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I describe how search engines sell ad space using an auction. I an-

alyze advertiser behavior in this context using elementary price theory

and derive a simple way to estimate the producer surplus generated by

online search advertising. It appears that the estimated value of online

advertising tends to be between 2 and 2.3 times advertising expenditures.
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The ad auctions used by major search engines all have a similar structure. Advertisers

enter ad text, keywords and bids into the system. When a user sends a query to the

search engine, the system finds a set of ads with keywords that match the query and

determines which ads to show and where to show them.

When the search results and ads are displayed, the user may may click on an ad

for further information. In this case, the advertiser pays the search engine an amount

determined by the bids of the other competing advertisers.

The expected revenue received by the search engine is the price per click times the

expected number of clicks. In general, the search engine would like to sell the most promi-

nent positions—those most likely to receive clicks—to those ads that have the highest

expected revenue. To accomplish this, the ads are ranked by bid times expected click-
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through rates and those ads with the highest expected revenue are shown in the most

prominent positions.

It is natural to suppose that a users who have positive experiences from ad clicks will

increase their propensity to click on ads in the future, and those with negative experiences

will tend to decrease their propensity to click in the future. Hence search engines may

also consider various measures of “ad quality” in their choice of which ads to display.

I. Auction rules

How do search engines determine which ads are shown, where they are shown, and how

much they pay per click? We start with some notation. Let a = 1, . . . , A index advertisers

and s = 1, . . . , S index slots. Let (va, ba, pa) be the value, bid, and price per click of

advertiser a for a particular keyword. We assume that the expected clickthrough rate

of advertiser a in slot s (zas) can be written as the product of an ad-specific effect (ea)

and a position-specific effect (xs), so we write zas = eaxs. Other formulas for predicting

clicks could be used, but this one leads to particularly simple results.

Here are the rules of the Generalized Second Price Auction used by the major search

engines. (1) Each advertiser a chooses a bid ba. (2) The advertisers are ordered by bid

times predicted clickthrough rate (baea). (3) The price that advertiser a pays for a click

is the minimum necessary to retain its position. (4) If there are fewer bidders than slots,

the last bidder pays a reserve price r.

Consider a specific auction and identify the advertisers with their slot position. Neglect-

ing ties for the sake of exposition, the rules of the auction imply b1e1 > b2e2 > . . . > bmem

where m less than or equal to the number of possible slots. The price paid by advertiser

in slot s is the minimum necessary to retain its position so pses = bs+1es+1 which implies

so ps = bs+1es+1/es. The price paid per click by the last advertiser is the reserve price if

m < S or determined by the bid of the first omitted advertiser if m = S.
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II. Equilibrium revenue

We assume that advertisers are interested in maximizing surplus: the value of clicks they

receive minus the cost of those clicks. In order to simplify the algebra, we will assume

that the all advertisers have the same quality, so ea ≡ 1 for all advertisers.

In equilibrium, the advertiser in slot s + 1 doesn’t want to move up to slot s, so

(vs+1 − ps+1)xs+1 ≥ (vs+1 − ps)xs. Rearranging, we have

(1) psxs ≥ ps+1xs+1 + vs+1(xs − xs+1).

This inequality shows that the cost of slot s must be at least as large as the cost of slot

s + 1 plus the value of the incremental clicks attributable to the higher position. It is

advertiser s + 1’s value for those clicks that is relevant since that is the bid that the

advertiser in slot s must beat.

The price of the last ad shown on the page is either the reserve price or the bid of

the first omitted ad. Denoting this price by pm we solve the recursion in inequality (1)

repeatedly to get the inequalities

p1x1 ≥ v2(x1 − x2) + v3(x2 − x3) + v4(x3 − x4) + · · ·+ pmxm

p2x2 ≥ + v3(x2 − x3) + v4(x3 − x4) + · · ·+ pmxm

p3x3 ≥ + v4(x3 − x4) + · · ·+ pmxm

Summing, we have an upper bound on total revenue:

∑
s

psxs ≥ v2(x1 − x2) + 2v3(x2 − x3) + . . .+ (m− 1)pmxm.
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In the same way, in equilibrium each advertiser prefers its slot to the slot above it, which

yields a lower bound on total revenue

∑
s

psxs ≤ v1(x1 − x2) + 2v2(x2 − x3) + . . .+ (m− 1)pmxm.

