominant firms. The dashed line is under the three firm

model, and the solid under the four firm model. The circles indicate the markets that

Mylan entered, crosses the same for Novopharm, and the asterisks for Lemmon. The

logarithm of cost as described in the legend of Figure 7.
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Figure 9. Actual and Predicted Entry Decisionts. Plotted as circles are the

entry decisions of the three dominant firms in the three firm model. The crosses are

the average predictions of the three firm model computed by averaging game solutions

at Step 2e of the importance sampler at the maximum likelihood estimate.
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