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1 Introduction

Within the literature on causal statistical inference, an important goal is to examine the

causal mechanisms or channels through which the treatment affects the outcome of interest.

This is evidently the case in many fields such as economics (e.g. Currie and Moretti, 2003),

education (e.g. Zhang and Rubin, 2003), epidemiology (Petersen et al. 2006), sociology (e.g.

Morgan and Winship, 2007), statistics (e.g. Rubin, 2004), among others. Net (or direct)

causal effects measure the effect of a treatment on the outcome while blocking the effect of the

treatment on a given mechanism (e.g., Pearl, 2000, 2001; Flores and Flores-Lagunes, 2008a).

A comparison of the (total) treatment effect and the net effect is thus informative about the

causal role that the mechanism has in the impact of the treatment on the outcome.

Identification of net or direct effects, however, is a difficult task since it requires stronger

conditions than those necessary to identify total treatment effects (Robins and Greenland,

1992; Petersen et al., 2006; Rubin, 2004). An intuitive reason for this is that identification of

net effects implies learning about a different (counterfactual) treatment from the one at hand:

an alternative treatment in which the effect of the treatment on the mechanism variable is

blocked (Flores and Flores-Lagunes, 2008a; hereafter FF). The assumptions made to estimate

net treatment effects in the current literature typically involve (either explicitly or implicitly)

a combination of functional form, distributional, and constant treatment effects assumptions

(e.g., Robins and Greenland, 1992, Petersen et al., 2006; FF).

In this paper we analyze partial and point identification of net effects under weak assump-

tions. Employing insights from the analysis of identification of causal effects using instrumental

variables in Imbens and Angrist (1994; hereafter IA) and Angrist, Imbens and Rubin (1996;

hereafter AIR), we first show that, regardless of the treatment assignment, the typical data con-

tains information on causal net effects only for a particular subpopulation: those individuals for

which the treatment does not affect the mechanism variable. Our set up makes clear that this is

the only subpopulation in the data for which information is available on the potential outcome

when the effect of the treatment on the mechanism is blocked. An important implication of

this result is that estimation of net effects for other subpopulations, including the complete

population, can only be based on extrapolations involving typically strong assumptions, such

as the ones mentioned in the previous paragraph.

Based on this result, we focus on providing sufficient conditions under which average net

effects are partially or point identified for that particular subpopulation, subsets of it, and the

entire population, allowing for heterogeneous total and net effects. By imposing a monotonicity

condition on the effect of the treatment on the mechanism variable—a condition also imposed

by current methods for estimation of net effects—enables identification of a subpopulation for

which the treatment does not affect the mechanism. We derive bounds for net average treatment
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effects in the spirit of Manski (1990), and more recently, Lee (2005) and Zhang et al. (2008).

We also show that, under additional assumptions, one can also nonparametrically point identify

the net average treatment effect for the subpopulation for which the treatment does not affect

the mechanism as well as for the entire population.

There are several definitions in the literature of parameters aimed at capturing the average

effect of a treatment on an outcome controlling for variables that are affected by the treatment.1

Since the intermediate or mechanism variable is affected by the treatment, it is not straight-

forward to define causal parameters. In this paper, we focus on the Net Average Treatment

Effect (NATE) defined in FF, which is based on the principal stratification framework devel-

oped by Frangakis and Rubin (2002; hereafter FR). It equals the average difference between

the potential outcome from an alternative treatment in which the effect of the treatment on

the mechanism variable is blocked and the potential outcome under the control treatment, for

individuals with the same potential values of the mechanism variable (i.e., principal strata).

As discussed in the following section, this parameter is particularly helpful in decomposing the

part of the effect of a treatment on an outcome that works through a mechanism and it has a

causal interpretation.

A parameter whose definition is close to NATE is the average natural direct effect, or

ANDE (Pearl, 2001). Most of the focus on this parameter has been on its point identification

(e.g., Robins and Greenland, 1992; Pearl, 2001; Petersen et al., 2006). These approaches

require a conditional independence assumption for the selection into potential values of the

mechanism variable, along with an assumption regarding the way in which the mechanism

variable is allowed to interact with the treatment to affect the outcome. For instance, Robins

and Greenland (1992) assume that for all units the effect of the outcome to a change on the

treatment does not depend on the level at which the intermediate variable is held.2 These

assumptions are likely strong in many economic applications. Our point identification results

do not require “non-interaction” assumptions of this type.

Some recent papers in the econometrics literature—Lee (2005) and Zhang et al. (2008)—

focus on interval estimation of the effect of a randomly-assigned training program on wages,

considering the fact that wages are only observed for those individuals who are employed. This

set up leads to a sample selection problem because employment status may also be affected by

the training program. It relates to the present paper since employment status may be regarded

as a mechanism through which training affects wages. Zhang et al. (2008) employ a principal

stratification approach–as we do–and argue that the relevant average treatment effect (ATE)

of training on wages is for the subpopulation of individuals who would be employed whether they

1Some examples include the net treatment difference in Rosenbaum (1984), the direct effect in Mealli and
Rubin (2003), and the controlled and natural direct effects in Pearl (2001). These parameters will be discussed
below.

2For a discussion on similar assumptions used in the literature, see Petersen et al. (2006).
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received training or not. Similarly, Lee (2005) focuses on the ATE for those individuals who

would be employed whether trained or not, presenting estimators for the bounds he develops

and deriving their asymptotic distribution. Our partial identification strategy is similar in spirit

to those in Zhang et al. (2008) and Lee (2005).3

A difference between our general set up and that in Lee (2005) and Zhang et al. (2008)

is that in those papers the observability of the outcome (wages) depends on an intermediate

variable (employment status), while in ours the outcome is always observed. Another important

difference is on the parameters of interest: those papers focus on the ATE, whereas our focus

is on NATE. Hence, for instance, while the ideal data for them would come from a randomly

assigned treatment in which the outcome is always observed (even if the person were unem-

ployed), our ideal data would come from an experiment in which the treatment is the same as

the original one but blocks the effect of the treatment on the mechanism variable. Nevertheless,

the two effects will be equal for the subpopulation for which the treatment does not affect the

mechanism. In this regard, the bounds in those papers are a special case of the ones presented

here. Finally, the present paper differs from those in that we also provide bounds for NATE

for the entire population, consider point identification, and extend our results to cases when

the mechanism variable is multivalued and there is more than one possible mechanism.

Throughout this paper we will assume that the treatment is randomly assigned. This

allows us to focus our attention on the specific issues related to estimation of net effects,

and it sets the basis for extensions to other treatment assignment mechanisms. Additionally,

randomized experiments have gained importance in economics as a way of estimating causal

effects, as evidenced in the literatures of program evaluation (e.g., Heckman et al., 1999) and

field experiments (e.g., Karlan and List, 2007), among others. The methods developed herein

should allow researchers learning further insights from their randomized experiments.

The paper is organized as follows. Section 2 presents the estimands of interest. Section 3

presents the main results in the paper focusing on the case of a binary treatment and a binary

mechanism. Subsequently, Section 4 extends the analysis in the previous section to the case of a

multi-valued mechanism and to the case where interest lies on learning about the relative causal

importance of several mechanisms. To our knowledge, the latter case has not been considered

previously in the literature. Finally, section 5 concludes and discusses future extensions.

3 In addition, Zhang et al. (2008) also look at point estimation of their parameter of interest using a parametric
Bayesian model. For instance, they model log potential wages using a standard normal linear regression. As
previously mentioned, in the present paper we avoid this kind of parametric assumptions in the identification of
our parameters of interest.
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2 Definition of Estimands

We start this section by introducing some notation and presenting the general set up, which

we base on the potential outcomes framework (Neyman, 1923; Rubin, 1974). Assume we have a

random sample of size N from a large population. For each unit i in the sample, let Ti ∈ {0, 1}
indicate whether the unit received the treatment of interest (Ti = 1) or the control treatment

(Ti = 0). We are interested on the effect of the treatment T on an outcome Y and on analyzing

the part of that effect that works through a mechanism variable S. Since S is affected by the

treatment, we denote by Si(Ti) its potential values.4

Define the “composite” potential outcomes Yi(τ , ζ), where the first argument refers to one

of the treatment arms (τ ∈ {0, 1}) and the second argument represents one of the potential
values of the post-treatment variable S (ζ ∈ {Si(0), Si(1)}). Note that the potential outcomes
Yi (1, Si(1)) and Yi (0, Si(0)) correspond to the potential outcomes Yi (1) and Yi (0) typically

used in the literature to define treatment effects. The potential outcome Yi (1, Si(0)) represents

the outcome individual i would receive if she were exposed to the treatment but the effect of the

treatment on the mechanism were blocked by keeping the mechanism at Si (0). This potential

outcome plays a crucial role in the definition of net and mechanism effects discussed below.5

Finally, for each unit i, we observe the vector
¡
Ti, Y

obs
i , Sobs

i

¢
, where Y obs

i ≡ TiYi (1, Si(1)) +

(1− Ti)Yi (0, Si(0)) and Sobs
i = TiSi (1) + (1− Ti)Si (0). As usual in the program evaluation

literature, we focus on average causal effects. The population average treatment effect is given

by ATE = E[Y (1, S(1))− Y (0, S(0))].6

Defining net effects and attaching a causal interpretation to the definition is not trivial

because one has to consider the fact that the mechanism variable is potentially affected by the

treatment. Maybe not surprisingly, one can find several definitions of net effects in the literature.

In this paper, we focus on the net average treatment effect defined in FF (2008a), which

decomposes the ATE into a net and a mechanism effect while having a causal interpretation.

