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Abstract

Our goal is to develop an asset pricing model where both location decisions and
investment decisions are endogenous. There are four classes of assets: a risk free bond,
houses (in various locations), stocks, and human capital (with di¤erent productivity in
di¤erent locations). The dividend paid by houses in certain location, the local rent, is
determined endogenously. Agents choose where they live and can invest in the �nancial
market and in all real estate markets. Our equilibrium construction relies on the notion
of the marginal resident �an agent who receives the same expected utility from all the
possible locations. The model yields a closed-form representation of: (i) The portfolio
decisions of agents as a combination of an investment in a �nancial and real estate
mutual fund and demand in local housing to hedge the endogenous rent risk; and (ii)
The returns of �nancial and real estate assets in terms of the covariance matrix of
dividend shocks and local productivity shocks. The main lesson we draw is that the
properties of real estate asset prices depend on the underlying geographic assignment
model. The present paper makes a �rst step toward the analysis of spatial asset pricing
by providing a tractable example.

�We are grateful to Orazio Attanasio, Morris Davis, Christian Julliard, Robert Kollmann, Alex
Michaelides, Dimitri Vayanos for helpful discussions and seminar participants at Brown, Brussels (ECARES),
LSE, Mannheim, and Toulouse for useful comments. We are grateful to CEPR, the Financial Markets Group
at LSE, and the Toulouse School of Economics for their support.
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1 Introduction

Great progress has been in made in recent years in understanding the role of real estate in

portfolio allocation and asset pricing. Yet, we still lack a canonical model of dynamic asset

pricing with real estate in multiple locations.

There are a number of real estate asset pricing models with one location (Piazzesi,

Schneider and Tuzel, 2007). Several authors have explored asset pricing in multiple locations

starting from an exogenously given rent process (Flavin and Nakagawa, 2008, Grossman

and Laroque, 1991). There are also dynamic real estate models with multiple locations

and endogenous rents, but real estate prices are determined by a perfectly elastic supply

function (Lustig and Van Nieuwerburgh, 2008) or by a perfectly elastic demand function

(Davis and Ortalo-Magné, 2007, Gyourko, Mayer and Sinai, 2006, Van Nieuwerburgh and

Weil, 2007).

The goal of the present paper is to make a �rst step in the direction of developing a

dynamic asset pricing model with uncertainty, endogenous real estate rents, and endogenous

pricing of a multiplicity of real estate and �nancial assets.

Constructing a model of �spatial asset pricing�represents a challenge because the div-

idend paid by real estate assets �the rent �is endogenous. That represents an important

di¤erence with standard asset pricing models, where the dividend generating process is ex-

ogenously given. Since Rosen (1989) and Roback (1992), we understand that in order to

price real estate in a spatial context, we need to model the location choices of agents. In

equilibrium, the real estate market is driven by �marginal residents� who are indi¤erent

between one location and another. Hence, our set-up will include a simple location model,

where heterogeneous agents choose in which of many locations they wish to live.1

Our objective here is not to obtain a general theory but rather a simple, tractable

setting, to get a feeling for the properties of this class of asset pricing model. Despite its

restrictiveness, our example highlights what we believe are three important features of a

much larger class of �spatial asset pricing�models.

First, the location decisions of agents can be represented as part of their portfolio al-

location decision. Namely, an agent who moves to a certain place acquires a combination

of two asset for a net price of zero: (1) a unit of location-speci�c human capital, which

pays a stream of stochastic positive payments, understood as wages or enjoyment of local
1Any asset pricing theory with real estate must include a location model. However, one could assume

an extreme one, where there is only one location or where agents must live where they are born. Such an
approach is unlikely to be fruitful if one wants to study regional price di¤erences in a country with sizeable
long-term mobility, such as the United States.
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amenities, and (2) a unit of local real estate due to the need for a home in that location,

which requires a stream of stochastic rent payments. With this observation in mind the

location decision and the portfolio allocation problem of an agent must be examined within

the same dynamic optimization framework.

Second, the details of the location model matter enormously for housing prices. Our

model leads to a CAPM-like asset pricing model, but we view this as a negative result. As

it will become apparent, small changes in the underlying location model would destroy the

pricing formula. This is why �spatial asset pricing�is an appropriate description: housing

rents and prices depend crucially on the spatial model that one has in mind. While this

observation makes the search for general real estate asset pricing theories harder, it also

opens the door to a wealth of testable implications linking spatial and �nancial variables.

Third, there is also an important feedback channel in the opposite direction. The prop-

erties of the dynamic asset pricing model matter for location decisions. As we shall see, the

equilibrium allocation of agents to places does not maximize productive e¢ ciency. When

an agent moves to a city, he must also consider the amount of systemic risk that he takes

up when he acquires location speci�c human capital and he commits to securing the use of

local real estate. In turn, systemic risk depends on the location decisions of agents. The key

advantage of our simple set-up is that it leads to a close-form solution of this potentially

complex �xed-point problem.

The set-up we propose can be sketched as follows. Agents choose where to live. There are

four classes of assets: a risk-free bond, stocks, residential properties, and non-transferrable

human capital. As in standard asset pricing models, agents may lend and borrow at the

risk-free bond rate without any constraint. Agents may also invest in stocks de�ned as

claims over exogenous stochastic streams of dividends. The dividend stream of residential

properties, however, is determined endogenously. Residential properties provide access to

a stochastic production technology that is speci�c to the city where they are located. An

agent�s human capital determines the expected level of his earnings in the city and the

covariance of his earnings with the city-speci�c production technology.2

Properties di¤er only in their location. They can be rented at the local equilibrium

market rate. They can be purchased or sold (even fractionally) at the local equilibrium

price without any transaction cost. Obviously, agents may buy a home in their city, in

2For most of the paper, we interpret local productivity as labor-related and hence translating into labor
earnings, but the model has an equivalent interpretation in terms of leisure, where productivity is understood
as the ability of the agent to enjoy local amenities. See page 13 for a more detailed discussion of the
consumption interpretation.
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which case they are homeowners. Agents may buy residential properties, not only in the

city where they live but also in the other cities.

We want to obtain closed-form solutions and expressions that are comparable to standard

mean-variance asset pricing models. To this end, we assume that agents have constant-

absolute risk-aversion preferences with in�nite elasticity of intertemporal substitution and

that both city-productivity and stock-dividends stochastic shocks are normally distributed.