One can think of the advertiser values as being drawn from a distribution. If there are

S slots, the ads that are shown are those with the S largest values out of the set of

ads available. If there are many advertisers competing for a small number of slots, the

upper and lower bounds will be close together, so this simple calculation will essentially

determine the auction revenue.

III. VCG Auctions

An alternative auction model that has been suggested is the Vickrey-Clarke-Groves

(VCG) mechanism. In this mechanism, each advertiser reports a value ra and each

pays the cost that it imposes on the other advertisers, using the values reported by the

other agents.

Suppose, for example that there are 3 slots and 4 advertisers. When advertiser 1 is

present, the other three advertisers receive reported values r2x2 + r3x3. (Since advertiser

4 is not shown, it receives zero.) If advertiser 1 is absent, the other three advertisers

would each move up a position, so their reported value would be r2x1 + r3x2 + r4x3. The

difference between these two amounts is r2(x1 − x2) + r3(x2 − x3) + r4x4, so this is the

required payment by advertiser 1.

It can be shown that the dominant strategy equilibrium in the VCG auction is for

each advertiser to report its true value, so advertiser 1’s payment becomes v2(x1 − x2) +

v3(x2 − x3) + v4x4. Note that this is the same as the lower bound of the equilibrium

payments described above. The same calculations go through for the other bidders, so
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we see that the revenue for the VCG auction is the same as the lower bound of the price

equilibrium described above. This is, in fact, a special case of the the more general two-

sided matching market studied by (Demange and Gale 1985) and (Demange, Gale and

Sotomayor 1986). See also (Roth and Sotomayor 1990) for a unified description of work

in this area.

It might appear that the VCG auction requires knowledge of the expected number of

clicks in each position. However, this is not the case. Consider the following algorithm:

each time there is a click on position 1, charge advertiser 1 r2, and each time there is a

click on position s > 1 pay advertiser 1 rs − rs+1. In the 3-advertiser example we are

considering, the net payment made by advertiser 1 will be r2x1−(r2−r3)x2−(r3−r4)x3.

This is simply a regrouping of the terms in the VCG payment expression. The argument

readily extends to the other advertisers.

A more detailed analysis of the General Second Price and VCG auctions is available

in (Edelman, Ostrovsky and Schwartz 2007) and (Varian 2007) which also fills in some

details in the above arguments that were omitted for expositional purposes.

IV. Bidding behavior

The model examined above assumes that an advertiser can choose its bid on an auction-

by-auction basis. In reality, advertisers choose a single bid that will apply to many

auctions. Let us suppose that there is some reasonably stable relationship between an

advertiser’s bid and the number of clicks that it receives during some time period, which

we will summarize by ba = Ba(xa). (Note the change in notation: in the previous section

xs denoted the number of clicks in position s in a given auction; here xa denotes the

number of clicks received by advertiser a in a given time period.)

We also define the cost function ca(xa), which is the cost that advertiser a must pay to

receive xa clicks during a given time period. Of course both the bid function and the cost
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function depend on the interaction with the other advertisers in the ad auction described

above, but we take that behavior as fixed.

In this framework, the advertiser’s surplus takes the form vaxa − ca(xa). We call this

expression “surplus” rather than “profit” since profit would generally include fixed costs.

Of course, surplus maximization is equivalent to profit-maximization, at least as long as

profit is non-negative.

Given a cost curve, the advertiser finds its profit-maximizing number of clicks, which is

the point where the value equals marginal cost, just as in conventional price theory. Given

the optimal number of clicks, we can determine the average cost per click. The advertiser

can then use the bid function to determine the bid that yields this desired number of

clicks. So once an advertiser knows the cost-per-click and bid per-click function, it can

determine its optimal behavior. At the present time, an advertiser can only determine

these relationships by experimentation.

