Speculative Growth and Overreaction to Technology Shocks

Kevin J. Lansing
Federal Reserve Bank of San Francisco

December 2008

The views in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the views of the Federal Reserve Bank of San Francisco or the Board of Governors of the Federal Reserve System.
Speculative Growth and Overreaction to Technology Shocks

Kevin J. Lansing†
Federal Reserve Bank of San Francisco

December 11, 2008

Abstract

This paper develops a stochastic endogenous growth model that exhibits “excess volatility” of equity prices because speculative agents overreact to observed technology shocks. When making forecasts about the future, speculative agents behave like rational agents with very low risk aversion. The speculative forecast rule alters the dynamics of the model in a way that tends to confirm the stronger technology response. For moderate levels of risk aversion, the forecast errors observed by the speculative agent are close to white noise, making it difficult for the agent to detect a misspecification of the forecast rule. In model simulations, I show that this type of behavior gives rise to intermittent asset price bubbles that coincide with improvements in technology, investment and consumption booms, and faster trend growth, reminiscent of the U.S. economy during the late 1920s and late 1990s. The model can also generate prolonged periods where the price-dividend ratio remains in the vicinity of the fundamental value. The welfare cost of speculation (relative to rational behavior) depends crucially on parameter values. Speculation can improve welfare if actual risk aversion is low and agents underinvest relative to the socially-optimal level. But for higher levels of risk aversion, the welfare cost of speculation is large, typically exceeding one percent of per-period consumption.

Keywords: Endogenous Growth, Business Cycles, Excess Volatility, Asset Pricing, Speculative Bubbles.

JEL Classification: E32, E44, G12, O40.
Bubbles are often precipitated by perceptions of real improvements in the productivity and underlying profitability of the corporate economy. But as history attests, investors then too often exaggerate the extent of the improvement in economic fundamentals.

Federal Reserve Chairman Alan Greenspan, August 30, 2002.

1 Introduction

The magnitude of short-term movements in stock prices remains a challenge to explain within a framework of rational, efficient markets. Numerous empirical studies starting with Shiller (1981) and LeRoy and Porter (1981) have shown that stock prices appear to exhibit “excess volatility” when compared to the discounted stream of ex post realized dividends. Another prominent feature of stock price data is the intermittent occurrence of sustained run-ups above estimates of fundamental value, so-called speculative bubbles, that can be found throughout history in various countries and asset markets. The dramatic rise in U.S. stock prices during the late 1990s, followed similarly by U.S. house prices during the mid 2000s, are episodes that have both been described as bubbles. The former episode was accompanied by a boom in business investment, while the later was accompanied by a boom in residential investment. Both booms were later followed by falling asset prices and severe retrenchments in the associated investment series, as agents sought to unwind the excess capital accumulated during the bubble periods. Coincident booms in stock prices and investment also occurred during the late 1920’s—a period that shares many characteristics with the late 1990s. In particular, both periods witnessed major technological innovations that contributed to investor enthusiasm about a “new era.”

This paper develops a stochastic endogenous growth model that seeks to formalize the apparent link between speculative bubbles, technological innovation, and capital misallocation. I introduce excess volatility by assuming that agents engage in a form of speculative behavior that manifests itself by overreaction to observed technology shocks. When making forecasts about the future, speculative agents behave like rational agents with very low risk aversion. This characterization of speculative behavior, while by no means exclusive, resembles Hirshleifer’s (1975, p. 519) description of “the Keynes-Hicks view, [where] speculators are characterized not by any special knowledge or beliefs, but simply by their willingness to tolerate risks…” In this paper, speculative agents behave like overconfident gamblers whose bets (forecasts) are too risky relative to that of a player who seeks to maximize winnings (lifetime utility).4

1Shiller (2003) provides a recent update on this literature.
2See the collection of papers in Hunter, Kaufman, and Pomerleano (2003) for an overview of historical bubble episodes.
3As described further below, the similarities between the two periods is noted by Shiller (2000), Gordon (2006), and White (2006).
4Harrison and Kreps (1978) employ a different characterization of speculation in a model that involves heterogenous beliefs and an exogenous constraint on short sales. Speculative agents are defined as those who
The framework for the analysis is a real business cycle model with endogenous growth and capital adjustment costs, along the lines of Barlevy (2004). I allow for the possibility of an Arrow-Romer type productive externality, such that agents may underinvest relative to the socially-optimal level. The presence of the externality yields an endogenous separation between consumption and dividends, where consumption growth is less volatile than dividend growth, as in long-run U.S. data. The severity of the underinvestment problem turns out to be important for analyzing the welfare consequences of fluctuations which, in this model, can affect the economy’s trend growth rate.

Under rational expectations, the technology-response coefficient in the agent’s forecast rule is small in magnitude, such that the equilibrium price-dividend ratio is nearly constant for reasonable levels of risk aversion. In contrast, the price-dividend ratio in long-run U.S. stock market data is volatile and highly persistent, i.e., close to a random walk. The model result obtains because rational agents understand that technology shocks give rise to both income and substitution effects which work in opposite directions. The two effects exactly cancel when the coefficient of relative risk aversion is unity, representing logarithmic utility. In this case, the technology response coefficient in the rational forecast rule is zero, such that the equilibrium price-dividend ratio is constant.

In the speculation model, the agent’s forecast rule takes the same form as the rational forecast, but it features a stronger technology response coefficient, generating overreaction. I calibrate the technology response coefficient so that the model matches the volatility of the price-dividend ratio in U.S. data. Given the calibration, I can recover the hypothetical risk coefficient that makes the speculative agent’s response coefficient identical to that of a rational agent with lower risk aversion. In this sense, the speculative agent can be viewed as making bets about the future which are too risky relative to that of a rational agent. But, as discussed further below, speculative behavior may actually improve welfare for some parameterizations of the model by helping to mitigate the economy’s underinvestment problem.

Due to the self-referential nature of the agent’s decision problem, the initial use of a speculative forecast rule alters the dynamics of the model in a way that tends to confirm the stronger technology response. Using a real time learning algorithm, I demonstrate that convergence to the rational solution can be very slow when the agent initially adopts a forecast rule that is characterized by overreaction. In the calibrated model, I show that the forecast errors observed by the speculative agent are close to white noise for moderate levels of risk aversion, making it difficult for the agent to detect a misspecification of the forecast rule. Moreover, from the individual agent’s perspective, switching to a fundamentals-based forecast rule (which involve a weaker technology response) would appear to reduce forecast accuracy, so there is no incentive to switch.

The capital adjustment cost formulation in the model implies that movements in the equity price are linked directly to movements in investment. Barro (1990) finds that changes in real stock prices since 1891 have strong explanatory power for the growth rate of business invest-
ment. Studies by Chirinko and Schaller (2001, 2007), Gilchrist et al. (2005), and Campello and Graham (2007) all find evidence of a significant empirical link between stock price bubbles and investment decisions by firms.

In model simulations, speculative behavior gives rise to intermittent asset price bubbles that coincide with positive innovations in technology, investment and consumption booms, and faster trend growth, reminiscent of the U.S. economy during the late 1920s and late 1990s. The model can also generate prolonged periods where the price-dividend ratio remains in the vicinity of the fundamental value. Due to the nonlinear nature of the model solution, the simulated price-dividend ratio exhibits non-Gaussian features, such as positive skewness and excess kurtosis. These features are also present in the data.

Interestingly, the speculation model outperforms the rational model in matching the relative volatilities of detrended consumption, investment, and output. The presence of capital adjustment costs causes investment in the rational model to exhibit about the same volatility as output, whereas investment in the data is more than twice as volatile as output. Barlevy (2004, p. 983) acknowledges the difficulty of generating sufficient investment volatility in a rational model with capital adjustment costs. However, in the speculation model, the agent’s overreaction behavior magnifies investment volatility so that investment is about twice as volatile as output, which is much closer to the data.

Finally, I examine the welfare costs of fluctuations that can be attributed to either: (i) speculative behavior, or (ii) business cycles. Welfare costs are measured by the percentage change in per-period consumption that makes the agent indifferent between the two economies being compared. The welfare cost of speculative behavior (relative to rational behavior) depends crucially on parameter values. Speculation can improve welfare if actual risk aversion is low and agents underinvest relative to the socially-optimal level. But for higher levels of risk aversion, the welfare cost of speculation is large, typically exceeding one percent of consumption. Similarly, the welfare cost of business cycle fluctuations in the speculation model (relative to a deterministic model) increase rapidly with risk aversion.

The welfare results involve a complex interaction of several effects. Fluctuations in the model can affect both the mean and volatility of consumption growth. If fluctuations decrease mean growth, then a smaller fraction of resources will be devoted to investment. Less investment implies a higher initial level of consumption which, as noted by Barlevy (2004), can mitigate the negative effects of slower growth. But if the economy is subject to an underinvestment problem, then higher initial consumption is less desirable. Finally, as the curvature of the utility function increases, consumption growth volatility becomes more costly in terms of welfare. Which of these effects dominate depends on parameter values.

An important unsettled question in economics is whether policymakers should take deliberate steps to prevent or deflate asset price bubbles. Those who advocate leaning against bubbles point out that excessive asset prices can distort economic and financial decisions, creating costly misallocations that can take years to dissipate. Others argue that policies intended to prick a suspected bubble would likely send the economy into a recession, thereby foregoing

5For an overview of this literature, see Lansing (2008).
the benefits of the boom that might otherwise continue. The welfare results obtained here provide some support for both points of view.