While all investment decisions can be re-visited in every period, the location choice is

irreversible. The distribution of individual characteristics across the population is left in

a general form. We also do not impose any restrictions on the covariances between the

stochastic processes driving stock dividends and city-speci�c technology shocks.3

To study the equilibrium of the model, we introduce the notion of marginal resident

(citations...). As we saw above, our agents are distributed (continuously) on a multi-

dimensional space of local productivity parameters. Conjecture that in every cohort there

exists an agent with a speci�c vector of personal characteristics that in equilibrium in in-

di¤erent between living in any of the locations. Namely, given all the price/rent processes

in all locations, this agent �the marginal resident �receives the same expected utility from

choosing to live in any of them.

The marginal resident is the channel through which productivity shocks are transmitted

to rents. The indi¤erence condition of the marginal resident pins down the relative level

of rents in di¤erent locations. The fact that one location (the countryside) has unlimited

supply of land determines the absolute level of rents. A productivity shock in a certain

location a¤ects the expected utility that the marginal resident receives if he moves to that

location and hence the local rent.

The location decision of any agent can be determined by comparing his productivity

parameter vector with that of the marginal resident. By aggregating the demand functions

of all agents we obtain the asset pricing formulas for real estate in di¤erent locations and for

stocks of di¤erent companies. With all this elements in place, one can verify that the initial

conjecture about the marginal agent was correct and that this is indeed an equilibrium

of the game. Indeed, we prove that this is the unique equilibrium where prices can be

expressed as linear functions of the underlying parameters.

The equilibrium that we �nd leads to a characterization of location decisions, portfolio

allocations, and asset prices. Let us consider these three elements one by one.

3For most of the paper, we assume that there are no spillover e¤ects across agents, namely the productivity
of an agent depends on his location but not by who else lives in that location. In Section 4.5, we show that
our characterization extends to a model with generic economies of agglomeration.
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� The location decision can be understood as an investment problem. An agent who
moves to a city acquires a combination of two assets at net price zero. One �human

capital �pays a dividend that depends on the interaction of the agent�s individual

productivity parameters with the productivity process in that city. The other �the

need for a home �pays a negative dividend equal to the market rent in that city. Both

dividend streams last for the rest of the agent�s life. The agent will move to the city

where the expected bene�t of acquiring these two assets is highest. Obviously, he will

be attracted to locations where his productivity level is high and the rent is low. More

interestingly from an asset pricing perspective, the agent will seek cities where his net

stream of dividends from human capital and housing is negatively correlated with

dividends from other assets, namely, places where his labor income is not correlated

with systemic risk but the market rent is. In such locations, the agent can kill two

birds with a stone: by buying local real estate, he eliminates his own rent risk and he

enjoys the extra return associated with an asset that carries systemic risk (the asset

pricing implications of this tendency will be examined shortly).

� The optimal portfolio of every agent is characterized as a combination of two com-
ponents: (a) An investment in local real estate that depends on the agent�s exposure

to local productivity shocks, (b) A portfolio of stocks and residential properties, with

identical weights across agents. One can view point (a) as a manifestation of home

bias. An agent who does not own property in the city where he lives is vulnerable to

a combination of local productivity shocks and rent �uctuations (determined endoge-

nously). This risk can be hedged away by an appropriate holding of local real estate.

This hedging demand depends on the covariance between the agent�s earnings and

local equilibrium rents. Point (b) amounts to an extension of the two-fund theorem.

Consider the portfolio made up of all stocks and residential properties in the economy

minus the homes held for hedging purposes. Let us call this portfolio the adjusted

market portfolio. The optimal portfolio characterization we obtain says that besides

their local hedging investment, all agents hold a portfolio of risky assets with the

same weights as the adjusted market portfolio. Note that as long as the local hedging

demand is smaller than the local supply of properties, every household holds some

local properties in the adjusted market portfolio.

� Equilibrium asset prices depend on the contribution of each asset to systemic risk

evaluated in the adjusted market portfolio. Our expressions for expected returns on
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stocks and houses are similar to CAPM with two important modi�cations: (a) The

covariance matrix that determines prices now also includes local productivity shocks;

namely the price of a stock is determined not only by how its dividend co-varies with

other �nancial assets but also by how it relates to the earnings risk in di¤erent cities;

(b) The quantity of real estate in each location that enters the systemic risk is the

total supply of residential properties minus the quantity held by local residents for

hedging purposes. Point (b) implies that the price of real estate in a location depends

on the identity of people who live there to the extent that it determines the quantity

of local homes that are left in the adjusted market portfolio. As we saw above, agents

demand more local real estate in cities where their income is more insulated from local

productivity shocks. Hence, in those places (e.g. areas with a diversi�ed production

base), prices will be relatively high compared to rents.

Our characterization yields an array of implications:

� Di¤erences in real estate returns across locations depend on di¤erences in the within-
location covariance of the income of each resident with the income of the current

and future marginal residents. This is because rents are determined by the current

marginal resident and all local agents invest in housing to protect themselves against

�uctuations in income minus rent.

� Housing demand for hedging purposes is �rst increasing and then decreasing in age.
As agents get older, we assume their income displays decreasing covariance with the

income of young marginal newcomers to their city. This implies agents purchase an

increasing amoung of local housing for hedging purposes. Counter to this e¤ect is the

fact that as agents get older, the number of periods to live decreases and thus their

demand for insurance.

� Talent allocation across cities does not maximize aggregate expected production.
When choosing a location, agents trade o¤ expected net earnings opportunities (ex-

pected wage minus expected rents) against risk exposure (volatility of income minus

rent). Agents therefore do not necessarily choose the location that maximizes their

output. In particular, agents prefer a location with lower expected earnings minus

rents if their income in that location displays a lower correlation with rents. In such a

location, the purchase of a home provides hem with insurance bene�ts. Nevertheless,

they earn a risk premium on the home since the home is priced by ousiders to whom

the volatility of returns is a risk, not an insurance.
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� It is possible to quantify the error that we make if we price stocks according to a
classical beta (taking into account only the covariance with other stocks), rather than

the correct beta. The covariance of stocks with human capital returns and rents in

each location matters for the pricing of �nancial assets.