FF based their definition of net effects on the concept of principal stratification introduced to

the literature by FR (2002) for defining causal effects in the presence of post-treatment variables.

In the potential outcomes framework, a causal effect must be a comparison of potential outcomes

for the same group of individuals under treatment and control. The idea in FR is to define

the “same group of individuals” based on the potential values of the post-treatment variable.

4Note that at this stage S is not restricted to be binary.
5Another potential outcome is Yi(0, Si (1)), the outcome an individual would obtain when the treatment is

not given to her but she receives a value of the post-treatment variable equal to Si (1). A similar decomposition
as the one to be presented below is possible using this potential outcome. If interest lies in such decomposition,
the results presented in this paper can also be applied there.

6We adopt the stable unit treatment value assumption (SUTVA) following Rubin (1980). This assumption
is common throughout the literature, and it implies that the treatment effects at the individual level are not
affected either by the method used to assign the treatment or by the treatment received by other units. In
practice, this assumption rules out general equilibrium effects of the treatment that may impact individuals.
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In FR’s terminology, the basic principal stratification with respect to post-treatment variable

S is a partition of individuals into groups such that within each group all individuals have the

same vector {S (0) = s0, S (1) = s1}, where s0 and s1 are generic values of S (0) and S (1),

respectively. A principal effect with respect to a principal strata is defined as a comparison

of potential outcomes within that strata. Since principal strata are not affected by treatment

assignment, individuals in that group are indeed comparable and thus principal effects are

causal effects.7

In order to causally interpret our parameters of interest, we employ the concept of principal

stratification and condition on the principal strata {S (0) = s0, S (1) = s1}. Following FF
(2008a), write the ATE controlling for principal strata as

ATE = E {E[Y (1, S(1))− Y (0, S(0))|S(0) = s0, S(1) = s1]} = E[τ (s0, s1)], (1)

where the outer expectation is taken over S(0) and S(1) and we let τ (s0, s1) = E[Y (1, S(1))−
Y (0, S(0))|S(0) = s0, S(1) = s1]. Then, we can decompose the ATE as:

ATE = E {E[Y (1, S(1))− Y (1, S(0))|S(0) = s0, S(1) = s1]} (2)

+E {E[Y (1, S(0))− Y (0, S(0))|S(0) = s0, S(1) = s1]} .

Define the (causal) net average treatment effect or NATE as:

NATE = E {E[Y (1, S(0))− Y (0, S(0))|S(0) = s0, S(1) = s1]} (3)

and the (causal) mechanism average treatment effect or MATE as:

MATE = E {E[Y (1, S(1))− Y (1, S(0))|S(0) = s0, S(1) = s1]} . (4)

Note that, in the definition of NATE and MATE, Y (1, S(0)) plays a key role as it is

the potential outcome under receipt of treatment when the effect of the treatment on the

mechanism is blocked or held at its value under no receipt of treatment.8 Since by definition

ATE = NATE +MATE, we focus hereafter on the parameter NATE.

An intuitive way to think about NATE is to consider Y (1, S(0)) as the potential outcome

of an alternative counterfactual experiment in which the treatment is the same as the original

one but blocks the effect of T on S by holding S fixed at Si (0) for each individual i. The

NATE for individual i is then the difference between the outcome of this alternative treatment,

Yi (1, Si(0)), and Yi (0, Si(0)) from the original control treatment.

7FR’s idea of principal stratification is closely related to the local average treatment effect interpretation of
instrumental variables by IA (1994) and AIR (1996). For example, in their terminology, the group of “compli-
ers” is the set of individuals that always comply with their treatment assignment regardless of whether their
assignment is to treatment (T = 1) or control group (T = 0). Therefore, for this group {S (0) = 0, S (1) = 1},
where S is an indicator of actual treatment reception.

8We consider in this section a decomposition of the total effect based on one mechanism of interest. It is
possible to extend the decomposition to accommodate more than one mechanism, which we present in Section 4.
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An important property of NATE in (3) is that it includes not only the part of the ATE

that is totally unrelated to the mechanism variable S, but also the part of the ATE that results

from a change in the way S affects Y . That is, even though the level of S is held fixed at S (0),

the treatment may still affect the way in which S affects the outcome, and this is counted as

part of NATE. As in FF, we argue that including the effect of T on how S affects Y (i.e.,

returns to S) in NATE is more relevant from a policy perspective, compared to a different

parameter that holds constant the way S affects Y . The reason is that a policy maker typically

has some degree of control over S, while very rarely over how S affects Y .9 Defining NATE

in this way is consistent with Holland’s (1986) notion of a "treatment" being an intervention

that can be potentially applied to each individual. Another important characteristic of NATE

is that it has the desirable property that it equals zero when all the effect of the T on Y works

through S, and it equals the ATE when none of the effect works through S (either because T

does not affect S or S does not affect Y ).

Before concluding this section, we briefly discuss the relation of NATE to other para-

meters in the literature. One of the first parameters considered in the literature was the

net treatment difference (NTD) introduced by Rosenbaum (1984), which can be written as

NTD = E{E[Y (1)− Y (0) |Sobs]}.10 However, without further assumptions it has no causal
interpretation because it conditions on Sobs. Since Sobs represents two different potential vari-

ables, S (1) and S (0), units with the same value of Sobs are generally not comparable. Mealli and

Rubin (2003) and Rubin (2004) define the concepts of direct and indirect effects using principal

stratification as a comparison of Y (1) and Y (0) within the stratum for which S (0) = S (1) = s.

Therefore, their concept of direct effect is a special case of NATE defined for that subpopula-

tion, since in this stratum Y (1) = Y (1, S (0)). Unless NATE is constant over the population,

the direct effect does not equal NATE. Similarly, the parameters considered by Lee (2005) and

Zhang et al. (2008) are special cases of NATE, since they focus on the ATE of training on

wages for those individuals who would be employed whether trained or not. This is a subset

(stratum) of the population for which training does not affect employment status.11

Other parameters related to NATE are the average controlled direct effect (ACDE) and

the average natural direct effect (ANDE), defined in, e.g., Pearl (2000, 2001), Robins and

Greenland (1992), and Petersen et al. (2006). The ACDE at a specific value s of S can

be written as ACDE = E [Y (1, S(1) = s)− Y (0, S(0) = s)]. The ACDE gives the average

difference between the counterfactual outcome under the two treatment arms controlling for

the value of the mechanism variable at s. This parameter has some undesirable features such

9A case where the policymaker might have some degree of influence on how S affects Y is when general
equilibrium effects due to the treatment are present.
10Work that implicitly or explicitly estimates the NTD is Black and Smith (2004), Dearden et al. (2002) and

Ehrenberg et al. (2007), among others.
11 In fact, the estimands in Lee (2005) and Zhang et al. (2006) equal the direct effect of training on wages as

defined in Mealli and Rubin (2003), with unemployment status as post-treatment variable.
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as not decomposing the ATE into a net and a mechanism effect;12 and that, even if in fact the

treatment does not affect the mechanism variable S, the ATE may be different from the ACDE

if there is heterogeneity in the effect of T on Y along the values of S. Conversely, the ANDE

can be written as E[Y (1, S (0))−Y (0, S (0))]. Hence, this parameter is similar to NATE in (3)

with the subtle but important difference that NATE conditions on principal strata in order

to achieve causal interpretation. This distinction is crucial when stating assumptions for its

identification—as shall become clear in the following section.13

Finally, Kaufman et al. (2005) and Cai et al. (2007) provide nonparametric bounds for

the ACDE. The latter paper extends the former by applying the symbolic Balke-Pearl (1997)

linear programming method to derive closed-form formulas for the bounds, and by extending

the analysis to the case when the treatment, the intermediate, and the outcome variables are all

multivalued. Their approach rests on two important assumptions. First, monotonicity assump-

tions about the effects of (i) the treatment on the intermediate variable; (ii) the intermediate

variable on the outcome; and, (iii) the treatment on the outcome. Second, an assumption that

for all units the effect of the outcome to a change on the treatment does not depend on the

level at which the intermediate variable is held (i.e. a "no-interaction" assumption). This as-

sumption is likely strong in economic applications. Our bounds below are focused on NATE

as opposed to the ACDE for the reasons previously mentioned. In addition, our approach to

construction of bounds relaxes some of the assumptions in those papers.

3 Nonparametric Identification

This section presents the main results of the paper. In order to motivate the problem

of learning about NATE in (3) from the available data, we start by discussing the two main

challenges faced in its identification. The first is that a key potential outcome needed for

estimation of NATE, Yi (1, Si (0)), is generally not observed—this is in contrast to the case

of estimation of the ATE, where only one of the relevant potential outcomes is missing for

every unit. This implies, for instance, that even if all explanatory variables in the regression

Y obs = a+ bT + cSobs + d0X + u were uncorrelated to the error term u (with X being a set of

covariates), b does not equal NATE. In this simple example, the coefficient b gives the effect

of T on Y holding S fixed at a given value s (i.e. the ACDE), and not at S (0) as required by

NATE. The second challenge is that for each unit under study only one of the potential values

of the post-treatment variable is observed: Sobs represents S (1) for treated units and S (0) for

12For example, we could write the ATE as: ATE = E [Y (1, S(1))− Y (1, S(1) = s)] + ACDE +
E [Y (0, S(0) = s)− Y (0, S(0))]. The first term gives the average effect of giving the treatment to the indi-
viduals and moving the value of the post-treatment variable from s to S (1). The second term represents the
average effect of giving the control treatment to the individuals and moving the value of the post-treatment
variable from S (0) to s. These two effects are hard to interpret as mechanism effects of T on Y through S.
13Rubin (2005) also emphasizes the importance of defining causal parameters based on principal stratification.
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controls units. This implies that the principal strata {S (0) = s0, S (1) = s1}, necessary for a
causal interpretation of NATE, is not observable.14

Some intuition behind these challenges can be gained by thinking about a situation in which

none of them are present and thus the estimation of net effects is straightforward. Imagine

performing a new experiment in which the treatment is the same as the original one but blocks

the effect of the treatment on the mechanism variable. In this hypothetical case, a comparison

of the mean outcomes for those receiving this counterfactual treatment and those in the control

group would yield NATE, and none of the previous challenges would arise. Consequently, we

can think of those challenges arising from the desire of learning about a different experiment

from the one available.