1.1 Related Literature

The term “excess volatility” implies that asset prices move too much to be explained by changes in dividends or cash flows. The behavioral finance literature has examined a wide variety of evidence pertaining to this phenomenon. Controlled experiments on human subjects suggest that people’s decisions are influenced by various “heuristics,” as documented by Tversky and Kahneman (1974). The “representativeness heuristic” is a form of non-Bayesian updating whereby subjects tend to overweight recent observations relative to the underlying laws of probability that govern the stochastic process. De Bondt and Thaler (1985) find evidence of overreaction in comparing returns of portfolios comprised of prior winning and losing stocks. Arbarbanell and Bernard (1992) and Easterwood and Nutt (1999) find evidence that security analysts’ earnings forecasts tend to overreact to new information, particularly when the information is positive in nature. Daniel, et al. (1998) develop a model where investors’ overconfidence about the precision of certain types of information causes them to overreact to that information. In the laboratory asset market of Caginalp et al. (2000), prices appeared to overreact to fundamentals and to be driven by previous price changes, i.e., momentum.

This paper relates to a long list of research that explores the links between non-fundamental asset price movements and investment in physical capital. Theoretical research that examines rational bubbles in overlapping generations models with productive externalities or market imperfections includes Saint Paul (1992), Grossman and Yanagawa (1993), King and Ferguson (1993), Oliver (2000), and Caballero et al. (2006). Unlike these papers, the bubbles explored here are driven by agents’ excessively risky bets about the future. Moreover, I use a calibrated version of the model to compute the welfare costs of the capital misallocation that results from this behavior.

Dupor (2002, 2005) examines the policy implications of non-fundamental asset price movements in monetary real business cycle model with capital adjustments costs. Non-fundamental asset price movements are driven by exogenous “expectation shocks” that drive a wedge between the true marginal product of capital and the market return observed by firms when making their investment decisions. The volatility of these shocks is calibrated to match a return volatility statistic for the S&P 500 index, analogous to the procedure used here to calibrate the agent’s technology response coefficient. He finds that optimal monetary policy should lean against non-fundamental asset price movements.

Jaimovich and Rebelo (2007) examine a behavioral real business cycle model that allows for non-rational expectations. In one version, agents are overconfident about the precision of news about future technology innovations, which causes them to overreact to that news, as in the model of Daniel, et al. (1998). The agents’ behavior serves to amplify the response of investment to technology shocks. The authors do not examine the resulting welfare costs, however.

6Barlevy (2007, pp. 54-55) provides an overview of this literature.
In a recent paper, Hassan and Mertens (2008) consider the welfare costs of excess volatility in a capitalist-worker model where the forecasts of capital owners are perturbed away from the rational expectation by an exogenous shock, similar to the model of Dupor (2002, 2005). They find that the welfare cost of excess volatility can be quite high (on the order of 4 percent of per-period consumption) because volatility depresses the steady state capital stock and hence the wages of workers.

The approach taken here is to postulate a particular form of less-than-rational behavior (overreaction) and then explore the economic consequences in a standard model. Other asset pricing research along these lines includes: Delong et al. (1990), Barsky and Delong (1993), Timmerman (1996), Barberis, Schleifer, and Vishney (1998), Brock and Hommes (1998), Cecchetti, Lam, and Mark (2000), Abel (2002), Abreu and Brunnermeier (2003), Scheinkman and Xiong (2003), Panageous (2005), Lansing (2006, 2007), and Adam, Marcet, and Nicolini (2008), among others.

Numerous papers seek to account for the behavior of the stock market or investment using rational models where agents respond optimally to fundamental uncertainty about the future trend growth rate or the future level/profitability of technology. Research along these lines includes Zeira (1999), Greenwood and Jovanovic (1999), Hobijn and Jovanovic (2001), Pástor and Veronesi (2006), Jermann and Quadrini (2007), Johnson (2007), Christiano et al. (2007), and Angeletos, Lorenzoni, and Pavan (2007).

Finally, McGrattan and Prescott (2007) acknowledge that the basic neoclassical growth model with rational expectations cannot account for the boom in U.S. business investment that occurred during the late 1990s. Along the lines of Hall (2001), they argue that accounting for investment in intangible capital helps to reconcile the model with the data.

2 Historical Motivation

The basic premise of the paper is that investors overreact to technological change. A reading of stock market history lends support to this view. Shiller (2000) argues that major stock price run-ups have generally coincided with the emergence of some superficially-plausible “new era” theory that involves the introduction of new technology. Figure 1 depicts four major run-ups in real U.S. stock prices.7 Shiller associates each run-up with the following technological advances that contributed to new era enthusiasm:

- Early 1900s: High-speed rail travel, transatlantic radio, long-line electrical transmission.
- 1920s: Mass production of automobiles, travel by highways and roads, commercial radio broadcasts, widespread electrification of manufacturing.
- 1950s and 60s: Widespread introduction of television, advent of the suburban lifestyle, space travel.

7 All data on stock prices, dividends, and consumption in the paper are from Robert Shiller’s website: http://www.econ.yale.edu/~shiller/.
Late 1990s: Widespread availability of the internet, innovations in computers and information technology, emergence of the web-based business model.

In comparing the late 1920s with the late 1990s, Gordon (2006) and White (2006) both emphasize the simultaneous occurrence of major technological innovations, a productivity revival, excess capital investment, and a stock market bubble fueled by speculation. Schwert (1989, 2002) documents the pronounced increase in stock market volatility that occurred during both periods, particularly in technology-related stocks in the late 1990s. Cooper et al. (2001) document a pronounced “dotcom effect” in the late 1990s, whereby internet-related corporate name changes produced permanent abnormal returns. The authors attribute their results to a form a speculative mania among investors for “glamour” industries that are associated with new technology.

The September 7, 1929 edition of Business Week famously remarked “For 5 years at least, American business has been in the grip of an apocalyptic holy-rolling exaltation over the unparalleled prosperity of the ‘new era’ upon which we, or it, or somebody has entered.” The March 8, 1999 cover story of Business Week proclaimed “The high-tech industry is on the cusp of a new era in computing in which digital smarts won’t be tied up in a mainframe, mini-computer, or PC. Instead, computing will come in a vast array of devices aimed at practically every aspect of our daily lives.” Figure 2 illustrates the similarity of the stock price movements that took place during the two periods.

From 1996 until its peak in 2000 real business investment expanded at an average compound growth rate of 10 percent per year—about 2.5 times faster than the growth rate of the U.S. economy as a whole. Much of the surge in business investment in the late 1990s was linked to computers and information technology. During these years, measured productivity growth picked up, which was often cited as evidence of a permanent structural change—one that portended faster trend growth going forward.8 Widespread belief in the so-called “new economy” caused investors to bid up stock prices to unprecedented levels relative to dividends (Figure 3). The rise and fall of potential output growth (a proxy for the new economy’s speed limit) coincides roughly with cyclical movements in the stock market (Figure 4). This motivates consideration of a model where speculative behavior can affect the economy’s trend growth rate.

The investment boom of the late 1990s now appears to have been overdone. Firms overinvested in new productive capacity in an effort to satisfy a level of demand for their products that proved to be unsustainable.9 Caballero et al. (2006) argue that rapidly rising stock prices provided firms with a low-cost source of funds from which to finance their investment projects. The resulting surge in capital accumulation served to increase measured productivity growth

8For an optimistic assessment at the time, see Oliner and Sichel (2000). For a sceptical view, see Gordon (2000). A recent analysis by Ireland and Schuh (2008) concludes that the productivity revival of the 1990s was temporary rather than permanent.

9Gordon (2003) documents the many transitory factors that boosted the demand for technology products during the late 1990s. These include: (1) telecom industry deregulation, (2) the one-time invention of the world-wide-web, (4) the surge in equipment and software demand from the now-defunct dotcoms, and (4) a compressed personal computer replacement cycle heading into Y2K.
which, in turn, helped to justify the enormous run-up in stock prices. Figure 5 shows that the trajectory of the S&P 500 stock index, both before and after the bubble peak, is strikingly similar to the trajectory of investment.

On January 13, 2000, near the peak of the stock market, Fed Chairman Alan Greenspan raised the possibility that investors might have overreacted to recent productivity-enhancing innovations:

“When we look back at the 1990s, from the perspective of say 2010...[w]e may conceivably conclude from that vantage point that, at the turn of the millennium, the American economy was experiencing a once-in-a-century acceleration of innovation, which propelled forward productivity, output, corporate profits, and stock prices at a pace not seen in generations, if ever. Alternatively, that 2010 retrospective might well conclude that a good deal of what we are currently experiencing was just one of the many euphoric speculative bubbles that have dotted human history. And, of course, we cannot rule out that we may look back and conclude that elements from both scenarios have been in play in recent years.”

Figure 6 shows that one can observe similar comovement between asset prices and investment in the recent U.S. housing market. Real house prices nearly doubled from 2000 to 2006 while real residential investment experienced an unprecedented boom. Both series have since reversed course dramatically. An accommodative interest rate environment, combined with a proliferation of new mortgage products (loans with little or no down payment, minimal documentation of income, and payments for interest-only or less), helped fuel the run-up in house prices.

On April 8, 2005, near the peak of the housing market, Fed Chairman Alan Greenspan offered the following optimistic assessment of new technology:

“[T]he financial services sector has been dramatically transformed by technology... Information processing technology has enabled creditors to achieve significant efficiencies in collecting and assimilating the data necessary to evaluate risk and make corresponding decisions about credit pricing. With these advances in technology, lenders have taken advantage of credit-scoring models and other techniques for efficiently extending credit to a broader spectrum of consumers...Where once more-marginal applicants would simply have been denied credit, lenders are now able to quite efficiently judge the risk posed by individual applicants and to price that risk appropriately. These improvements have led to rapid growth in subprime mortgage lending.