The model can be extended to encompass economies of agglomeration and other forms

of externalities among residents. The equilibrium characterization above is valid as stated;

the only �unsurprising �di¤erence is that equilibrium uniqueness is no longer guaranteed.

The model can also be adapted to allow for frictions in the real estate market: as an

illustration, we assume that ownership is the only option because the transaction costs

associated with renting are prohibitively high. In this case, household cannot hedge the

risk in income minus rent completely with the ownership of local housing because they

are not free to choose home much local housing to own. As a consequence, they resort to

exploiting the covariance between local risk and each of the �nancial assets. Agents in

di¤erent location therefore purchases a di¤erent portfolio of �nancial stocks. The home

bias e¤ect shows up in portfolio choices and the two-fund theorem mentioned earlier breaks

down.

The paper is organized as follows: Section 2 sets out the model. Section 3 presents the

main equilibrium characterization result, through three propositions corresponding to: port-

folio allocation (Proposition 1), asset pricing (Proposition 2), and location choice (Propo-

sition 4). Section 4 uses the main result to discuss a number of related issues. Section 5

concludes. All proofs are in the Appendix.

Related Literature

This is �to the best of our knowledge �the �rst asset pricing model where both location

choices and investment choices are endogenous.

Our paper is perhaps closest in spirit to DeMarzo, Kaniel and Kremer (2004). They

consider an economy with multiple communities and local goods as well as a global good.

In this dynamic setting, some agents (the laborers) are endowed with human capital which

will be used to produce local goods in future periods, but they are currently subject to

borrowing constraints. Other agents (the investors) own shares in �rms that produce the

global good. This simple set-up yields a number of powerful results. Investors care about

their relative wealth in the community because they bid for scarce local goods. This gen-

erates an externality in portfolio choice, which leads to the potential presence of multiple

equilibria (in the stable equilibria, investors display a strong home bias). Moreover, if there
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is a behavioral bias, the presence of this externality ampli�es the bias through the portfolio

decisions of rational investors. Clearly, our model di¤ers from DeMarzo et al. (2004) in

a number of important dimensions: (i) Our local good does not produce utility directly

but it enables agents to realize their human capital potential; (ii) Our spatial allocation is

endogenous; (iii) There are no credit constraints. However, we share their goal of studying

the properties of portfolio choice and asset pricing under uncertainty in the presence of

community e¤ects. As in their model, a home bias arises in equilibrium due to a hedging

motive.4

Grossman and Laroque (1991) characterize optimal consumption and portfolio selection

when households derive utility from a single durable good only and trading the durable

require payment of a transaction cost. They show that CAPM holds in this environment,

but CCAPM fails because consumption of housing is not a smooth function of wealth due

to the transaction costs. Flavin and Nakagawa (forthcoming) expand on the Grossman

and Laroque framework by assuming that households derive utility not only from housing

but also from numeraire consumption. They show that when housing asset returns do not

co-vary with stock returns, the CCAPM holds. In equilibrium, all households hold a single

optimal portfolio of risky �nancial assets. Depending on their holding of housing, households

vary how much of their wealth is invested in this portfolio but not its composition.

We obtain somewhat similar results with regards to portfolio choice (e.g., separation)

and asset pricing (CAPM) although we build our model focusing on a completely di¤erent

dimension of housing. In the existing literature, housing di¤ers from stocks in the fact that

the quantity owned or rented enters directly into the utility function. Housing in our model

does not enter the utility function directly. Rather, the choice of a home determines the

characteristics of the labor income process households enjoys and the stream of rents they

will face. Choosing a home amounts to shorting an asset (commitment to pay the future

stream of rents) and going long in another asset (the households stream of income) with

the added feature that the returns to this last asset are speci�c to each agent, they depend

on his human capital. Another key di¤erence between our paper and the literature cited

above is that the stream of rents in each location in our model is determined endogenously,

by the allocation of the households over space. The papers cited above assume that housing

rents follow exogenous stochastic processes.

An extensive literature has explored the e¤ect of housing consumption on households�

4Our results on home bias are also related to the international �nance literature on the home bias puzzle
(Stockman and Dellas, 1989). However, we di¤er in our focus on real estate and in that location choice is
endogenous.
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life-cycle overall consumption and investment behavior. One of the early papers by Hender-

son and Ioannides (1983) considers an optimal consumption and saving problem when the

household chooses whether to own or rent and a wedge arises endogenously between the cost

of renting and owning. Henderson and Ioannides show that the consumption demand for

homeownership distorts households�investment decisions. Goetzman (1993) and Brueckner

(1997) explain how this distortion a¤ects households� portfolio choice. Flavin and Ya-

mashita (2002) compute mean-variance optimal portfolios for homeowners using U.S. data

on housing and �nancial asset returns.5 Cocco (2004) also computes optimal portfolios but

in a calibrated dynamic model of households consumption and portfolio choice. Housing

consumption is constrained to equal housing investment in both papers. Yao and Zhang

(2004) introduce discrete tenure choice (rent or own total housing consumption) in a simi-

lar environment. They show the sensitivity of households�portfolio choice to tenure mode:

owning a house leads households to reduce the proportion of equity investment in their net

worth (a substitution e¤ect). However, households give a greater weight to stocks relative

to bonds in their portfolio because homeownership provides insurance against stocks and

labor-income �uctuations (a diversi�cation bene�t). Altogether, these papers demonstrate

that incorporating housing consumption in portfolio choice models helps reconcile theoret-

ical predictions with cross-sectional observations. In particular, home investment seems a

key factor in explaining the very limited participation of the young in equity markets. Credit

constraints play a critical role in explaining the observed hump-shape in home ownership

over the life-cycle.

Piazzesi, Schneider, and Tuzel (2007) study a consumption-based asset pricing model

where housing rents and prices are determined endogenously; the quantity of housing follows

an exogenous stochastic process. Agents can invest in both housing and stocks. The focus

of the analysis is on the composition risk related to �uctuations in the share of housing

in the households�consumption baskets. The authors show that the housing share can be

used to forecast excess returns of stocks � a prediction that appears to be borne out by

the data. Lustig and Van Nieuwerburgh (2007) propose a mechanism whereby the amount

of housing wealth in the economy a¤ect the ability of households to insure idiosyncratic

income risk and thus shifts the market price of risky assets, housing included. In Lustig

and Van Nieuwerburgh (2005) the authors present empirical evidence of the relevance of the

5Englund, Hwang and Quigley (2002) report similar computations for Sweden, Iacoviello and Ortalo-
Magné (2003) for the UK, and LeBlanc and Lagarenne (2004) for France. Note that every one of these
papers considers the stock market as a whole and so ignores the covariance between housing and speci�c
stocks.
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ratio of housing wealth to human wealth for returns of stocks. We share with Piazzesi et al.