V. Advertiser surplus

We can use the relationships defined above to construct a bound on the ratio of aggregate

value to aggregate cost, which we will refer to as the “surplus ratio.” Let suppose that

advertiser a is choosing some number of clicks xa at a cost of ca and that it contemplates

changing its bid so that it receives some smaller number of clicks, x̂a, for which it would

pay a smaller cost ĉa.

We assume that the surplus at (xa, ca) exceeds that at (x̂a, ĉa). Of course, this would

be implied by global profit maximization, but that is overly strong for our results. This

assumption gives us

vaxa − ca ≥ vax̂a − ĉa.
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Rearranging the inequality, we have

va ≥
ca − ĉa
xa − x̂a

.

Multiply by xa and sum to find

A∑
a=1

vaxa ≥
A∑

a=1

ca − ĉa
xa − x̂a

xa.

This expression gives us a bound on the total advertiser value. It is convenient to nor-

malize both sides by the total cost,
∑

b cb, which gives us our final expression:

value
cost

≥
A∑

a=1

ca − ĉa
xa − x̂a

xa∑
b cb

.

The geometry is shown in Figure 1. The isosurplus line through xa is described by

πa = vaxa − ca, so ca = vaxa − πa. The point (x̂a, ĉa) must lie above this line since it

has lower surplus by assumption. Hence the chord connecting (xa, ca) and (x̂a, ĉa) must

intersect the vertical axis at a point above −πa. This shows that expression (V) gives us

a lower bound on the surplus ratio.

The same logic can be used to construct an upper bound on the surplus ratio by

identifying a lower-surplus point with a larger number of clicks and cost. It is clear from

inspecting the figure that the tightness of these bounds will depend on the curvature of

the cost function. For an affine cost function, the bounds will be equal to each other and

be equal to the true surplus. For a highly convex function, the bounds will be wider.

Note that the argument for the surplus bounds is perfectly general and applies to any

competitive industry.
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Figure 1: Bound on surplus.

VI. Estimation method and results

We can observe how many clicks advertiser a is getting currently, and how much these

clicks cost. The challenge is to determine how many clicks it would receive in some

different position. Here is the algorithm I used. (1) Cut advertiser a’s bid in half. (2)

Determine what position and how much it would pay in the ad auction with this lower

bid. (3) Estimate how many clicks it would receive at this lower position.

The outcome of step (2) is determined by the auction rules. Step (3) is the only

problematic calculation since requires a predictive model of how clicks on a given ad

vary with ad position. However the assumption that the actual number of clicks is an

advertiser-specific effect times a position-specific effect makes this easy. Suppose, for

example,that moving from position 4 to position 3 tends on average to increase the

number of clicks by 20 percent. Then if we observe that a particular advertiser initially

receives 100 clicks in position 4, we would estimate that it would receive 120 clicks if it

bid enough to move to position 3.

I have carried out these calculations on a proprietary sample of ad auctions and found
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that total value enjoyed by advertisers is between 2 and 2.3 times their total expendi-

ture. One can perform similar calculations grouping advertisers by vertical, country, ad

configuration, or a variety of other groupings.

One interesting finding is that ad configurations that are “fully sold”—have all the slots

occupied—tend to have lower surplus than those that are “undersold.” This is because

advertisers must compete for slots in the fully sold case, which tends to push their surplus

down.

VII. Summary

There is a growing literature concerning the design of online ad auctions; see (Lahaie,

Pennock, Saberi and Vohra 2007) for a recent survey. These auctions have an interesting,

yet simple, theoretical structure as well as significant practical importance. As more

economic transactions take place online we will likely see other novel pricing mechanisms

arise.
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Lahaie, Sébastien, Pennock, David M., Saberi, Amin and Vohra, Rakesh V.

(2007), Sponsored Search Auctions, in Noam Nisan, Tim Roughgarden, Eva Tar-



10 THE AMERICAN ECONOMIC REVIEW JANUARY 2009

dos and Vijay V. Vazirani., eds, ‘Algorithmic Game Theory’, Cambridge University

Press.

Roth, Alvin and Sotomayor, Marilda. (1990), Two-Sided Matching, Cambridge Uni-

versity Press.

Varian, Hal R. (2007). ‘Position Auctions’, International Journal of Industrial Orga-

nization 25(7), 1163–1178.