The approaches currently available in the literature for estimation of NATE or other net

effects (e.g., ACDE or ANDE) typically involve strong parametric assumptions. For instance,

consider one of the estimation procedures in FF. The main idea in this case is to use the

potential outcome Y (1, S (1)) to learn about Y (1, S (0)). More specifically, they model the

conditional expectation of Y (1, S (1)), E [Y (1, S (1)) |S (1) = s1,X = x], using a parametric

function f (1, S (1)) (e.g., OLS), and assume E [Y (1, S (0)) |S (0) = s1,X = x] = f (1, S (0)). In

addition to this functional form assumption and assuming T is randomly assigned, this approach

requires the strata {S (1) , S (0)} to be independent of the potential outcomes conditional on
the covariates X. Alternatively, in addition to conditional independence, Petersen et al. (2006)

employ an assumption regarding the way in which the mechanism variable is allowed to interact

with the treatment to affect the outcome, while the implementation of their approach is based

on linear regressions. Yet another approach involves the use of a parametric Bayesian model.

For instance, following Hirano et al. (2000), Zhang et al. (2008) model the potential outcomes

(given the strata and covariates) and the probabilities of the principal strata (given covariates)

using a standard normal linear regression and a multinomial logit, respectively, to estimate the

ATE of training on wages for the subpopulation of individuals who would be employed whether

they received training or not.

Our goal in this section is to analyze how much can be learned about average net effects

from the typical data by employing weak assumptions that do not impose functional form or

distributional assumptions as the previous studies, while allowing for heterogeneous effects. We

start by analyzing the information available in the typical data about the potential outcomes

in the definition of NATE. Subsequently, we show conditions allowing partial identification

of net average treatment effects. Next, we show additional sufficient conditions for their point

identification.
14Note that S can be regarded as an outcome, and thus the distribution of the principal strata equals the joint

distribution of the potential outcomes {S (1) , S (0)}, which is not easily identifiable (e.g., Heckman, Smith and
Clements, 1997).
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3.1 The Information Contained in Typical Data

Our first result is the observation that the data described in section 2, which is of the kind

typically available to researchers, contains information on the key potential outcome Y (1, S (0))

only for a particular subpopulation: those for which the treatment does not affect the mech-

anism. For this subpopulation we have Si(1) = Si(0), which implies that Yi (1, Si (0)) =

Yi (1, Si (1)) and, hence, Yi (1, Si (0)) is observed for those receiving treatment. We state this

as a result in order to highlight its importance.

Result 1 The observed data
¡
Ti, Y

obs
i , Sobs

i

¢
contains information on Y (1, S(0)) only for those

units that receive the treatment and for which the treatment does not affect the mechanism

variable (Si(1) = Si(0)).

This result does not depend on the assignment mechanism of the treatment, or on whether

the treatment or the mechanism variable are binary or continuous. It implies that, under

heterogeneous effects, estimation of average net effects for other subpopulations (including the

entire population) can only be based on extrapolations of Y (1, S (0)) to those units for which the

treatment affects the mechanism, since their potential outcome is never observed. This result

exemplifies the difficulty of estimating NATE and MATE with the data usually available.

Given this result, we begin investigating the use of weak assumptions for identification

of net effects by concentrating on partial identification of the NATE for the subpopulation

characterized by Si(1) = Si(0). In the spirit of IA (1994), define the local NATE (hereafter

LNATE) for this subpopulation as:

LNATE = E {E[Y (1, S (0))− Y (0, S (0))|S(0) = s, S(1) = s]} (5)

There is precedent in the literature on the importance of local average treatment effects (IA,

1994). In fact, the parameter of interest in Lee (2005) and Zhang at al. (2008) is a special case of

LNATE since they focus on the ATE for those who would be employed whether trained or not,

which equals LNATE for a particular value s. Note that, since in the subpopulation for which

Si(1) = Si(0) we have Yi(1, Si (0)) = Yi(1, Si (1)), its LNATE equals its ATE. While LNATE

pertains to a specific population and does not decompose ATE without further assumptions,

its estimation is important in learning if, for at least a subpopulation, the treatment has an

effect on the outcome outside of the potential role of S. This has implications regarding testing

of exclusion restrictions in the context of triangular simultaneous equations (Flores and Flores-

Lagunes, 2008b). In addition, estimating LNATE under mild assumptions clarifies the need

for additional assumptions to allow identification of NATE, as will be illustrated below.

In estimating LNATE, even though we know the data is informative about Y (1, S (0)) for

the subpopulation for which the treatment does not affect the mechanism, the fact that principal
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strata is not observed prevents us from identifying units that belong to this subpopulation

without further assumptions. Providing conditions under which this subpopulation is identified

from the observed data will be our first task.

We start by considering the case in which the mechanism variable S is binary and the

treatment is randomly assigned. This allows us to focus on the general ideas behind the identi-

fication results. The next section discusses extensions to the cases when the mechanism variable

is multivalued, and when interest lies in analyzing several mechanisms simultaneously. Let the

potential values of the mechanism take values Si(τ) = {0, 1} for τ = 0, 1 and assume the treat-
ment is randomly assigned, which implies that the treatment received by each individual is

independent of her potential outcomes and potential values of the post-treatment variable:15

Assumption 1 (Randomly Assigned Treatment).

Y (1, S (1)) , Y (0, S (0)) , Y (1, S (0)), S (1) , S (0)⊥T.

This setup gives rise to four principal strata that are analogous to the “compliance types”

of AIR (1996), obtained by combining the values that can be taken by the potential values of

S, Si(0) and Si(1). In this case we have:

Table 1
Si(0)

0 1
Si(1) 0 not-affected at 0 (na00) affected negatively (an)

1 affected positively (ap) not-affected at 1 (na11)

In this context, the subpopulation for which the treatment does not affect the mechanism is

composed of two strata, the not-affected at 0 (na00) and the not-affected at 1 (na11). Based

on the concept of principal stratification, we could estimate causal effects by taking averages

within principal strata. Unfortunately, the principal strata is not directly observed, but rather

Ti and Sobs
i , which complicates identification since the observed groups of individuals contain

a mix of the principal strata:

Table 2
Ti

0 1
Sobs
i 0 ap & na00 an & na00

1 na11 & an na11 & ap

A common assumption that allows identification of certain principal strata is monotonicity (IA,

1994):

15As in Dawid (1979), we write X ⊥ Y to denote independence of X and Y .
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Assumption 2 (Monotonicity).

Si (1) ≥ Si (0) for all i; or Si (1) ≤ Si (0) for all i.

Assumption 2 states that the effect of the treatment on the mechanism is monotone for

all individuals. IA (1994) employed an assumption of a monotone effect of the instrument

on the actual reception of the treatment in the context of identification of average (total)

treatment effects using instrumental variables. Here, monotonicity is applied to the effect that

the treatment has on the value of the mechanism variable. A similar assumption is also employed

by Lee (2005) and Zhang et al. (2008) within their context.

Assumption 2 rules out the existence of the an principal stratum, thereby allowing the

identification of members of the subpopulations of na00 and na11. This application of the work

by IA and AIR to the context of net effects leads to the following result. Without loss of

generality, let Si (1) ≥ Si (0) for all i.

Result 2 Under Assumptions 1-2 (with Si (1) ≥ Si (0) for all i), those units with (Ti, Sobs
i ) =

(1, 0) are na00 that received the treatment, and those units with (Ti, Sobs
i ) = (0, 1) are

na11 that did not received the treatment.

This result implies that we can identify E [Y (0, S (0))] for na11 and E [Y (1, S (0))] for

na00. While this is progress, it is not enough to point identify LNATE for any subpopulation,

since each expectation is identified for different strata that are in general non-comparable.

Point identification will require additional assumptions to construct missing counterfactuals.

Conversely, under the current weak assumptions, bounds can be created for the local NATE

for na00 (LNATEna00) and na11 (LNATEna11), as well as LNATE in (5).

3.2 Partial Identification of Net Average Treatment Effects

3.2.1 Local Net Average Treatment Effects

There is an important body of work in the econometrics of program evaluation that analyzes

partial identification of causal effects, such as Manski (1990), Imbens and Manski (2004), Lee

(2005), and Zhang et al. (2008), among others. We derive in this subsection bounds on

LNATE for the subpopulations of na00, na11, and both, employing the general approach in

Manski (1990) and its application to principal stratification in Zhang and Rubin (2003) and

Zhang et al. (2008). We also present estimators of these bounds and derive their asymptotic

properties based on Lee (2005).