(2005) and Lustig and Van Nieuwerburgh (2005, 2007) the same focus on the equilibrium

properties of housing rents and the risk premia. In Lustig and Van Nieuwerburgh (2008), the

authors extend their framework to consider risk sharing across regions. Empirical evidence

indicates that the amount of housing wealth in each region a¤ects the sensitivity of local

consumption to local income. This paper is particularly close to ours because there are

several locations. However, they assume exogenous location choice and houses are priced

by risk neutral competitive deep pockets.

Our approach to the modeling of housing as an enabling asset follows from the tradition

of urban economics. Our location choice model follows the standard multi-cities framework

of Rosen (1979) and Roback (1982) where residential properties provide access to the local

labor market and locations are di¤erentiated by potential surplus. As in Rosen and Roback

and the many more recent papers that build on this framework (e.g., Gyourko and Tracy,

1991, Kahn, 1995, Glaeser and Gyourko, 2005), we assume households face a unit housing

consumption requirement and derive utility from consumption of numeraire only.

Because we are concerned with portfolio choice in a dynamic environment, we assume

households are risk averse. Risk aversion in the face of stochastic streams of income and

rent provides a motivation for ownership of local residential properties �homeownership �

in our model. This approach builds on the work of Ortalo-Magné and Rady (2002), Sinai

and Souleles (2005), Hilber (2005), Davido¤ (2006) and others who provide evidence of the

relevance of such motivation for housing investment.

It is beyond the scope of this paper to review the vast literature concerned with the

determinants of housing prices. Typically in this literature, the equilibrium discount factor

for housing is the risk free rate due to assumptions of risk neutrality of consumers or pro-

ducers (e.g., Davis and Heathcote, 2003, Ortalo-Magné and Rady, 2006, Van Nieuwerburgh

and Weill, 2007, Kiyotaki, Michaelides and Nikolov, 2007).

2 Model

2.1 Geography and population

Consider an overlapping generation economy where a mass 1 of agents is born in every

period. Each agent in the t-cohort is born at the beginning of period t, lives for S periods,

and dies at the beginning of period t+S. Hence, at every time t, there is a mass S of agents

alive in the economy.
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There are L cities, denoted with index l = 1; :::; L and a countryside denoted with index

l = 0. City l has an exogenously given mass of houses. For convenience let nl be the mass of

houses per cohort that will be active on the housing market so that total supply of housing

in city l equals S � nl. We assume that housing supply is scarce in cities:

LX
l=1

nl < 1;

but it is abundant once the countryside is included:

LX
l=0

nl > 1:

Each house accommodates exactly one agent.

2.2 Production

The income of a person who lives in the countryside is (normalized to) zero. Productivity

in city l follows the process

ylt = y
l
t�1 + �

l
t

where � lt is a random variable, independently and identically distributed across time. We

discuss the covariance of these shocks below in the Random Shock Structure section.

At birth, each agent draws:

� a vector of city-speci�c endowment surplus, " = ["l]l=1;:::;L, with "l 2 (�1;1).

� a matrix of city and age speci�c insulation parameters: � = [�ls]
l=1;:::;L
s=0;:::;S:, with �

l
s

2 [0; 1]. Assume �l0 = 0 for all l.

The parameters (";�) are i.i.d across generations. Their joint distribution within a

generation is left in a general form � (";�), with the only requirement that it should be

continuous and have full support.

An agent�s income equals his product. At time t + s, the income of an agent living in

city l, born at time t, with parameters (";�) is

ylt;t+s

�
"l;�l

�
= ylt�1 + "

l +
sX

m=0

�
1� �lm

�
� lt+m;

for s = 0; :::; S � 1 (note the di¤erence between ylt, a city-wide variable, and ylt;t+s
�
"l;�l

�
an individual speci�c variable). Hence, the income of each agent can be decomposed into a
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permanent part, which captures the initial productivity of the agent in his location and a

time-dependent part, which is determined by the local productivity shocks in the city and

that agent�s sensitivity to his city�s shocks. We call "l the city-agent e¤ect and �ls the shock

insulation e¤ect. We represent below the income earned by an agent born at time t, living

in city l, for each of the �rst three years of his life.

ylt;t

�
"l;�l

�
=

city-agent e¤ectz}|{
"l +

city-cohort e¤ectz}|{
ylt ;

ylt;t+1

�
"l;�l

�
=

city-agent e¤ectz}|{
"l +

city-cohort e¤ectz}|{
ylt +

year 1 catch-upz }| {�
1� �l1

�
� lt+1;

ylt;t+2

�
"l;�l

�
=

city-agent e¤ectz}|{
"l +

city-cohort e¤ectz}|{
ylt +

year 1 catch-upz }| {�
1� �l1

�
� lt+1 +

year 2 catch-upz }| {�
1� �l2

�
� lt+2:

Similar formulations determine the agent�s earnings until he reaches age S � 1.6 At age S,
we assume the agent does not earn anything. It is mathematically convenient to set �S = 0

for all agents even if it is irrelevant to the agents�earnings.

The city-agent e¤ect is a standard object in multi-city models with heterogeneous agents.

Depending on their human capital, agents face di¤erent earning opportunities in di¤erent

locations.

The shock-insulation e¤ect captures two economic phenomena. First, agents may be

exposed to a technological cohort-speci�c e¤ect (documented by Goldin and Katz, 1998).

The human capital of certain people, especially the young, may be more �exible. When a

technological innovation appears, the income of certain agents will be more a¤ected than

the income of others. Second, certain agents �like senior workers and public sector workers

�may be part of an implicit labor insurance agreement. Their wage is more insulated from

productivity shocks.

