Housing over Time and over the Life Cycle:
A Structural Estimation

Wenli Li, Haiyong Liu, Rui Yao*

September 2008

ABSTRACT

We estimate a structural model of optimal life-cycle housing and consumption in the presence of realistic labor income and house price uncertainties. The model postulates constant elasticity of substitution between housing service and nonhousing consumption, and explicitly incorporates a house adjustment cost. Our estimation fits the cross-sectional and time-series household wealth and housing profiles from the Panel Study of Income Dynamics quite well, and suggests an intra-temporal elasticity of substitution between housing and nonhousing consumption of 0.33 and a housing adjustment cost that amounts to about 15 percent of house value. Policy experiments with estimated preference parameters imply that households respond nonlinearly to house price changes with large house price declines leading to sizable decreases in both aggregate homeownership rate and aggregate non-housing consumption. The average marginal propensity to consume out of housing wealth changes ranges from 0.4 percent to 6 percent. When lending conditions are tightened in the form of a higher down payment requirement, interestingly, large house price declines result in more severe drops in aggregate homeownership rate but milder decreases in non-housing consumption.

Key Words: Life-cycle, housing adjustment costs, intratemporal substitution, methods of simulated moments

JEL Classification Codes: E21, R21

*Wenli Li is from the Department of Research, Federal Reserve Bank of Philadelphia; wenli.li@phil.frb.org. Haiyong Liu is from the Department of Economics, East Carolina University; liuh@mail.ecu.edu. Rui Yao is from the Department of Real Estate, Zicklin School of Business, Baruch College; rui.yao@baruch.cuny.edu. We thank Juan Contreras and Alex Michaelides for their comments. We also thank seminar participants at the 2008 Society of Nonlinear Economic Dynamics Annual Meeting, Midwest Macro Meeting, Society for Government Economists Annual Meeting, Society of Economic Dynamics Summer Meeting, the Sweden Riksbank Housing Conference, and the Bank of Finland. The views expressed are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of Philadelphia, or the Federal Reserve System.
1. Introduction

The U.S. housing market has experienced dramatic price movements in recent years. These movements, accompanied by substantial increases in household indebtedness, have drawn the attention of policy makers and academicians. Calibrated housing models are now increasingly deployed in studying the implications of housing on consumption and savings (Campbell and Cocco 2005, Fernandez-Villaverde and Krueger 2005, Li and Yao 2007, Stokey 2007, Kiyotaki, Michaelides, and Nikolov 2007), on stock market participation and asset allocation (Cocco 2005, Flavin and Yamashita 2002, and Zhang and Yao 2005), on asset pricing (Davis and Martin 2005, Siegel 2005, Piazzesi, Schneider, and Tuzel 2005, Lustig and Van Nieuwerburgh 2006, and Flavin and Nakagawa 2007), and on the transmission channel and effectiveness of monetary policy (Iacoviello 2005).

Despite the growing interest in housing models, econometric research aiming at identifying the relevant housing preference parameters has been lacking. As a consequence, theoretical models are often calibrated with little empirical guidance regarding the key model input parameters. In particular, the function form for period utility function and its parameterization are typically chosen out of convenience.¹

Among the small literature of econometric studies on housing preference, there has been little consensus on the magnitudes of these housing preference parameters. Specifically, studies based on macro-level aggregate consumption or asset price data frequently suggest a value larger than one for the intra-temporal elasticity of substitution between housing and non-housing consumption — implying that economic agents reduce expenditure on housing when house prices move up relative to prices of non-housing consumption (Davis and Martin 2005, and Piazzesi, Schneider, and Tuzel 2007). These studies have typically assumed the existence of a representative agent and abstracted from market incompleteness and information frictions, despite strong evidence of household heterogeneity and housing adjustment cost documented in the literature (Eberly 1994, Caballero 1993, Carroll and Dunn 1997, and Attanasio 2000).

¹Many theoretical studies using numerical calibrations adopt Cobb-Douglas utility function for its simplicity and often abstract from housing adjustment costs. These studies cite the relative constant share of aggregate housing expenditure in the National Income and Product Account as supporting evidence of the Cobb-Douglas preference. The Consumer Expenditure Survey, however, indicates that expenditure shares at aggregate as well as the Metropolitan Statistical Area (MSA) level have fluctuated over time with the aggregate share increasing over the last two decades. The movements at the MSA level are mixed with many experiencing upward movement. See Stokey (2007) and Kahn (2008) for additional evidence against Cobb-Douglas utility specification.
In contrast, investigations using household-level data recover much lower values for the elasticity parameter, often in the range of 0.15 and 0.50 (See, for example, Flavin and Nakagawa 2008, Hanushek and Quigley 1980, Siegel 2004, and Stokey 2007.) These studies, however, often suffer from selection bias in the sense that households endogenously make decisions on both house tenure (renting vs. owning, moving vs. staying) and the quantity of housing services flows. As a result, these analysis cannot separate the effects of elasticity of substitution from the effects of housing transaction costs. Furthermore, the identification in many of the studies are predicated on households having unlimited access to credit, which contradicts the practice in reality. The lack of robustness to market friction and incompleteness, thus, complicates the interpretation of the empirical estimates in these studies.

This paper contributes to the literature by conducting a structural estimation of a stochastic life-cycle model of consumption, savings, and housing choices, and jointly identifying the intra-temporal as well as inter-temporal preference parameters by matching average wealth and housing profiles generated by the model with profiles from micro data. We postulate a Constant Elasticity of Substitution (CES) preferences over housing and non-housing consumption and allow households to make housing decisions along both the extensive margin of home ownership and the intensive margin of housing service flows and house value. The model also explicitly admits a housing transaction cost and a collateral borrowing constraint, as well as labor income and house price uncertainties. Our model, therefore, builds on a growing literature examining household house tenure choice and housing consumption choices within a life-cycle framework (Ortalo-Magne and Rady 1999, Fernandez-Villaverde and Krueger 2002, Gervais 2002, Campbell and Cocco 2003, Chambers, Garriga, and Schlagenhauf 2005, Yao and Zhang 2005, Li and Yao 2007, and Bajari, Benkard, and Krainer 2005).

Our estimation of the structural parameters is achieved through the Method of Simulated Moments (MSM). Specifically, we first construct the average wealth, home ownership rates, house value–income ratio, and rent–income ratio profiles from the Panel Study of Income Dynamics (PSID) data set across three age groups for each calendar year between 1984 and 2005. For home ownership rate, house values, and rent values, we further group households according to the level of house price in their state of residence and compute additional mo-

2See Cooper, Haltiwanger, and Willis (2007) for a discussion on the bias that arises in estimation of ex-post Euler equations.

3For example, a household with a high elasticity of substitution may not wish to adjust its house and consumption after a significant house price appreciation, since accessing appreciated housing assets will trigger significant transaction costs.

3
ments. We then numerically solve the model for optimal household behavior and simulate the model to generate paths of life-cycle housing and wealth profiles in the same manner as the data moments to eliminate potential bias caused by cohort and time effects as well as selection bias. By minimizing the weighted difference between the simulated model profiles and their empirical counterparts, we identify the parameters of our structural model.

Our simulated wealth and housing profiles offer a good match to the data over the sample period. Our estimation also reveals that after explicitly accounting for house adjustment costs, the intra-temporal elasticity of substitution between housing services and nondurables is around 0.33, a value much lower than the estimates based on aggregated time series. Our estimate of the housing transaction costs for married couples amounts to 15 percent of house value, consistent with the low mobility rate in the data. Our estimated values of the coefficient of relative risk aversion and the time discount factor, at 6.19 and 0.96, are in line with those provided by the previous literature.

Finally, we use our estimated model to conduct policy experiments. In particular, we investigate how households respond to changes in house prices coupled with changes in income and financial conditions. We find that households respond nonlinearly to changes in house prices. Large house price depreciation leads to significant decreases in both home ownership rate and non-housing consumption. Simultaneous income declines exacerbate these adverse effects. Interestingly, while a tighter ex ante borrowing constraint aggravates the negative effect of house price declines on home ownership rate, it alleviates the negative impact on non-housing consumption in a housing market downturn.

To the best of our knowledge, our paper represents one of the first structural estimation of housing preference parameters that are consistent with both time series and cross-sectional evidence on households’ housing consumption and savings decisions. Estimating a rich life-cycle model allows us to address potential biases directly, by replicating them in the simulation. The recent paper by Bajari, Chan, Krueger, and Miller (2008) is the closest in spirit to our paper. There are, however, important differences. Bajari et al adopt a two step approach. In the first step, reduced form decision rules are estimated together with the law of motion for state variables. The structural parameters are estimated in the second step using simulation based on reduced form decision rule in the first step. In contrast, we solve the decision rules endogenously instead of imposing reduced forms. Second, we explicitly model and estimate households’ tenure decision. Finally, we jointly estimate housing adjustment costs with the
intratemporal elasticity parameter as there are important tradeoffs between the two parameters. However the computation costs associated with solving for optimal decision rules forces us to abstract from some potentially interesting economic features.\footnote{For example, interest rate is assumed to be non-stochastic in our model.}

The rest of the paper proceeds as follows. In Section 2, we present a life-cycle model of housing choices with an adjustment cost. In Section 3, we lay out our estimation strategy and describe the data sources. Section 4 discusses our main findings and implications. We perform policy experiment in Section 5. Finally, we conclude and point to future extensions in Section 6.