Using the terminology of Table 1, let πna00 , πna11 , πap, and πan be the population proportions

of each of the principal strata na00, na11, ap, and an, respectively. We maintain Assumptions

11



1 and 2.16 Under these assumptions πan = 0 and the observed groups of individuals correspond

to those in Table 2 once the an have been deleted. We start by constructing bounds on the

LNATE for na00, which can be written as:

LNATEna00 = E[Y (1, S (0))|na00]−E[Y (0, S (0))|na00]. (6)

From Result 2, the key counterfactual Yi (1, Si (0)) is observed for na00 in the group with

Ti = 1 and Sobs
i = 0, while the group of untreated na00 is mixed with ap in the group with

Ti = 0 and Sobs
i = 0. Hence, the task is to construct a bound for the second term in (6). Similar

to Imbens and Rubin (1997), note that the average outcome for individuals in this group can

be written as:

E[Y obs
i |Ti = 0, Sobs

i = 0] =
πna00

πna00 + πap
·E[Yi (0, Si (0)) |na00] +

πap
πna00 + πap

·E[Yi (0, Si (0)) |ap]

(7)

Under Assumptions 1 and 2, the proportion of na00 and ap are identifiable from the data.

Let ps|t = Pr
¡
Sobs = s|Ti = t

¢
for t, s = 0, 1. Given a randomly assigned treatment, all four

conditional probabilities can be estimated. By Assumption 2 the proportion of na00 in the

group with Ti = 0 and Sobs
i = 0 can be written as a function of p0|0 and p0|1. From Table 2, we

have that p0|0 = πap + πna00 and p0|1 = πna00 , which implies πna00/ (πna00 + πap) = p0|1/p0|0.

Therefore, E[Yi (0, Si (0)) |na00], which corresponds to the second term in (6), can be bounded

from above by the expected value of Y obs in the p0|1/p0|0 fraction of largest values of Y obs for

those in the observed group with Ti = 0 and Sobs
i = 0. Similarly, it can be bounded from below

by the expected value of Y obs in the p0|1/p0|0 fraction of smallest values of Y obs for those in the

same observed group.

More formally, let ytsr be the r-th quantile of Y obs conditional on Ti = t and Sobs
i = s, or

ytsr = F−1
Y obs|T=0,Sobs=0 (r), with F· (·) the conditional density of Y obs given T = t and Sobs = s.

For example, y00r is the r-th quantile of Y obs conditional on Ti = 0 and Sobs
i = 0. The bounds

for LNATEna00 are given in the following proposition.

Proposition 1 Under Assumptions 1 and 2, the parameter LNATEna00 in (6) can be bounded

below by LNATELB
na00 and above by LNATEUB

na00 , where:

LNATELB
na00 = E[Y obs|Ti = 1, Sobs

i = 0]−E[Y obs|Ti = 0, Sobs
i = 0, Y obs ≥ y001−(p0|1/p0|0)]

LNATEUB
na00 = E[Y obs|Ti = 1, Sobs

i = 0]−E[Y obs|Ti = 0, Sobs
i = 0, Y obs ≤ y00(p0|1/p0|0)]

Analogous bounds can be constructed for na11 following a similar strategy. Define

LNATEna11 = E[Y (1, S (0))|na11]−E[Y (0, S (0))|na11]. (8)

Then, the corresponding lower and upper bounds are given by:
16We note that bounds can be constructed disposing of the monotonicity assumption (Manski, 1990), although

they are typically uninformative (Lee, 2005).
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Proposition 2 Under Assumptions 1 and 2, the parameter LNATEna11 in (8) can be bounded

below by LNATELB
na11 and above by LNATEUB

na11 , where:

LNATELB
na11 = E[Y obs|Ti = 1, Sobs

i = 1, Y obs ≤ y11(p1|0/p1|1)]−E[Y obs|Ti = 0, Sobs
i = 1]

LNATEUB
na11 = E[Y obs|Ti = 1, Sobs

i = 1, Y obs ≥ y111−(p1|0/p1|1)]−E[Y obs|Ti = 0, Sobs
i = 1]

The bounds for LNATEna11 correspond to those previously derived by Lee (2005) and

Zhang et al. (2008) in a different context. Finally, note that we can write LNATE in (5) as:

LNATE = [πna00/ (πna00 + πna11)]LNATEna00 + [πna11/ (πna00 + πna11)]LNATEna11 . (9)

Given the bounds previously derived and the fact that the proportions are identifiable, the

following proposition presents the bounds for LNATE.

Proposition 3 Under Assumptions 1 and 2, the parameter LNATE in (5) can be bounded

by:

LNATELB =

µ
p0|1

p0|1 + p1|0

¶
LNATELB

na00 +

µ
p1|0

p0|1 + p1|0

¶
LNATELB

na11

LNATEUB =

µ
p0|1

p0|1 + p1|0

¶
LNATEUB

na00 +

µ
p1|0

p0|1 + p1|0

¶
LNATEUB

na11

Finding estimators for the bounds previously defined is straightforward. We can use sample

analogs of the parameters appearing in the bounds of the previous propositions. Let 1 (·) be the
indicator function. Then, for t, s = 0, 1, we use the following estimators for the corresponding

unknown objects:

bps|t =
nP
i=1

1(Sobsi =s)·1(Ti=t)
nP
i=1

1(Ti=t)

bE[Y obs|Ti = t, Sobs
i = s] =

nP
i=1

Y obs·1(Sobsi =s)·1(Ti=t)
nP
i=1

1(Sobsi =s)·1(Ti=t)
≡ Y

ts

bE[Y obs|Ti = t, Sobs
i = s, Y obs ≤ ytsr ] =

nP
i=1

Y obs·1(Sobsi =s)·1(Ti=t)·1(Y obs≤ytsr )
nP
i=1

1(Sobsi =s)·1(Ti=t)·1(Y obs≤ytsr )
≡ Y

ts
≤r

bE[Y obs|Ti = t, Sobs
i = s, Y obs ≥ ytsr ] =

nP
i=1

Y obs·1(Sobsi =s)·1(Ti=t)·1(Y obs≥ytsr )
nP
i=1

1(Sobsi =s)·1(Ti=t)·1(Y obs≥ytsr )
≡ Y

ts
≥r

bytsr = min
⎧⎪⎨⎪⎩y :

nP
i=1

1(Sobsi =s)·1(Ti=t)·1(Y obs≤y)
nP
i=1

1(Sobsi =s)·1(Ti=t)
≥ q

⎫⎪⎬⎪⎭
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Hence, for instance, the corresponding estimators for the bounds of LNATEna00 are given

by \LNATE
LB

na00 = Y
10 − Y

00
≥(1−(p0|1/p0|0)) and

\LNATE
UB

na00 = Y
10 − Y

00
≤(p0|1/p0|0). The other

bound estimators ( \LNATE
LB

na11 , \LNATE
LB

na11 , \LNATE
LB
and \LNATE

LB
) are constructed in

a similar way.

To conduct statistical inference, we derive asymptotic properties of the estimators of the

bounds. We follow an approach similar to that in Lee (2005) and write our estimators as a

solution to a GMM problem. The results then follow by applying standard asymptotic results

(e.g., Newey and McFadden, 1994). The proofs of the propositions below are shown in the

appendix.17 In what follows, let an "o" after a parameter bound represent its true value.

Proposition 4 Let Ω be the parameter space for the bounds. Assume Ω is compact and

E
£
|Y obs|

¤
<∞. Then, \LNATE

LB

na00, \LNATE
UB

na00
\LNATE

LB

na11 , \LNATE
UB

na11 , \LNATE
LB

and \LNATE
UB

are all consistent.

We introduce some notation to simplify the expressions for the asymptotic variances of

the bound estimators. Let μts≤r = E[Y obs|T = t, Sobs = s, Y obs ≤ ytsr ], μ
ts
≥r = E[Y obs|T =

t, Sobs = s, Y obs ≥ ytsr ], V
ts
≤r = V ar[Y obs|T = t, Sobs = s, Y obs ≤ ytsr ], V ar

ts
≥r = E[Y obs|T =

t, Sobs = s, Y obs ≥ ytsr ] and V ts = V ar
£
Y obs|T = t, S = s

¤
/E
£
1 (T = t) · 1

¡
Sobs = s

¢¤
. In

the last expression, the variance is divided by E
£
1 (T = t) · 1

¡
Sobs = s

¢¤
in order to take into

account the fact that the results presented below are scaled by the square root of the total

sample size (n), while our estimators are averages over specific subgroups.18

Proposition 5 Assume that the true values of the bounds are in the interior of Ω, that Ω is

compact, and that E
£
|Y obs|2+δ

¤
<∞ for some δ > 0. Then,

√
n( \LNATE

LB

na00 − LNATELB
na00o)

d−→ N
¡
0, V LB

na00
¢
,

√
n( \LNATE

UB

na00 − LNATEUB
na00o)

d−→ N
¡
0, V UB

na00
¢
;

√
n( \LNATE

LB

na11 − LNATELB
na11o)

d−→ N
¡
0, V LB

na11
¢
,

√
n( \LNATE

UB

na11 − LNATEUB
na11o)

d−→ N
¡
0, V UB

na11
¢
;

√
n( \LNATE

LB
− LNATELBo)

d−→ N
¡
0, V LB

¢
,

√
n( \LNATE

UB
− LNATEUBo)

d−→ N
¡
0, V UB

¢
;

17Note that the asymptotic result for the subpopulation of always-takers is equivalent to that previously derived
by Lee (2005) since, as previously discussed, the LNATE for this subpopulation equals its local ATE.
18For instance, the first term in the bound of LNATEna00 corresponds to the sample mean for those in the

group with Ti = 0 and Sobsi = 1.
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where

V LB
na00 =

¡
p0|1/p0|0

¢−1
E [(1− Sobs)(1− T )]

½
V 00≥(1−(p0|1/p0|0)) +

³
y00(1−(p0|1/p0|0)) − μ00≥(1−(p0|1/p0|0))

´2µ
1−

p0|1
p0|0

¶¾

+
³
y00(1−(p0|1/p0|0)) − μ00≥(1−(p0|1/p0|0))

´2⎛⎝p1|1 −
³
1− p0|1

p0|0

´
E (T )