Feldstein (2007), citing a number of studies, argues that the rapid growth in subprime lending during these years was driven in part by “the widespread use of statistical risk assessment models by lenders.” The subprime lending boom was later followed by a sharp rise in
delinquencies and foreclosures, massive write-downs in the value of securities backed by sub-
prime mortgages and derivatives, the collapse of a number of large financial institutions, and,
most recently, a serious financial crisis prompting unprecedented government intervention in
U.S. private capital markets. In retrospect, enthusiasm for a “new era” in credit risk modeling
appears to have been overdone. Persons (1930. pp. 118-119) describes the fallout from an
earlier era of rapid credit expansion as follows:

“[I]t is highly probable that a considerable volume of sales recently made were
based on credit ratings only justifiable on the theory that flush times were to
continue indefinitely...When the process of expanding credit ceases and we return
to a normal basis of spending each year...there must ensue a painful period of
readjustment.”

Shiller (2008) argues that the recent U.S. housing market experience bears striking similar-
ities to previous real estate booms and busts in U.S. history. In an exhaustive historical study
of financial market bubbles in many countries, Borio and Lowe (2002) argue that episodes of
sustained rapid credit expansion, booming stock or house prices, and high levels of invest-
ment, are almost always followed by periods of economic stress as bubble-induced excesses are
unwound.

3 Model

The representative agent is a capitalist-entrepreneur who maximizes

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[\frac{c_t^{1-\alpha} - 1}{1-\alpha} \right],$$

subject to the budget constraint

$$c_t + i_t = y_t, \quad c_t, i_t \geq 0$$

where c_t is consumption, i_t is investment, y_t is output (or income), β is the subjective time
discount factor, and α is the coefficient of relative risk aversion (the inverse of the intertemporal
elasticity of substitution). When $\alpha = 1$, the within-period utility function can be written as
log (c_t). The symbol E_t represents the mathematical expectation operator.

Output is produced according to the technology

$$y_t = A \exp (z_t) k_t^\theta h_t^{1-\theta}, \quad A > 0, \quad \theta \in (0,1],$$

$$z_t = \rho z_{t-1} + \epsilon_t, \quad \epsilon_t \sim N \left(0, \sigma^2 \right), \quad z_0 \text{ given},$$

where k_t is the agent’s stock of physical capital and z_t represents a persistent, mean-reverting
technology shock. When $\theta < 1$, output is also affected by h_t, which represents the stock of
human capital or knowledge. Following Arrow (1962) and Romer (1986), I assume that h_t
grows proportionally to, and as a by-product of, accumulated private investment activities. This “learning-by-doing” formulation is captured by the specification \(h_t = K_t \), where \(K_t \) is the economy-wide average capital stock per person which the agent takes as given. In equilibrium, all agents are identical, so we have \(k_t = K_t \) which is imposed after the investment decision is made. When \(\theta < 1 \), the private marginal product of capital is less than the social marginal product such that agents underinvest relative to the socially-optimal level.

Resources devoted to investment augment the stock of physical capital according to the law of motion

\[
k_{t+1} = B k_t^{1-\lambda} i_t^\lambda, \quad B > 0, \ \lambda \in (0, 1], \ \ k_0 \text{ given,} \tag{5}
\]

which reflects capital adjustment costs along the lines of Lucas and Prescott (1971). Equation (5) can be interpreted as a log-linearized version of the following specification employed by Jermann (1998) and Barlevy (2004):

\[
\frac{k_{t+1}}{k_t} = 1 - \delta + \psi_0 \left(\frac{i_t}{k_t} \right)^\psi_1 \simeq B \left(\frac{i_t}{k_t} \right)^\lambda, \tag{6}
\]

where \(\lambda \) and \(B \) are Taylor series coefficients and \(\tilde{i}/k = \exp \{ E \log (i_t/k_t) \} \) is the approximation point.\(^{10}\)

The agent’s first-order condition with respect to \(k_{t+1} \) is given by

\[
\frac{i_t c_t^{\alpha}}{k_{t+1}^{\lambda}} = E_t \beta \left[\frac{\theta y_{t+1}}{k_{t+1}} + \frac{1 - \lambda}{\lambda} i_{t+1} \right], \tag{7}
\]

where \(k_{t+1} \) is known at time \(t \). The first-order condition can be rearranged to obtain the following standard asset pricing equation

\[
\frac{i_t}{\lambda p_t} = E_t \beta \left[\frac{c_{t+1}}{c_t} \right]^{\alpha} \left[\frac{\theta y_{t+1} - i_{t+1}}{i_t} \right]^\lambda, \tag{8}
\]

where \(p_t \equiv i_t/\lambda \) is the ex-dividend price of an equity share with claim to a perpetual stream of dividends \(d_t \equiv \theta y_t - i_t \). When \(\theta = 1 \), consumption is equal to dividends, analogous to the Lucas (1978) endowment economy. When \(\theta < 1 \), consumption strictly exceeds dividends, owing to the presence of the learning-by-doing externality which can be viewed as separate source of income for the agent. The term \(\beta (c_{t+1}/c_t)^{-\alpha} \) is the stochastic discount factor.

The model’s adjustment cost specification (5) implies a direct link between the equity price \(p_t \) and investment in physical capital \(i_t \). This feature is consistent with the observed comovement between U.S. asset prices and the corresponding investment series shown earlier

\(^{10}\)Since the functional form of the constraint affects the agent’s intertemporal optimality condition, the economic environment considered here is not isomorphic to that of Jermann (1998) and Barlevy (2004).
in Figures 5 and 6. Although the model implies perfect comovement between \(p_t \) and \(i_t \), this prediction could be relaxed by introducing stochastic variation in the adjustment cost parameter \(\lambda \).

The gross return from holding the equity share from period \(t \) to \(t+1 \) is given by

\[
R_{t+1} = \frac{p_{t+1} + d_{t+1}}{p_t} = \frac{i_{t+1}}{i_t} \left[\frac{\lambda y_{t+1}}{i_{t+1}} + 1 - \lambda \right],
\]

which shows that return volatility is linked to shifts in the growth rate of investment and to shifts in the output-investment ratio.

To facilitate a solution to the agent’s problem, the first-order condition (8) must be rewritten in terms of stationary variables. If we define the price-consumption ratio as \(x_t \equiv \frac{p_t}{c_t} = \frac{(i_t/\lambda)}{c_t} \), then the budget constraint (2) can be used to derive the following expressions for the equilibrium allocations:

\[
c_t = \left[\frac{1}{1 + \lambda x_t} \right] y_t, \tag{10}
\]
\[
i_t = \left[\frac{\lambda x_t}{1 + \lambda x_t} \right] y_t, \tag{11}
\]
\[
d_t = \left[\frac{\theta - (1 - \theta) \lambda x_t}{1 + \lambda x_t} \right] y_t, \tag{12}
\]

where \(y_t = A \exp(z_t) k_t \) in equilibrium. The price-dividend ratio can be written as

\[
\frac{p_t}{d_t} = \frac{i_t/\lambda}{d_t} = \frac{x_t}{\theta - (1 - \theta) \lambda x_t}.
\]

which is a non-linear function of \(x_t \). When there is no productive externality, we have \(\theta = 1 \) such that \(p_t/d_t = x_t \).

An expression for equilibrium consumption growth can be obtained by combining equations (10), (11), and (5) to yield

\[
\frac{c_{t+1}}{c_t} = \left[\frac{1 + \lambda x_t}{1 + \lambda x_{t+1}} \right] \frac{y_{t+1}}{y_t} \left[\frac{1 + \lambda x_t}{1 + \lambda x_{t+1}} \right] \exp\left(z_{t+1} - z_t \right) \frac{k_{t+1}}{k_t}
\]

\[
= BA^\lambda \left[\frac{(1 + \lambda x_t)^{1-\lambda} (\lambda x_t)\lambda}{1 + \lambda x_{t+1}} \right] \exp\left[z_{t+1} - (1 - \lambda) z_t \right]. \tag{14}
\]

Substituting the above expression into equation (8) together with \(y_{t+1} = c_{t+1} + i_{t+1} \) yields the following transformed version of the first-order condition in terms of stationary variables:

\[
\frac{x_t^{1-\phi} \exp[\phi (1 - \lambda) z_t]}{(1 + \lambda x_t)^{(1-\lambda)\phi}} = E_t \tilde{\beta} \left[\frac{\theta + x_{t+1} (1 - \lambda + \lambda \theta)}{(1 + \lambda x_{t+1})^{\phi}} \right] \exp(\phi z_{t+1}), \tag{15}
\]

\[
\phi \equiv 1 - \alpha, \quad \tilde{\beta} \equiv \beta \left[B (A\lambda)^\lambda \right]^{\phi},
\]

where \(w_{t+1} \) defines the composite variable which the agent must forecast.
3.1 Rational Solution

The transformed first-order condition (15) is a non-linear stochastic difference equation. Except for the special case of log utility \((\phi = 0)\), an exact analytical solution cannot be obtained. To facilitate an analytical solution, both sides of equation (15) are approximated as power functions around the points \(\bar{x} = \exp\{E[\log (x_t)]\}\) and \(\bar{z} = 0\) to obtain:

\[
a_0 \left[\frac{x_t}{\bar{x}} \right]^{a_1} \exp \left[\phi (1 - \lambda) z_t \right] = E_t b_0 \left[\frac{x_{t+1}}{\bar{x}} \right]^{b_1} \exp (\phi z_{t+1})
\]

(16)

where \(a_0, a_1, b_0,\) and \(b_1\) are Taylor series coefficients that depend on \(\bar{x}\), as defined in Appendix A. The approximate solution is given by the following proposition.