\section{The Model Economy}

Our modeling strategy extends that of Yao and Zhang (2005) and Li and Yao (2007) by admitting a flexible specification of elasticity of substitution between housing and other consumption.

We consider an economy where a household lives for at most T ($T > 0$) periods. The probability that the household lives up to period t is given by the following survival function,

\[F(t) = \prod_{j=0}^{t} \lambda_j, \quad 0 \leq t \leq T, \tag{1} \]

where λ_j is the probability that the household is alive at time j conditional on being alive at time $j - 1$, $j = 0, ..., T$. We set $\lambda_0 = 1$, $\lambda_T = 0$, and $0 < \lambda_j < 1$ for all $0 < j < T$.

The household derives utility from consuming a numeraire good C_t and housing services H_t, as well as from bequeathing wealth Q_t. The within-period utility demonstrates a constant elasticity of substitution (CES) between the two goods, modified to incorporate a demographic effect:

\[U(C_t, H_t; N_t) = N_t^{\gamma} \left[(1 - \omega) \left(\frac{C_t}{N_t} \right)^{1 - \frac{1}{\xi}} + \omega \left(\frac{H_t}{N_t} \right)^{1 - \frac{1}{\xi}} \right]^{\frac{1 - \gamma}{1 - \xi}} \]

\[= N_t^{\gamma} \left[(1 - \omega) C_t^{1 - \frac{1}{\xi}} + \omega H_t^{1 - \frac{1}{\xi}} \right]^{\frac{1 - \gamma}{1 - \xi}} \tag{2} \]
where N_t denotes the exogenously given effective family size, which captures the economies of scale in household consumption. The parameter ω controls the expenditure share on housing services; and ζ governs the degree of intratemporal substitutability between housing and nondurable consumption goods. We denote the bequest function as $B(Q_t)$.

In each period, the household receives income Y_t. Prior to the retirement age, which is set exogenously at $t = J$ ($0 < J < T$), Y_t represents labor income and is given by

$$Y_t = P_t^Y \varepsilon_t,$$

where

$$P_t^Y = \exp\{f(t, Z_t)\} P_{t-1}^Y \nu_t$$

is the permanent labor income at time t. P_t^Y has a deterministic component $f(t, Z_t)$, which is a function of age and household characteristics Z_t. ν_t represents the shock to permanent labor income. ε_t is the transitory shock to Y_t. We assume that $\{\ln \varepsilon_t, \ln \nu_t\}$ are independently and identically normally distributed with mean $\{−0.5\sigma^2_\varepsilon, −0.5\sigma^2_\nu\}$, and variance $\{\sigma^2_\varepsilon, \sigma^2_\nu\}$, respectively. Thus, $\ln P_t^Y$ follows a random walk with a deterministic drift $f(t, Z_t)$.

After retirement, the household receives a constant income which constitutes a fraction θ ($0 < \theta < 1$) of its pre-retirement permanent labor income,

$$Y_t = \theta P_J^Y, \quad \text{for } t = J, ..., T.$$

2.1. Housing and Mortgage Contracts

A household can acquire housing services through either renting or owning. A renter has a house tenure $D^o_t = 0$, and a homeowner has a house tenure $D^o_t = 1$. To rent, the household pays a fraction α ($0 < \alpha < 1$) of the market value of the rental house. The house price appreciation rate \tilde{r}^H_t follows an i.i.d. normal process with mean μ_H and variance σ^2_H. The shock to house prices, P^H_t, is thus permanent and exogenous.

5The labor income process follows that of Carroll (1997), which is also adopted in Cocco, Gomes, and Michaelides (2005) and Gomes and Michaelides (2005).

6Flavin and Yamashita (2002), Campbell and Cocco (2003), and Yao and Zhang (2005) also make similar assumptions about house price dynamics.
A household can finance home purchases with a mortgage. The mortgage balance denoted by M_t needs to satisfy the following collateral constraint at all times,

$$0 \leq M_t \leq (1 - \delta)P_t^H H_t,$$

where $0 \leq \delta \leq 1$, and $P_t^H H_t$ denotes the value of the house at time t.\(^7\) The borrowing rate r is time-invariant and the same as lending rate. A homeowner is required to spend a fraction ψ ($0 \leq \psi \leq 1$) of the house value on repair and maintenance in order to keep the housing quality constant.

At the beginning of each period, the household receives a moving shock, D_t^m, that takes a value of 1 if the household has to move for reasons that are exogenous to our model, and 0 otherwise. The moving shock does not affect a renter’s housing choice since moving does not incur any costs for him. When a homeowner receives a moving shock ($D_t^m = 1$), he is forced to sell his house.\(^8\) A homeowner who does not have to move for exogenous reasons can choose to liquidate his house voluntarily. The selling decision, D_t^s, is 1 if the homeowner sells and 0 otherwise. Selling a house incurs a transaction cost that is a fraction ϕ ($0 \leq \phi \leq 1$) of the market value of the existing house. Additionally, the full mortgage balance becomes due upon the sale of the home. Following a home sale—for either exogenous or endogenous reasons—a homeowner faces the same decisions as a renter coming into period t, and is free to buy or rent for the current period.

\(^7\)By applying collateral constraints to both newly initiated mortgages and ongoing loans, we effectively rule out default. Default on mortgages is, until recently, relatively rare in reality. According to the Mortgage Bankers Association, the seasonally adjusted three-month default rate for a prime fixed-rate mortgage loans is around 2 percent prior to 2007.

\(^8\)We assume that house prices in the old and new locations are the same. Hence in our model households cannot move for differential house prices.
2.2. Liquid Assets

In addition to home equity, a household can also save in liquid assets which earn the same constant risk-free rate \(r \) as the borrowing rate.\(^9\) We denote the liquid savings as \(S_t \) and assume that households cannot borrow non-collateralized debt, i.e.,

\[
S_t \geq 0, \quad \text{for } t = 0, \ldots, T.
\]

(7)

2.3. Wealth Accumulation and Budget Constraints

We denote the household’s spendable resources upon home sale by \(Q_t \).\(^{10}\) It follows that

\[
Q_t = \max\{S_{t-1}(1+r) + P_{t-1}^Y \exp\{f(t, Z_t)\} \nu_t \varepsilon_t + D_{t-1}^o P_{t-1}^H H_{t-1} ((1+\tilde{r}_t^H)(1-\phi) - (1-\delta)(1+r)), \eta P_{t}^Y\}.
\]

(8)

The last term \(\eta P_{t}^Y \) denotes government transfers. Following Hubbard et. al (1994, 1995) and De Nardi, French, and Jones (2007), we assume that government transfers provide a wealth floor that is proportional to the household’s permanent labor income.\(^{11}\) The intertemporal budget constraint, therefore, can be written as:

\[
Q_t = C_t + S_t + [(1 - D_{t-1}^o)(1 - D_t^o) + D_{t-1}^o D_t^o (1 - D_t^o)] \alpha P_t^H H_t
+ [(1 - D_{t-1}^o)D_t^o + D_{t-1}^o D_t^o D_{t-1}^o] \psi P_t^H H_t
+ D_{t-1}^o D_t^o (1 - D_t^o)(\delta + \psi) P_t^H H_{t-1}.
\]

(9)

The third term on the right-hand-side of the budget constraint represents housing expenditure by those who decide to be renters in the current period; the fourth term represents

\(^9\)Under the assumption of costless refinancing, the household will never simultaneously hold both liquid savings and a mortgage if different lending and borrowing rates are allowed. When the lending and borrowing rates are the same, there is an indeterminancy with respect to liquid saving and mortgage holdings. From the household perspective, paying down the mortgage by \$1\ is equivalent to increasing his liquid savings by the same amount as long as the collateral constraint is satisfied (equation (6)). To pin down the households liquid asset holding, in our subsequent analysis, we assume that the household always carries the maximum mortgage balance allowed, i.e., \(M_t = (1-\delta)P_t^H H_t \).

\(^{10}\)Under this definition, conditional on selling his house, a homeowner’s problem is identical to that of a renter with same age \(t \), permanent income \(P_t^H \), house price per unit of housing services \(P_t^H \), and liquidated wealth \(Q_t \).