E [(1− T )] p0|1E (T )

⎞⎠+ V 10

V UB
na00 =

¡
p0|1/p0|0

¢−1
E [(1− Sobs)(1− T )]

½
V 00≤(p0|1/p0|0) +

³
y00(p0|1/p0|0) − μ00≤(p0|1/p0|0)

´2µ
1−

p0|1
p0|0

¶¾

+
³
y00(p0|1/p0|0) − μ00≤(p0|1/p0|0)

´2⎛⎝p1|1 −
³
1− p0|1

p0|0

´
E (T )

E [(1− T )] p0|1E (T )

⎞⎠+ V 10

V LB
na11 =

1

E [SobsT ]
¡
p1|0/p1|1

¢ ½V 11≤(p1|0/p1|1) + ³y11(p1|0/p1|1) − μ11≤(p1|0/p1|1)

´2µ
1−

p1|0
p1|1

¶¾

+
³
y11(p1|0/p1|1) − μ11≤(p1|0/p1|1)

´2⎛⎝p1|1 −
³
1− p0|1

p0|0

´
E (T )

E [(1− T )] p0|1E (T )

⎞⎠+ V 01

V UB
na11 =

1

E [SobsT ]
¡
p1|0/p1|1

¢ ½V 11≥(1−(p1|0/p1|1)) + ³y11(1−(p1|0/p1|1)) − μ11≥(1−(p1|0/p1|1))

´2µ
1−

p1|0
p1|1

¶¾

+
³
y11(1−(p1|0/p1|1)) − μ11≥(1−(p1|0/p1|1))

´2⎛⎝p1|1 −
³
1− p0|1

p0|0

´
E (T )

E [(1− T )] p0|1E (T )

⎞⎠+ V 01

V LB =

µ
p0|1

p0|1 + p1|0

¶2
V LB
na00 +

µ
p1|0

p0|1 + p1|0

¶2
V LB
na11

V UB =

µ
p0|1

p0|1 + p1|0

¶2
V UB
na00 +

µ
p1|0

p0|1 + p1|0

¶2
V UB
na11

To provide intuition behind the variances of the bound estimators, consider the variance

of the estimator of the lower bound for LNATEna00 in (6), which contains four terms. The

last term, V 10, corresponds to the variance of the estimator of the second term in (6), which

is directly estimable from the data as the usual variance of a sample mean, except that

here it is divided by E
£
T (1− Sobs)

¤
to take into account the scaling by the square root of

the total sample size. The remaining terms in V LB
na00 correspond to the asymptotic variance

of bE[Y obs|Ti = 0, Sobs
i = 0, Y obs ≥ y001−(p0|1/p0|0)], which is uncorrelated with

bE[Y obs|Ti =
1, Sobs

i = 0]. Note that estimating the second term in LNATELB
na00 involves three unknowns:

the mean, the
¡
1− (p0|1/p0|0)

¢
-th quantile (i.e., y001−(p0|1/p0|0)) and the proportion probability
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1 − (p0|1/p0|0). The first three terms in V LB
na00 correspond to estimators of these objects. For

instance, the first two terms are equal to the asymptotic variance of the trimmed mean when

the probabilities p0|1 and p0|0 are known. Again, note the division the first two terms by

E
£
(1− Sobs)(1− T )

¤ ¡
p0|1/p0|0

¢
to employ the right scaling in obtaining the asymptotic result.

We can construct estimators of the asymptotic variances in Proposition 5 by using sample

analogs of the unknown terms in the same way it was done to construct estimators of the

bounds. These estimators can then be used in the construction of confidence intervals for our

parameters. There exist a growing literature on inference in partially identified models.19 Part

of this literature focuses on deriving confidence intervals that cover the entire identification

region with a fixed probability (e.g., Horowitz and Manski, 2000; Chernozhukov, et al., 2007).

Alternatively, Imbens and Manski (2004) introduced confidence intervals (CIs) that cover the

true value of the parameter of interest with a fixed probability. This latter view is analogous to

the one commonly used in the construction of CIs for point identified parameters. Both types

of CIs can be constructed in our setting. For instance, consider the CIs proposed in Imbens and

Manski (2004), which are shown to converge uniformly across different values for the width of

the identification region. Let k = {na00, na11, }, and bV LB
k and bV UB

k be the estimators of the

corresponding asymptotic variances in Proposition 5. Then, an α-th CI for LNATEk can be

constructed as

CIα = [ \LNATE
LB

k −Cn · (bV LB
k /n)1/2, \LNATE

UB

k − Cn · (bV UB
k /n)1/2]

where Cn satisfies

Φ

⎛⎝Cn +
√
n

\LNATE
UB

k − \LNATE
LB

k

max
³
(bV LB

k /n)1/2, (bV UB
k /n)1/2

´
⎞⎠− Φ ¡−Cn

¢
= α,

with Φ (·) the cdf of a standard normal distribution.

3.2.2 Net Average Treatment Effect

In order to point identify the NATE for the entire population and thus decompose the ATE,

additional assumptions are required. An assumption allowing the point identification of NATE

after any of the LNATE parameters have been identified with the propositions presented above

is a constant net treatment effect assumption. Under this assumption, NATE is equal to any

of the LNATE parameters above, and thus the part of the ATE that is due to the mechanism

S is given by MATE = ATE − NATE. This kind of assumption has also been pointed out

in FF. Two observations are in order. First, this assumption is similar to that of a constant

average treatment effect when estimating ATE using instrumental variables as in IA (1994).

19See, for instance, Horowitz and Manski (2000), Imbens and Manski (2004), Chernozhukov, et al. (2007),
Beresteanu and Molinari (2008), and Romano and Shaikh (2008).
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In that case we can only identify LATE for the group of individuals who change treatment

status in response to a change in the instrumental variable (i.e. the compliers); but under

the assumption of a constant ATE we have that LATE = ATE. Second, this assumption is

weaker than assuming a constant ATE. It allows for heterogeneous effects of the treatment

on the outcome variable, but such heterogeneity is restricted to work through the mechanism

S (i.e. through MATE). Nevertheless, this assumption may still be too strong in empirical

settings.

In this subsection we present partial identification results for NATE. We show that NATE

in (3) can be bounded by adding to Assumptions 1-2 above two stochastic dominance assump-

tions. Without loss of generality, we continue working with the case for which Si (1) ≥ Si (0)

for all i in Assumption 2.20 Note that, under Assumption 1, the second term in (3) can be es-

timated from observed data on those in the control group, but the first term is not identifiable.

By noting that under Assumption 2 πna00 + πna11 + πap = 1, the first term can be written as

E[Y (1, S(0))|na00, na11, ap] = πna00E[Y (1, S(0))|na00]+πna11E[Y (1, S(0))|na11]+πapE[Y (1, S(0))|ap].
(10)

As in the previous section, the proportions are identified from the data since πna00 = p0|1,

πna11 = p1|0 and πap = 1 − p0|1 − p1|0. The first expectation is point-identified from the data

(Result 1) and the second expectation can be bounded (Proposition 2). The non-identified term

is the third expectation, unless additional assumptions that relate it to identifiable terms are

made. One possible assumption is stochastic dominance, which has been previously employed

in the literature in different settings (e.g., Manski, 1995; Zhang and Rubin, 2003; Mattei and

Mealli, 2007; Zhang, et al, 2008).21

Assumption 3 (Stochastic Dominance I). For any real number q,

P (Y (1, S(0)) ≤ q|ap) ≤ P (Y (1, S(0)) ≤ q|na00).

Assumption 3 implies that E[Y (1, S(0))|ap] ≥ E[Y (1, S(0))|na00], i.e., that in expectation,
the counterfactual Y (1, S(0)) for the group ap is at least as large as that of the group na00.

This assumption will be appropriate when units for which the treatment affects the value of S

(ap) are expected to have better outcomes than those not affected at 0 (na00). Alternatively,

this assumption is satisfied if the outcome for ap is expected to be better than that of na00

independently of the mechanism S. The validity of this assumption in particular applications

can be gauged in light of these remarks.
20 If it is the case that Si (1) ≤ Si (0) for all i, the discussion below is still valid but the subpopulations used,

the inequalities in the assumptions, and the lower and upper bounds employed have to be modified accordingly.
21Zhang et al. (2008) employ an stochastic dominance condition in order to tighten their bounds on the effect of

training on wages for the subpopulation of individuals who would be employed whether they received training or
not. Here, this assumption is used to derive bounds for the population NATE. Note that the bounds on LNATE
obtained in the previous subsection could also be tightened by adding a stochastic dominance assumption.
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Under Assumptions 1-3 the lower bound for NATE can be constructed and is given in

Proposition 6 below (which uses the lower bound for E[Y (1, S(0))|na00] in the previous section).
For the upper bound, we follow a similar approach:

Assumption 4 (Stochastic Dominance II). For any real number q,

P (Y (1, S(0)) ≤ q
¯̄
na11

¯̄
) ≤ P (Y (1, S(0)) ≤ q|ap).

Similar to Assumption 3, it implies that E[Y (1, S(0))|na11] ≥ E[Y (1, S(0))|ap], i.e., that
in expectation, the counterfactual Y (1, S(0)) for the group na11 is at least as large as that of

the group ap. Under this assumption, the upper bound of E[Y (1, S(0))|na11] is also an upper
bound for E[Y (1, S(0))|ap]. We summarize these arguments in the following proposition.