Proposition 1. An approximate analytical solution for the rational price-consumption ratio is given by

\[
x_t = \bar{x} \exp (\gamma z_t),
\]

where \(\bar{x} = \exp\{E[\log (x_t)]\}\) is the approximation point and \(\gamma\) is given by

\[
\gamma = \frac{\phi [\rho - (1 - \lambda)]}{a_1 - \rho b_1}.
\]

Proof: See Appendix A.

In the special case of log utility, we have \(\phi = 0\) such that \(\gamma = 0\), resulting in \(x_t = \bar{x}\) for all \(t\). From equation (13), the price-dividend ratio \(p_t/d_t\) is also constant in this case. When \(\phi \neq 0\), the valuation ratios \(x_t\) and \(p_t/d_t\) respond to technology shocks. The direction of movement depends on the sign of \(\gamma\) which, in turn, depends on the relative magnitudes of the income and substitution effects of the shock. When \(\gamma < 0\), the income effect dominates such that the agent’s consumption increases relative to investment, thus causing \(x_t = (i_t/\lambda)/c_t\) to decline. For moderate levels of risk aversion, the valuation ratios exhibit very little volatility because the income and substitution effects largely offset one another.

The right-side of equation (16) defines the forecast variable \(w_{t+1}\) in terms of \(x_{t+1}\) and \(z_{t+1}\). Making use of the rational solution from Proposition 1, we have

\[
w_{t+1} = \bar{w} \exp \left[(\gamma b_1 + \phi) z_{t+1} \right],
\]

(17)

where \(\bar{w} = b_0 = \exp\{E[\log (w_t)]\}\) is the approximation point for the law of motion of the forecast variable. The corresponding rational forecast rule is given by

\[
E_t w_{t+1} = \bar{w} \exp \left[m \rho z_t + \frac{1}{2} m^2 \sigma_z^2 \right],
\]

(18)

where the endogenous coefficient \(m\) governs the forecast response to observed technology shocks.
3.2 Speculative Solution

The speculative solution introduces excess volatility by assuming that the representative agent systematically overreacts to observed technology shocks when making forecasts about the future. I abstract from the underlying source of this overreaction; it is simply taken to be an aspect of the agent’s behavior. In the model of Daniel, et al. (1998), the underlying source of overreaction is the agent’s overconfidence in the precision of information. In their model, overconfidence is taken to be an aspect of the agent’s behavior.

As with the rational solution, I assume that enough time has gone by for the agent to have discovered the exogenous stochastic process (4). To derive the speculative solution, it is useful to rewrite the approximate first-order condition (16) in terms of the forecast variable, as follows

\[
a_{0s} \left[\frac{w_{s,t}}{w_s} \right]^{a_{1s}} \exp \left[\phi \left(1 - \lambda - \frac{a_{1s}}{b_{1s}} \right) z_t \right] = \hat{E}_t w_{s,t+1} \tag{19}
\]

where \(w_{s,t} = \hat{w}_s \left[\frac{x_{s,t}}{x_s} \right]^{b_{1s}} \exp (\phi z_t) \).

The symbol \(\hat{E}_t \) represents the speculative agent’s subjective expectation conditioned on information that is available at time \(t \). The subscript “s” denotes values associated with the speculative solution which differ from those in the rational solution. The corresponding Taylor series coefficients for the speculation model are denoted by \(a_{0s}, a_{1s}, b_{0s}, \) and \(b_{1s} \). Analogous to equation (17), \(\hat{w}_s = b_{0s} = \exp \{ E \log (w_{s,t}) \} \) is the approximation point for the actual law of motion of the forecast variable.

The speculative forecast takes the same form as the rational forecast (18), but it features a stronger technology response coefficient, generating overreaction. The speculative forecast rule is given by

\[
\hat{E}_t w_{s,t+1} = \hat{w}_s \exp \left[m_s \rho z_t + \frac{1}{2} m_s^2 \sigma^2 \right], \tag{20}
\]

where \(|m_s| > |m|\) implies overreaction.

Substituting the speculative forecast rule into the approximate first-order condition (19) yields the actual law of motion for the forecast variable:

\[
w_{s,t} = \hat{w}_s \exp \left\{ m_s b_{1s} \rho + \phi \left[\frac{a_{1s} - (1 - \lambda) b_{1s}}{a_{1s}} \right] z_t \right\}, \tag{21}
\]

which takes the same form as the rational law of motion (17), but has a different technology response coefficient and a different approximation point. Making use of the relationship between \(w_{s,t} \) and \(x_{s,t} \) shown in equation (19), the above expression can be used to recover the following actual law of motion for the speculative price-consumption ratio:

\[
x_{s,t} = \hat{x}_s \exp (\gamma_s z_t), \tag{22}
\]

where \(\gamma_s = \frac{m_s \rho - \phi (1 - \lambda)}{a_{1s}} \)

which takes the same form as the rational price-consumption ratio from Proposition 1.
4 Model Calibration

A time period in the model is taken to be one year. The response coefficient \(m_s \) in the speculative forecast rule is calibrated so that the model matches the volatility of the price-dividend ratio in long-run annual U.S. data. The remaining parameters of the speculation model are chosen simultaneously to match various empirical targets, as summarized in Table 1. For example, the volatility of the technology shock innovation \(\sigma_\varepsilon \) is chosen so that the model matches the standard deviation of real per capita consumption growth of nondurables and services in long-run annual U.S. data. Appendix B contains the approximate analytical moments that are used to calibrate the model.

The rational model employs the same deep parameter values as the speculation model. The technology response coefficient \(m \) in the rational forecast rule (18) is endogenous. For the quantitative analysis, I examine a range of values for the externality parameter \(\theta \) and the risk coefficient \(\alpha \). The baseline calibration is \(\theta = 0.4 \) and \(\alpha = 1.5 \). When either \(\theta \) or \(\alpha \) is changed, the remaining parameters are adjusted to maintain the same targets shown in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Empirical Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>0.4</td>
<td>Capital share of income.</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>1.5</td>
<td>Coefficient of relative risk aversion.</td>
</tr>
<tr>
<td>(A)</td>
<td>0.333</td>
<td>Mean capital-output ratio = 3.</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.069</td>
<td>Mean investment-output ratio = 0.25.</td>
</tr>
<tr>
<td>(B)</td>
<td>1.211</td>
<td>Mean consumption growth = 2.06 %.</td>
</tr>
<tr>
<td>(\sigma_\varepsilon)</td>
<td>0.047</td>
<td>Volatility of consumption growth = 3.56 %.</td>
</tr>
<tr>
<td>(\rho)</td>
<td>0.95</td>
<td>Autocorrelation of price-dividend ratio = 0.93.</td>
</tr>
<tr>
<td>(\beta)</td>
<td>0.969</td>
<td>Mean price-dividend ratio = 26.</td>
</tr>
<tr>
<td>(m_s)</td>
<td>1.008</td>
<td>Volatility of price-dividend ratio = 13.</td>
</tr>
<tr>
<td>(m)</td>
<td>(-0.562)</td>
<td>Rational model value (endogenous).</td>
</tr>
<tr>
<td>(\hat{\alpha})</td>
<td>0.12</td>
<td>Rational risk coefficient that yields (m = m_s).</td>
</tr>
</tbody>
</table>

Table 1 also includes the hypothetical risk coefficient \(\hat{\alpha} \) that makes the endogenous coefficient \(m \) in the rational model equal to the calibrated value \(m_s \) in the speculation model.\(^{11}\) In all cases examined, \(\hat{\alpha} < \alpha \), which shows that the speculative agent behaves like a rational agent with very low (or even negative) risk aversion.

When \(\theta = 0.4 \), the parameter values in Table 1 yield \(\gamma_s = 1.236 \) from equation (22) and \(\gamma = -0.059 \) from Proposition 1. When \(\theta = 1 \), the corresponding results are \(\gamma_s = 2.039 \) and \(\gamma = 0.166 \). Consequently, the speculative price-consumption ratio \(x_{s,t} \) will exhibit much more volatility than the rational price-consumption ratio \(x_t \).

Give the calibrated values of \(\lambda \) and \(B \) shown in Table 1, equation (6) can be used to recover the implied curvature parameter \(\psi_1 \) for comparison with Barlevy (2004). Assuming an annual depreciation rate of \(\delta = 0.1 \), equation (6) yields \(\psi_1 = 0.58 \) when \(\theta = 0.4 \), and yields

\(^{11}\)For this computation only, the remaining parameters of the rational model are adjusted to match the same empirical targets as the speculation model. However, since \(m \) is endogenous, the rational model does not match the volatility of the price-dividend ratio in the data.
\(\psi_1 = 0.12 \) when \(\theta = 1.0 \). Barlevy (2004) considers values in the range \(0.12 \leq \psi_1 \leq 0.26 \) for an endogenous growth model that corresponds to the \(\theta = 1.0 \) case. As \(\psi_1 \to 1.0 \), the implied adjustment costs approach zero. Hence, the calibration methodology used here delivers lower implied adjustment costs when \(\theta < 1 \).

5 Quantitative Analysis

5.1 Self-Confirming Nature of Overreaction

The calibrated response coefficient \(m_s \) that appears in the speculative forecast rule (20) can be justified by a perceived law of motion that takes the form \(w_{s,t} = \tilde{w}_s \exp(m_s z_t) \). The actual law of motion for \(w_{s,t} \), equation (21), shows that the actual technology response coefficient is increasing in \(m_s \). Consequently, the agent’s overreaction behavior tends to be self-confirming.