\(^{11}\)In our simulation we set the floor to a small number such that it never binds in simulation.
housing expenditure by households who decide to buy houses; and the fifth term represents housing expenditure of households who reside in their old houses.\footnote{For the last group of households, we need to subtract from their expenditure housing selling cost, which was subtracted from wealth in hand definition on the left-hand-side.}

2.4. The Optimization Problem

We assume that upon death, a household distributes its spendable resources Q_t among “L” beneficiaries to finance their numeraire good and housing services consumption for one period, the latter through renting. Parameter “L” thus controls the strength of bequest motives. Under CES utility, this assumption results in the beneficiary’s expenditure on numeraire good and housing service consumption at a proportion that is a function of house price:

$$\frac{C_t}{C_t + \alpha P_t^H H_t} = \frac{(1 - \omega)\zeta}{(1 - \omega)\zeta + \omega \zeta (\alpha P_t^H)^{1-\zeta}}.$$ \hspace{1cm} (10)

Therefore the bequest function is defined by

$$B(Q_t) = L \left[\frac{(1 - \omega)\left(\frac{Q_t}{(1 - \omega)\zeta + \omega \zeta (\alpha P_t^H)^{1-\zeta}} \right)^{1 - \frac{1}{\gamma}} + \omega \left(\frac{Q_t}{(1 - \omega)\zeta + \omega \zeta (\alpha P_t^H)^{1-\zeta}} \right)^{1 - \frac{1}{\gamma}} \right]^{\frac{1}{1 - \gamma}}.$$ \hspace{1cm} (11)

The household solves the following optimization problem at time $t = 0$, given its house tenure status (D_{t-1}), after-labor income wealth (Q_0), permanent labor income (P_Y^0), house price (P_0^H), housing stock (H_{-1}), and mortgage balance ($M_{-1}(1 + r)$):

$$\max_{\{C_t, H_t, S_t, D_t^P, D_t^s\}} E \sum_{t=0}^{T} \beta^t \left\{ F(t) U(C_t, H_t; N_t) + [F(t - 1) - F(t)] B(Q_t) \right\},$$ \hspace{1cm} (12)

subject to the mortgage collateral borrowing constraint (equation 6), the borrowing constraint on liquid assets (equation 7), wealth processes (equation 8), and the intertemporal budget constraints (equation 9). The parameter β is the time discount factor.
2.5. Characterization of Individual Housing and Consumption Behavior

We simplify the household’s optimization problem by exploiting the problem’s scale independence, and normalize housing and financial wealth level variables by households’ permanent income. After normalization, the household’s vector of choice variables become

\[a_t = \{c_t, h_t, s_t, D_t^o, D_t^s\} \]

where \(c_t = \frac{C_t}{P_Y} \) is the consumption-permanent income ratio, \(h_t = \frac{p_H H_t}{P_Y} \) is the house value-permanent income ratio, and \(s_t = \frac{S_t}{P_Y} \) is the liquid asset-permanent income ratio. We can characterize a household’s decision rule by his normalized state variable

\[x_t = \{D_{t-1}^o, q_t, h_t, P_t^H\} \]

where \(q_t = \frac{Q_t}{P_t} \) is the household’s wealth-permanent labor income ratio, and \(h_t = \frac{p_H H_{t-1}}{P_t} \) is the beginning-of-period house value to permanent income ratio.

An analytical solution for our problem does not exist. We thus derive numerical solutions through value function iterations. Appendix A provides details of our numerical method.

Qualitatively, at a given household age, the effects of wealth–income ratio and house value–income ratio on the household’s optimal decision rules are similar to those reported in Yao and Zhang (2005). A renter’s house tenure decision is largely determined by his wealth-income ratio. The more wealth a renter has relative to his income, the more likely he will buy as more wealth on hand enables the renter to afford the down payment for a house of desired value. The wealth-income ratio that triggers homeownership is U-shaped, reflecting the high mobility rates of young households and short expected duration of an older household. Once becoming a homeowner, a household will stay in the house so long as his house value-income ratio is not too far from the optimal level he would have chosen as a renter, in order to avoid incurring transaction costs.

A renter’s consumption and savings functions are similar to those identified in the precautionary savings literature with liquidity constraints. At low wealth levels, a renter continues to rent and spends all his wealth on numeraire good and rent payment. At relatively higher wealth levels, a renter starts saving for intertemporal consumption smoothing and housing down payment. For a homeowner who stays in his existing house, the value of his house also affects his nonhousing consumption, reflecting the effect of substitution between the two goods.
When the utility function takes the form of Cobb-Douglas in our setup as in most macro studies, the household’s choice of homeownership and house value is invariant to house price changes. In other words, in solving households’ problems, we do not need to separate P_t^H from H_t (see Li and Yao 2007). Under the more flexible CES utility, however, things are different. In particular, when the intratemporal elasticity of substitution parameter ζ is smaller than one, when facing a higher house price, a household will spend a larger share of his expenditure on housing. This leads to a higher house value–income ratio for the desired house. The more expensive house in turn requires a larger down payment, which slows down a household’s transition to homeownership. For homeowners, a higher desired house value–income ratio results in higher level of adjustment boundaries at higher house prices.

3. Data and Estimation Procedure

We implement a two-stage Method of Simulated Moments (MSM) to estimate our theoretical model. This methodology was first introduced by Pakes and Pollard (1989), and Duffie and Singleton (1993) to estimate structural economic models without close-form solutions. Since then, MSM has been successfully applied to estimations of preference parameters in Gourinchas and Parker (2002), Cagetti (2003), and Laibson, Repetto, and Tobacman (2007), labor supply decisions by French (2005), and medical expenses and the savings of elderly singles by De Nardi, French, and Jones (2006), among many others.

The mechanics of our MSM approach is standard. In the first stage, we estimate or calibrate the parameters that can be cleanly identified without the explicit use of our model. In the second stage, we take as given the parameters obtained in the first stage and estimate the rest of the model parameters by minimizing the distance between the simulated moments derived from the optimal household decision profiles and those observed in the data. We provide detailed discussions of first and second stage estimation after describing our data sources.

3.1. Data Sources

The main data we use in this study are taken from The University of Michigan Panel Study of Income Dynamics (PSID). The PSID is a longitudinal survey that followed a nationally,
representative random sample of families and their extensions since 1968. The survey details economic and demographic information for a sample of households annually from 1968 to 1997 and biannually after 1997. From 1984 through 1999, a wealth supplement to the PSID surveyed the assets and liabilities of each household at five-year intervals. The supplemental survey becomes biennial after 1999, coinciding with the main survey frequency.

For households to be included in our data sample, they have to be present in the 1984 survey but not in the 1968 sub-sample of low income families. Observations were further deleted for the following reasons:

- The age of the household head is younger than 25 or older than 54 in the 1984 survey.
- The state of residence is missing. Households obtained housing as a gift, or live in housing paid by someone outside of the family unit, or owned by relatives.
- Households live in public housing project owned by local housing authority or public agency.
- Households neither own nor rent.
- The head of the household is female. The head of the household is a farmer or rancher.
- The head of the household does not have a valid age variable.
- The household head is unmarried in any wave of survey.
- The real household labor income is less than 10,000 or more than 1 million dollars.
- Information on households’ net worth, income, or house value for home owners is missing.

The final sample consists of 17,396 observations for 1,069 households. We use this sample to estimate life-cycle income profile, as well as computing sample moments. We supplement PSID data with information from American Housing Survey (AHS) and the Office of Federal Housing Enterprise Oversight (OFHEO) for house price information, and Current Population Survey (CPS) for mobility and life expectancy information.
3.2. First-Stage Estimation and Calibration

3.2.1. Life Cycle Income Profiles

The income in our model corresponds to after-tax non-financial income empirically. We calibrate the stochastic income process (Equations 3–5) in the following manner. We first compute before–tax income as the total reported wages and salaries, social security income, unemployment compensation, workers compensation, supplemental social security, other welfare, child support, and transfers from relatives from both the head of household and his spouse.\(^{13}\)

We then subtract from the households’ pre-tax income defined above federal and state income tax liabilities as estimated by the National Bureau of Economic Research (NBER)’s TAXSIM program (Feenberg and Coutts 1993), which calculates taxes under the US Federal and State income tax laws from individual data, including marital status, wage and salary of household head and his or her spouse, and number of dependents.

The after-tax income is further deflated using non-shelter Consumer Price Index (CPI-NS) provided by Bureau of Labor Statistics with year 2004-2005 normalized to 100. We refer to this deflated disposable income as household labor income in the paper.

Finally, we apply an approach similar to the one used in Cocco, Gomes, and Maenhout (2005) to estimate coefficients for a sixth-order polynomial function of age and retirement income replacement ratio, as well as standard deviation for permanent and transitory shocks to income. We estimate the standard deviation for the permanent income shock, \(\sigma_\varepsilon\), to be 0.11, and for the transitory income shock, \(\sigma_\nu\), to be 0.22. The income replacement ratio after retirement \(\theta\) is estimated to be 0.96.\(^{14}\) The technical details are provided in Appendix C.

3.2.2. Mortality, Mobility, and Household Composition

The conditional survival rates \({\{\lambda_j\}}_{j=0}^{T}\) are taken from the 1998 life tables of the National Center for Health Statistics (Anderson 2001). The exogenous moving rates are obtained by fitting a fifth-order polynomial of age to the CPS households moving across county in year 2005. The life-cycle profile of family equivalent size for all married couples in the PSID is

\(^{13}\)Recall that we only use married households from the PSID in our sample.

\(^{14}\)Our retirement income ratio is a bit higher than typical estimates in the literature since our income definition is on an after-tax basis.
computed following Scholz et al. (2006). The calibrated life-cycle income, mortality, mobility, and family size profiles are presented in Figure 1.

3.2.3. The House Price Process

When solving for decision rules in our theoretical model, we assume that the rate of appreciation for house price r^H_t is serially uncorrelated. We set the mean rate of return to housing to 0 and the standard deviation σ_H to 0.10, similar to estimates in Campbell and Cocco (2003) and Flavin and Yamashita (2002). We further assume that there is no correlation between housing returns and shocks to labor income.

