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Abstract

We develop a unified and tractable theory of sudden mass movements using

a continuum agent timing game. We assume that an underlying payoff-relevant

fundamental “ripens”, peaks at an optimal “harvest time”, and then “rots”. These

payoffs are multiplied by a hill-shaped quantile rank reward that subsumes “greed”

and “fear” — namely, greed for greater rewards that come from outlasting others,

and the fear of pre-emption. In this setting, we study the symmetric Nash equilibria.

Three local timing games can occur: a slow war of attrition, a slow pre-emption

game, and a sudden pre-emption game, or a “rush”. Rushes always exist, and are

late with greedy players and early with fearful players. We relate measures of fear

and greed, the timing and size of rushes, and the entry rate before and after rushes.

Our theory provides an integrated understanding of seemingly unrelated phenom-

ena, showing how unraveling in matching markets, liquidity runs on companies and

financial bubbles all are part of the same class of problems.
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1 Introduction

Mass rushes are a common feature of many economic settings: the rush of students

to find a suitable match in fraternities; the rush of young MDs to find hospitals for

specialization-internships; the rush to trade in popping financial bubbles; the rush of

bank depositors withdrawing from a bank; and the rush of white flight from a racially-

tipping neighborhood. We develop a unified and tractable theory of these sudden mass

movements that sheds new light on rushes that may appear disparate. The cited rushes

come in many shapes and sizes. Some rushes occur at the most sensible moment, such as

fleeing a building during a fire alarm, or a sinking ship when the captain gives the order.

But many arise either inefficiently early, or inefficiently late. Some are proportionately

quite large, and others quite small. Our theory unearths and explains a co-variation the

size and the timing of the rushes.

To meaningfully discuss timing, we obviously must first endow time with economic

content. We thus assume that an underlying payoff-relevant fundamental “ripens”,

peaks at an optimal “harvest time”, and then “rots”. Our theory explains why some

rushes occur before the harvest time, and others after the harvest time. Matching-related

rushes, for one, tend to occur inefficiently early: Fraternity rushes happen before the aca-

demic year has even started; hiring of federal judicial clerkships famously takes place

long before students have completed their second year of law school, and law firms hire

interns before students have started their degree (Roth and Xing, 1994). Bank runs, eg.,

occur inefficiently early — they start on unfounded rumors of an otherwise “healthy”

bank’s stability. Conversely, a sales-rush that pops a financial bubble occurs long after

the harvest time, when fundamentals have peaked. For instance, the dotcom bubble

burst on March 10, 2000, while fundamentals “peaked” in 1999.1

The strategic side of the model will subsume the two rubrics of “greed” and “fear”.

The driving force of early rushes is the fear of pre-emption. By contrast, late rushes

are best characterized by greed, the lust for greater rewards that come from outlasting

others. Of course, these speak to the two underlying timing games in economics. At

the heart of our analysis are three types of local timing games: in a war of attrition, the

passage of time is fundamentally harmful but strategically beneficial, and players slowly

enter; the reverse incentives also drive gradual entry in a slow-entry pre-emption game;

finally, a rush is a sudden pre-emption game. We give conditions on primitives that

govern the form of timing game, whether rushes are early or late, and large or small.

We also study how changes in the primitives affect behavior.

1NASDAQ firm profits were higher in 1999 than later years, and market-to-book values peaked in
1999. High market-to-book values indicate either high market values or low book values. See Pastor and
Veronesi (2006), Figures 5 (book-to-market values) and 6 (profitability, measured by Return on Equity).
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A novel dimension of our timing game is the continuum of players — it is a “large

game”. This is the standard formalization of the idea from partial equilibrium analysis

that everyone is economically small, which well describes the settings we study. In our

strategic setting, it means in particular that the equilibrium evolves deterministically. In

our game, payoffs multiplicatively depend on the stopping time and on quantile rank.

To best capture our economic settings, we assume that people prefer to be neither first

nor last — specifically, quantile payoffs are hill-shaped, first rising and then falling.

Our next powerful simplification is to focus on the symmetric Nash equilibria in

which players commit to strategies that depend solely on the payoff fundamental. Since

everyone uses the same strategy, no player can expect a higher equilibrium payoff than

anyone else. In other words, if some player attains a preferred quantile rank, then he

sacrifices on the fundamental. In this sense, players formally pay for their quantile rank.

Greed and fear admit simple formalizations in our strategic structure. Players are

fearful if the quantile rank payoff from pre-empting all other players exceeds the average

quantile rank payoff; the difference of these payoffs measures fear. Players are greedy if

the last quantile rank payoff exceeds the average quantile rank payoff; the difference of

these payoffs measures greed. Loosely, an early rush occurs when players fear being left

out, while greed for a better later quantile rank dominates in a late rush. We show that

people never play a slow stopping game when fearful, nor an early rush when greedy.

A slow timing game obtains when the marginal costs and benefits of delay coincide.

This yields a differential equation that describes the distribution of stopping times in a

slow timing game. Quantile payoffs must fall when delay is exogenously beneficial and

must rise when delay is exogenously costly — respectively, a pre-emption game and a

war of attrition. Since quantile payoffs rise and then fall in the rank, quantile payoffs

eventually start to fall as players stop. This clearly cannot coexist with a worsening

fundamental payoff. Logically, this means that a positive mass of quantile ranks must

play at once — namely, a rush must occur. When might this rush occur?

Payoffs in a rush equal the average of the included quantile rank payoffs.2 And in

equilibrium, this rush payoff coincides with the adjacent payoffs from gradual entry. Yet

given our strategic structure, when players are fearful, the earliest pre-emption payoff

exceeds any average quantile payoffs in a late rush. In this case, only an early rush is

possible. On the other hand, when players are greedy, the quantile rank payoff just after

a rush dominates the averaged payoff in an early rush; here, only a late rush can occur.

Having developed the basic equilibrium framework, we illustrate the power of our

2There is an analogy in mechanism design to atomic play: there non-monotonic valuation functions
get ironed so that for some interval of valuations people receive the good at random. An atom in our
game corresponds to an ironed portion of the allocation function in mechanism design.
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framework with a comparative static. In a positive monotone payoff shift, quantile rank

payoffs shift so that they peak later, and later movers get relatively more. For instance,

in the matching example this occurs if there is a stronger social penalty for moving early.

In a financial bubble, a greater weight on higher relative performance causes such a shift;

and in a possible liquidity rush, it is induced by greater deposit insurance.

A positive monotone payoff shift moves the strategic structure from fear to greed.

For early rushes, it yields a larger rush volume, and shorter pre-emption game. For late

rushes, it yields a smaller rush volume, and longer war of attrition. In brief, the closer to

the most efficient time to rush, the larger the rush. We also explore behavior outside the

rush. For log-concave time-payoffs (most non-exponential payoff ripen-rot-functions

satisfy this assumption), the stopping hazard rate falls during pre-emptive phases and

rises during war of attrition-phases. In an asset bubble, this implies that selling should

intensify as one approaches the moment of the rush.

In the last section of this paper, we apply our general model in three famous models

of rushes. We respectively adapt and subsume (a) the matching insights in Roth and

Xing (1994), (b) the bank run model of Diamond and Dybvig (1983), and (c) asset-price

bubble, aggravated by relative performance incentives of mutual fund managers, as

done by Shleifer and Vishny (1997). We construct toy models for each setting that project

into our simple general framework.

Our comparative static applies to each of these three toy models. In particular, ‘un-

raveling” in matching is the progressively early matching that occurs each year (Niederle

and Roth (2003) study this for gastroenterology internships). We instead explain it as an

equilibrium comparative static in our setting. Due to a strong drop in the supply of el-

igible applicants, hospitals feared a thin market. This shifted payoffs from high to low

quantiles, as it became more attractive to move early (despite the negative social stigma).

This caused earlier offers, and we argue smaller rushes.

Our asset bubble toy model must adopt a metaphorical interpretation of price as

time. The reason is that our formal model only allows our strategies to depend on the

fundamental or time, but not on price — which intuitively makes no sense. Our com-

parative static then predicts that later bubbles (larger price drops) induce smaller rushes.