Proposition 6 Under Assumptions 1 through 4, NATE in (3) can be bounded below by NATELB

and above by NATEUB, where:

NATELB =
¡
1− p1|0

¢
E[Y obs|Ti = 1, Sobs

i = 0]

+p1|0E[Y
obs|Ti = 1, Sobs

i = 1, Y obs ≤ y11(p1|0/p1|1)]

−E[Y obs|Ti = 0]

NATEUB = p0|1E[Y
obs|Ti = 1, Sobsi = 0]

+
¡
1− p0|1

¢
E[Y obs|Ti = 1, Sobs

i = 1, Y obs ≥ y111−(p1|0/p1|1)]

−E[Y obs|Ti = 0]

As in the previous section, we can construct estimators for the bounds in Proposition 6,

estimate their variance, and construct confidence intervals for NATE. Finally, we point out

that MATE can also be bounded once the bounds for NATE have been obtained. In this

case, given bounds on NATE, we can bound MATE by MATELB = ATE −NATEUB and

MATEUB = ATE −NATELB.

Lastly, the bounds of Proposition 6 can be tightened by adding a monotonicity assump-

tion of the effect of S on Y . More precisely, for the case of a non-negative effect, assume

Yi(1, S(1)) ≥ Yi(1, S(0)) for all i, which implies that E[Y (1, S(1))|ap] ≥ E[Y (1, S(0))|ap] and al-
lows using E[Y (1, S(1))|ap] as an upper bound for the previously unidentified E[Y (1, S(0))|ap].
In this case, the upper bound for (10) equals E[Y (1, S(1))|n00, n11, ap] since for both n00and n11

E[Y (1, S(0))] = E[Y (1, S(1))]. Therefore, the upper bound for NATE is equal to the ATE,

while the lower bound remains as in Proposition 6.
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3.3 Point Identification of Net Average Treatment Effects

3.3.1 Local Net Average Treatment Effects

In order to go beyond partial identification of LNATE, additional assumptions are neces-

sary. Recall that the reason the previous assumptions are not enough to point identify average

treatment effects is that only one of the two potential outcomes needed is identifiable for any

given strata. More specifically, Result 2 states that we can only identify E [Y (0, S (0))] for na11

and E [Y (1, S (0))] for na00. In this subsection we present assumptions that allow estimation of

counterfactual outcomes that in turn allow point identification of net average treatment effects.

A common approach to construct missing counterfactuals is to assume conditional indepen-

dence or unconfoundedness. In the present context, an analogous approach is to assume that,

conditional on a set of covariates X, the principal strata of interest are independent of the

potential outcomes.

Assumption 5 (Unconfounded Strata)

Y (1, S(1)) , Y (0, S(0)), Y (1, S(0))⊥{S (1) , S (0)}|X.

This assumption implies that individuals in different strata are comparable once we condi-

tion on a set of covariates X, ruling out the existence of variables not included in X that simul-

taneously affect the principal strata an individual belongs to and her potential outcomes. As-

sumptions 1 and 5 together imply that Y (1, S(1)) , Y (0, S(0)) , Y (1, S(0))⊥{T, S (1) , S (0)}|X,
so that control and treated units in different strata but with the same values of covariates are

comparable.22

Based on Result 2 and Assumption 5 applied to the relevant strata, we can nonparametrically

point identify NATE for different subpopulations, including the entire population. Consider

the following proposition that pertains to identification of LNATEna00 in (6), where the missing

counterfactual is the term E[Y (0, S (0))|na00].

Proposition 7 Suppose Assumptions 1 and 2 hold, as well as Assumption 5 for the strata

{S(0) = 0, S(1) = 0} and {S(0) = 0, S(1) = 1}. Then,

LNATEna00 = EX

n
E[Y obs|T = 1, Sobs = 0,X = x]−

E
h
Y obs|T = 0, Sobs = 0,X = x

i
|S(0) = S(1) = 0

o
Where we have used the fact that ap and na00 are comparable conditional on X (per As-

sumption 5). Estimation under this proposition is easily accomplished by first isolating the

22Moreover, Assumption 5 implies that, conditional on X, the potential outcomes are independent of any
function of T , S (1) and S (0), such as Sobs.
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strata of na00 (Ti = 1, Sobs
i = 0) and those units with Ti = 0, S

obs
i = 0, and then applying to

these two groups any of the available methods for estimating the effect of T on Y under uncon-

foundedness (e.g., Imbens, 2004). Interestingly, in this particular case of LNATEna00 we do not

need an overlap condition since by random assignment the probability of finding comparable

individuals in the control group is one. Also, note that Proposition 7 achieves non-parametric

identification of LNATEna00 without the use of functional form or constant effect assumptions.

Of course, the availability of relevant covariates that validate the unconfoundedness assumption

is required.

Analogous results as in Proposition 7 for the point identification of LNATE for other

subpopulations are not straightforward. The reason relates to Result 2: the only units in

the sample for which we know the value of Y (1, S (0)) are those na00 with Ti = 1 (even

though the data contains this information also for na11, they are mixed with ap for which

Y obs = Y (1, S(1)) 6= Y (1, S (0))). Thus, in order to nonparametrically point identify net

effects for any subpopulation (including the entire population), we need to use the na00 with

Ti = 1 to construct the missing counterfactual E[Y (1, S (0))]. Intuitively, these are the only

units we observe that received the counterfactual treatment that blocks the effect of T on S,

so they are our “counterfactual-treated group”. The following proposition illustrates the point

by giving the details for the non-parametric point identification of LNATEna11 .

Proposition 8 Suppose Assumptions 1 and 2 hold, as well as Assumption 5 for the strata

{S(0) = 1, S(1) = 1} and {S(0) = 0, S(1) = 0}. Also, suppose that 0 < Pr (T = 1, S (0) = 0, S (1) = 0|X).
Then,

LNATEna11 = EX

n
E[Y obs|T = 1, Sobs = 0,X = x]−

E
h
Y obs|T = 0, Sobs = 1,X = x

i
|S(0) = S(1) = 1

o
Note that the conditions in Proposition 8 are stronger than those in Proposition 7, as an

overlap condition is required. For completeness, we state the nonparametric identification of

LNATE in (5).

Proposition 9 Suppose Assumptions 1 and 2 hold, as well as Assumption 5 for all strata.

Also, suppose that 0 < Pr (T = 1, S (0) = 0, S (1) = 0|X). Then,

LNATE = EX

n
E[Y obs|T = 1, Sobs = 0,X = x]−

E
h
Y obs|T = 0,X = x

i
|S(0) = s0, S(1) = s1

o
3.3.2 Net Average Treatment Effect

Following the same logic as in the point identification of LNATE in the previous subsection,

the following proposition provides details for the non-parametric point identification of NATE.
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Proposition 10 Suppose Assumptions 1 and 2 hold, as well as Assumption 5 for all strata.

Also, suppose that 0 < Pr (T = 1, S (0) = 0, S (1) = 0|X). Then,

NATE = EX

n
E[Y obs|T = 1, Sobs = 0,X = x]−

E
h
Y obs|T = 0,X = x

io
Intuitively, we can think of Proposition 10 as if for each member in the control group we

were to find someone in the (T = 1, Sobs = 0) group that were comparable in terms of X. The

overlap condition ensures that in infinite samples we are able to compare treated and control

individuals for all values of X.

To end this section, we mention a literature that provides alternative nonparametric iden-

tification results for the ANDE parameter discussed in Section 2, which is closely related to

NATE. Although the identification results in this literature are in principle nonparametric,

estimation is typically suggested using parametric models.23 In general, the approach is based

on writing the ANDE as a function of the ACDE (discussed in section 2), which is identifiable

under the approach’s assumptions. The two key assumptions are a conditional independence

assumption similar to Assumption 5 plus a form of a "non-interaction" assumption. The lat-

ter assumption specifies the way in which the mechanism variable is allowed to interact with

the treatment to affect the outcome. For example, Robins and Greenland (1992) assume that

the intermediate variable does not interact with the treatment at all to affect the outcome.

Hence, for example, it implies that if T and S are both randomly assigned, then E [Y |T, S] is
an additive function of T and S.

Arguably, the weakest non-interaction assumption is in Petersen et al. (2006). Using our

notation, their assumption may be written as: Y (1, s)− Y (0, s)⊥S (0) |X. It states that, con-
ditional on X, the controlled direct effect is independent of the potential value S (0) of the

intermediate variable at all levels of s. The ANDE is then identified from the ACDE. The

assumption, however, is likely strong in economic settings. It would imply, for instance, that if

we were to analyze the effect of veteran status on earnings having schooling as an intermediate

variable, the effect of being a veteran holding the level of schooling fixed at any level is indepen-

dent of the level of schooling under the control treatment, conditional on covariates.24 Contrary
23Examples of this approach are contained in Robins and Greenland (1992), Pearl (2001), and Petersen et al.

(2006), among others.
24To illustrate the use of this interaction assumption to identify ANDE, we can write:

ANDE = E [Y (1, S (0))− Y (0, S (0))]

= ES(0),X {E [Y (1, S (0))− Y (0, S (0)) |S (0) = s,X = x]}
= ES(0),X {E [Y (1, s)− Y (0, s) |S (0) = s,X = x]}
= ES(0),X {E [Y (1, s)− Y (0, s) |X = x]}

where the assumption Y (1, s) − Y (0, s)⊥S (0) |X has been used in the last line. The term inside the outer
expectation equals the ACDE given X. Petersen et al. (2006) implement this approach by first running OLS on
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to this literature, by focusing on the information contained in the data about Y (1, S (0)), we

are able to avoid using non-interaction assumptions.

4 Extensions

This section presents two extensions of the previous results to the case of a multivalued

mechanism and the case of multiple mechanisms. These extensions share a common issue

in that the number of principal strata increases. Two consequences are that nonparametric

identification is based on a subpopulation that is more specific, and that estimation is more

difficult with a fixed sample size as less observations are available for each subpopulation. In

the case of partial identification, the latter consequence can potentially result in uninformative

bounds.