The house price demonstrates a strong positive trend over part of the sample period in 1996-2005. To capture this aggregate trend, in simulating the model, we feed in the realized real housing return based on households’ state of residence, supplemented by a random shock. Appendix D provides details on the construction of state-level house price index over time.

3.2.4. Other Parameters

Other parameters in the first stage are largely chosen according to the literature. The decision frequency is annual. Households enter the economy at age 25 and lives to a maximum age of 100, i.e., $T = 75$. The mandatory retirement age is 65 ($J = 40$).

The annual real interest rate is set at 2.7 percent, approximately the average annualized post-WWII real return available on T-bills. The mortgage collateral constraint is set at 80 percent.15 The wealth floor η is picked at a low 0.10 of permanent labor income. This number is within the range of those used in the literature (for example, De Nardi, French, and Jones 2006) and rarely binds in our simulation. Table 2 summarizes parameters from our first-stage calibrations.

15Using the 1995 American Housing Survey, Chambers, Garriga, and Schlagenhauf (2004) calculate that the down payment fraction for first time home purchases is 0.1979 while the fraction for households who previous owned a home is 0.2462.
3.3. Second-Stage Estimation

In this subsection, we describe our choices of moment conditions and how they help to identify the structure parameters of our model. One major advantage of structural estimation of a rich life-cycle model is that it allows us to explicitly address potential biases by replicating them in the simulation. For example, we account for the endogeneity of home ownership status, market frictions and incompleteness (for example, borrowing constraints and housing adjustment costs), by incorporating these features in our theoretical model. To mitigate potential biases caused by cohort and time effects, we group the households in our simulation by age and calendar year, and subject the households to the same house price shocks as in the data.

3.3.1. Moment Conditions

We estimate the following eight structural parameters in the second stage estimation: β – subjective time discount factor, γ – curvature measure for the utility function, L – bequest strength measure, ω – housing expenditure share measure, ζ – elasticity of intratemporal substitution, ϕ – house selling costs, ψ – house maintenance costs, and α – rental rate.\footnote{For α, the estimation is performed in terms of rental premium, i.e. $\alpha - r - \psi$.}

To identify our structural parameters, we choose to match the average wealth, mobility rate, home ownership rate, rent–income ratio, and house value–income ratio profiles for three age-cohorts and for each year between 1985 and 2005.\footnote{We drop year 1984 in the moment matching since we initiate our simulation by randomly drawing households from the 1984 PSID data.} The three age cohorts are constructed according to birth year. The first cohort consists of households whose heads were born between 1950 and 1959; the second cohort consists of households whose heads were born between 1940 and 1949; and the third cohort is made up of households with heads born between 1930 and 1939. Therefore, at the beginning of our sample year 1984, the three cohorts’ age ranges are 25–34, 35-44, and 45–54, respectively.

In addition, to exploit the cross-sectional heterogeneity in house prices, for each age cohort–calendar year cell, we also match the average home ownership rate, rents, and house value profile for households residing in the most and least expensive states.\footnote{We define the most expensive states as the 18 states with the highest house price level in 1995, the middle-year in our sample, and the least expensive states as the 19 states with the lowest house price level in 1995.}
We thus have at most 11 moments for each age cohort–year cell, for a potential maximum of $11 \times 21 \times 3 = 693$ moments. We lost 45 moments since wealth variables are only available for years 1984, 1989, 1994, 1999, 2001, 2003, and 2005. Further, we lost additional 18 moments since the rent variable is missing for 1988 and 1989. The number of total matched moments ends up as 630.\footnote{We defer description about sample households’ housing and wealth profile to the next section, where we discuss them in comparison to predictions from our model.}

The cell sizes are 434, 393, and 242 respectively at the start of the sample for the three birth-year cohorts. These cell sizes declined to 277, 196, and 34 over time as some households dropped out of the survey over time.\footnote{We did not drop cell with a small size. In our weighting matrix, the cells with small sample counts have very low weights in the distance measure.}

3.3.2. Construction of Simulated Moments

In the second stage estimation, we first choose a vector of structure parameters and solve the optimal decision rules as described in the previous section, taking the first stage parameters as given. We then simulate households’ behavior to construct our simulated moments under the given choice of parameters.

To initialize our simulation, we randomly draw 1,000 households from each age group between 25 and 54 in the 1984 PSID data, for an initial simulated sample of 30,000 households. We then assign a series of moving, income, and house price shocks to each simulated path.\footnote{While moving and income shocks come from computer random number generators governed by their respective stochastic process, the house price path comes from the actual realized house price in the household’s state of residence in order to capture the aggregate trend in house price in the sample. By doing so, we allowed the ex post sample average house price appreciations over the short time period, which is used in simulation, to deviate significantly from the ex ante assumption of zero mean house price appreciation, which is used in the solution of optimal decision rules.}

We update the simulated sample path each time period based on the optimal decision rules.

Once all simulated paths are complete, we compute the average profiles for our target variables in the same way that we compute them from the real data, i.e. grouping to different calendar year \times age cohort \times house price level cells. Finally we construct a model fitness According to this definition, we have roughly equal number of households residing in the most expensive, least expensive, and medium price range states in 1984. The choice of 1995 is inconsequential since the ranking of house prices hardly changed during our sample period.
measure by weighting the differences between average profile in the simulated model economy and the data with a weight matrix.

The procedure is repeated until the weighted difference between the data and simulated profiles is minimized. Appendix B provides more details on our MSM estimation technique.

4. Results

We present the estimation results in this section.

4.1. Housing and Wealth Profiles over Time and over the Life Cycle

Figures 3 to 10 show the fit of our baseline model to the empirical data profiles. The green solid line with solid dots depicts the empirical data profile, while the red dashed line marked with crosses represents the average profile from our model.

Households become richer as they age for all cohorts. At the same time, older cohorts are also richer than younger cohorts. The youngest cohort accumulates wealth for the first ten years in the sample, a behavior consistent with the existence of the borrowing constraint and precautionary savings motive.

Overall, the homeownership rate starts at around 70 percent for the youngest cohort, and quickly goes up to 90 percent in 10 years. The other two older cohorts also demonstrate slight increases in homeownership rates over the sample period. By the end of the sample period, most households have achieved home ownership.

As expected, the homeownership rate of the youngest cohorts in the most expensive states is much lower than those in the least expensive states. For all three cohorts, the average house

22 The theoretically most efficient weighting matrix is the inverse of sample variance-covariance matrix. We use a diagonal matrix for weighting given our small sample size. Our weighting matrix takes the diagonal terms of the optimal weighting matrix for scaling purpose, while setting the off-diagonal term to be zero. A similar approach is adopted in De Nardi, French, and Jones (2006). According to Altonji and Segal (1996), the optimal weighting matrix, though asymptotically efficient, can be severely biased in small samples.

23 The minimization of weighted moment distance is achieved through a combination of a global population-based optimization using differential evolution method and local non-gradient based search routine via simplex algorithm.

24 The overall homeownership rate in our sample is much higher than the country as a whole. This is due to our sample selection criterion in order to maintain household stability. Recall we only admit married couple with income above $10,000 in our sample.
value–income ratios for those in the most expensive states are much higher than those in the least expensive states. The ratios also grow much faster over the sample period as well. While renters in the most expensive states on average also spend a larger share of their income in housing services, the time trend is less clear since we have few renters in the sample, especially for the later years.

The moving rates are low in the sample, and are over 10 percent only for the youngest group in the earlier part of the sample. The rates decrease slightly over time as households settle down, and are in the single digits over most of the sample years for the two older cohorts. The lack of moving points to large fixed costs associated with changing one’s residence.

Overall, our model captures the trend in data profiles reasonably well. We miss along some dimensions, though. The model generates lower wealth accumulation and higher rent expenditure than the data for the most senior cohorts. We have relatively fewer households in the old cohort in the data, especially renters. We suspect that the ill-match is largely caused by data idiosyncracies. Additionally, we abstract from other considerations such as participating in stock market that potentially plays a bigger role in the savings of older households.

4.2. Parameter Estimates and Identification

According to our estimation, the annual discount factor β is 0.96, and the risk aversion parameter is 6.19, both within the range viewed as plausible by most economists. The bequest strength L is estimated to be 1.00. While the time discount factor and risk aversion are largely determined by the wealth accumulation earlier in life, the bequest strength is mostly driven by households’ wealth profiles later in life.

As for the intratemporal utility function, the share parameter ω is estimated to be a 2.56×10^{-4}, while the intratemporal elasticity of substitution between housing and nonhousing consumption is estimated to be 0.33. These two parameters are largely identified through the cross-sectional as well as time series variation of house value–income ratio and home ownership rates. Households in expensive states spend more relative to their income on housing, both when renting and when owning. The higher house value–income ratio requires a larger down payment, which takes longer to accumulate and delays transition to homeownership. To illustrate the implications of our estimated ω and ζ parameters on the cross-sectional house expenditure patterns, we compute the implied renters’ housing expenditure shares for all 50
states based on the house price in year 2005, and present it in Figure 2. The share varies from
13.1 percent for the cheapest state (Kansas) at $46.2 per square foot, to 42.8 percent in the
most expensive state (Washington D.C.) at $493.6 per square foot.