Figure 7 illustrates the self-confirming nature of overreaction. As \(m_s \) increases, the actual response coefficient also increases, but less than one-for-one as indicated by slope of the solid blue line. At the baseline calibration, we have \(m_s = 1.008 \) versus an actual response coefficient of 0.793. As shown earlier in Table 6, the corresponding rational response coefficient is \(m = -0.562 \), which occurs where the solid line crosses the 45-degree line. The negative sign of the rational response coefficient reflects the dominance of the income effect over the substitution effect for these parameter values. The dashed green line plots the actual response coefficient when the rational model is recalibrated to match the empirical targets in Table 1 (except for the price-dividend ratio volatility), but instead using a hypothetical risk coefficient of \(\tilde{\alpha} = 0.12 \). The dashed green line crossed the 45-degree line at \(m_s = 1.008 \), confirming the notion that the speculative agent behaves like a rational agent with very low risk aversion.

Due to the self-confirming nature of the speculative forecast, convergence to the rational solution via a least-squares learning algorithm can be very slow. Details of the learning algorithm are contained in Appendix C. Given all past data, the agent runs an ordinary least squares regression on an equation that takes the form of (17), where \(\tilde{w} \) and \(m \) are coefficients to be estimated. The most recent coefficient estimates are used to construct the one-period ahead forecast \(E_t w_{t+1} \).

Figure 8 plots sample real-time learning paths when the agent initially adopts a forecast rule that is characterized by overreaction. For each simulation, the initial technology response coefficient is set to 3.0, which exceeds the calibrated value of \(m_s = 1.008 \). The estimated response coefficient declines rapidly at first, but then follows a gradually declining trajectory towards the rational value. Even after 2000 periods, the agent’s forecast rule may still exhibit overreaction such that \(|m_s| > |m| \).

Table 2 summarizes the properties of the percentage forecast errors observed by the agent in both the rational and speculation models. The percentage forecast error in the rational model is defined as

\[
err_{t+1} = \log \left(\frac{w_{t+1}}{E_t w_{t+1}} \right),
\]

where \(E_t w_{t+1} \) is given by equation (18). The percentage forecast error in the speculation
model is defined similarly, with \(\hat{E}_{t}w_{s,t+1} \) given by equation (20). The simulated time series for \(w_t \) and \(w_{s,t} \) are computed by solving the original nonlinear first-order condition (15) at each time step of the simulation, as described in Appendix C. Use of the approximate laws of motion (17) and (21) to generate the simulated time series produced similar results.

Table 2: Moments of Forecast Errors

<table>
<thead>
<tr>
<th></th>
<th>(\theta = 0.4)</th>
<th>(\theta = 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rational Model</td>
<td>Speculation Model</td>
</tr>
<tr>
<td>Mean</td>
<td>0.01 %</td>
<td>0.17 %</td>
</tr>
<tr>
<td>RMSE</td>
<td>2.66 %</td>
<td>4.87 %</td>
</tr>
<tr>
<td>Corr. Lag 1</td>
<td>-0.01</td>
<td>0.23</td>
</tr>
<tr>
<td>Corr. Lag 2</td>
<td>-0.01</td>
<td>0.21</td>
</tr>
<tr>
<td>Corr. Lag 3</td>
<td>-0.01</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Note: Statistics are from 10,000 period simulation with \(\alpha = 1.5 \).

The table shows that forecast errors observed by the speculative agent are not persistent, particularly when \(\theta = 1.0 \). Even when \(\theta = 0.4 \), it would take a large amount of data for the agent to reject the null hypothesis of white noise forecast errors, especially given the sampling variation in the autocorrelation statistics. Experiments with the model show that the forecast errors become more persistent at higher levels of risk aversion. Intuitively, the vertical intercept of the solid blue line in Figure 8 becomes more negative as the risk coefficient \(\alpha \) increases, thus producing a wider gap between the actual and perceived values of the technology response coefficient.

Although not shown in the table, one can also compute the forecast errors that arise when the fundamentals-based forecast rule (18) is used to predict the realized value of \(w_{s,t+1} \) in the speculation model. These errors would be of interest to a speculative agent who is contemplating a switch to a fundamentals-based forecast. In deciding whether to switch forecasts, the agent would keep track of the forecast errors associated with each method. Before any switch occurs, the actual law of motion for \(w_{s,t} \) would still be governed by (21). In simulations, the fundamentals-based forecast significantly underperforms the speculative forecast rule (20) when predicting the realized value of \(w_{s,t+1} \). For example, when \(\theta = 0.4 \), the RMSE of the fundamentals-based forecast is 19.6% versus only 4.87% for the speculative forecast. From the perspective of an individual agent, switching to a fundamentals-based forecast would appear to reduce forecast accuracy, so there is no incentive to switch. In other words, an individual agent can become “locked-in” to the speculative forecast if other agents are following the same approach.12

5.2 Model Simulations

This section examines the ability of the speculation model to match various features of U.S. data.

12 Lansing (2006) examines the concept of forecast lock-in using a standard Lucas-type asset pricing model.
Table 3 presents unconditional moments of asset pricing variables computed from a long simulation of the model, where $\mu_{t+1}^d \equiv \log (d_{t+1}/d_t)$ and $\mu_{t+1}^c \equiv \log (c_{t+1}/c_t)$ are the growth rates of dividends and consumption, respectively. The table also reports the corresponding statistics from long-run U.S. data.13

<table>
<thead>
<tr>
<th>Statistic</th>
<th>U.S. Data</th>
<th>Rational Model</th>
<th>Speculation Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean p_t/d_t</td>
<td>25.9</td>
<td>23.9</td>
<td>26.7</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>13.3</td>
<td>0.42</td>
<td>12.6</td>
</tr>
<tr>
<td>Skew.</td>
<td>2.45</td>
<td>0.12</td>
<td>2.76</td>
</tr>
<tr>
<td>Kurt.</td>
<td>9.82</td>
<td>3.00</td>
<td>17.5</td>
</tr>
<tr>
<td>Corr. Lag 1</td>
<td>0.93</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td>Mean R_t</td>
<td>8.26 %</td>
<td>6.35 %</td>
<td>6.77 %</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>17.7 %</td>
<td>4.84 %</td>
<td>9.29 %</td>
</tr>
<tr>
<td>Corr. Lag 1</td>
<td>0.03</td>
<td>0.02</td>
<td>-0.03</td>
</tr>
<tr>
<td>Mean μ_{t+1}^d</td>
<td>1.20 %</td>
<td>1.96 %</td>
<td>1.92 %</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>11.8 %</td>
<td>5.08 %</td>
<td>4.96 %</td>
</tr>
<tr>
<td>Corr. Lag 1</td>
<td>0.12</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>Mean μ_{t+1}^c</td>
<td>2.06 %</td>
<td>1.96 %</td>
<td>1.92 %</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>3.56 %</td>
<td>4.80 %</td>
<td>3.59 %</td>
</tr>
<tr>
<td>Corr. Lag 1</td>
<td>-0.08</td>
<td>0.01</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Note: Model statistics are from 10,000 period simulation with $\theta = 0.4$, $\alpha = 1.5$.

Recall that the speculation model is calibrated to match the mean, volatility, and persistence of the price-dividend ratio in the data. But the model also does a good job of matching the higher moments; the U.S. ratio exhibits positive skewness and excess kurtosis, which suggest the presence of nonlinearities in the data which the model is able to capture. In contrast, the rational solution delivers very low volatility, near-zero skewness, and no excess kurtosis. The persistence of the rational price-dividend ratio does match the data, however, since it is inherited directly from the technology shock process with $\rho = 0.95$.

The mean equity return for both models is a bit below the long-run U.S. average of 8.26%. The volatility of returns in the speculation model is about twice that of the rational model, but still significantly below the return volatility of 17.7% in the data. The reason the speculation model undepredicts the return volatility is because it undepredicts the volatility of dividend growth, which is one component of the return. The volatility of dividend growth in both models is around 5% whereas the corresponding figure in the data is nearly 12%. From equation (12), the volatility of dividend growth in either model could be increased by introducing stochastic variation in the production function parameter θ.

The speculation model is calibrated to match the first and second moments of consumption growth in the data, but nevertheless there is a small difference between the model mean of

13The sample periods for the U.S. data are as follows: price-dividend ratio 1871-2004, real equity return 1871-2004, real consumption growth 1890-2004, real dividend growth 1872-2004. The price-dividend ratio in year t is defined as the value of the S&P 500 stock index at the beginning of year $t + 1$, divided by the accumulated dividend over year t.

16
1.92% and the data mean of 2.06%. This result is due to the approximate moment formula used in the calibration (see Appendix B), whereas the simulations make use of the non-linear equilibrium conditions. Consumption growth in the speculation model exhibits some positive serial correlation, with a coefficient of 0.27, whereas the serial correlation in the long-run data is slightly negative at −0.08. Azerado (2007) argues that better measures of food and services consumption in the sample period prior to 1930 yields a positive serial correlation coefficient of 0.32 for the long-run data, which is close to the speculation model’s prediction.

Figure 9 plots simulations from both models for the baseline calibration with \(\theta = 0.4 \) and \(\alpha = 1.5 \). In the top left panel, the highly persistent and volatile nature of the speculative price-dividend ratio gives rise to intermittent excursions away from the rational (or fundamental) value. Interestingly, the speculation model can also generate prolonged periods where the price-dividend ratio remains in close proximity to the rational value. At the baseline calibration, we have \(\gamma_s = 1.236 \), which implies that the speculative valuation ratios increase in response to a positive technology shock. The technology-driven bubble episodes in the model coincide with economic booms and excess capital formation, as shown in the lower panels of Figure 9. These episodes are reminiscent of the U.S. economy during the late 1920s and late 1990s.