We verify this surprising prediction using a large data set (1993-2003) on opening ses-

sions for the Dow Jones Industrial Average.

Related Literature. Our work builds on the timing games literature. Our setup is es-

sentially a mix of a war of attrition and a pre-emption game — models in the literature
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can usually be classified as being one or the other.3 Mixing the two allows us to gain the

big-picture insights of common features of situations with economic rushes.

Wars of attrition have been explored in areas as diverse as duopoly exit (Fudenberg

and Tirole (1986)), patent races (Fudenberg, Gilbert, Stiglitz, and Tirole (1983)), opti-

mal investment timing (Chamley and Gale (1994) and Gul and Lundholm (1995)), or

the adoption of a new technology (Farrell and Saloner (1986) and Choi (1997)). Murto

and Välimäki (2006) develop a market exit model with a pure information externality

(others’ stopping decisions signal the quality of the market). All-pay auctions and all-

pay contests have a similar flavor as only the last few/highest bids obtain the price; see

Siegel (2007) for a recent insightful paper.

Pre-emption game-like settings have been used to explain market entry decisions

(Reinganum (1981a,b), Fudenberg and Tirole (1985), Levin and Peck (2003), and Argen-

ziano and Schmidt-Dengler (2008)) or patent races (Weeds (2002)). Brunnermeier and

Morgan (2006) elaborate on clock games, where their analysis is a dynamic extension of

the otherwise static global games approach. Hopenhayn and Squintani (2006) study pre-

emption games in which players’ underlying, privately known state (that determines

payoffs) changes stochastically over time; since agents learn (and thus their information

improves) over time, this can be seen as a pre-emption game in which payoffs (through

better informed decisions) grow over time. Even financial bubbles can be understood

as a pre-emption game (for example, Abreu and Brunnermeier (2003), who also assume

unobservable actions): Everyone wants to sell before the bubble bursts but, by the same

token, stay in as long as the bubble lasts. For recent empirical work on speculative bub-

bles (as prolonged mispricings) in foreign exchange markets see Brunnermeier, Nagel,

and Petersen (2008): the price behavior in markets where traders extensively employ

carry trades has features of bubbles and crashes (‘Up the stairs, down the elevator’; the

phrase is borrowed from Stefan Nagel) that are in line with the predictions of our model.

The decisive feature of pre-emption games is that players prefer to act before others.

The remainder of the paper is structured as follows: In Section 2 we outline the

details of our model. Section 3 formalizes greed and fear. In Section 4 outlines the con-

ditions for the equilibria, Section 5 considers comparative statics in the payoff structures

and describes properties of the adoption rates. In Section 6 we present three miniature

models of economic examples that justify our reduced form approach and argue how

empirical evidence supports our framework and results.

3In more recent work, Park and Smith (2008) study finite player timing games, but they have no payoff
growth and thus their model does not admit slow pre-emption games.
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2 A Simple Reduced Form Model with Timed Rushes

A continuum of mass 1 of identical players engage in a continuous time stopping game

starting at t = 0. They can stop only once and stopping is irrevocable. Actions are either

unobservable or committed to simultaneously before play, so that a player’s strategy

simply specifies the time he will stop.4 A mixed strategy is thus a non-decreasing and

right-continuous function Q : [0,∞) → [0, 1] that measures the cumulative probability

that a player has stopped by time t. We explore the Nash equilibria since there is one in-

formation set. As is typical practice in the timing games literature we ignore asymmetric

equilibria for symmetry captures the anonymity of players’ roles.

A player’s payoff multiplicatively depends on his ordinal stopping quantile rank

and his stopping time. Namely, there is a reward scale factor v := [0, 1] → R+ which

is a continuous and differentiable function of a player’s stopping quantile. We assume

that the very first stopper gets a positive payoff, v(0) > 0, and that these factors are

“hill-shaped”, first rising and then falling (Figure 1).

If players stop at the same time, they receive the average of their rank scale rewards

— as if a fair lottery decided the order of the simultaneous stoppers. So if fraction q of

players has already stopped, and then fraction p − q stops at exactly the same moment,

then their rank reward scale factor is 1/(p − q)
∫ p

q
v(x) dx. The overall average rank scale

factor is
∫ 1

0
v(x) dx, which, without loss of generality, we normalize to 1.

For the purposes of a comparative statics analysis we sometimes index these rank re-

wards by θ ∈ R. Rank rewards categorized by θ are then assumed to obey the monotone

ratio property: vθ(x)/vθ(y) increases in θ for x > y. This property is often used in informa-

tion economics as a requirement on signal-densities to express that higher signals imply

higher values.

Apart from the quantile rank, there is also a time component of payoffs for which, in

the spirit of the Hotelling’s (1931) tree-cutting model, we assume that they first ‘ripen’

and then ‘rot’. Specifically, the time payoff factor π(t) smoothly rises to π̄ := π(tπ) > 1 =

π(0), peaks at the harvest time tπ > 0, and then falls smoothly. For instance, π(t) may be

the present value of a fundamental.

In what follows we shall use the following running example to illustrate our findings:

v(x) = −(x − θ)2 + (θ − 1/12)2 + 13/12. This function is hill-shaped for θ ∈ (0, 1) and

satisfies monotone ratio domination in θ and x.5

4For a sharpened focus on the timing and size of rushes, we consider only purely time-dependent
(open loop) strategies. However, time can also be metaphorically interpreted by representing a underlying
state variable upon which strategies may be conditioned. We will provide an example in Section 6.

5This function is a parabola with maximum rank θ that integrates to 1 on [0, 1]. Monotone ratio domi-
nation is synonymous to log-supermodularity; it thus suffices to check if (∂2 ln(vθ(x))/(∂x∂θ) ≥ 0.

5 Greed, Fear, and Rushes



3 Greed and Fear

In the games that we study, being first is not as attractive as being second, and being

last is not as attractive as being second to last. At the same time, in any symmetric

equilibrium, a player cannot expect a quantile payoff larger than the average quantile

payoff, 1. This leaves them with the decision of whether or not to engage in the game or

to pre-empt or outwait everyone else.

In particular, when people want to stop before the game, then they fear being pre-

empted, if they want to outwait everyone else, they exhibit greed. We measure fear by

F = v(0) − 1 and we measure greed by G = v(1) − 1. This motivates

Definition (Greed and Fear) Players are fearful if F > 0, and they are greedy if G > 0.

Of course people can’t be simultaneously greedy and fearful because this would imply

that all hill-shaped quantile payoffs are above average.

Monotone ratio shifts in rank rewards intuitively alleviate fear but raise greed be-

cause quantile payoffs are shifted towards higher ranks: being a late rank is not as costly

any more (fear is reduced), but being early pays relatively less (greed increases).

Lemma 1 (Payoff Shifts and Greed vs. Fear) Fear decreases and greed increases in θ.

When vθ′ dominates vθ by monotone ratio domination, we can write vθ′ as vθ′(k) =

h(k)vθ(k) with h being a function that increases in k. Since the sum of quantile payoffs

remains constant (and quantile payoffs positive), this implies that h(0) < 1. Therefore

fear decreases as vθ′(0) − 1 < vθ(0) − 1. Similarly, h(1) > 1 and thus greed increases

as vθ′(1) − 1 > vθ(1) − 1.

In the running example, it is straightforward to check that F (θ) = vθ(0)− 1 = (4/3−

θ) − 1 decreases in θ and G(θ) = vθ(1) − 1 = 1/3 + θ − 1 increases in θ. Thus fear is

reduced, greed increases. Moreover, since v(0) = 4/3 − θ and v(1) = 1/3 + θ, it is clear

that people are fearful for θ < 1/3 and greedy for θ > 2/3.

4 Equilibrium Analysis

The basics of players behavior can be understood with standard tools from economic

analysis. Players stop immediately if the marginal cost of delay exceeds the marginal

benefit, and they will delay if the marginal benefit of delay exceeds the marginal cost.