Our point estimate of intratemporal elasticity of substitution is much smaller than the
macro estimates. The difference between our estimate and the macro estimates results largely
from the fact that the macro literature has examined the aggregate consumption data in time
series absent of adjustment cost using Euler Equation estimations.\footnote{For example, Siegel (2005) shows in his work that there exists substantial deviation of implications of this
methodology from the frictionless economy, consistent with the presence of non-convex adjustment costs for
housing. He also shows how empirical asset pricing tests that use aggregate data can be affected by these
deviations.}

Our estimate is closer to some of the micro estimates. Hanushek and Quigley (1980) look
at data from the Housing Allowance Demand Experiment, which involved a sample of low-
inecome renters in Pittsburgh and Phoenix. Households in each city were randomly assigned
to treatment groups which received rent subsidies that varied from 20 percent to 60 percent
and a control group that received no subsidy. The estimated price elasticities were 0.64 for
Pittsburgh and 0.45 for Phoenix. Siegel (2005) estimates the elasticity from the PSID over the
period 1978-1997. Aggregating across households and using only the time series information,
Siegel estimated elasticity of substitution to be 0.53.\footnote{Siegel (2005) limits the sample to only homeowners, and uses total household food expenditure as a proxy
for nondurable consumption, and uses the self-reported value of the owner occupied house for housing, and
assuming durable consumption is constant until the household moves.} Flavin and Nagazawa (2007), by
contrast, use PSID over the period 1975 to 1985. Instead of using households’ self-reported
house value, they construct a housing service measure and derive Euler Equation conditions on
consumption for households who do not move. Their estimate of the elasticity of substitution
between housing and non-housing consumption is a very low 0.13.\footnote{By focusing on non-movers, Flavin and Nagazawa (2007)’s GMM methodology is robust to the existence
of adjustment cost. However their empirical estimates, which is based on consumption Euler Equation, could
be sensitive to assumptions about borrowing constraints and other market incompleteness.}

The house selling cost parameter ϕ is estimated to be 15 percent of the house value. This
number is identified by the (low) level of mobility rate observed in the data. While this
number looks large relative to the typical 5-6 percent commission charged by a realtor for
selling a house, the cost measure also takes into account search costs, moving costs, mortgage

\footnote{For example, Siegel (2005) shows in his work that there exists substantial deviation of implications of this
methodology from the frictionless economy, consistent with the presence of non-convex adjustment costs for
housing. He also shows how empirical asset pricing tests that use aggregate data can be affected by these
deviations.}

\footnote{Siegel (2005) limits the sample to only homeowners, and uses total household food expenditure as a proxy
for nondurable consumption, and uses the self-reported value of the owner occupied house for housing, and
assuming durable consumption is constant until the household moves.}

\footnote{By focusing on non-movers, Flavin and Nagazawa (2007)’s GMM methodology is robust to the existence
of adjustment cost. However their empirical estimates, which is based on consumption Euler Equation, could
be sensitive to assumptions about borrowing constraints and other market incompleteness.}
closing costs, as well as possible psychological costs. In addition, since our sample covers only married couples, we expect the moving cost to be higher than an average household.

The house maintenance cost is estimated to be 2.26 percent of the house value, which implies that the user cost of home ownership is $\psi + r_f - \mu_h = 4.96$ percent. While the cross-section variation of the house value–income ratio helps to pin down the intratemporal preference parameters, the average level of the same ratio identifies the house maintenance parameter.

Renting is estimated to incur an extra cost close to 1.85 percent of the property value. The spread is identified through homeownership profiles and rent–income ratio. The implied α parameter, which is the sum of the cost of capital, maintenance, depreciation, and rental premium, is therefore, at 6.81 percent. Our estimation of rental costs is within the range, albeit at the lower end, of the user cost for home ownership as calculated by Himmelberg, Meyer, and Sinai (2005) for 46 metro areas.

5. Policy Analysis

Using our estimated model, we now conduct policy experiments. The goal is to investigate how households respond to changes in house prices in conjunction with changes in income and/or credit market conditions in the mortgage market.

We first draw the initial population from the 2005 PSID data, and then simulate it forward using the optimal decision rules. Between year 2005 and 2007, shocks to house price and income follow their realized counterparts at the state and national levels, respectively. From 2008 to 2011, we simulate our economy according to different assumptions on income and

28Closing fees generally include: 1) loan origination fee; 2) loan application fee; 3) title search; 4) title insurance; 5) inspection fee; 6) appraisal fee; 7) credit report fee; 8) attorney / settlement fee; and 9) government recording and transfer charges. Unlike realtors’ fees, these fees vary substantially from state to state and often depend on the amount of the loan, the amount of the down payment, and the credit worthiness of the borrower. Woodward (2003) estimates total closing costs to be $4,050 on a house with a value of $162,500, or 2.5 percent of the house value. Regarding the search and psychic cost of moving, using the Housing Allowance Demand Experiment, Bartik, Butler, and Liu (1992) found that the average household was willing to pay 10 to 17 percent of their current income to stay in their current residence rather than move. If we use the industry lending standard that house value is about 4 times of annual income, this amounts to 2.5 to 4.3 percent of house value. Adding together the estimated realtors’ fee, closing cost, and psychic cost of moving, we obtain number of over 10 percent of house value associated with selling a house.

29We supplement these aggregate shocks with idiosyncratic shocks from the computer random number generator governed by their respective stochastic process.
house price as summarized in Table 4. In particular, we employ two choices about income growth rates: 0 percent through all 4 years or as forecasted by Macroeconomic Advisers (MA). We have three assumptions on house price growth rates: 0 through all 4 years, as forecasted by Macroeconomic Advisers (MA), or as forecasted by Case-Shiller Futures Market from the Chicago Mercantile Exchange. Note that MA does not provide forecasts beyond 2010, we thus set the growth rates in income or house price to 0 for that year when we use MA forecasts. Finally, we have two assumptions on borrowing conditions: a 80 percent mortgage loan-to-value ratio versus a 70 percent mortgage loan-to-value ratio. In all experiments, we focus on aggregate home ownership rate, average house value for homeowners, and average non-housing consumption for all households.

Table 5 provides our benchmark simulation results where we set the growth rates on income and housing to zero throughout the forecast horizon. Note that there is a slight decline in home ownership rate and house value for homeowners. This is because, by setting the growth rates in housing and income to zero, we are essentially putting an end to the long boom the economy has experienced prior to 2007. Non-housing consumption generally declines over the forecast horizon as well.

We then conduct three sets of experiments. In the first set as reported in Table 6, we set income growth rates to zero, but let house prices vary according to three different paths: zero for all the four years as in “Basecase”, MA housing forecasts as in “MA”, and CS housing forecasts as in “CS”. Relative to the “Basecase”, under the MA house price forecasts (“MA”), home ownership rates drop much more especially during the first three years when house prices decline. This is because, as home prices drop, existing homeowners need to put down additional equity in order to maintain the required mortgage loan-to-value ratio. Those who are unable to do so are forced to sell their homes. In addition, existing homeowners who receive the moving shock may not be able to purchase another house of desired value since their equity has eroded. Of course, the lower house price will encourage renters to become homeowners. But this effect is dominated by the negative effects of house price declines on home ownership rate. Average home values for homeowners decline much more largely due

The reported aggregate statistics is based on a sample constant in age distribution. We achieve so by admitting one new young age group into the sample each year while dropping the oldest households from the sample. The aggregate statistics is then computed using population weight for each age group from from the 2000 Census. Specifically, we only include households between the age 30 and 80 for the calculation. In other words, a household that is 29 in 2005 will not appear in the calculation of the aggregate statistics in 2005, but will enter the 2006 calculation as the household turns 30. Similarly, a household who is 80 in 2005 will appear in the 2005 sample but will drop out of the 2006 sample.
to the direct effect of a lower house price on house value. Non-housing consumption also falls through all four years as homeowners have fewer resources to maintain their previous non-housing consumption level either because they have to put in additional equity into the house to meet the required mortgage loan-to-value ratio or because they take costs when selling their houses. The declines in average home ownership rates, average house value for homeowners, and average non-housing consumption are much more pronounced in “CS”. In particular, by year 2011, after a nearly 35 percent cumulative decline in house prices, compared to 2007, home ownership falls by 4.6 percent, three times of the drop in “MA”, average house value falls by 28 percent, which doubles the fall in “MA”, and non-housing consumption falls by over 3 percent, over 2 times of the drop in “MA”.

In the second set of experiments, we let income growth rates follow the MA forecasts, and let house price growth rates be flat as in “Basecase”, MA forecasts as in “MA”, or CS forecasts as in “CS.” We report the results in Table 6. Two observations emerge. First, for given income growth rates, it remains that the more severe house price declines are, the more serious the declines in home ownership rates, average house value for homeowners, and average non-housing consumption are. Second, compared with the first set of experiments, house prices declines, when coupled with income declines, have much more significant detrimental effect on home ownership rates, house value, and non-housing consumption. This second result stems from the fact that as income drops, many households find it unable to maintain their mortgage loan-to-value ratio and/or their house maintenance cost. Homeowners, thus, may exit home ownership in order to obtain liquidity to maintain their non-housing consumption. As income starts to recover in 2009, the declines in all three economic variables of interest become much more muted.