Figure 10 plots the cyclical components of the macroeconomic variables from the model simulations. Table 4 compares the relative volatilities of the detrended series. In the rational model, the presence of capital adjustment costs makes the volatility of investment about the same as the volatility of consumption, which is counterfactual. In U.S. data, investment is about three times more volatile than consumption. By construction, the speculation model magnifies asset price volatility which is linked directly to investment volatility. Given that output volatility in the two models is about the same, the excess volatility of investment in the speculation model reduces the resulting consumption volatility relative to the rational benchmark. This result has important implications for the welfare analysis, which is discussed in the next section.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Rational Model</th>
<th>Speculation Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y_t)</td>
<td>3.08</td>
<td>3.00</td>
</tr>
<tr>
<td>(c_t)</td>
<td>3.13</td>
<td>2.04</td>
</tr>
<tr>
<td>(i_t)</td>
<td>2.94</td>
<td>5.94</td>
</tr>
<tr>
<td>(d_t)</td>
<td>3.32</td>
<td>3.18</td>
</tr>
</tbody>
</table>

Note: In percent. From 2000 period simulation with \(\theta = 0.4, \alpha = 1.5 \).

5.3 Welfare Cost of Speculation and Business Cycles

This section examines the welfare costs of fluctuations that can be attributed to either: (i) speculative behavior, or (ii) business cycles. Welfare costs are measured by the percentage

14 The cyclical components are obtained by detrending each series with the Hodrick-Prescott filter using a smoothing parameter of 10, as recommended by Baxter and King (1999) for annual data.
change in per-period consumption that makes the agent indifferent between the two economies being compared. The details of the welfare computations are contained in Appendix D.

The basic intuition underlying the welfare results is as follows:

- Fluctuations that are driven by speculation or business cycles can affect both the mean and volatility of consumption growth.
- A decrease in mean consumption growth is associated with a smaller fraction of resources devoted to investment, and hence a higher initial level of consumption. Higher initial consumption can mitigate the welfare costs of slower growth.
- Higher initial consumption is less desirable from a welfare standpoint when agents underinvest, i.e., when $\theta < 1$.
- As risk aversion increases, consumption growth volatility becomes more costly in terms of welfare.

Which of these various effects dominate depends crucially on parameter values. Table 5 summarizes the moments of $\log (c_{t+1}/c_t)$ for three different versions of the model. For each value of the risk coefficient α, the speculation model is calibrated to match the mean and volatility of consumption growth in long-run U.S. data.15

Fluctuations in the price-consumption ratio affect the mean and volatility of consumption growth via equation (14), which is nonlinear. Depending on the degree of risk aversion, speculation may increase or decrease mean consumption growth relative to the rational benchmark. Table 5 shows that when risk aversion is very low, speculation increases mean consumption growth relative to the rational benchmark, while the reverse holds true for higher risk aversion. But for any degree of risk aversion, speculation reduces the volatility of consumption growth relative to the rational benchmark, consistent with the earlier discussion of Figure 10 and Table 4.

Further insight into the effect of fluctuations on investment and growth can be obtained from the investment allocation rule (11). The rule implies

$$\frac{\partial (i_t/y_t)}{\partial x_t} = \frac{\lambda}{(1 + \lambda x_t)^2} > 0,$$

which shows that i_t/y_t is an increasing concave function of the price-consumption ratio x_t. As shown in Appendix A, the approximation point for the (rational) price-consumption ratio is given by the following expression

$$\bar{x} = \exp \{E \{\log (x_t)\}\} = \frac{\theta \beta \exp [\hat{\phi} \mu + m^2 \sigma^2 / 2]}{1 - \beta (1 - \lambda + \lambda \theta) \exp [\hat{\phi} \mu + m^2 \sigma^2 / 2]}.$$

15The small differences in Table 5 between the consumption growth moments of the speculation model and those in U.S. data can be traced to the approximate moment formulas used in the model calibration, whereas the model simulations make use of the actual non-linear equilibrium conditions.
where \(\bar{\mu} \) is the endogenous trend growth rate of consumption that depends on \(\bar{x} \). On the one hand, equations (11) and (24) imply that fluctuations which increase the volatility of the price-consumption ratio \(x_t \) will serve to push down the average value of \(i_t/y_t \) via Jensen’s inequality. On the other hand, equation (25) shows that an increase in the magnitude of the technology response coefficient \(m \) that multiplies the shock variance \(\sigma^2 \) serves the increase the magnitude of approximation point relative to the deterministic steady state \(\pi \). Which of these two effects dominates depends on parameter values.

The deterministic model sets \(z_t = 0 \) for all \(t \) such that consumption growth is constant at the deterministic steady-state value. As described in Appendix D, the initial level of consumption in the deterministic model differs from the average initial consumption levels in the fluctuating models. Table 5 shows that business cycle fluctuations can increase mean consumption growth in the speculation model relative to the deterministic model when risk aversion is low. But for higher risk aversion, business cycle fluctuations serve to reduce mean consumption growth in both the speculation and rational models, relative to the deterministic model.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.79</td>
<td>0</td>
<td>1.77</td>
<td>4.63</td>
<td>1.93</td>
<td>3.58</td>
</tr>
<tr>
<td>1.5</td>
<td>2.00</td>
<td>0</td>
<td>1.97</td>
<td>4.80</td>
<td>1.92</td>
<td>3.58</td>
</tr>
<tr>
<td>2.5</td>
<td>2.05</td>
<td>0</td>
<td>2.01</td>
<td>4.88</td>
<td>1.91</td>
<td>3.59</td>
</tr>
</tbody>
</table>

Note: In percent. Statistics are averages from a 10,000 period simulation.

Table 6 summarizes the welfare cost of speculation relative to a rational model with identical parameter values. The results are also plotted in the top panel of Figure 11. Interestingly, speculation can improve welfare if actual risk aversion is low (\(\alpha \leq 1 \)) and agents underinvest relative to the socially-optimal level (\(\theta < 1 \)). Higher levels of risk aversion cause the welfare cost of speculation to increase rapidly when \(\theta < 1 \), but the welfare costs decline a bit with risk aversion when \(\theta = 1 \). At low levels of risk aversion, speculation increases mean consumption growth by boosting the average investment-output ratio. Devoting more resources to investment yields a large welfare pay-off when agents underinvest. However, at higher levels of risk aversion, speculation reduces mean consumption growth by lowering the average-investment ratio, which is particularly costly when the economy already suffers from an underinvestment problem. This intuition accounts for the steeper slope of the welfare cost plot in Figure 11 when \(\theta = 0.4 \).

When \(\theta = 1 \), there is no underinvestment problem. In this case, the speculation model’s inefficient response to technology shocks must be weighed against the rational model’s higher consumption growth volatility, with the latter taking on greater significance for welfare at
higher degrees of risk aversion. Consequently, as risk aversion rises with $\theta = 1$, the welfare cost of speculation relative to the rational model exhibits a declining tendency over the range $0.5 \leq \alpha \leq 2.0$.

<table>
<thead>
<tr>
<th>α</th>
<th>$\theta = 0.4$</th>
<th>$\theta = 0.6$</th>
<th>$\theta = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-5.87</td>
<td>-3.22</td>
<td>3.35</td>
</tr>
<tr>
<td>1.0</td>
<td>-1.58</td>
<td>-1.38</td>
<td>2.52</td>
</tr>
<tr>
<td>1.5</td>
<td>2.99</td>
<td>0.58</td>
<td>1.98</td>
</tr>
<tr>
<td>2.0</td>
<td>9.09</td>
<td>2.92</td>
<td>1.72</td>
</tr>
<tr>
<td>2.5</td>
<td>19.8</td>
<td>6.13</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Note: In percent of per-period consumption.

Table 7 summarizes the welfare cost of business cycles in the speculation model relative to a deterministic model with identical parameter values. The results are also plotted in the bottom panel of Figure 11. I focus on the welfare cost of business cycles in the speculation model (as opposed to the rational model) because, by construction, the speculation model matches the empirical targets listed in Table 1, and hence is a more realistic representation of the U.S. economy for the chosen parameter values.

The general pattern of welfare costs shown in Table 7 is somewhat similar to that of Table 6. The welfare comparison between the speculation model and the deterministic model shown in Table 7 can be interpreted as a more extreme experiment in the effects removing fluctuations relative to that shown in Table 6. As before, the welfare cost plot in the bottom panel of Figure 11 exhibits a steeper slope when $\theta = 0.4$. Once again, this pattern reflects the magnified costs and benefits of changing the investment-output ratio (and average initial consumption) when the economy suffers from an underinvestment problem.

Referring back to Table 5, when $\alpha = 0.5$ and $\theta = 0.4$, the deterministic model exhibits lower mean consumption growth than the speculation model: 1.79% versus 1.93%. Lower mean consumption growth in the deterministic model implies a lower investment-output ratio—a feature that is particularly costly when $\theta = 0.4$. For this parameterization, business cycles serve to raise the average investment-output ratio and thereby help to address the under-investment problem. For this reason, and because actual risk aversion is low, business cycle fluctuations in the speculation model serve to increase welfare by 8.30%. But as risk aversion increases, the beneficial effects of fluctuations are reversed; business cycles now lower the average investment-output ratio and thereby exacerbate the underinvestment problem, producing large welfare losses.
Overall, the main message from Tables 6 and 7 is that speculation and business cycles can be very costly as risk aversion increases. For the baseline parametrization with a risk coefficient of $\alpha = 1.5$, the welfare costs in Tables 6 and 7 range from a low of 0.58% to a high 4.67%.