To actively engage in a symmetric mixed equilibrium marginal benefit and marginal
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average
payoff

quantile
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Players are fearful: v(0) > 1
Players are neither

fearful nor greedy.
Players are greedy: v(1) > 1

Figure 1: Illustrations for Fear and Greed for the running example. The left panel plots an example
for rank rewards with fear, where the first payoff is larger than the average. The middle panel plots an
example where there is neither fear nor greed, and the right panel plots an example for greed, where the
last payoff is higher than the average payoff.

cost must exactly offset each other for the players. Analogous to standard economic

problems, this occurs if the elasticity of time and quantile rank payoffs in time is −1:

∂ log v

∂ log π
= −1. (1)

Since actions are unobservable, when stopping at any point in time, a player knows

only his time payoff π, but not his quantile rank. Instead, he has to compute his expected

quantile rank payoff. Suppose players have each stopped with the common probabil-

ity Q(t) = q,6 and Q(t) is continuous. Then the fraction of players that have stopped

is also q and, therefore, the expected quantile payoff coincides with the actual quantile

payoff and is thus v(q) (a formal argument is in the appendix). Applied to (1) we have

that in equilibrium

Q̇(t)
v′(Q(t))/v(Q(t))

π̇(t)/π(t)
= −1. (2)

Using this equation, we can make some simple observations about the nature of play:

As Q̇ measures the change in the quantile that has stopped, it is non-negative. Time

payoff π increases before the harvest time and decreases thereafter, so that there is a

marginal delay benefit before the harvest time, and a marginal delay cost thereafter.

Consequently, v′, which measures the quantile rank or strategic incentive to delay, must

be negative for play to occur before the harvest time and positive for play to occur after

6In what follows we will use q for realizations of Q(t) and we will use Q̇ to denote the derivative
of Q(t) (when it exists).
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the harvest time — otherwise the quotient cannot be negative.

Next, equation (2) is a differential equation for Q̇, the solution of which describes

how people have to play in equilibrium so that indeed marginal benefits of delay coin-

cide with marginal costs. For a definitive solution of the differential condition, however,

we also need boundary conditions. To obtain these, recall that in a mixed strategy equi-

librium, payoffs are constant. So once we know the payoff at one point, we know the

equilibrium payoff of the game and close examination of the payoff will yield the right

boundary condition. Looking at the elasticity interpretation it is obvious that the key fo-

cal point for payoffs is the harvest time. But before we discuss the boundary conditions,

we will make a small detour.

We have already established that when time benefits increase, an equilibrium is pos-

sible only if quantile payoffs decline; analogously for marginal time delay costs. This

yields two possible equilibrium constellations. The usual interpretation of a situation

where a strategic incentive to stop opposes an exogenous benefit of delay is that players

engage in a pre-emption game phase. The opposite case, when there is a strategic incentive

to continue and an exogenous cost of delay is interpreted as a war of attrition phase.

As v is hill-shaped there is a unique qv so that v′ changes its sign. Now by the above

logic, any war of attrition phase transpires in the time interval after the harvest time,

[tπ,∞), and any pre-emption game phase before the harvest time, [0, tπ]. Similarly, any

war of attrition phase transpires in the initial q-interval [0, qv], and any pre-emption game

phase in the latter q-interval [qv, 1]. Together, these facts at once preclude equilibria hav-

ing both war of attrition and pre-emption game phases.

Wars of attrition and pre-emption games are, in fact, played in a unique manner,

determined by payoffs at the harvest time. These yield unique boundary conditions for

the elasticity differential equation. To see this, observe that any war of attrition phase

must start at the harvest time, and any pre-emption game phase must end precisely at

the harvest time. Why? The equilibrium payoff for a war of attrition phase starting

at the harvest time is v(0)π̄.7 Now suppose that the war of attrition starts at a later

time. Then a player could profitably deviate, by stopping at the harvest time, because

he would secure the same expected quantile rank payoff v(0) but at a higher time scale

factor. Similarly, if a pre-emption game ended at any time before the harvest time, then

a player could profitably delay until the harvest time. He would then secure the same

expected quantile payoff v(1) but at a higher time scale factor.

While we now know how and when wars of attrition and pre-emption games will be

played, two important questions remain: what happens at the end of the war of attrition

phase when v′ changes its sign? And how is it possible that there is a pre-emption game

7In a mixed strategy equilibrium, payoffs are constant on the support.
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phase (so that q > qv) when there is no war of attrition preceding it?

The answer to both questions is that these situations call for a rush. In a rush, people

stop with positive probability, which is sometimes called an atom. In a mixed strategy

equilibrium, players must earn the same payoff at any time in the support. So the payoff

from, say, the war of attrition that precedes a rush must coincide with the payoff in the

rush. As we cannot have both a pre-emption game and a war of attrition as part of an

equilibrium, we can focus on initial and terminal rushes. The intuitive payoff in an initial

rush where people play with probability q, denoted by V0, is the average of all initial

expected quantile payoffs; similarly, when people have stopped with probability q and

then in a terminal rush, the payoffs are the average of all remaining expected quantile

rewards, denoted by V1. Formally,

V0(q) =
1

q

∫ q

0

v(x) dx and V1(q) =
1

1 − q

∫ 1

q

v(x) dx. (3)

We can now apply standard economics to determine the relation of quantile payoffs v

and rush payoffs V0 and V1: v is the marginal payoff of the average V0 and thus v and V0

coincide whenever V0 has a maximum; similarly for V1.

This then answers the question of how we can have a pre-emption game without a

preceding war of attrition: there is a rush before the pre-emption game. But not just any

rush, there is a unique rush because at only one point do rush payoffs and pre-emption

game payoffs coincide. Similarly, when there an equilibrium with a war of attrition,

then it won’t end with a subsequent pre-emption game but with a rush that is uniquely

determined.

Next, the averages V0 and V1 have locally isolated maxima only if they are hill-

shaped, and it turns out that their shapes are determined by fear and greed. To see this

observe that as v increases, V0 averages small payoffs so that average and marginal can

only intersect when the marginal declines. Since v is hill-shaped, there can be at most

one such intersection. There will be exactly one, if V0 exceeds v for the complete rush,

that is when q = 1. The payoff from this complete rush is 1, so if and only if v(1) < 1,

or, in words, if people are not greedy, then we have the situation when the rush and the

pre-emption game payoff can coincide. A similar argument applies to fearfulness for V1.

This effectively proves the following lemma.

Lemma 2 (Average Quantile Payoffs with Fear and Greed) V0 is hill-shaped if and only if

players are not greedy, V1 is hill-shaped if and only if players are not fearful.

In the above we have aimed to make an intuitive case for our equilibria, but we

now need to be more specific with respect to some technical details. First, we only
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consider equilibria where play occurs on an interval of time, or possibly just a single

focal moment in time. This eliminates a continuum of arbitrary equilibria in which

time becomes a focal coordination device that is not otherwise mandated by primitives.

Further, the only focal point in time that we consider is the harvest time tπ.

To simplify the exposition, we also assume that the most that a player can obtain by

out-waiting all others, π̄v(1), exceeds what he could maximally obtain when all players

start the game by rushing with probability q; this payoff is maxq V0(q). This requirement

holds if the harvest time payoff premium is large enough relative to quantile payoffs.

Equally well, this inequality is met provided the last entrant is not overly penalized,

since that precludes a gradual pre-emption game.8 Together, these conditions ensure

that there is a meaningful incentive to delay.9

We can now turn to outline the equilibria of this setup. Apart from the two classes

outlined before —those with war of attrition phase followed by a terminal rush and

those with a pre-emption game phase preceded by an initial rush— there is a third class

that involves a complete atom at the harvest time.

Theorem (Equilibria with Rushes, Pre-emption Games and Wars of Attrition)

(1) EQUILIBRIUM WITH A LATE RUSH

(a) If players are fearful, then there is no equilibrium with a war of attrition.

(b) If players are not fearful, then there exists a unique equilibrium with a war of attrition

that is followed by a rush.

(2) EQUILIBRIUM WITH AN EARLY RUSH

(a) If players are greedy, then there is no equilibrium with a pre-emption game.

(b) If players are not greedy, then there exists a unique equilibrium with a pre-emption

game that is preceded by a rush.