In the third set of experiments, we repeat the second set of experiments except that we let the required mortgage-loan-to-value ratio to decline to 70 percent. The results are reported in Table 7. As can be seen, it remains that severe house prices drops lead to significant declines in average home ownership rates, house value for homeowners, and non-housing consumption. Interestingly, compared to the second set of experiments, tighter borrowing constraints, especially when coupled with declines in house prices, lead to significant drops in home ownership rates as households find it harder to borrow in order to purchase a house. It actually ameliorates the declines in average house value for existing homeowners and average non-housing consumption. In other words, when it is harder to access the mortgage market, house price
declines have less of an effect on consumption. This result reflects largely the selection effect associated with a tighter borrowing constraint. Put it simply, tighter borrowing constraints lead to relatively wealthy households becoming homeowners as these households can afford the required mortgage loan-to-value ratios and these households are much better at weathering house price declines.

Finally, we calculate the marginal propensity to consume, a popular measurement of the effects of house price changes on consumption, by dividing the non-housing consumption differences by the differences in house value for homeowners after the realization of the new house price shock before the adjustment of consumption allocations. We find that non-housing consumption responds nonlinearly to changes in house prices with average marginal propensity to consume out of changes in housing wealth ranging from 0.4 percent to 6 percent.

6. Conclusions and Future Extensions

In this paper, we provide a structural estimation of a dynamic model of household consumption over the life cycle augmented with housing. We explicitly model housing adjustment along both the extensive margin of owning versus renting and the intensive margin of house size. The model also includes a credit constraint in the form of collateral mortgage borrowing. The paper, thus, contributes to the analysis and understanding of household housing demand and the impact of housing market on household consumption, housing as well as non-housing.

Our estimation indicates that the intra-temporal elasticity of substitution between housing and non-housing consumption is about 0.33 and the housing adjust cost for married stable households amounts to 15 percent of the house value. Policy experiments using the estimated model further reveal that households respond nonlinearly to house price changes with large house price declines leading to sizable drops in total home ownership rate as well as non-housing consumption. Interestingly, in an environment with tightened lending condition, while households home ownership decision becomes more sensitive to house price changes, their non-housing consumption is less affected.

There are many natural extensions to our model. One is to allow for richer household portfolio decisions by differentiating further between stock and bond in a household’s liquid asset
menu. Another is to model mortgage contract more explicitly and realistically by imposing mortgage amortization requirement as well as refinancing charges.
Appendix A: Model Simplifications and Numerical Solutions

Given the recursive nature of the problem, we can rewrite the intertemporal consumption and investment problem as follows:

\[
V_t(X_t) = \max_{A_t} \{ \lambda_t [U(C_t, H_t; N_t) + \beta E_t[V_{t+1}(X_{t+1})]] + (1 - \lambda_t)B(Q_t) \}, \tag{13}
\]

where \(X_t = \{ D_{t-1}^o, Q_t, P_Y^t, P_H^t, H_{t-1} \} \) is the vector of endogenous state variables, and \(A_t = \{ C_t, H_t, S_t, D_t^o, D_t^s \} \) is the vector of choice variables.

We simplify the household’s optimization problem by exploiting the scale-independence of the problem and normalize the household’s continuous state and choice variables by its permanent income \(P_Y^t \). The vector of endogenous state variables is transformed to \(x_t = \{ D_{t-1}^o, q_t, h_t, P_H^t \} \), where \(q_t = \frac{Q_t}{P_Y^t} \) is the household’s wealth-permanent labor income ratio, and \(h_t = \frac{P_H^t}{P_Y^t} H_{t-1} \) is the beginning-of-period house value to permanent income ratio. Let \(c_t = \frac{C_t}{P_Y^t} \) be the consumption-permanent income ratio, \(h_t = \frac{P_H^t}{P_Y^t} H_{t-1} \) be the house value-permanent income ratio, and \(s_t = \frac{S_t}{P_Y^t} \) be the liquid asset-permanent income ratio. The evolution of normalized endogenous state variables is then governed by:

\[
q_{t+1} = \frac{s_t(1 + r) + D_t^o h_t [(1 + \bar{r}_H^{t+1})(1 - \phi) - (1 - \delta)(1 + r)]}{\exp\{f(t + 1, Z_{t+1})\} \nu_{t+1}} + \varepsilon_{t+1}, \tag{14}
\]

\[
\bar{h}_{t+1} = \left[\frac{1 + \bar{r}_H^{t+1}}{\exp\{f(t + 1, Z_{t+1})\} \nu_{t+1}} \right], \tag{15}
\]

\[
P_{t+1}^H = P_t^H(1 + \bar{r}_H^{t+1}). \tag{16}
\]

The household’s budget constraint can then be written as

\[
q_t = c_t + s_t + [(1 - D_{t-1}^o)(1 - D_t^o) + D_t^o D_t^s] (1 - D_t^o) \alpha h_t
\]

\[
+ [(1 - D_{t-1}^o)D_t^o + D_{t-1}^o D_t^o D_t^s](\delta + \psi)h_t
\]

\[
+ D_{t-1}^o D_t^o (1 - D_t^s)(\delta + \psi - \phi) \bar{h}_t + \eta. \tag{17}
\]
Define \(v_t(x_t) = \frac{V_t(x_t)}{(P_t^Y)^{1-\gamma}} \) to be the normalized value function, then the recursive optimization problem (13) can be rewritten as:

\[
v_t(x_t) = \max_{a_t} \left\{ \lambda_t \left[\frac{N_t^Y}{1-\gamma} \left((1 - \omega)c_t^{1-\frac{1}{\gamma}} + \omega(h_t/P_t^H)^{1-\frac{1}{\gamma}} \right) \right]^{\frac{1-\gamma}{1-\frac{1}{\gamma}}} + \beta E_t \left(v_{t+1}(x_{t+1}) \right) \right\}
\]

subject to

\[
c_t > 0, \quad h_t > 0, \quad s_t \geq 0, \quad l_t \leq 1 - \delta,
\]

and equations (15) to (17), where \(a_t = \{c_t, h_t, s_t, D_t^o, D_t^r\} \) is the normalized vector of choice variables. Hence the normalization reduces the number of continuous state variables to three with \(P_t^Y \) no longer serving as a state variable.

We discretize the wealth–labor-income ratio (\(q_t \)) into 160 grids equally-spaced in the logarithm of the ratio, the house value-labor income ratio (\(h_t \)) into equally-spaced grids of 80, and the house price (\(P_t^H \)) into 80 grids equally-spaced in the logarithm of the price. The boundaries for the grids are chosen to be wide enough so that our simulated time series path always falls within the defined state space.

Under the assumption that only liquidated wealth will be passed along to beneficiaries, the household’s house tenure status and housing positions do not enter the bequest function. At the terminal date \(T \), \(\lambda_T = 0 \), and the household’s value function coincides with the bequest function,

\[
v_T(x_T) = \frac{L^\gamma q_t^{1-\gamma}}{1-\gamma} \left[(1-\omega) \left(\frac{(1 - \omega)^{\zeta}}{(1 - \omega)^{\zeta} + \omega(\alpha P_t^H)^{1-\zeta}} \right)^{1-\frac{1}{\zeta}} + \omega \left(\frac{\omega(\alpha P_t^H)^{-\zeta}}{(1 - \omega)^{\zeta} + \omega(\alpha P_t^H)^{1-\zeta}} \right)^{1-\frac{1}{\zeta}} \right]^{\frac{1-\gamma}{1-\frac{1}{\gamma}}}.
\]

The value function at date \(T \) is then used to solve for the optimal decision rules for all admissible points on the state space at date \(T - 1 \).

For a household coming into period \(t \) as a renter (\(D_{t-1} = 0 \)), we perform two separate optimizations conditional on house tenure choices – renting or owning – for the current period. A renter’s optimal house tenure choice for the current period is then determined by comparing
the contingent value functions of renting and owning. To calculate the expected next period’s value function, we use two discrete states to approximate the realizations of each of the three continuous exogenous state variables (\(\ln \varepsilon, \ln \nu, \text{ and } \tilde{r}_t^H\)) by Gaussian quadrature (Taughen and Hussey 1991). Together with two states for the realizations of moving shocks, the procedure results in sixteen discrete exogenous states for numerical integration. For points that lie between grid points in the state space, depending on the household’s current period house tenure choice, we use either a two-dimension or a three-dimension cubic spline interpolation to approximate the value function.