4.1 Multivalued Mechanism

In order to focus on the main ideas, we start by considering a mechanism that can take up

three values: Si ∈ {0, 1, 2}. In this case there are nine strata:

Table 3
Si(0)

0 1 2
0 na00 an10 an20

Si(1) 1 ap01 na11 an21

2 ap02 ap12 na22

where we use a similar notation as in the previous section with the superscript "s0s1" refer-

ring to potential values of the multivalued mechanism S under control and treatment states,

respectively. By Result 1, we know the data contains information on Y (1, S (0)) only for the

groups na00, na11 and na22. If Assumption 1 (randomly assigned treatment) and Assumption

2 (monotonicity) are imposed, then the three strata corresponding to an are eliminated and

the observed groups based on Sobs
i and Ti are composed of the following strata:

Table 4
Ti

0 1
0 na00, ap01, ap02 na00

Sobs
i 1 na11, ap12 na11, ap01

2 na22 na22, ap12, ap02

Hence, similar to Result 2, we have that under Assumptions 1 and 2 those units with

(Ti, S
obs
i ) = (1, 0) are non affected with S1 (1) = S1 (0) = 0 that received the treatment, and

Y = a+ bT + cTX + dTS + eTSX + gX + hS to obtain Y (1, s). Using the estimated coefficients they calculate
CDE = Y (1, s)−Y (0, s) = b+ cX+ dS+ eSX. Finally, they get estimates of E (X) , E (S (0)) and E (S (0)X)
and plug them into CDE. The outcome is their estimate of the ANDE.

22



those units with (Ti, Sobs
i ) = (0, 2) are non affected with S1 (1) = S1 (0) = 2 that did not receive

the treatment. Clearly, this will hold in the case in which S can take more than 3 values, for

which we state the following result.

Result 3 Let S take values on a set {l, l + 1, . . . , u} .Under Assumptions 1-2, treated units
with (Ti, Sobs

i ) = (1, l) belong to the strata S1 (1) = S1 (0) = l, and controls units with

(Ti, S
obs
i ) = (0, u) belong to the strata S1 (1) = S1 (0) = u.

It is important to note that in the multivalued mechanism case, information on the non

affected units with values of S strictly between l and u (e.g., na11 strata in Table 3) is not

identifiable from the observed groups. The reason is that these strata are mixed with other

strata under both treatment and control group, and their proportions are not identifiable from

the data.25 This prevents us from exploiting the information available in these strata without

stronger assumptions (e.g., ruling out the existence of more strata to identify such probabilities).

As a result, the multivalued case reduces to the binary-mechanism case considered in Section 3

with the lowest and highest values of the mechanism. Consequently, the approaches for partial

and point identification in that section can be employed based on the strata nall and nauu.

To illustrate, consider construction of bounds in the three-value case for the LNATE for

the stratum of non affected with S(0) = S(1) = 0, or

LNATEna00 = E[Y (1, S (0))|na00]−E[Y (0, S (0))|na00]. (11)

Using similar notation as in Section 3, we have that πna00 = p0|1 and πna00+πap01+πap02 =

p0|0. The average outcome for the observed group with Ti = 0 and Sobs
i = 0 can be written as

E[Y obs
i |Ti = 0, Sobs

i = 0] =
πna00

πna00 + πap01 + πap02
·E[Yi (0, Si (0)) |na00]

+
πap01 + πap02

πna00 + πap01 + πap02
·E[Yi (0, Si (0)) |ap01 or ap02]

and thus E[Yi (0, Si (0)) |na00] can be bounded from below by μ00≤(p0|1/p0|0) and from above by

μ00≥1−(p0|1/p0|0). Thus, the resulting bounds are given by the expressions in Proposition 1. In

general, the nonparametric partial and point identification results can be stated as follows. Let

AC denote the complement of set A.

Proposition 11 Let S take values on a set {l, l + 1, . . . , u}, and let Assumption 1 hold. Also,
without loss of generality, consider the case in Assumption 2 where Si (1) ≥ Si (0) for all

i.
25For instance, using similar notation as in Section 3 it is straightforward to show in the three-value example

above that there is no unique solution for πn11 from the identifiable probabilities p0|0, p0|1, p1|0, p1|1, p2|0 and
p2|1.
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(i) Let LNATEl = E[Y (1, S (0))−Y (0, S (0)) |S(0) = l, S(1) = l], LNATEu = E[Y (1, S (0))−
Y (0, S (0)) |S(0) = u, S(1) = u] and LNATElu =

³
p0|1

p0|1+p1|0

´
LNATEl+

³
p1|0

p0|1+p1|0

´
LNATEu.

Then, the bounds for LNATEl, LNATEu and LNATElu equal those for LNATEn,

LNATEa and LNATE from Propositions 1-3, respectively.

(ii) Assume for any real number q, P (Y (1, S(0)) ≤ q|
©
nll, nuu

ªC
) ≤ P (Y (1, S(0)) ≤

q|nll), and Yi(1, S(1)) ≥ Yi(1, S(0)) for all i. Then, the bounds for NATE are given

by those in Proposition 6.

(iii) Suppose Assumption 5 holds for the strata {S(0) = l, S(1) = l} and {S(0) = 0, S(1) = s}
with s = {l + 1, l + 2, . . . , u}. Then, LNATEl = EX{E[Y obs|T = 1, Sobs = l,X =

x]−E[Y obs|T = 0, Sobs = l,X = x]|S(0) = S(1) = l}.

(iv) Suppose Assumption 5 holds for all strata and 0 < Pr (T = 1, S (0) = l, S (1) = l|X) .Then,
NATE = E

©
E[Y obs|T = 1, Sobs = l,X = x]−E[Y obs|T = 0,X = x]

ª
.

The fact that we only employ the lowest and highest values of the mechanism has important

implications. First, in contrast to the binary case, combining the LNATE for the highest and

lowest values of the mechanism (say, LNATEnall and LNATEnauu) does not yield bounds

for all the the not-affected because the strata for those not-affected with values between l

and u are not identified. Second, to the extent that the proportion of not-affected units with

the lowest and highest values of S in the population is small, the bounds for NATE are

more likely to become uninformative. Finally, given that the only strata for which we know

Y (1, S (0)) is nall, our nonparametric point identification results base the construction of the

missing counterfactual E [Y (1, S (0))] on a smaller subpopulation and, as a result, the overlap

condition will become a stronger assumption. In summary, nonparametric identification of

net effects when the mechanism variable is multivalued becomes more difficult. In such a

case, additional assumptions (e.g. functional form or distributional) may become necessary for

extrapolation.26

4.2 Multiple Mechanisms

We focus on the case of two different binary mechanism variables S and R in order to high-

light the salient issues. Following similar notation for R as we have employed for S, composite

potential outcomes equal to Yi (1) and Yi (0) are Yi (1, Si(1), Ri(1)) and Yi (0, Si(0), Ri(0)), re-

spectively. Other composite potential outcomes are Yi (1, Si(0), Ri(0)) which represents the

part of individual i’s effect that does not work through mechanisms S or R; Yi (1, Si(0), Ri(1))

which represents the part of the effect that does not work through S; and Yi (1, Si(1), Ri(0))

which represents the part of the effect that does not work through R. As a result, there are

26 In this case, the methods in FF (2008a) could be employed. That paper also provides empirical illustrations
where the mechanism is multivalued or continuous.
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multiple decompositions of ATE that may be of interest. Table 5 shows several ATE decom-

positions along with the definitions of different net and mechanism effects relative to S and

R, where, for simplicity, the expectation operator E[·] and the conditioning on principal strata
{S(0) = s0, S(1) = s1, R(0) = r0, R(1) = r1} are left implicit.

Table 5
Mechanisms Definitions KC = Key Counterfactual
S and R ATE =MATESR +NATESR Yi (1, Si(0), Ri(0))

MATESR = Yi (1, Si(1), Ri(1))−KC
NATESR = KC − Yi (0, Si(0), Ri(0))

S ATE =MATES +NATES Yi (1, Si(0), Ri(1))
MATES = Yi (1, Si(1), Ri(1))−KC
NATES = KC − Yi (0, Si(0), Ri(0))

R ATE =MATER +NATER Yi (1, Si(1), Ri(0))
MATER = Yi (1, Si(1), Ri(1))−KC
NATER = KC − Yi (0, Si(0), Ri(0))

Interaction MATEintSR =MATESR −MATES −MATER

The last term in Table 5, labeled "Interaction", measures the part of the effect of T on Y

due to the interaction from a change in both S and R due to T . Hence, MATEintSR equals

the total mechanism effect of S and R combined (MATESR) minus each one of the individual

mechanism effects of S and R (i.e., MATES and MATER). Suppose there is no interaction

effect between S and R, so that the mechanism effect for S and R equals the sum of the

separate mechanism effects of S and R. This implies that MATESR = MATES +MATER,

MATEintSR = 0, and thus

ATE =MATES +MATER +NATESR. (12)

If there exists a non-zero interaction term, a more general decomposition of ATE is as follows:

ATE =MATES +MATER +MATEintSR +NATESR =MATESR +NATERS (13)

where the second equality follows from the definition of MATEintSR in the last row of Table 5.