It is reasonable �but not strictly necessary for the analysis �to assume that the insula-

tion parameter, for a shock that occurs at a given age, is increasing in the age of the agent:

�ls+1 > �
l
s. Of course the two extreme cases are full insulation (�

l
s = 1) and full exposure

(�ls = 0).
7

6The structure of " and � could be much more complex than the one we have here and still be amenable
to analysis in the present mean-variance set-up. For instance, we could imagine that the city-agent e¤ect is
not constant over the life of the agent but it follows a random walk. Also, we could assume that the extent
to which a shock that occurs at age s a¤ect future incomes depends on the age of the agent.

7We �nd it natural to restrict �ls to be between zero and one, but our mathematical analysis is valid
even if �ls > 1 (the agent�s productivity is negatively correlated to local shocks) and �ls < 0 (the agent is
over-exposed to local shocks).

12



For concreteness, we interpret ylt;t+s as monetary income, but there exists an alternative

interpretation in terms of non-monetary bene�ts that is equivalent from a mathematical

standpoint. The term ylt;t+s is now viewed as a money-equivalent of the utility a¤orded by

the amenities present in location l. In turn the utility can be decomposed into an agent-city

e¤ect (taste for that particular location) and a shock component (perhaps an environmental

or a social risk) multiplied by the agent�s sensitivity to that type of shock. Of course, the

model can also be interpreted as a mix of monetary and non-monetary bene�ts.

At birth, every agent chooses in what city (or the countryside) to live. He cannot move

afterwards. If an agent lives and thus produces in city l, he must rent exactly one unit of

housing.8

2.3 Housing market

The market rent in city l at time t is denoted with rlt and will be determined in equilibrium.

The housing market is frictionless. There are no transaction costs associated with renting,

buying or selling property. In particular there is no di¤erence between living in a owned or

a rented house.

Agents may invest in divisible shares of any city�s housing stock and revise their decision

at every period. Let alt;t+s denote the amount of housing of city l owned by an agent born

at time t of age s.

The market price of a unit of housing in city l at time t is plt. The agent revises his

housing investment at the beginning of every period. For accounting purposes, imagine

that the agent liquidates all his housing assets and then buys the desired amount in each

period. At the beginning of period t+s, the agent acquires alt;t+s units in city l at total cost

alt;t+sp
l
t+s. During period t, the agent collects rent on his housing investment for a total of

alt;t+sr
l
t+s. At the beginning of the next period, the agent liquidates the housing investment

and receives alt;t+sp
l
t+s+1. We denote at;t+s the vector of the agent�s housing investments,

at;t+s =
�
alt;t+s

�
l=1;:::;L

.

Given the frictionless nature of the housing market, the creation of derivative securities

would be super�uous. In particular, Case-Shiller home price indices for our cities (a security

bought at time t which pays a price plt+1 at time t+ 1) would be equivalent to purchasing

housing for one period, net of the �rent coupon�.9

8The assumption that people cannot move is essential for tractability. Without it, the model cannot be
analyzed within the normal-CARA framework. However, the assumption is not necessary for qualitative
results about the role of housing as a hedge. Ortalo-Magné and Prat (2006) develop a (much simpler) model
where people can move freely.

9Given the random-walk nature of all our shocks, long-term securities are also redundant because they
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2.4 Stock Market

Besides housing, there is another class of securities, which we call stocks. These are claims

on productive assets, which �as in regular asset pricing models �produce an exogenous

(but stochastic) stream of income. There are Szk units of type-k asset, with k 2 f1; :::;Kg
and zk > 0. A unit of stock k produces dividend dkt at time t. The dividend follows the

stochastic process:

dkt = d
k
t�1 + �

k
t

where � is i.i.d. across time (and the probability distribution will be discussed below).

As for housing, every agent can buy units of every stock and revise his portfolio allocation

in every period. The market price of stock k at a given point in time is qkt . At the

beginning of period t+ s, the agent acquires bkt;t+s units of stock k at total cost b
k
t;t+sq

k
t+s.

During period t + s, the agent receives dividend on his investment in k for a total of

bkt;t+sd
k
t+s. At the beginning of the next period, the agent liquidates the stock investment

and receives bkt;t+sq
k
t+s+1. We denote bt;t+s the vector of the agent�s stock investments,

bt;t+s =
�
bkt;t+s

�
k=1;:::;K

.

2.5 Distribution of Random Shocks

There are two sources of exogenous shocks in our economy: a vector � of local produc-

tivity shocks and a vector � of capital productivity shocks. The shocks are independently

and identically distributed over time, according to a normal distribution with mean 0 and

covariance matrix �: (� t;�t) � N (0;�).
It is important that we allow for correlation between local shocks and dividends. A

certain industry may be more a¤ected by shocks in a certain market and viceversa. We also

allow for correlation of shocks across cities.

2.6 Consumption and Savings

As the goal of this paper is to arrive at a mean-variance closed-form expression for asset

prices, we assume that agents derive CARA utility � exp (�w) from wealth at the end of

their life, w, where  is the standard risk-aversion parameter.

Agents face no credit constraints and can borrow and lend freely at discount rate � 2
(0; 1). For simplicity, we assume that agents are born with no wealth (this does not a¤ect

their decisions, given that they have CARA preferences).

can be replicated by sequences of short-term investments. This includes long-term rentals or futures on real
estate.
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2.7 Non-Negativity Constraints

Asset pricing models with normally distributed shocks su¤er from a well-known technical

problem. As the value of the dividends can become negative, agents may �nd themselves

in situations where they would want to dispose of assets they own. If they could, the

distribution of asset values would no longer be normal and the model would not be tractable.

Hence, all models in this class assume, implicitly or explicitly, that agents cannot dispose of

assets. Typically, this assumption is unrealistic because in practice both agents and �rms

are protected by limited liability. Instead, in the model stocks can have negative prices,

and their owners must pay to get rid of them.

Our CARA-normal set-up inherits this non-negativity problem. In particular, the pro-

ductivity in a city could become negative and house prices there may be negative.10

The usual response to this criticism, which applies here as well, is that the unconstrained

model should be viewed as an approximation of the model with non-negativity constraints,

as long as the starting values are su¢ ciently far from zero.

2.8 Timing

To recapitulate, the order of moves, for an agent born at time t is as follows:

1. At birth, the agent chooses in which location l he will spend the rest of his life.

2. At the beginning of each period t + 0; :::; t + S, the agent learns the values of the

random shocks for that period, �t+s and � t+s.

3. For s = 0; :::; S � 1, at the beginning of period t+ s the agent revises his housing and
stock investments (at;t+s and bt;t+s).