(3) THE EFFICIENT RUSH

A rush at the harvest time is an equilibrium only if players are neither greedy nor fearful.

The text leading to this theorem substitutes a proof: Lemma 2 establishes that there

is no terminal atom if people are fearful, similarly for greedy people and initial atoms.

A complete rush at the harvest time pays 1 and can thus be an equilibrium only if it

does not pay for a player to play before (when he gets v(0)) or after this rush (when he

gets v(1)). Thus either greediness or fearfulness preclude such an equilibrium.

8As an example consider π(t) = (t + 1)e−rt with r = 10%. Applied to the running example, the
condition always holds: since π̄ ≈ 4 so that v(1)π̄ ≥ 4/3 for all θ ∈ [0, 1] whereas the maximum of V0 is
3

4
(θ − 2

3
)2 + 1 ≤ 4/3 for θ ∈ [0, 1].

9This assumption is by no means necessary to obtain our results, but the description becomes more
cumbersome; details of the equilibrium analysis for this case are posted on our website.
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In the context of our framework, the Efficient Rush is the efficient benchmark. For

instance in matching, it arises when all companies make offers at the time when all

or the optimal amount of information has been revealed and when no-one pre-empts

this most efficient scenario. In bank runs, the efficient rush arises when all investors

withdraw their deposits at the expiration of a long-term investment.

The big insight is that when players are fearful, the only equilibrium is one with an

early rush, and when players are greedy, the only equilibrium is one with a late rush.

Put differently, when greed dominates fear, people take too much risk and delay beyond

their optimal stopping point. When fear dominates greed, people forego payoffs and

rush too early.

5 The Size of Rushes and the Length of Play

To obtain a better understanding of the impact of quantile payoffs and to generate

testable implications, we now consider monotone ratio shifts in the quantile payoff

structure. While quantile payoffs themselves are often unobserved, one can generate

proxy variables that capture certain qualitative features of quantile payoffs. For instance,

in liquidity runs, deposit insurance provides a lower bound for high-order quantile pay-

offs, the strength of the relation between fund and investors proxies the extent to which

withdrawal causes a penalty for early movers. We find

Proposition 1 (Payoff Shifts) When θ rises, in the late rush equilibrium the war of attrition

phase lasts longer and the terminal rush shrinks, while in the early rush equilibrium the pre-

emption game phase starts later and the initial rush grows.

With hill-shaped rank structures, a monotone shift favors later movers, for instance,

by shifting the hill-top to the right. Players are then more willing to hold out so that

war of attrition phases last longer. The shift towards later ranks has the reverse effect on

pre-emption game phases: the rush preceding the pre-emptive phase grows and also the

survivor payoff grows. In combination, the elasticity of decreasing rank rewards shrinks

so that the exit rate increases. This speeds up the pre-emptive phase. Figure 4 is a general

schematic that illustrates both the length of the gradual entry phases respectively, and

the size of the rushes. Figures 2 and 3 illustrate the comparative static for the running

example, the explicit solutions are in the appendix.

Our final result allows us to distinguish wars of attrition from pre-emption games by

studying players’ Exit Rates. These can be measured by a strategy’s density Q̇(t): While

11 Greed, Fear, and Rushes
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Figure 2: Rank-Shifts and their impact on Equilibrium Play: The comparative static illustrated for
early rushes. The figure is based on the running example (see the appendix for explicit solutions) for
θ = 2/5 (red or and solid line), θ = 1/2 (blue and dash-dotted line) and θ = 3/5 (black and dashed line).
The LEFT PANEL plots the quantile payoff functions and the quantile payoffs from late rushes. As can be
seen in the left panel, as θ increases, the tops of the hill for both v and V0 move to the right. To determine
equilibrium strategies explicitly, we assume that π(t) = (t+1)e−t/10 so that tπ = 9. The RIGHT PANEL then
plots the equilibrium strategy Q for the early rush. The dotted horizontal lines signify arg maxq V0(q) for
the respective θ’s. Entry begins at the time when Q(t) ≡ arg maxq V0(q) with a rush of size arg maxq V0(q)
and continues until time tπ = 9 (whence Q(t) = 1). The larger is θ, the later in time is the rush, and the
larger is the rush.

a player’s strategy measures the accumulated probability of stopping, its density cap-

tures the frequency of stopping decisions. If these densities differ between pre-emption

games and wars of attrition, then there are testable implications of our equilibrium pre-

dictions — increasing or decreasing rates should be detectable in suitably constructed

panel data of comparable rush-situations.

To obtain conclusive results we assume that quantile rewards are concave10 and that

time payoffs π are log-concave. The latter is a very weak premise and hardly rules out

candidate functions. For instance, if π(t) = γ(t) · e−rt (so that π is the discounted value

of a fundamental γ), then log-concavity holds as long as γ is not exponential. In the

running example, quantile rewards are concave (because it is a parabola).

Proposition 2 (Exit Rates) Assume a hill-shaped and concave quantile reward function v and

a log-concave time-payoff π. Then the adoption rate Q̇ is increasing in time t during a war of

10We have already argued that when rank rewards are hill shaped, so are expected rank rewards v.
Thus the shape of v is preserved under expectations. Curvature is also preserved, for the same reason:
v′ a polynomial with coefficients given by the first differences of v; and thus v′′ is a polynomial with
coefficients given by the first differences of the first differences. When v is concave, these double-first
differences are negative, and so will be v′′.
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Figure 3: Rank-Shifts and their impact on Equilibrium Play: The comparative static illustrated for
late rushes. The figure is based on the running example for θ = 2/5 (red or and solid line), θ = 1/2 (blue
and dash-dotted line) and θ = 3/5 (black and dashed line). The LEFT PANEL plots the quantile payoff
functions and the quantile payoffs from late rushes. As can be seen in the left panel, as θ increases, the
tops of the hill for both v and V1 move to the right. To determine equilibrium strategies explicitly, we
assume that π(t) = (t + 1)e−t/10 so that tπ = 9. The RIGHT PANEL then plots the equilibrium strategy Q
for the late rush. The dotted horizontal lines signify arg maxq V1(q) for the respective θ’s. Entry begins at
tπ = 9 and continues until the time when Q(t) ≡ arg maxq V1(q), at which point there is rush that ends the
game. The larger is θ, the later in time is the rush, and the smaller is the rush.

attrition phase and decreasing during a pre-emption game phase.

Intuitively, wars of attrition intensify whereas pre-emption games taper off. For instance

in a bubble, before the rush the selling pace quickens, as fund activity intensifies. This

was indeed observed by Griffin, Harris, and Topaloglu (2006) for the dot-com bubble.

6 Some Economic Rushes with our Reduced Form

For a variety of economic settings, we will now construct the sparest plausible model

that yields our reduced form for payoffs. We justify in this section that rushes occurred,

and that the economics matched the assumptions of a harvest time in time payoffs, and

a hill-shaped rank order. We then make predictions based on our major propositions for

these economic settings using these representations.

The ideas that underly these models are not new but often expressed in the literature,

albeit mostly casually. The three main examples that we discuss are an asset bubble, a

liquidity run, and job market matching. Our models are based on the reasoning that

we outlined in the introduction: “I know that I am in a bubble, and I know that it will
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Figure 4: General Illustration of Proposition 1. The figure illustrates simultaneously the size of rushes,
the timing of rushes and the length of gradual entry. The larger a rush, the larger the dot in the above
figure; the further is the dot from the harvest time, the longer is the gradual entry phase. Next, the larger
parameter θ, the larger is the early rush, and the closer it is to the harvest time. For late rushes, the relation
is the reverse: the larger θ, the smaller the rush and the further it is from the harvest time. Moreover, the
figure also illustrates that when there is fear, there is no late rush and likewise, when there is greed, then
there is no early rush. Absent fear and greed, the efficient rush at the harvest time is also an equilibrium.

collapse when everyone sells. So I want to get out before that happens. But suppose

I sell out early and a competitor stays in a little longer and gains a lot more than I.