Barlevy (2004) estimates that eliminating business cycles can yield welfare gains of around 7 percent of per-period consumption when holding initial consumption fixed in an endogenous growth model with logarithmic utility ($\alpha = 1$) and no productive externality ($\theta = 1$). Barlevy’s rational model is calibrated to match post-World War II data, whereas the speculation model considered here is calibrated to match long-run data prior to the year 1900. Interestingly, the welfare costs of business cycles in the speculation model with $\theta = 1$ are not too far from Barlevy’s results, despite differences in the capital adjustment cost formulation and the calibration methodology. Qualitatively, the results presented in Table 7 are consistent with Barlevy’s finding that the welfare cost of business cycles can be large when long-run growth is endogenous.

6 Concluding Remarks

“Nowhere does history indulge in repetitions so often or so uniformly as in Wall Street,” observed legendary speculator Jesse Livermore.16 History tells us that periods of major technological innovation are typically accompanied by speculative bubbles as agents overreact to genuine advancements in productivity. Excessive run-ups in asset prices can have important consequences for the economy because mispriced assets imply some form of capital misallocation. Innovations to technology are also considered by many economists to be an important driving force for business cycles.

This paper developed a behavioral real business cycle model in which speculative agents overreact to observed technology shocks. Overreaction tends to be self-confirming; the forecast errors observed by the speculative agent are not persistent for moderate levels of risk aversion. The speculation model outperformed the rational model in capturing several features of long-run U.S. data, including the higher moments of asset pricing variables and the relative volatility of detrended consumption and investment.

Interestingly, even from the narrow perspective of the theoretical model, it remains an open question whether the costs of speculative behavior outweigh the possible benefits to society. Speculation can affect the mean and volatility of consumption growth, as well as the agent’s average initial consumption level. Which of these various effects dominate in terms of welfare depends crucially on the degree of risk aversion and the severity of the economy’s underinvestment problem.

It should be noted, of course, that the model abstracts from numerous real-world issues that would affect investors’ welfare. One noteworthy example is financial fraud. Throughout history, speculative bubbles have usually coincided with outbreaks of fraud and scandal, followed by calls for more government regulation once the bubble has burst. Indeed, the term

16From Livermore’s thinly-disguised biography by E. Lefèvre (1923, p. 180).
“bubble” was coined in England in 1720 following the famous price run-up and crash of shares in the South Sea Company. The run-up led to widespread public enthusiasm for the stock market and an explosion of highly suspect companies attempting to sell shares to investors. One such venture notoriously advertised itself as “a company for carrying out an undertaking of great advantage, but nobody to know what it is.” The proliferation of fraudulent stock-offering schemes led the British government to pass the so-called “Bubble Act” in 1720.17

The idea that speculation may yield benefits to society has a long history. Regarding the merits of speculation, J. Edward Meeker (1922, p. 419), the economist of the New York Stock Exchange, wrote:

“Of all the peoples in history, the American people can least afford to condemn speculation...The discovery of America was made possible by a loan based on the collateral of Queen Isabella’s crown jewels, and at interest, beside which even the call rates of 1919-1920 look coy and bashful. Financing an unknown foreigner to sail the unknown deep in three cockleshell boats in the hope of discovering a mythical Zipangu [land of gold] cannot, by the wildest exercise of language, be called a ‘conservative investment.’ ”

17 The law was officially named “An Act to Restrain the Extravagant and Unwarrantable Practice of Raising Money by Voluntary Subscription for Carrying on Projects Dangerous to the Trade and Subjects of the United Kingdom.” See Gerding (2006).
A Appendix: Approximate Rational Solution (Proposition 1)

Taking logarithms of both sides of the transformed first-order condition (15) and then applying a first-order Taylor series approximation to each side yields equation (16). The Taylor-series coefficients are given by

\[a_0 = \frac{\bar{x}^{1-\lambda\phi}}{(1 + \lambda \bar{x})^{(1-\lambda)\phi}}, \quad (A.1) \]

\[a_1 = 1 - \frac{\phi \lambda (1 + \bar{x})}{1 + \lambda \bar{x}}, \quad (A.2) \]

\[b_0 = \frac{\bar{x}}{1 + \lambda \bar{x}} \left(\phi \lambda e^{\beta \theta} + (1 - \lambda + \lambda \theta) \right), \quad (A.3) \]

\[b_1 = \frac{\bar{x}}{1 + \lambda \bar{x}} \left(\phi \lambda e^{\beta \theta} + (1 - \lambda + \lambda \theta) - \rho \phi \lambda \bar{x} \right), \quad (A.4) \]

where \(\bar{x} = \exp \{ E [\log (x_t)] \} \) is the approximation point and \(\bar{\beta} \equiv \beta \left[B (A \lambda)^{\lambda} \right]^2 \).

The conjectured form of the rational solution \(x_{t+1} = \bar{x} \exp (\gamma z_{t+1}) \) is substituted into the right-side of (16). After evaluating the conditional expectation and then collecting terms, we have:

\[x_t = \bar{x} \left[\frac{b_0}{a_0} \right]^{\frac{1}{\sigma_1^2}} \exp \left[\frac{(\gamma b_1 + \phi)^2 \sigma_t^2}{2 a_1} \right] \exp \left[\frac{(\gamma b_1 + \phi) \rho - \phi (1 - \lambda)}{a_1} \right] z_t, \quad (A.5) \]

which shows that the conjectured form is correct. Solving for the undetermined coefficient \(\gamma \) yields

\[\gamma = \frac{\phi \rho - (1 - \lambda)}{a_1 - \rho b_1}, \quad (A.6) \]

where \(a_1 \) and \(b_1 \) both depend on \(\bar{x} \) from (A.2) and (A.4).

The undetermined coefficient \(\bar{x} \) solves the following nonlinear equation

\[\bar{x} = \frac{\theta \beta \exp \left[\phi \bar{\mu} + (\gamma b_1 + \phi)^2 \sigma_t^2 / 2 \right]}{1 - \beta (1 - \lambda + \lambda \theta) \exp \left[\phi \bar{\mu} + (\gamma b_1 + \phi)^2 \sigma_t^2 / 2 \right]}. \quad (A.7) \]

where \(\bar{\mu} \) depends on \(\bar{x} \) as shown below:

\[\exp (\bar{\mu}) = BA^\lambda \left[\frac{\lambda \bar{x}}{1 + \lambda \bar{x}} \right]^\lambda. \quad (A.8) \]

Comparing (A.8) to equation (14) shows that \(\bar{\mu} \) represents the endogenous trend growth rate of consumption in the rational model. Given a set of parameter values, equations (A.7) and (A.8) are solved simultaneously for \(\bar{x} \) and \(\bar{\mu} \). Equation (A.6) is then used to compute \(\gamma \). The technology response coefficient that appears in the forecast rule (18) is given by \(m = \gamma b_1 + \phi \).
Appendix: Approximate Moments for Calibration

The Taylor series coefficients for the speculation model are denoted by a_{0s}, a_{1s}, b_{0s}, and b_{1s}. These coefficients take the same form as equations (A.1) through (A.4), but x is now replaced by \tilde{x}_s. Analogous to the rational solution, we have $\tilde{w}_s = b_{0s} = \exp \{E [\log (w_{s,t})]\}$.

The approximation point $\tilde{x}_s = \exp \{E [\log (x_{s,t})]\}$ is the solution to the following nonlinear equation

$$\tilde{x}_s = \frac{\theta \beta \exp \left[\phi \tilde{\mu}_s + m_s^2 \sigma_t^2 / 2 \right]}{1 - \beta (1 - \lambda \lambda \theta) \exp \left[\phi \tilde{\mu}_s + m_s^2 \sigma_t^2 / 2 \right]}, \quad (B.1)$$

where $\tilde{\mu}_s$ depends on \tilde{x}_s, as shown below:

$$\exp (\tilde{\mu}_s) = BA^\lambda \left[\frac{\lambda \tilde{x}_s}{1 + \lambda \tilde{x}_s} \right]^\lambda. \quad (B.2)$$

Comparing (B.2) to equation (14) shows that $\tilde{\mu}_s$ represents the endogenous trend growth rate of consumption in the speculation model. Given a set of parameter values and the exogenous technology response coefficient m_s, equations (B.1) and (B.2) are solved simultaneously for \tilde{x}_s and $\tilde{\mu}_s$.

Starting from equation (13), a Taylor series approximation for the speculative price-dividend ratio is given by

$$\frac{p_{s,t}}{d_{s,t}} = \left[\frac{\tilde{x}_s}{\theta - (1 - \theta) \lambda \tilde{x}_s} \right]^{n_s} \left[\frac{x_{s,t}}{\tilde{x}_s} \right], \quad (B.3)$$

where $n_s = 1 + \left[\frac{(1 - \theta) \lambda \tilde{x}_s}{\theta - (1 - \theta) \lambda \tilde{x}_s} \right]$.