For a household coming into period \(t\) as a homeowner, we perform an optimization conditional on staying in the existing house for the current period. In this case, the household cannot adjust its house value-income ratio, i.e. \(h_t = \bar{h}_t\), but can adjust its numeraire consumption. The value function contingent on moving – either endogenously or exogenously – is the same as the value function of a renter who is endowed with the same wealth-income ratio (\(q_t\)) and house price (\(P_t^H\)). We compare the value functions contingent on moving and staying to determine the optimal house liquidation decision. Under our assumption and parameterization, a homeowner always has positive amount of equity in his house after home sales and thus has no incentive to default. A homeowner who cannot satisfy the mortgage collateral constraint or afford the house maintenance cost has to sell his home. This procedure is repeated recursively for each period until the solution for date \(t = 0\) is found.
Appendix B: Estimation Mechanics in the MSM Estimator

We assume that the “true” parameter vector

$$\theta^* = \{\beta, \gamma, L, \omega, \zeta, \phi, \psi, \alpha\}$$

lies in the interior of the compact set $\Theta \subset \mathbb{R}^{11}$. Our estimator, $\hat{\theta}$, is the value of θ that minimizes the weighted distance between the estimated life cycle profiles for life cycle profiles for wealth, mobility rate, home ownership rate, house value, and rent observed from the data and the simulated profiles generated by the model. We choose to match the these five variables, which are interacted with age cohort ($T = 3$) and calendar year ($C = 3$). Additional interactions are used for last three house related variables, which are further interacted with three house price levels in the state where a household resided. This interaction results in additional six moments. The moment count per year and cohort is therefore equal to $11(5+6)$. The overall count of moments is $11 \times C \times T = 33T$. We combine all these moment conditions by stacking them and solving the optimal problems jointly.

Given a data set of I_c independent individuals within a given age cohort c who are observed repeatedly for T periods, let $\delta(\theta)$ denote a vector of moment conditions with $11T$ elements, with $\hat{\delta}$ representing its sample counterpart. The MSM estimator $\hat{\theta}$ is given by

$$\arg\min_{\theta} \sum_{c=1}^{C} \frac{I_c}{1 + \tau_c} \hat{\delta}_c(\theta)'\hat{W}_c\hat{\delta}_c(\theta), \quad (19)$$

where \hat{W} is a $11T \times 11T$ weighting matrix, and τ_c is the ratio of the number of observations in data for cohort c to the number of simulated observations. If the regularity conditions presented in Pakes and Pollard (1989) are met, our MSM estimator $\hat{\theta}$ is both consistent and asymptotically normally distributed:

$$\sqrt{I}(\hat{\theta} - \theta^*) \sim N(0, V),$$

with the variance-covariance matrix V given by

$$V = (1 + \tau)(D'WD)^{-1}D'WSWD(D'WD)^{-1},$$

28
where S is the variance-covariance matrix of the data, and
\[D = \frac{\partial \delta(\theta)}{\partial \theta^*} \bigg|_{\theta^*}, \]
which is the $33T \times 11$ Jacobian matrix of the population moment vector; and $W = \text{plim}_{\tau \to \infty} \sim \{\tilde{W}_I\}$. Newey (1985) presents the following χ^2 statistic for specification testing the moment estimator.
\[
\frac{I}{1 + \tau} \delta(\hat{\theta})' Q^{-1} \delta(\hat{\theta}) \sim \chi^2_{33T-11},
\]
where Q^{-1} is the generalized inverse of
\[
Q = PSP \quad \quad \quad \quad P = I - D'(D'WD)^{-1}D'W.
\]
Analogous to the optimal weighting matrix in a GMM model, the efficiency of our SMM estimator improves as \tilde{W}_I converges to S^{-1}, which is the inverse of the sample variance-covariance matrix. If $W = S^{-1}$, then V is reduced to $(1 + \tau)(D'S^{-1}D)^{-1}$, and Q is equivalent to S. According to Altonji and Segal (1996), the optimal weighting matrix, though asymptotically efficient, can be severely biased in small samples. We use a diagonal matrix for weighting given our small sample size. Our weighting matrix takes the diagonal terms of the optimal weighting matrix for scaling, while setting the off-diagonal term to be zero. A similar approach is adopted in De Nardi, French, and Jones (2006).
Appendix C: Constructing Labor Income Process

Using PSID households from 1984 to 2005, we eliminate the Survey of Economic Opportunities subsample and households live in public housing project owned by local housing authority or public agency. We further exclude households that neither own nor rent or whose head is female, a farmer or rancher. We use only households whose heads were married and between 20 and 70 years of age. As described in Section 4, the federal and state income tax liabilities are obtained from the TAXSIM simulation program. We regress the logarithm of after-tax household labor income on dummy variables for age, education, and household composition, using a household fixed effect model. A fifth-order polynomial is used to fit the age dummies in order to obtain the labor income profile, which is presented in Figure 1. Furthermore, the replacement ratio θ in equation (5), which determines the amount of retirement income, was approximated as the ratio of the average of our labor income variable defined above for retiree-headed households to the average of labor income in the last working year.

Following the variance decomposition procedure described by Carroll and Samwick (1997), we first define a d-year income difference as follows:

$$r_d = [\log(Y_{t+d}) - \log(P_{t+d}^Y)] - [\log(Y_t) - \log(P_t^Y)].$$

Thus,

$$Var(r_d) = d \cdot \sigma_e^2 + 2 \cdot \sigma_\nu^2.$$

We then regress $Var(r_d)$’s calculated from the data on d’s to obtain estimates on σ_e^2 and σ_ν^2. We choose d to be $1, 2, ..., 22$.
Appendix D: Constructing House Price Series at State Level

Our state-level house price index (HPI) comes from the Office of Federal Housing Enterprise Oversight (OFHEO). The HPI is a time series price index that is set to 100 for every state for the base year 1980. This price index is thus not comparable cross-sectionally. To create a series of state-level price index that is also cross-sectionally comparable, we utilize the housing price information from the PSID. In particular, we define house prices as prices per square footage of living space. Unfortunately, PSID does not provide information on living space and we have to impute the square footage of homes for our data. Following Flavin and Nakagawa (2007), we first use data from the American Housing Survey (AHS) (1985-2005) to estimate a model of square footage as a function of the number of rooms and other housing characteristics common to both the AHS and the PSID, such as dummy variables representing whether the household was 1) located in a suburb, 2) located in a non-SMA region, 3) living in a mobile home, and a third order polynomial in the number of rooms. Separate models were estimated for each of the four regions (Northeast, Mideast, South, and West). The regional models estimated from the AHS data, reported in Table 1, were then used to generate estimated square footage data for each PSID household. Using these estimates, we predict house sizes for all homeowners in our PSID sample. The nominal house prices per square foot are then obtained by dividing the house value reported from the PSID by the predicted house size. The nominal house prices for individual households are then collapsed by state and year to obtain average house prices. For each state, we can use the imputed nominal price in any year, along with the HPI from OFHEO to calculate the nominal house price for a benchmark year, 1993, which is the midpoint of the time frame of our data. Given the fact that OFHEO and PSID surveyed different random sample of American households, we anticipate that the nominal prices for 1993 converted from different years might vary. We therefore choose to use the median of these converted values. Once the median nominal price is determined for each state in the benchmark year, we can scale the HPI from OFHEO so that the new HPI for each state \(i \) in year \(t \) as follows,

\[
HPI_{i,t}^{\text{new}} = HPI_{i,t}^{\text{OFHEO}} * \text{NominalPrice}_{i,1993} / HPI_{i,1993}^{\text{OFHEO}}.
\]
References

James Kahn, 2008, Housing Prices, Productivity Growth, and Learning, Manuscript.

Lustig, Hanno, and Stijn Van Nieuwerburgh, 2006, Exploring the Link between Housing and the Value Premium, Manuscript.

Table 1
Relationship Between House Size and Housing Characteristics
(Dependent variable: House size in square feet)

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Northeast</th>
<th>Midwest</th>
<th>South</th>
<th>West</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-69.40</td>
<td>89.45</td>
<td>456.46</td>
<td>221.22</td>
</tr>
<tr>
<td></td>
<td>(51.47)</td>
<td>(45.40)</td>
<td>(34.71)</td>
<td>(32.85)</td>
</tr>
<tr>
<td>Urban</td>
<td>-75.44</td>
<td>-94.50</td>
<td>-91.32</td>
<td>-113.10</td>
</tr>
<tr>
<td></td>
<td>(11.55)</td>
<td>(8.05)</td>
<td>(5.70)</td>
<td>(8.47)</td>
</tr>
<tr>
<td>MSA</td>
<td>27.62</td>
<td>67.48</td>
<td>41.41</td>
<td>9.76</td>
</tr>
<tr>
<td></td>
<td>(14.07)</td>
<td>(8.09)</td>
<td>(5.84)</td>
<td>(8.88)</td>
</tr>
<tr>
<td>Mobile home</td>
<td>-492.63</td>
<td>-467.63</td>
<td>-299.46</td>
<td>-236.33</td>
</tr>
<tr>
<td></td>
<td>(25.44)</td>
<td>(15.46)</td>
<td>(8.87)</td>
<td>(12.53)</td>
</tr>
<tr>
<td># rooms</td>
<td>282.68</td>
<td>204.28</td>
<td>-40.10</td>
<td>107.60</td>
</tr>
<tr>
<td></td>
<td>(21.92)</td>
<td>(19.98)</td>
<td>(15.01)</td>
<td>(13.86)</td>
</tr>
<tr>
<td>(# rooms)2</td>
<td>20.88</td>
<td>27.39</td>
<td>55.90</td>
<td>34.55</td>
</tr>
<tr>
<td></td>
<td>(3.12)</td>
<td>(2.87)</td>
<td>(2.12)</td>
<td>(1.97)</td>
</tr>
<tr>
<td>(# rooms)3</td>
<td>-1.55</td>
<td>-1.71</td>
<td>-2.50</td>
<td>-1.70</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.13)</td>
<td>(0.09)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>Adjusted R2</td>
<td>0.23</td>
<td>0.25</td>
<td>0.30</td>
<td>0.33</td>
</tr>
<tr>
<td>Number of observations</td>
<td>77,126</td>
<td>108,727</td>
<td>159,671</td>
<td>94,800</td>
</tr>
</tbody>
</table>