Wouldn’t that bother me a great deal?”; “This company may go bust, so I want to pull

my funds before it happens. But suppose it becomes known that I was the first to pull

my funds, effectively pulling the rug under their feet. Would I get punished by other

borrowers? Would this exclude me from future business?”; and “I would like to get the

best candidate for the job and I don’t want to wait until all the good ones have been

hired by others. But if I start hiring before everyone else, would my colleagues sneer at

me at the next convention?” Based on these thoughts, we build three toy models.11

11A technical disclaimer: In our main analysis we normalized the average quantile payoff to 1 to sim-
plify the exposition. The payoff structures in the examples that we develop now will not be normalized,
again to simplify the exposition. The bounds for greed and fear that we discuss below are obtained by

comparing v(0) and v(1) to the average payoff,
∫

1

0
v(q)dq, instead of 1.
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6.1 The Rush to Sell in a Bubble

OVERVIEW. On the most basic level, financial bubbles are a pre-emption game in the

spirit of Blanchard and Watson (1982): prices are rising and people must decide when

to exit the bubble. At the same time, as more people exit, the bubble becomes more

likely to burst. Translated into the language of this paper, in a pure pre-emption game

quantile payoffs are strictly declining so that people are fearful — the resulting early

rush precludes bubbles from arising in the first place.

Yet the strict pre-emption game perspective ignores the fact that financial market

participants see their payoffs not in absolute but relative terms. Most of the market

trading activity stems from institutional investors12 who act on behalf of others and who

are usually paid according to how they do relative to their peers.13 As a consequence,

leaving a growing bubble is costly because those peers who stay in a little longer and

get out just early enough to avoid the crash will do better.14 Comparing payoffs to one’s

peers is, of course, not restricted to institutional investors — the ‘keeping up with the

Joneses’ behavioral phenomenon is commonly observed in many contexts, including in

financial markets.

We assert that fund managers take a planning perspective so that they commit ex

ante to act at a specific price — thus time here is a metaphor for if prices grow over time

then the commitment to sell at a specific time is synonymous to committing to sell at a

specific price.

The harvest time is the price level so that from an ex ante point of view any further

price gains are outweighed by the possibility of a crash. As we argue, what keeps people

in the market is that they greedily want to outsmart their peers. The mixed strategies

over ‘exit times’ that we employ in most of the paper have the interpretation of a gradual

selling or ‘unwinding’ of a position.

A TOY MODEL. The bubble bursts after a fraction of q investors has sold with proba-

bility q · ρ, ρ ∈ (0, 1]. Variable ρ denotes the resiliency of the market to sustain the bubble

even if all strategic fund managers exit. The larger r, the lower the impact of the fund

managers’ sales in popping the bubble. Thus the bubble still exists after q have stopped

12Dasgupta and Prat (2007) report: “On the New York Stock Exchange the percentage of outstanding
corporate equity held by institutional investors increased from 7.2% in 1950 to 49.8% in 2002 (NYSE Fact-
book 2003). For OECD countries as a whole, institutional ownership now accounts for around 30% of
corporate equity; see Nielsen (2003). Allen (2001) presents persuasive arguments for the importance of
financial institutions to asset pricing.”

13See Berk and Green (2004) or Shleifer and Vishny (1997). Technically, mutual fund managers cannot
be paid directly according to the returns that they generate, but instead get paid relative to the funds that
they manage. But when a fund does well relative to its peers, then the fund usually experiences inflows
of cash. Consequently past performance does have a strong influence on future payoffs.

14For a longer discussion of this argument see Brunnermeier and Nagel (2004).
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with probability 1 − qρ. Normalized, the first stopper gets the selling price if the bubble

did not burst and 0 if it did burst. If it did not burst, then later ranks get higher compen-

sation (through increased fund inflows) of 1 + θq of the selling price, where parameter

θ ≥ 0 measures how responsive markets are to relative performance.

We assume that the selling price p(t) increases monotonically and less than expo-

nentially over time until the bubble bursts whence it drops to 0. Moreover, the bubble

bursts for exogenous reasons as the price grows with probability 1 − e−r·p(t). To see the

rationale for this exogenous bursting, consider the following excerpt from an article by

Fareed Zakaria in Newsweek:

“‘Leverage’ is the fancy Wall Street word for debt. It’s at the heart of the

current crisis. Warren Buffett explained the problem in his inimitable way

on “The Charlie Rose Show.” “Leverage,” he said, “is the only way a smart

guy can go broke. . . You do smart things, you eventually get very rich. If

you do smart things and use leverage and you do one wrong thing along

the way, it could wipe you out, because anything times zero is zero. But

it’s reinforcing when the people around you are doing it successfully, you’re

doing it successfully, and it’s a lot like Cinderella at the ball. The guys look

better all the time, the music sounds better, it’s more and more fun, you think,

’Why the hell should I leave at a quarter to 12? I’ll leave at two minutes to

12.’ But the trouble is, there are no clocks on the wall. And everybody thinks

they’re going to leave at two minutes to 12.” Newsweek, October 20, 2008.

Translated into this paper, investors do not know when it’s midnight, but the chance

of having passed the two minutes to midnight bound rises over time. Consequently,

the bubble is still around at time t when fraction q has stopped with probability (1 −

qρ) × e−r·p(t). The payoff that one gets when the bubble has not burst is (1 + θq) · p(t). In

combination, the payoff from stopping at time t as quantile q is

(1 − qρ) × (1 + θq)
︸ ︷︷ ︸

v(q)

× e−r·(t)p(t)
︸ ︷︷ ︸

π(t)

.

For θ ∈ (ρ, ρ/(1 − 2ρ)), the combined term v(q) = (1 − qρ)(1 + θq) is hill-shaped in q.

For θ < 3ρ/(3 − 2ρ), people are fearful, and for θ > 3ρ/(3 − 4ρ) people are greedy. The

time-related component e−r·p(t)p(t) is hill-shaped in the price (or t).

Our analysis showed that if people are fearful then a bubble does not arise. But

if people are greedy, then they will ride the bubble and a late rush occurs. In this toy

model, greed is caused by relative payoff compensation. Brunnermeier and Nagel (2004)
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confirm this idea showing that hedge funds, who are subject to such relative compensa-

tion, rode bubbles for individual tech stocks.

Our first comparative static, translated into an environment with a financial bubble

states that as relative payoff compensation becomes more pronounced, greed increases

and thus people ride the bubble for longer. At the same time, even though people get

greedier, they also slowly unwind their positions. So while the rush point is reached

later in time, the rush itself is smaller because people have already begun to sell their

holdings. This notion was tentatively confirmed by Griffin, Harris, and Topaloglu (2006)

who document how institutional investors sold their positions prior to the bursting of

the tech-bubble. Moreover, as the bubble has grown for longer, when it bursts, the price

drop is larger. Our second comparative static predicts that as the bubble grows, people

exit the market at an increasing rate.

Empirical evidence for first comparative static would thus show that prices drops

and selling volume in a rush are negatively related. We have not found a fitting analysis

in the literature, and thus assembled some data for the companies in the Dow Jones In-

dustrial Average. While it is straightforward to determine price drops, it is more difficult

to determine a rush that fits our formulation. A rush to sell would appear in the trading

volume so one may be tempted to merely use daily volume. Yet this data is ‘contami-

nated’: if there is a rush that triggers a price drop, then market participants will learn

about it. This may lead to more selling which biases the size of the rush. Our analysis,

however, concerns the initial, triggering rush.

As a proxy for this rush we use the selling volume that obtains during the opening

session. This provides a controlled environment in which market participants would

not know of a rush until the specialist posts the results of the opening session. This data

is therefore not contaminated by the reaction to a rush.15

Specifically, we obtained data for the NYSE listed DJIA companies as of May 2008;

Microsoft and Intel are traded on Nasdaq where there is no formal opening session with

trades. They were thus omitted from the data. Our data spans the period from 01/1993–

12/2002. Data on closing prices, dividends, and stock splits is from CRSP; returns are

computed close-to-close and volume and price-changes were adjusted for dividends

and splits. The opening volume is the size of the largest transaction on the NYSE in the

first 30 seconds of trading; this number is obtained from the TAQ database.