The above expression implies the following unconditional moments:

$$E [\log (p_{s,t}/d_{s,t})] = \log \left[\frac{\tilde{x}_s}{\theta - (1 - \theta) \lambda \tilde{x}_s} \right], \quad (B.4)$$

$$Var [\log (p_{s,t}/d_{s,t})] = n_s^2 Var [\log (x_{s,t})],$$

$$= n_s^2 \gamma_s^2 Var (z_t), \quad (B.5)$$

$$Corr [\log (p_{s,t}/d_{s,t}), \log (p_{s,t-1}/d_{s,t-1})] = Corr [\log (x_{s,t}), \log (x_{s,t-1})],$$

$$= Corr [z_t, z_{t-1}],$$

$$= \rho. \quad (B.6)$$

Given equations (B.4) and (B.5), the unconditional mean and variance of $p_{s,t}/d_{s,t}$ can be computed by making use of the properties of the log-normal distribution.18

18 If a random variable v_t is log-normally distributed, then $E (v_t) = \exp \{E [\log (v_t)] + \frac{1}{2} Var [\log (v_t)]\}$ and $Var (v_t) = E (v_t)^2 \{exp (Var [\log (v_t)]) - 1\}$.

24
Starting from (14), a Taylor series approximation for consumption growth in the speculation model is given by

\[
\frac{c_{s,t+1}}{c_{s,t}} = \exp(\vec{\mu}_s) \left[\frac{x_{s,t}}{\bar{x}_s} \right]^{a_{2s}} \left[\frac{x_{s,t+1}}{\bar{x}_s} \right]^{b_{2s}} \exp[z_{t+1} - (1 - \lambda) z_t],
\]

where
\[
a_{2s} = \frac{\lambda (1 + \bar{x}_s)}{1 + \lambda \bar{x}_s}, \quad b_{2s} = -\frac{-\lambda \bar{x}_s}{1 + \lambda \bar{x}_s},
\]

and \(\exp(\vec{\mu}_s)\) is given by equation (B.2). Given the approximate law of motion (22) for \(x_{s,t}\), the above expression implies the following unconditional moments

\[
E[\log(c_{s,t+1}/c_{s,t})] = \tilde{\mu}_s, \tag{B.8}
\]

\[
\text{Var}[\log(c_{s,t+1}/c_{s,t})] = \left\{ (\gamma_s a_{2s} - 1 + \lambda)^2 + (\gamma_s b_{2s} + 1)^2 + 2\rho (\gamma_s a_{2s} - 1 + \lambda) (\gamma_s b_{2s} + 1) \right\} \text{Var}(z_t). \tag{B.9}
\]

C Appendix: Learning and Nonlinear Model Simulations

Real-time learning is discussed in Section 5.1 of the text. The learning algorithm is described by the following system of nonlinear stochastic difference equations:

\[
\frac{x_t^{1-\lambda \phi}}{(1 + \lambda x_t)^{1-\lambda \phi}} \exp\left[(1 - \lambda) \phi z_t\right] = \frac{\tilde{w}_{t-1} \exp[m_{t-1} \rho z_t + \frac{1}{2} m_{t-1}^2 \sigma_z^2]}{E_{\tilde{w}_{t+1}}}, \tag{C.1}
\]

\[
w_t = \frac{\gamma}{\beta} \left[\theta + x_t (1 - \lambda + \lambda \theta) \right] \exp(\phi z_t), \tag{C.2}
\]

\[
\log(w_t) = \log(\tilde{w}_t) + m_t z_t, \tag{C.3}
\]

where \(z_t\) is governed by equation (4). Equation (C.1) is the nonlinear first-order condition where the right side defines the agent’s conditional forecast using the most recent forecast rule coefficients \(\tilde{w}_{t-1}\) and \(m_{t-1}\). Given the conditional forecast and the current observed value of \(z_t\), the left side of (C.1) is solved for \(x_t\) using a nonlinear equation solver. Given \(x_t\) and \(z_t\), the nonlinear definitional relationship (C.2) is used to compute the current realization of the composite variable \(w_t\). Given all past data on \(w_t\) and \(z_t\), the agent runs an ordinary least squares regression in the form of (C.3) to obtain a new set of forecast rule coefficients \(\tilde{w}_t\) and \(m_t\).

The model simulations described in Section 5.1 and 5.2 employ an algorithm that is similar to (C.1) and (C.2), except that the forecast rule coefficients are held constant throughout the simulation. The rational forecast rule coefficients are \(\tilde{w} = b_0\) and \(m\). The speculative forecast rule coefficients are \(\tilde{w}_s = b_{0s}\) and \(m_s\).

For both the learning algorithm and the model simulations, the initial condition for the price-consumption ratio and the forecast variable is the deterministic steady state. The speculation model and the rational model have the same steady state. The steady-state price-consumption ratio is denoted by \(\bar{x}\). Steady-state consumption growth is denoted by \(\bar{\mu}\). The
values of π and π solve the following system of nonlinear equations

$$\pi = \frac{\theta \beta \exp (\phi \pi)}{1 - \beta (1 - \lambda + \lambda \theta) \exp (\phi \pi)}, \quad (C.4)$$

$$\exp (\pi) = BA^\lambda \left[\frac{\lambda \pi}{1 + \lambda \pi} \right]^\lambda. \quad (C.5)$$

Given π, the steady-state value of the forecast variable is computed from:

$$\pi = \beta \left[B (A \lambda)^\phi \right] \phi \left[\frac{\theta + \pi (1 - \lambda + \lambda \theta)}{(1 + \lambda \pi)^\phi} \right]. \quad (C.6)$$

D Appendix: Details of Welfare Cost Computation

This appendix describes the procedure for computing the welfare costs presented in Tables 6 and 7.

D.1 Welfare Cost of Speculation

Average lifetime utility in the rational model is represented by V. Average lifetime utility in the speculation model is represented V_s. These welfare measures can be written as

$$V = \frac{-1}{\phi (1 - \beta)} + E \sum_{t=0}^{\infty} \beta^t (c_t)^\phi, \quad \phi \equiv 1 - \alpha, \quad (D.1)$$

$$V_s = \frac{-1}{\phi (1 - \beta)} + E \sum_{t=0}^{\infty} \beta^t (c_{s,t})^\phi, \quad (D.2)$$

where $c_t = y_t / (1 + \lambda x_t)$ and $c_{s,t} = y_{s,t} / (1 + \lambda x_{s,t})$ are the nonlinear allocation rules that govern the consumption streams. During a simulation, x_t and $x_{s,t}$ are computed using the nonlinear algorithm described in Appendix C. The unconditional mean E is approximated by the average over 5000 simulations, each 2000 periods in length, after which the results are little changed. The initial consumption levels at $t = 0$ are stochastic variables. Each simulation starts at $t = -1$ with $y_t = y_{s,t} = 1$, such that $c_t = c_{s,t} = 1 / (1 + \lambda \pi)$, where π is the steady-state price-consumption ratio from equation (C.4).

The welfare cost of speculation is the constant percentage amount by which $c_{s,t}$ must be increased in the speculation model in order to make average lifetime utility equal to that in the rational model. Specifically, I solve for τ such that

$$V = \frac{-1}{\phi (1 - \beta)} + E \sum_{t=0}^{\infty} \beta^t \left[(c_{s,t} (1 + \tau))^\phi \right].$$

$$= \frac{-1}{\phi (1 - \beta)} (1 + \tau)^\phi \left[V_s + \frac{1}{\phi (1 - \beta)} \right], \quad (D.3)$$

which yields the result

$$\tau = \left[\frac{\phi (1 - \beta) V + 1}{\phi (1 - \beta) V_s + 1} \right]^{\frac{1}{\phi}} - 1. \quad (D.4)$$

In the case of log utility ($\phi = 0$), equation (D.4) becomes $\tau = \exp [(V - V_s) (1 - \beta)] - 1$.

26
D.2 Welfare Cost of Business Cycles

The welfare cost of business cycles in the calibrated speculation model is the constant percentage amount by which $c_{s,t}$ must be increased in order to make average lifetime utility equal to that of a deterministic model with $z_t = 0$ for all t. Lifetime utility in the deterministic model V_d can be written as

$$V_d = -\frac{1}{\phi (1 - \beta)} + \sum_{t=0}^{\infty} \frac{\beta^t (c_{d,t})^\phi}{\phi}.$$ \hspace{1cm} (D.5)

The deterministic simulation starts at $t = -1$ with $y_{d,-1} = 1$, such that $c_{d,t} = 1/(1 + \lambda \bar{\eta})$, where $\bar{\eta}$ is given by equation (C.4). Deterministic consumption evolves according to the law of motion $c_{d,t} = c_{d,t-1} \exp (\bar{\mu})$, where $\bar{\mu}$ is given by equation (C.5). Deterministic consumption at $t = 0$ will thus differ from average consumption at $t = 0$ in the fluctuating model.

Analogous to equation (D.4), the welfare cost of business cycles in the speculation model is given by

$$\tau = \left[\frac{\phi (1 - \beta) V_d + 1}{\phi (1 - \beta) V_s + 1} \right]^{\frac{1}{\phi}} - 1.$$ \hspace{1cm} (D.6)

In the case of log utility, ($\phi = 0$), equation (D.6) becomes $\tau = \exp [(V_d - V_s) (1 - \beta)] - 1$.

27
References

Adam, K., A. Marcet, and J.P. Nicolini 2008 Stock market volatility and learning, Working paper.

Figure 1: Four major run-ups in U.S. stock prices.

Figure 2: Comparing two bubble episodes.
Figure 3: The price-dividend ratio reached unprecedented levels around the year 2000.

Figure 4: Rise and fall of the “new economy.”
Figure 5: Comovement of business investment and stock prices.

Figure 6: Comovement of residential investment and house prices.
Figure 7: Overreaction to technology shocks tends to be self-confirming.

Figure 8: Convergence to the rational solution can be very slow.
Figure 9: Bubbles coincide with economic booms and excess capital formation.
Figure 10: Speculation magnifies investment volatility but reduces consumption volatility.
Figure 11: Welfare costs increase rapidly with risk aversion when θ < 1.