Notes: Data is from 1987 to 2005 biannual American Housing Survey. Robust standard errors are reported in parentheses. We don’t report estimates of survey year dummies.
Table 2
Calibrated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum life-cycle period</td>
<td>T</td>
<td>75</td>
</tr>
<tr>
<td>Mandatory retirement period</td>
<td>J</td>
<td>40</td>
</tr>
<tr>
<td>Labor Income and House Price Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard deviation of permanent income shock</td>
<td>σ_v</td>
<td>0.10</td>
</tr>
<tr>
<td>Standard deviation of temporary income shock</td>
<td>σ_ε</td>
<td>0.22</td>
</tr>
<tr>
<td>Income replacement ratio after retirement</td>
<td>θ</td>
<td>0.96</td>
</tr>
<tr>
<td>Standard deviation of housing return</td>
<td>σ_H</td>
<td>0.100</td>
</tr>
<tr>
<td>Liquid Savings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk-free interest rate</td>
<td>r</td>
<td>0.027</td>
</tr>
<tr>
<td>Housing and Mortgage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down payment requirement</td>
<td>δ</td>
<td>0.200</td>
</tr>
</tbody>
</table>
Table 3
Estimated Structural Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Std Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discount rate</td>
<td>β</td>
<td>0.961</td>
<td>3.203e-03</td>
</tr>
<tr>
<td>Curvature parameter</td>
<td>γ</td>
<td>6.186</td>
<td>0.177</td>
</tr>
<tr>
<td>Bequest strength</td>
<td>L</td>
<td>1.001</td>
<td>0.441</td>
</tr>
<tr>
<td>Housing service share</td>
<td>ω</td>
<td>2.557e-04</td>
<td>1.422e-04</td>
</tr>
<tr>
<td>Intra-temporal elasticity of substitution</td>
<td>ζ</td>
<td>0.323</td>
<td>0.0134</td>
</tr>
<tr>
<td>Housing selling cost</td>
<td>ϕ</td>
<td>0.149</td>
<td>2.273e-03</td>
</tr>
<tr>
<td>Housing maintenance cost</td>
<td>ψ</td>
<td>0.026</td>
<td>1.083e-03</td>
</tr>
<tr>
<td>Rental premium</td>
<td></td>
<td>0.018</td>
<td>0.596e-03</td>
</tr>
</tbody>
</table>
Table 4
Policy Analysis: Assumptions

<table>
<thead>
<tr>
<th>Year</th>
<th>MA – income (year/year, %)</th>
<th>MA – house price (year/year, %)</th>
<th>CS – house price (year/year, %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>-2.66</td>
<td>-8.00</td>
<td>-14.90</td>
</tr>
<tr>
<td>2009</td>
<td>0.55</td>
<td>-2.75</td>
<td>-13.00</td>
</tr>
<tr>
<td>2010</td>
<td>1.25</td>
<td>-2.00</td>
<td>-4.60</td>
</tr>
<tr>
<td>2011</td>
<td>0.00</td>
<td>0.00</td>
<td>-2.20</td>
</tr>
</tbody>
</table>

Note. We set the 2011 MA (MAcroeconomic Advisers) forecast for real per capita disposable income growth and real house price growth to 0 as MA does not forecast beyond 2011. CS (Case-Shiller) does not provide income forecast. Their real house price growth rates forecast are calculated from the futures market from the Chicago Mercantile Exchange.
Table 5
Policy Analysis: The Benchmark Simulation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>91.58</td>
<td>365,552</td>
<td>62,455</td>
</tr>
<tr>
<td>2008</td>
<td>91.30</td>
<td>357,241</td>
<td>62,527</td>
</tr>
<tr>
<td>2009</td>
<td>91.28</td>
<td>355,546</td>
<td>62,441</td>
</tr>
<tr>
<td>2010</td>
<td>90.88</td>
<td>348,916</td>
<td>62,038</td>
</tr>
<tr>
<td>2011</td>
<td>90.75</td>
<td>347,424</td>
<td>61,768</td>
</tr>
</tbody>
</table>

Note. In the benchmark simulation, we let the mean growth rate of house price changes be flat and households’ permanent income grow at rates forecasted by Macroeconomic Advisors (MA).
| Year | Basecase | | | MA | | | CS | | |
|------|----------|----------|----------|----------|----------|----------|----------|----------|
| | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
| 2008 | -0.15 | -2.19 | 0.14 | -0.46 | -9.35 | -0.46 | -0.97 | -15.45 | -1.04 |
| 2009 | -0.16 | -2.58 | 0.68 | -0.79 | -11.55 | -0.81 | -2.84 | -24.42 | -1.58 |
| 2010 | -0.43 | -4.59 | -0.54 | -1.29 | -14.47 | -1.40 | -4.18 | -27.66 | -2.95 |
| 2011 | -0.39 | -5.06 | -0.94 | -1.38 | -14.39 | -1.76 | -4.60 | -28.21 | -3.39 |

Note. The home ownership results are reported as differences in percentage from 2007. The average house value and non-housing consumption are reported as cumulated percentage changes from 2007. In “MA”, we set house price growth rate to those forecasted by MA. In “CS”, we let house prices grow at rates forecasted by the Case-Shiller Futures Market obtained from the Chicago Mercantile Exchange.
Table 7
Policy Analysis – with MA Income

| Year | Basecase | | | MA | | | CS | | |
|------|----------|----------|----------|----------|----------|----------|----------|----------|
| | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) |
| 2008 | -0.34 | -3.30 | -1.63 | -0.73 | -10.21 | -2.24 | -1.46 | -16.07 | -2.89 |
| 2009 | -0.81 | -4.58 | -1.14 | -1.73 | -13.09 | -1.91 | -4.59 | -25.20 | -3.53 |
| 2010 | -1.48 | -6.61 | -1.10 | -2.76 | -15.81 | -1.84 | -6.82 | -27.97 | -3.47 |
| 2011 | -1.37 | -8.28 | -1.50 | -2.79 | -16.75 | -2.38 | -7.38 | -29.07 | -4.02 |

Note. The home ownership results are reported as differences in percentage from 2007. The average house value and non-housing consumption are reported as cumulated percentage changes from 2007. In all cases, the income growth rates are set to those forecasted by MA. Furthermore, in “MA”, we set house price growth rate to those forecasted by MA. In “CS”, we let house prices grow at rates forecasted by the Case-Shiller Futures Market obtained from the Chicago Mercantile Exchange.
Table 8
Policy Analysis – with Flat Income + 70\%LTV

<table>
<thead>
<tr>
<th>Year</th>
<th>Basecase</th>
<th></th>
<th></th>
<th></th>
<th>MA</th>
<th></th>
<th></th>
<th></th>
<th>CS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>-0.28</td>
<td>-2.27</td>
<td>0.12</td>
<td>-0.64</td>
<td>-9.30</td>
<td>-0.42</td>
<td>-1.39</td>
<td>-15.23</td>
<td>-0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>-0.30</td>
<td>-2.73</td>
<td>0.62</td>
<td>-1.06</td>
<td>-11.50</td>
<td>-0.73</td>
<td>-3.69</td>
<td>-24.08</td>
<td>-1.38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>-0.70</td>
<td>-4.55</td>
<td>-0.67</td>
<td>-1.78</td>
<td>-14.20</td>
<td>-1.45</td>
<td>-5.20</td>
<td>-27.24</td>
<td>-2.85</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>-0.82</td>
<td>-4.96</td>
<td>-1.10</td>
<td>-1.94</td>
<td>-19.11</td>
<td>-1.87</td>
<td>-5.93</td>
<td>-27.71</td>
<td>-3.33</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. The home ownership results are reported as differences in percentage from 2007. The average house value and non-housing consumption are reported as cumulated percentage changes from 2007. In all cases, the income growth rates are set to those forecasted by MA and the mortgage LTV is set to 70 percent. Furthermore, in “MA”, we set house price growth rate to those forecasted by MA. In “CS”, we let house prices grow at rates forecasted by the Case-Shiller Futures Market obtained from the Chicago Mercantile Exchange.
Figure 1. Exogenous processes in the model
Figure 2. Simulated housing expenditure shares
Figure 3. Wealth by cohorts in all states
Figure 4. Home ownership by cohorts in all states
Figure 5. Home ownership by cohorts in high and low house price states
Figure 6. House value-income ratio by cohorts in all states
Figure 7. House value-income ratio by cohorts in high and low house price states
Figure 8. Rent-income ratio by cohorts in all states
Figure 9. Rent-income ratio by cohorts in high and low house price states
Figure 10. Homeowners’ mobility by cohorts in all states