15In the opening session at NYSE the specialist collects orders and sets the price that equates demand
and supply. The details of the matching rules are rather involved and the price setting choices are not
fully transparent; for instance, the specialist may take positions to ensure that prices changes are not too
extreme, s/he may take positions if ‘liquidity on one side of the market has dried up’ and so on. The
imbalance of orders was not posted —until recently— while the opening session was still under way.
Consequently, we have a controlled environment possible.
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For these companies, we first determined all days when there was a price drop rel-

ative to the preceding trading day’s closing prices. We then determined whether the

opening volume is buyer or seller dominated by applying a procedure akin to so-called

Lee and Ready (1991) ‘tick-tests’ that are commonly employed in the financial market

microstructure literature,16 and then we used the data for seller-dominated volume only.

To be able to compare stocks, we scaled each stock’s volume by its average open volume.

Figure 5 plots seller-initiated volume against price drops. Our theory predicts that

even small selling volume at the open can trigger a large price drop during the remain-

der of the trading day and that large trading volume can go along with only small price

drops. Thus to support our theory the figure should display a positive relation between

the rush measure and price declines.

The figure plots all combinations of selling-volume and price declines, and most of

the data points are concentrated around the origin. This indicates that usually moderate

selling volume at the open coincides with moderate price declines. Our results, on the

other hand, intuitively apply to the tails, suggesting that large price drops be coupled

with low volume or large volume be coupled with small price drops.

Visually, the graph indeed suggest that there may be an increasing, possibly con-

cave relation among the tails. A formal analysis confirms this: Excluding cases where

simultaneously returns are not too negative and rushes small (i.e. excluding a rectan-

gular at the origin), a regression of returns on rushes always yields a positive slope

coefficient that is significant at the 99% level. For instance, if we look only at returns

smaller than −5% and rushes larger than 5, then the coefficient on the rush is .0031 with

a t-statistic of 18.8. For returns smaller than −1.5% and rushes larger than 2, the coef-

ficient is .00067 with a t-statistic of 8.73. Almost all variations yield the same outcomes

concerning the sign of the slope, as do quantile regressions between the tails. Further,

even when including the points around the origin, fitting a negative exponential func-

tion to mimic a concave relation (i.e. running a regression on log-price-drops) yields a

significant (99% level), increasing relation.

6.2 Liquidity Runs

OVERVIEW. Bank runs were a commonly observed phenomenon in the early part of the

20th century in the U.S. (and famously portrayed in movie pictures such as ‘It’s a won-

derful life’); but banking panics or crises continue to arise in developed and developing

16The procedure is employed to distinguish buyer- and seller-initiated trades and it goes as follows: if
the opening price is higher that previous day’s closing price, then there must have been more buyers and
thus the opening transaction is classified as buyer-dominated; the reverse for seller-dominated. In our
analysis of selling-rushes we care for the seller-dominated transactions.
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Figure 5: Data Plot: Returns are on the vertical axis, our selling rush-measure is on the horizontal axis.
Specifically, the selling-rush measure is the selling volume at the open (buying vs. selling being identified
by a Lee-Ready ‘tick-test’) scaled by the stock’s average opening volume. The returns are computed as
the percentage price change from the rush day’s open to close; the results remain unaffected if we use the
close-to-close returns.

countries alike.17 Recent examples are the 2007 run on Northern Rock in the UK (despite

deposit insurance), or the run on unregulated investment vehicles such as hedge funds

in the wake of the U.S. sub-prime mortgage crisis. A more general phenomenon are

liquidity runs which may arise when companies find themselves in financial trouble. In

such a situation, lenders may refuse to roll-over short-term loans.

Most theoretical models in the literature employ two period models, e.g. Diamond

and Dybvig (1983) or Allen and Gale (1998). While inspired by Diamond-Dybvig, our

setting is inherently multistage. In the classic bank run literature, a bank run is the bad

one of several equilibria. Our analysis argues when runs are the only equilibrium and it

explains under which conditions a run would not happen. Specifically, whether or not

we see a run is determined by whether or not there is greed or fear: small payoffs for

high quantiles are the result of fear (that the company collapses); small payoffs in the

low quantiles are due to greed (the penalty for running the bank first is high, so people

may hold out). If fear dominates, then we have a rush; if greed dominates, then we have

no rush. Beow we develop a simple model that captures these features.

While the bursting of a bubble is intrinsically a late rush (otherwise, there would be

no bubble to begin with), liquidity rushes can be late or early.

17Finland (1991-93), Norway (1988-92), Japan (1992-present), Spain (1977-85), and Sweden (1991), sev-
eral Asian countries (1997-98), Russia (1998), Brazil (1999), Turkey (2000) and (2001), Argentina (2001),
and England (2007; ‘Northern Rock’).
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An early liquidity run occurs when people withdraw their deposits long before the

project matures, when supposedly the yield is largest. The harvest time there corre-

sponds to the time when the project expires, so a late rush (after harvest time) is not a

possibility. An early rush may not occur by design alone. If people are greedy because,

for instance, there is a very high explicit or implicit penalty on people who make the

first withdrawal, then an early rush will not occur and instead all investors delay until

the expiration date (which can be interpreted as an efficient ‘rush’ at the harvest time).

Yet liquidity runs can also be late: the first warning signs for the recent Subprime

crisis were visible in early 2007 when the spread between high- and low-rated mortgage

backed securities increased strongly. In August 2007 the noise became even louder with

Bear Stearns closing two in-house hedge funds. Yet the full market reaction emerged

only in the Summer of 2008 when several institutions ran out of cash. One can hypoth-

esize that there were strong pressures not to pull funds early. Our model then predicts

excessive delay.

A TOY MODEL. An investment fund expires at time T (cost-free withdrawals are

possible at or after T ), although the fund may collapse for exogenous reasons up until

time t with exponential probability. Payoffs at time T are, for simplicity, normalized to 1.

Early withdrawals carry two penalties: First, we assume that early withdrawls pay only

fraction (t+1)/(T +1) of the terminal payout T . Second, there is a reputational penalty as

early stoppers are excluded from future projects with chance 1 − qρ, where ρ measures

the intensity of the reaction. For instance, in the case of a successful turnaround Bear

Stearns may shun those short-term lenders that called their loans earliest. So while the

investor obtains funds (t+1)/(T +1), he would like to get these reinvested at some later

stage and can do so only with probability ρq.

For simplicity we assume that the NPV of future projects is normalized to double the

funds that the investor currently has deposited there, F . Then

Pr(reinvest) · 2 · F + (1 − Pr(reinvest)) · F = qρ · 2 · F + (1 − qρ) · F = (1 + qρ) F.

Of course, the funds here are F = (t + 1)/(T + 1).

Being a late withdrawer, however, comes at a cost because the institution may run

out of cash and collapse. This occurs with probability q/θ where parameter θ measures

the liquidity of the institution (be it by cash deposit requirements, by the quality of the

backing parent financial institution or by the nature of the investments). If the institution

collapses, payoffs are normalized to 0. Positive payoffs are thus obtained only with
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probability 1 − q/θ. Then the total payoff from stopping as quantile q at time t < T is

(

1 −
q

θ

)

(1 + ρq)
︸ ︷︷ ︸

v(q)

t + 1

T + 1
e−rt

︸ ︷︷ ︸

π(t)

.

The time-scaling factor π(t) payoff peaks at time t = (1 − r)/r. So if r < 1/(T + 1), then

the harvest time is the terminal time T , otherwise tπ < T .

Quantile payoffs consist of a rank-increasing component, given by the future busi-

ness consideration, and a rank-decreasing component, given by the probability that the

institution implodes due to a lack of liquidity.

The quantile payoffs peak at q∗ = (1 − ρθ)/2ρ for θ ∈ (ρ−1− 2, ρ−1); for θ ≥ ρ−1

function v is monotonically increasing, for θ ≤ ρ−1− 2 it is monotonically decreasing.

Comparing first and last quantile payoffs to the average, investors are fearful if θ >

ρ−1− 4/3 and they are greedy for θ < ρ−1− 2/3.