4. At t + s, the agent also pays rent rlt+s for one unit of housing in the location where

he lives. He collects dividends and rents on the assets that he owns.

5. At the end of his life, at time t+S, the agent liquidates his investments (at;t+S�1 and

bt;t+S�1) and consumes the wealth that he has accumulated.11

10We assume that homeowners have an obligation to rent their property (they pay a large �ne if it IS
vacant).
11The agent does not work or pay rent in the last period of his life (t+S). He consumes his wealth in the

beginning of the period and he dies.
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3 Analysis

An equilibrium is an allocation of households across cities, a vector of optimal portfolio

holdings of housing and stocks for each agent, housing rents and prices for each city and

stock prices such that: (i) The location choice and portfolio holdings solve the agents�

problem; (ii) The housing markets in each city clear; (iii) The stock markets clear.

A stationary equilibrium is an equilibrium where the mass of agents of a generation t

who live in a given city l is the same across generations.12

De�ne a linear equilibrium as an equilibrium where stock prices, rents, and house prices

can be expressed respectively as:

qkt =
1

1� �d
k
t � �qk; (1)

rlt = ylt + �r
l; (2)

plt =
1

1� � r
l
t � �pl; (3)

where �q =
�
�qk
�k=1;:::;K

, �p =
�
�pl
�l=1;:::;L

are price discounts and �r =
�
�rl
�l=1;:::;L

is a rent

premium to be determined in equilibrium. The rent is equal to local productivity plus a

local constant. House and stock prices are equal to the discounted value of a perpetuity

that pays the current rent or dividend minus an asset-speci�c discount.

Price discounts can also be interpreted as expected returns of zero-cost portfolios.13

Throughout the analysis we describe �pl and �qk as price discounts or expected returns,

depending on the context.

Our strategy for �nding equilibria is as follows. We start by conjecturing that we are in

a stationary linear equilibrium. We postulate a feasible allocation of agents to cities and we

solve the portfolio problem of a generic agent living in a given city. As it turns out, solving

this agent problem is enough to characterize analytically stock prices and house prices up

to a vector of city-speci�c constants. With this information, we compute the expected

utility of every agent conditional on city choice. We determine aggregate location demand

12A non-stationary equilibrium would have the following structure. As agents cannot move after they
locate to city l, the stock of rented accomodation used by the t-cohort will not become available until
members of the t-cohort die at then end of t + S. Hence, if the t-cohort is, say, over-represented, then the
t+ S + 1-cohort will be equally over-represented. The non-stationary equilibria are characterized by cycles
of length S + 1.
13For instance, the expected return of a zero-cost one-unit portfolio invested in housing in city l (evaluated

in today�s dollars) is

E
h
�plt+1 �

�
plt � rlt

�i
=

�

1� � r
l
t � ��pl �

�

1� � r
l
t + �p

l = (1� �) �pl:
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given any price vector by comparing expected utilities across cities. Finally, we turn to the

marginal resident. We show that for every vector of city-speci�c constants there exists an

agent who is indi¤erent among all locations, while all others have strict preferences. The

characteristics of the marginal resident are monotonic in the vector of city-speci�c constants,

and we can identify the marginal agent such that the mass of agents who move to each city

equals the local housing supply. This proves that that our initial conjecture on linear prices

was correct.14

As agents have CARA preferences. their lifetime utility can be decomposed into:

E
h
ult

i
= E

h
wlt

i
� V

h
wlt

i
:

The following proposition re-writes the two components of the agents utility and uses them

to compute his optimal portfolio choice and his expected utility (in what follows we focus on

one agent and we drop the argument representing the agent-speci�c characteristics: (";�).

Proposition 1 (Portfolio Allocation) Suppose that prices and rents are given by equa-

tions (1), (2), and (3), with given �r�s, �q�s and �p�s. Consider any allocation of agents to

cities. Consider an agent born at period t characterized by a vector " and a matrix �. If

this agent lives in l and chooses investment pro�les [at;t+s; bt;t+s]s=0;:::;S�1, the expectation

and the variance of his end-of-life wealth can be written respectively as:

E [wt] =
S�1X
s=0

�s�S

0@"l � �rl + (1� �)
0@�1� �S�s+1� �ls+1�pl + LX

j=1

~ajt;t+s�p
j +

KX
k=1

bkt;t+s�q
k

1A1A
V ar [wt] =

�2

(1� �)2
S�1X
s=0

�2(s�S)V ar

24 LX
j=1

~ajt;t+s�
j
t+s+1 +

KX
k=1

bkt;t+s�
k
t+s+1

35
where

~ajt;t+s =

(
alt;t+s �

�
1� �S�s+1

�
�ls+1 if j = l

ajt;t+s otherwise
:

The agent�s optimal investment pro�le is given by�
~at;t+s
bt;t+s

�
=
(1� �)3

2�s+2
�S��1

�
�p
�q

�
;

14 It is tempting to consider the two �rst parts of the analysis, portfolio choice and asset pricing, in isolation.
But they are only valid if the third part is present too. If one assumed a di¤erent location model or an
exogenous allocation of agents to cities, the three price processes in (1), (2), and (3) would be di¤erent and
Propositions 1 and 2 would no longer hold. For instance, if agents could move between cities during their
lifetime, it is not clear that the rent the price in city l would depend only on productivity in city l.
We see this as both a weakness and a strength of spatial asset pricing. On the one hand, one cannot

have a meaningful discussion about real estate prices in multiple locations without a spatial model in the
background. On the other hand, this opens the door to a wealth of testable implications encompassing
spatial and �nancial variables.

17



for s = 0; :::; S � 1, and his expected log-utility is

U l =
1

�S

S�1X
s=0

�s
�
"l � �rl + (1� �)

�
1� �S�s+1

�
�ls+1�p

l
�
+ S

(1� �)4

4�2

�
�p
�q

�0
��1

�
�p
�q

�
:

Proposition 1 says that the optimal portfolio of any agent can be decomposed into:

� Investment in a mutual fund that contains all stocks and houses in all cities, with
weights (~a; b). The mutual fund is the same for all agents. All agents within a cohort

buy the same amount of mutual fund shares (but older agents buy more shares, purely

because of the discount rate �). Given a vector of expected returns (which for now is

still exogenous), the weights (~a; b) that the mutual fund puts on various stocks and

real estate assets are given by a standard CAPM allocation. The portfolio puts more

weight on an asset if its returns are less correlated to other assets and they have a

higher expected value.