We now discuss nonparametric identification of the parameters in Table 5. For each unit

i, we observe the vector
¡
Ti, Y

obs
i , Sobs

i , Robs
i

¢
, where Y obs

i and Sobsi are as before, and Robs
i =

TiRi (1) + (1− Ti)Ri (0). In this setup where each T , S, and R are binary, there are sixteen

principal strata.27 An expanded assumption of monotonicity (Assumption 2) that includes also

R deletes 7 strata of an. As before, without loss of generality we assume the effects of T on R

and S are non-negative for all units. Using na00, ap, and na11 as in Section 3, and a subscript

denoting the corresponding mechanism, the remaining principal strata are: na00s na00r , apsna
00
r ,

27 In general, with m mechanisms there are 2(2×m) strata.
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na11s na00r , na
00
s apr, apsapr, na11s apr, na00s na11r , apsna

11
r , and na11s na11r . Assuming a randomly

assigned treatment (Assumption 1), the observed groups are composed of:

Table 6
Ti = 0 Ti = 1
Robs
i Robs

i

0 1 0 1
na00s na00r na00s na11r na00s na00r na00s na11r

0 na00s apr apsna
11
r na00s apr

apsna
00
r

Sobs
i apsapr

na11s na00r na11s na11r na11s na00r na11s na11r
1 na11s apr apsna

00
r na11s apr

apsna
11
r

apsapr

where it becomes evident the fact that the number of observed groups increases geometrically

with the number of mechanisms considered, resulting in less observations available per cell for

any fixed sample.

Consider the first decomposition in Table 5: ATE =MATESR +NATESR. Analogous to

Result 1, note that in this case the data contains information on Y (1, S (0) , R (0)) only for the

groups n00s n00r and n11s n11r . Moreover, similar to Result 2, we have that those treated units with

(Ti, S
obs
i , Robs

i ) = (1, 0, 0) are n00 with respect to both mechanisms; and those control units with

(Ti, S
obs
i , Robs

i ) = (0, 1, 1) are n11 with respect to both mechanisms. Hence, we can apply the

methods in Section 3 by focusing on these two groups. Let psr|t = Pr
¡
Sobs = s,Robs = r|T = t

¢
.

Then, we state the following

Proposition 12 Let Assumption 1 hold. Also, assume Si (1) ≥ Si (0) and Ri (1) ≥ Ri (0) for

all i.

(i) Let LNATE
na00r na00s
SR = E[Y (1, S (0) , R (0)) − Y (0) |na00r na00s ], LNATE

na11r na11s
SR =

E[Y (1, S (0) , R (0))− Y (0) |na11r na11s ] and

LNATESR = E {E[Y (1, S (0) , R (0))− Y (0) |S (0) = S (1) = s,R(0) = R(1) = r]}

Then, the bounds for LNATE
na00r na00s
SR , LNATE

na11r na11s
SR and LNATESR equal those

for LNATEna00 , LNATEna11 and LNATE from Propositions 1-3, respectively;

with p0|0, p1|0, p0|1 and p1|1 replaced by p00|0, p11|0, p00|1and p11|1; and replacing

the groups (Ti, Sobs
i ) = {(0, 0) , (0, 1) , (1, 0) , (1, 1)} with the corresponding groups

(Ti, S
obs
i , Robs

i ) = {(0, 0, 0) , (0, 1, 1) , (1, 0, 0) , (1, 1, 1)}.

(ii) Assume for any real number q, P (Y (1, S(0), R (0)) ≤ q|
©
na00r na00s , na11r na11s

ªC
) ≤

P (Y (1, S(0), R (0)) ≤ q|na00r na00s ), and Yi(1, S(1), R (1)) ≥ Yi(1, S(0), R (0)) for all
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i. Then, the bounds for NATESR are given by those in Proposition 6, using the

corresponding proportions and observed groups from (i).

(iii) Suppose Y (1) , Y (0), Y (1, S(0), R (0))⊥{S (1) , S (0) , R (1) , R (0)}|X holds for the

strata na00r na00s , na00s apr, apsna00r and apsapr. Then, LNATE
na00r na00s
SR = EX{E[Y obs|T =

1, Sobs = 0, Robs = 1,X = x] − E[Y obs|T = 0, Sobs = 0, Robs = 0,X = x]|S(0) =
S(1) = 0, R(0) = R(1) = 0}.

(iv) Suppose Y (1) , Y (0), Y (1, S(0), R (0))⊥{S (1) , S (0) , R (1) , R (0)}|X holds for all strata

and 0 < Pr (T = 1, S (0) = 0, S (1) = 0, R (0) = 0, R (1) = 0|X) .Then, NATE =E{E[Y obs|T =
1, Sobs = 0, Robs = 0,X = x]−E[Y obs|T = 0,X = x]}.

Regarding the decompositions in the second and third rows of Table 5, these are exactly

the decompositions analyzed in Section 3 using separate mechanisms S and R. Hence, those

results are directly applicable here.

The more complicated decomposition is that in equation (13), where the total mechanism

effectMATESR from the first decomposition in Table 5 is broken up into each of the individual

mechanism effects S, R, and their interaction. Note that in an ideal situation, to estimate

the terms in (13), we would perform an experiment in which units are randomized into one

of five possible treatments: the control treatment, the original treatment, and a treatment

corresponding to each one of the key potential outcomes in Table 5.28 Hence, estimating the

terms in that decomposition is more difficult as we are implicitly trying to learn about five

different treatments from the two at hand.

First, consider using the LNATEs identified in Proposition 12 and the identified effects for

each separate mechanism in rows 2 and 3 of Table 5. Since by definition all those subpopulations

do not have mechanism effects, it is not possible to use them to identify the terms in (13). A

possible way to do so, though, is to impose constant treatment effect assumptions to relate them

to their mechanism effects.29 The notes about this assumption in section 3.2.2 apply here as well.

A second approach is to use our partial identification results about NATE in Proposition 6 and

the propositions in section 3.2.1 to identify the terms in (13). The bounds derived for NATESR,

NATES and NATER can be used to construct bounds for the corresponding mechanism effects

MATESR, MATES and MATER. Although valid, given how much we want to learn from the

limited data available, combining all these intervals may result in uninformative bounds for the

decomposition in (13) for a given sample.

Alternatively, we can use the nonparametric point identification results for NATESR,

NATES , andNATER. In this case, we use those values of Y obs that we know correspond to each

one of the three potential outcomes Yi (1, Si(0), Ri(0)), Yi (1, Si(1), Ri(0)) and Yi (1, Si(0), Ri(1)),

28 In this case MATEintSR would be obtained as the difference of the rest of the terms in equation (13).
29This assumption would state that the individual effects Yi (1, Si(0), Ri(0))−Yi (0), Yi (1, Si(1), Ri(0))−Yi (0)

and Yi (1, Si(0), Ri(1))− Yi (0) are constant for all units in the population.
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to construct the missing counterfactuals, i.e., the values of Y obs from the observed groups¡
Ti = 1, S

obs
i = 0, Robs

i = 0
¢
,
¡
Ti = 1, R

obs
i = 0

¢
and

¡
Ti = 1, S

obs
i = 0

¢
, respectively. In princi-

ple, since we are implicitly comparing five different treatments, three overlap conditions 0 <

Pr (T = 1, S (0) = 0, S (1) = 0, R (0) = 0, R (1) = 0|X), 0 < Pr (T = 1, S (0) = 0, S (1) = 0|X)
and 0 < Pr (T = 1, R (0) = 0, R (1) = 0|X) must hold simultaneously to be able to find com-
parable individuals in all treatments at the same time.30 In the current situation, however,

the unconfounded strata assumption and overlap condition in Proposition 12 imply the ones in

Section 3, so they are sufficient to nonparametrically point identify the decomposition in (13).

Finally, note that imposing the condition MATEintSR = 0 and estimating all the terms in the

right hand side of (12) allows testing whether their sum equals the ATE.

5 Conclusions

This paper has analyzed nonparametric partial and point identification of net and mech-

anism effects under weak assumptions, allowing for heterogeneous effects. Employing insights

from the seminal analysis in Imbens and Angrist (1994) and Angrist, Imbens and Rubin (1996),

we clarify that the typical data contains information on the key potential outcome used in

the definition of net effects (i.e., Y (1, S (0))) only for the subpopulation for which the treat-

ment does not affect the mechanism. The main implication of this result is that estimation

of net effects for other subpopulations—including the entire population—can only be based on

extrapolations involving typically strong conditions such as constant-effect, parametric and/or

conditional independence assumptions.

Following this result, we provide identification conditions for the case in which the treatment

assignment is random and the mechanism variable is binary. Our partial identification results for

average net effects for the subpopulation for which the data contains information on Y (1, S (0))

rely only on a monotonicity condition for the effect of the treatment on the mechanism. By

adding a stochastic dominance condition and an additional monotonicity condition for the effect

of the mechanism on the outcome, we derive bounds for the net average treatment effect for

the entire population. As with any partial identification results, estimated bounds from a given

sample may turn out to be uninformative, in which case making additional assumptions will

be required. Sufficient assumptions for point identification of average net effects for different

subpopulations, including the whole population, are then presented. Finally, Section 4 discussed

extensions of the identification strategies to the cases of a multivalued mechanism variable and

multiple mechanisms.

Several extensions of the results contained here are ongoing. So far we have developed results

30This would ensure that all ATE, MATESR, MATES and MATER are estimated for the same population.
For a discussion on different ways to implement the overlap condition in a multiple treatment setting see, for
instance, Flores and Mitnik (2008).
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for the situation in which the treatment is assigned at random. Extensions to the case in which

the treatment is not randomly assigned are possible for some of our identification strategies.

For example, Flores and Flores-Lagunes (2008a) provide such extensions for situations in which

assumptions such as unconfoundedness, functional form or constant effects are tenable. Further

extensions to non-randomly assigned treatments under milder conditions, as well as the use of

instrumental variables in this context, are at the top of our research agenda.

6 Appendix

To be completed ...
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