Applied to our comparative static, large values of θ imply that a backing investment

bank keeps a fund afloat even if a large fraction of its investors has decided to withdraw.

If the implicit promise is credible enough so that greediness is fostered, then an early

liquidity run is not an equilibrium. Deposit insurance has a similar effect in raising high

quantile payoffs; repeat interactions and the threat of losing a long-term partnership

lower early payoffs (ρ increases) through the penalty for the early abandonment. If,

however, the backing financial institution is weak so that θ is small, then players are

fearful, thus engaging in an early run. To prevent an early rush entirely one needs a

sufficient penalty for the early quantile — deposit insurance with a cap, as is currently

the case, may not be sufficient to eliminate fear entirely.

Our second comparative static predicts that after the run, the rate of withdrawals is

first large but then tapers off. Thus an institution that has the funds to survive the early

run, may observe a high withdrawal rate soon after the run. But the rate will decline so

a linear prediction as to the speed may cause more unease than necessary and calls for

government protection will be premature.

6.3 The Rush to Match

OVERVIEW. Al Roth’s many works on matching markets contain several ideas that

loosely connect to our framework. Pairwise matching markets are a well-studied area

of economics with rushes.18 For instance, college fraternity recruiting is most associated

18See Roth and Xing (1994).
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with a scramble to match — hence the moniker “rushes”.19 Matching markets share

the two key features that we identify: First, there is a harvest time, since early or late

matching generally involves inefficiencies. A high school basketball player might not

be properly trained for the NBA. Or the third year medical school student might not yet

know his speciality field preferences. On the other hand, if they match too late, then

they fail to exploit their skills. Second, there are social punishments for early matching

in many models,20 so that being among the first is not ideal. But an increasingly thin

market awaits the latest entrants. There is obviously a myriad of possible models; we

will provide one, and show how it reduces to our strategic form.

A TOY MODEL. We will now formalize the ideas implicitly expressed in Roth’s work

on matching. There is a mass of 1 of high types; if hired, they yield payoff 1. When

stopping, firms search the pool of applicants for a high type. Their success rate depends

on a search technology ρ ∈ (0, 1) (the higher the better) and the mass of high quality

workers in the pool. If they cannot secure a high type worker, they settle for a low type

worker who yields a lower payoff that we normalize without loss of generality to 0. The

mass of high types after fraction q of firms has stopped changes linearly at a rate which

depends on the mass of high types present, A(q), and the technology q. Thus

A(0) = 1 and A′(q) = −ρA(q) ⇒ A(q) = e−ρq.

A company’s total utility of hiring a high quality worker is π(t) · (1 + qθ), where π(t)

measure the increasing-decreasing time payoff (with a harvest time) and (1 + qθ) is the

social penalty of early quantile movers. This gives rise to the total payoff of

π(t) (1 + qθ)e−ρq

︸ ︷︷ ︸

v(q)

.

The quantile dependent component of this payoff, v(q), is maximal at q∗ = ρ−1 − θ−1.

Consequently, the quantile payoff is hill-shaped for θ ∈ (ρ, ρ/(1 − ρ)). Next, comparing

the payoffs for q = 0 and q = 1 with the average quantile payoff reveals that people are

fearful for

θ <
ρ(1 − ρ − e−ρ)

e−ρ(1 + ρ) − 1
,

19Mongell and Roth (1991) observed that the name rushes owed to the unraveling tendency of such
markets, as they moved earlier and earlier, not necessarily because of the speed.

20Avery, Jolls, Posner, and Roth (2007) describe the latest rules imposed on the market of federal judicial
law clerks. While no explicit penalties are mentioned, there is social pressure to adhere to the rule. At the
same time, about one quarter of the judges interviewed admitted to having made offers before the official
starting time.
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and they are greedy for

θ >
ρ (1 − e−ρ(1 + ρ))

e−ρ(1 + ρ) − 1 + e−ρρ2
.

So let us relate this toy-model and our analysis to some real findings. Unraveling in

matching is generally an example of an early rush and our analysis helps understand

when early rushes do and do not occur: an early rush is only not an equilibrium if

payoffs are sufficiently back-loaded so that people are greedy, i.e. if there is a reason

for people to delay relative to others. For instance, the market has to be sufficiently

thick even for late movers (ρ would be small); alternatively, a sufficient penalty for early

movers can cause higher quantiles to receive relatively larger payoffs (θ is large). Our

second comparative static predicts that, following the rush, the rate at which companies

enter the market is first large and then tapers off.

A famous example for unraveling in matching is the market for gastroenterology

internships, as described in Niederle and Roth (2003), McKinney, Niederle, and Roth

(2005) and Niederle, Proctor, and Roth (2006).

The market formerly operated under a centralized matching mechanism which broke

down (for the first time) in 1996. At that time, the market experienced a negative supply

shock of positions. Prospective candidates, in turn, anticipated this, did not apply and

thus there was an even greater reduction in applicants than positions. This lowered the

total expected payoff for hospitals. While there was still a negative stigma of making

early offers and breaking the system, fear increased so that the efficient outcome —a

‘rush at the harvest time’ in our model— was no longer possible. Instead, people played

an early rush equilibrium.

Over the following years, a dynamic developed that is captured by our comparative

static: The negative stigma of early offers declined increased fear further, pushing the

rush forward in time.

While we have no data ourselves, Niederle, Proctor, and Roth (2006) (which ad-

dresses the second market breakdown in 2005) offers some insightful graphs that illus-

trate both the dynamic effect and the existence of a rush. Figure 1 in their paper (p. 219)

illustrates how entry moved earlier in time and was stretched out over a longer time

span, as predicted by our Proposition 1. Their Figure 3 (p. 220) illustrates the early rush

that occurs in September.

In the matching examples outlined by Roth et al., there is arguably a harvest time,

which is either the date of the centralized match, or it is the graduation date of the

students. One way or another, there is no possibility for a late match. The contribution

of our model here is to outline that the efficient match at the harvest time is the unique

outcome only if people are greedy.
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Yet matches can also be late, at least in pop-culture: movies are full of boy-man

characters who fear the long-term commitment of a marriage-match. If they are one of

the first to match, then, relative to their friends, they can no longer go to parties and fool

around as their friends still can. If they delay for too long, then both the best women are

taken and there aren’t that many friends left to party with. Arguably here, if the peer

pressure to stay unattached is large, then we observe a late rush where people delay

excessively long.

Conclusion

“There is a general rush for the new found Dorado.”

— Morning Courier & New-York Enquirer (December 11, 1848)

We have introduced and explored a tractable class of games that generates endoge-

nously timed rushes of variable size. While we argue that it succinctly subsumes a wide

array of economic rushes, it also precludes some. For instance, we assume that it is the

quantile order per se that matters. While this includes traffic examples like arrival at a

parking structure that often hits capacity, it excludes an analysis of rush hour proper,

where the intertemporal density of cars matters.21

We will now discuss some prominent rushes that have been observed over time and

discuss how they may or may not fit into our framework.

GOLD AND MINERAL RUSHES. We have shied away from gold rushes and other min-

eral rushes for unrelated reasons. As Wikipedia notes, “Early gold rushers in California

of 1848 got the biggest prizes: Some of these ‘forty-eighters,’ as these very earliest gold-

seekers were also sometimes called, were able to collect large amounts of easily acces-

sible gold—in some cases, thousands of dollars worth each day.” Of course, some later

movers became rich by selling shovels and other equipment, but it is difficult to make

firm statements about the ex ante payoff structure that motivated the timing choices

based on hindsight.

LAND RUSHES, AND OTHER ASSET GRABS. In a land rush people are allowed to

stake a claim on a piece of land in a pre-defined area beginning at a pre-specified time;

most famously this occurred in the 1889 Oklahoma Land Rush,22 and in other rushes in

Oklahoma in 1891, 1892, 1893, and 1895. While the beginning of the rush was officially

announced (it would be the harvest time in our framework) by a cannon’s shot, many

21Additionally, for rush hour, any rank rewards would be U-shaped.
22See Bohanon and Coelho (1998) for a brief historical account or the movie “Far and Away” (1992) for

a cineastic depiction.
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people tried to occupy the land in the days before the rush. These so-called “Sooners”

would sneak onto the land and stake a claim before the rush started. This was not

without risk for the army would patrol the area and remove ‘sooners’ from the land.