� Demand for real estate in the city where the agent lives, driven by a desire to hedge
shocks to disposable income due to rent �uctuations. As the price of a house is linear

in the rent, a house in a certain city is a perfect hedge against rent �uctuations in

that city. The hedging demand is given by
�
1� �S�s

�
�ls+1. Hence, it depends on

how well the agent is insulated from local productivity shocks at time t. The hedging

demand varies across agents and across time for a given agent (the cross-sectional

and life-cycle implications of this are explored in detail in the Discussion section).

However, the hedging demand does not depend on the expected return of real estate

in that city (if a city has a high return, that will be re�ected in the mutual fund share

only).15

Now that we have solved the portfolio allocation problem for any given vector of pre-

mia, we can �nd the equilibrium expected returns. Denote any (measurable) allocation of

agents to cities with the indicator function I l";�, which takes value 1 if agents with personal

characteristics " and � locate to city l, and zero otherwise (such that
PL
l=0 I

l
";� = 1 for all

" and �).

Proposition 2 (Asset Pricing) Suppose that rents are given by equations (2), with given

�r�s. Consider any allocation of agents to cities. Then, prices are given by equations (1) and

15Davis and Willen (2000) obtain a related result (Proposition 1 in their paper) on the decomposition of
the optimal portfolio of agents who face labor risk into a speculative component and a hedging component.
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(3) with discounts: "
�p
�q

#
= 2S

�

(1� �)2
�
1� �S

�� � n�R
z

�
;

where R =
�
R1; :::; Rl; :::; RL

�0
and

Rl =
1

S

S�1X
s=0

�
1� �S�s+1

� Z
"

Z
�
I l";��

l
s+1� (";�) d"d�:

Houses and stocks are priced based on their contribution to systemic risk according to a

classical CAPM formula. Proposition 2 �nds the correct de�nition of systemic risk for this

model. The weights of stocks in the market portfolio correspond to the quantity of stocks

available, as in the regular CAPM. However, the weights of real estate are reduced by the

total hedging demand. Namely, the weight of houses in city l is equal to the mass of homes

nl minus the integral of the hedging demand by residents of l: Rl.

To explore the pricing expressions in Proposition 2 further, de�ne the adjusted market

portfolio M as a portfolio allocation that includes

nl �Rl
Q

units of housing in city l for every city l

zk

Q
units of stock k for every stock k

with Q =
PL
l=1

�
nl �Rl

�
+
PK
k=1 z

k. The mutual fund that all agents buy contains the

adjusted market portfolio.

Denote the expectation and the variance of the adjusted market portfolio, respectively,

with �pM and V ar (M). De�ne Cov (l;M) as the covariance between the return of real estate

in city l and the return of M . For every stock k de�ne Cov (k;M) similarly. Then:

Corollary 3 The expected return of real estate in city l is given by

�pl =
Cov (l;M)

V ar (M)
�pM ;

and the expected return of stock k is

�pk =
Cov (k;M)

V ar (M)
�pM :

The expression in the Corollary is akin to the classical CAPM pricing formula where
Cov(l;M)
V ar(M) is a beta-factor for housing in city l. The main innovation in our setting lies in the

identi�cation of the adjusted market portfolio, for which this formula is true.16

16For instance, if one de�ned the market portfolio without the �R correction, such beta representation
would not be valid.
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Propositions 1 and 2 are really intermediate results. They rest on a speci�c conjecture

about the stochastic process that determines local market rents, described in equations (2)

. But rents are not primitives and we must now check that for the location model used

here the conjecture is in fact correct. It is useful to reiterate that the conjecture would in

general not extend to other location models, implying that propositions 1 and 2 are only

valid if accompanied by the speci�c spatial allocation model that we have chosen.

Besides closing the �xed-point argument, we also need to determine the vector of rent

premia �r, and to �nd the vector of hedging demands R.

For an agent with personal characteristics (";�), the log-utility of locating in city l is

given by U in Proposition 1, where now �p and �q are de�ned in terms of primitives through

Proposition 2. For every (";�), let

�ul (";�) � "l + (1� �)
2

1� �S
�pl

SX
s=1

�
1� �S�s+1

�
�ls:

with the utility of being in the countryside: �u0 (";�) = �u0.17 Also let

�U = S
(1� �)4

4�2

�
�p
�q

�0
��1

�
�p
�q

�
:

Then, we can write the utility of locating in city l as18

U l =
1� �S

1� �

�
�ul (";�)� �rl

�
+ �U:

Namely, the agent�s utility can be decomposed into a component that is common to all

agents (and depends on investment in the mutual fund) and an agent-speci�c component

that depends on the city-agent e¤ect "l and the shock-insulation vector �l that the agent

faces is he chooses to locate in city l.:

A given agent locates in city l if and only if U l = maxm Um. For every L-vector r̂, we

can write the aggregate demand for location l as

�l (r̂) =

Z
(";�):�ul(";�)�r̂l=maxm(�um(";�)�r̂m)

� (";�) d (";�) :

We obtain:
17Assuming that "0 is without loss of generality. If it was not, one could re-de�ne all the "�s as di¤erences

with "0.
18To see this, note that:

1� �
1� �S

S�1X
s=0

�s
�
"l + (1� �)

�
1� �S�s

�
�ls+1�p

l
�

= "l +
(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s+1

�
�ls
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Proposition 4 (Location Choice) There is a unique linear stationary equilibrium. In

it, an agent with personal characteristics (";�) locates in city l if and only if

�ul (";�)� �rl = max
j=0;:::L

�
�uj (";�)� �rj

�
and �r is the unique value of the vector r̂ such that �l (r̂) = nl in all cities.

The equilibrium rent in city l is

rlt = y
j
t + �r

l:

The most important step in Proposition 4 is the determination of the identity of marginal

residents (the agents who are indi¤erent among all locations). In our location model, the

personal characteristics of marginal agents turn out to be constant across cohorts. As the

marginal resident indi¤erence condition determines market rents, this means that the local

rent processes are are the same, but for a constant term, of the local productivity processes,

which veri�es the linearity assumption in the rent process (2).