So the choice was: should one be a sooner or a boomer (those that follow the cannon’s

‘boom!’)? And if one is a sooner — when’s the best time to tiptoe onto the land? Only

if the punishment for ‘sooning’ is very high, then the payoff structure would satisfy the

property of greediness so that all delay until the harvest (cannon-shot) time.

A Appendix: Omitted Proofs

A.1 Expected Quantile Payoffs

Function v(x) denotes the payoff that a player obtains if a fraction x of players has

stopped. When players play a symmetric mixed strategy Q(t), we claim that when

Q(t) = q the expected payoff is v(q). To see this suppose first that there are N + 1

players and that a player obtains payoff v(k/N) when k ∈ [0, N ] players have stopped.

Then the expected payoff is

E[v|q] =
N∑

k=0

(
N

k

)

qk(1 − q)N−kv(k/N). (4)

By Weierstrass’ approximation theorem, the continuous function on v : [0, 1] → R+ can

be approximated by a polynomial. Moreover, the approximating polynomial can be ex-

pressed using the Bernstein polynomials because these form a basis for the polynomials

(see, for instance, Milovanovic, Mitrinovic, and Rassias (1994)). Formally, for any ǫ there

is an N such that

|v(q) −

N∑

k=0

(
N

k

)

qk(1 − q)N−kv(k/N)| < ǫ. (5)

Consequently, E[v|q] →N→∞ v(q).

A.2 Explicit details for the Running Example

The running example has functional form v(x) = −(x − θ)2 + (θ − 1/12)2 + 13/12. This

function is a parabola with maximum rank θ that integrates to 1 on [0, 1], and it is log-

supermodular because (∂2 ln(vθ(x))/(∂x∂θ) ≥ 0. We can further compute payoffs from

initial and terminal rushes

V0(q) = −
1

3

(

q −
3θ

2

)2

+
3

4

(

θ −
2

3

)2

+ 1, V1(q) = −
1

3

(

q −
3θ + 1

2

)2

+
3

4

(

θ −
1

3

)2

+ 1.
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It is straightforward to check that v(q) = V0(q) for q = 3θ/2 and v(q) = V1(q) for q =

(3θ−1)/2. Solving the differential equation (2) explicitly we find that for mixed strategy

play in the war of attrition and pre-emption game respectively is

Q(t) = θ −

√

θ2 +

(
4

3
− θ

)(

1 −
er(t+1)−1

(t + 1)r

)

, Q(t) = θ +

√

θ2 +

(
4

3
− θ

)

−

(
1

3
+ θ

)
er(t+1)−1

(t + 1)r
.

Figures 2 and 3 then illustrate the comparative static for the running example.

A.3 Comparative Statics on Rushes: Proof of Proposition 1

Since monotone ratio domination applies, vθ′(q) = h(q)vθ(q) for some increasing func-

tion h. To show that R in RP increases, it suffices to show that at qθ = arg max V θ
0 (q), V θ′

0

increases. Dropping superscript θ on q, this is straightforward because

q2 · (V θ′

0 (q))′ = qvθ′(q) − qV θ′

0 (q) = vθ(q)h(q)q −

∫ q

0

vθ(x)h(x) dx

=

∫ q

0

[h(q)vθ(q) − vθ(x)h(x)] dx

= h(q)

∫ q

0

[vθ(q) − vθ(x)] dx

︸ ︷︷ ︸

=0 at q=qθ

+

∫ q

0

vθ(x) [h(q) − h(x)]
︸ ︷︷ ︸

>0

dx > 0.

The first term in the last line of the above is zero because at qθ, vθ = V θ
0 , the second term

is positive because h is increasing. Thus since V θ′

0 increases at qθ, it peaks for a larger

value of q. A similar argument applies to arg maxV θ
1 .

Next, to show that the gradual entry game is played for longer, it suffices to show

that the exit rate Q̇θ′ is lower than Q̇θ. Consider the case of a W phase. Then π̇ < 0 for

all t > tπ, so that −π̇/π > 0. Thus

Q̇θ = −
π̇

π

vθ(q)

v′

θ(q)
> −

π̇

π

vθ′(q)

v′

θ′(q)
= Q̇θ′ ⇔

vθ(q)

v′

θ(q)
>

vθ′(q)

v′

θ′(q)
. (6)

Using that vθ′(q) = vθ(q)h(q), we can simplify and rearrange

vθ(q)

(vθ(q))′
>

vθ(q)h(q)

(vθ(q))′h(q) + h′(q)vθ(q)
⇔ (vθ(q))2h′(q) > 0.

Then at any t > tπ , Qθ(t) > Qθ′(t), thus the war of attrition lasts longer with vθ′ . A

symmetric argument shows that a P phases in RP would last shorter. �
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A.4 Exit Rates: Proof of Proposition 2

Observe that

Q̈ = −
π̈π − π̇2

π2

v

v′
−

π̇

π
Q̇

(

1 −
v′′v

v′2

)

=
v

v′

(

π̇2 − π̈π

π2
+

(
π̇

π

)2(

1 −
v′′v

v′2

))

.

Since v is concave, v′′ < 0. In a war of attrition-phase, v′ > 0, so that the last term is larger

1. Thus if − π̈π−π̇2

π2 +
(

π̇
π

)2
> 0, then Q̈ > 0. But this holds by log-concavity of π. Similarly,

for a slow pre-emption game-phase, v′ < 0, and thus the sign of Q̈ is reversed.
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MURTO, P., AND J. VÄLIMÄKI (2006): “Learning in a model with exit,” Working paper,
Helsinki School of Economics.

NIEDERLE, M., D. D. PROCTOR, AND A. E. ROTH (2006): “What Will Be Needed for
the New Gastroenterology Fellowship Match to Succeed?,” Gastroenterology, 130(1),
218–224.

NIEDERLE, M., AND A. E. ROTH (2003): “Unraveling reduces mobility in a labor market:
Gastroenterology with and without a centralized match,” Journal of Political Economy,
111(6), 1342–1352.

NIELSEN, K. (2003): “Institutional Investors and the Market for Corporate Equity,”
working paper, University of Copenhagen.

PARK, A., AND L. SMITH (2008): “Caller Number Five and other timing games,” Theo-
retical Economics, 3(2), 231256.

PASTOR, L., AND P. VERONESI (2006): “Was there a Nasdaq bubble in the late 1990s?,”
Journal of Financial Economics, 81(1), 61–100.

REINGANUM, J. (1981a): “Market Structure and the Diffusion of New Technology,” Bell
Journal of Economics, 12, 618–624.

(1981b): “On the Diffusion of a New Technology: A Game-Theoretic Approach,”
Review of Economic Studies, 43, 395–406.

ROTH, A. E., AND X. XING (1994): “Jumping the Gun: Imperfections and Institutions
Related to the Timing of Market Transactions,” American Economic Review, 84(4), 992–
1044.

SHLEIFER, A., AND R. W. VISHNY (1997): “The Limits of Arbitrage,” Journal of Finance,
52(1), 35–55.

SIEGEL, R. (2007): “All-Pay Contests,” mimeo, Stanford GSB.

WEEDS, H. (2002): “Strategic Delay in a Real Options Model of R&D Competition,”
Review of Economic Studies, 69, 729–747.

29 Greed, Fear, and Rushes


	Introduction
	A Simple Reduced Form Model with Timed Rushes
	Greed and Fear
	Equilibrium Analysis
	The Size of Rushes and the Length of Play
	Some Economic Rushes with our Reduced Form
	The Rush to Sell in a Bubble
	Liquidity Runs
	The Rush to Match

	Appendix: Omitted Proofs
	Expected Quantile Payoffs
	Explicit details for the Running Example
	Comparative Statics on Rushes: Proof of Proposition 1
	Exit Rates: Proof of Proposition 2