Despite the fact that the payo¤ of an agent in a given city is determined by S + 1

parameters ("l plus the vector �l), the expected utility U l of the agent in that city can be

condensed into a simple expression containing �ul (";�). For any possible vector of rents r̂,

the demand function �l (r̂) establishes how many agents will live in each location.

Hence, for every vector rent constants r̂, we identify a set of measure zero of agents

(the marginal resident) such that their expected utility is the same in every city and in the

countryside:

�ul (";�)� r̂l = �u0 for all l:

Note that this correspond to multiple personal characteristic pro�les: all the vectors (";�)

that yield the same �ul (";�). One can show that the vector of expected utilities of the

marginal resident in di¤erent location is monotonic in the rent constant vector r̂. This

means that the mapping can be inverted: given the identity of the marginal resident, there

is only one vector of rents that guarantees that that agent is indeed the marginal resident.

The assumption that the distribution of individual characteristics � (";�) has full sup-

port guarantees that the demand function is continuous. As the marginal resident deter-

mines the vector of location demands, one can �nd the (unique) marginal resident that

guarantees that demand equals supply in every location. This marginal resident is associ-

ated to the rent constant vector �r. In equilibrium, we have that demand equals supply in

every city:

� (�r) = n;
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and that the identity of the marginal residents is given by the set of values (";�) such that,

given the equilibrium rent vector, the expected utility is the same in every city and in the

countryside:

�ul (";�)� �rl = 0 for all l:

A key feature of our location equilibrium is that the characteristics of the marginal resident

are cohort-invariant. It is this feature that guarantees that the rent process is linear and

that the CAPM characterization is valid. If, for instance, agents could change city, the

time-invariance property would not hold and the rent process would not be linear. As a

result, the CAPM characterization would fail.

3.1 Example

While we obtained closed-form solutions for portfolio decisions and asset premia, Proposi-

tion 4 does not express rents in closed form. This is natural as the probability distribution

over individual characteristics, � (";�), is left in a general form. By making appropriate

assumptions over personal characteristics and geography, one can arrive at closed-form ex-

pressions for all variables, as the following example illustrates.

Assume that:

� Agents in each cohort draw city-speci�c endowments " from a uniform distribution

de�ned over [0; 1]L ;

� At each age, all agents face the same city-speci�c insulation parameter
�
~�ls
�l=1;:::;L
s=0;:::;S

;

� All cities have same size: nl = 1
LN for every l, with N 2 (0; 1).

Proposition 5 An agent with human capital " locates in city l if: (i) "l = maxm "m; and

(ii) "l � (1�N)
1
L . The equilibrium rent in city l is

rl = (1�N)
1
N +

(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s+1

�
~�ls:

In the special case with two cities only (L = 2), the equilibrium allocation is depicted

in the plot below . The agents who locate in the countryside are those with a low "1 and

a low "2 (the bottom right square region) locate in the countryside. Those who locate in

city 1 have "1 � (1�N)
1
2 and "1 � "2 (bottom right trapezoid). Those who locate in city
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2 have "2 � (1�N)
1
2 and "2 � "1.

4 Discussion

Our spatial asset pricing model yields a rich set of implications linking spatial and �nacial

variables. We begin this section by discussing cross-sectional and life-cycle implications. We

then turn to talent allocation across cities. We explore the pricing of portfolios of stocks

and portfolios of real estate. We conclude with a short discussion of how the model can be

extended to include economies of agglomeration and frictions in the housing market.

4.1 Returns on Housing across Cities

Our model yields predictions on cross-sectional di¤erences in real estate returns (Proposi-

tion 2 and Corollary 3). To get a qualitative feel for those predictions, consider a simple

benchmark: assume that shocks across cities are uncorrelated and suppose there are no

stocks. Let V ar
�
� l
�
= �2l . Proposition 2 yields

�pl = 2
�

(1� �)2
�
1� �S

��2l �nl �Rl� :
The expected return in a city is an increasing function of the variance of shocks in that city

and of the outstanding real estate stock nl�Rl. In turn, the latter is a decreasing function
of the average shock insulation parameter (Rl) in that city. The value of Rl is determined

in equilibrium.
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Consider a location that specializes in an industry and thus with low shock-insulation

parameters: All residents, whether old or young, are a¤ected by industry productivity

shocks in the same way. The residents have a low demand for housing for hedging purposes.

The city�s homeownership rate is low, and so are prices. On the contrary, a city centered

around an industry with high shock-insulation parameters �perhaps a high-tech industry

where the old struggle to catch up with innovation or a highly protected sector, where

older worker face implicit insurance �will display a high hedging demand for housing, high

homeownership rates, and high prices at "equal rents."

4.2 Home Ownership over the Life Cycle

The model also yields intertemporal predictions on home-ownership rates. We know from

Proposition 1 that housing demand for hedging purposes depends on the shock-insulation

parameter, which in turn varies with age. The hedging demand by someone at age s

anticipating a shock-insulation parameter the following period of �ls+1 is

Dls =
�
1� �S�s+1

�
�ls+1:

If one assumes that the shock-insulation parameter can be written as �ls = k
s�1
S�1 , with

k 2 (0; 1) (implying �l1 = 0 and �ls linearly increasing in age), we have

Proposition 6 Local home ownership has an inverted U-shape over i�s lifetime. For every

agent i in city l, there exists an age ŝ such that local homeownership is increasing until ŝ

and decreasing afterwards.

For instance, if � = 0:95, S = 60, and k = 1, the hedging demand over the life-cycle is

plotted in the graph below.
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This result o¤ers another explanation �alternative to credit constraints �for why home-

ownership rates should be lower for younger people. When young, households do not need

much insurance against rent shocks because their earnings provides such insurance. As

they get older earnings provide less insurance, their hedging demand for homeownership

increases. Against this force is the fact that as agent gets older, the number of remaining

periods of life decreases, reducing the demand for insurance; this last point was made by

Sinai and Souleles (2005) who also provide evidence of its empirical relevance.

4.3 Talent Allocation

Does our market equilibrium have the potential to create productive ine¢ ciency?

Let us begin by de�ning and characterizing productive e¢ ciency in this context. Let

the economy�s total product at time t be

Yt =

LX
l=1

Z
(";�):�ul(";�)��rl=maxm(�um(";�)��rm)

ylt;t+s

�
"l;�l

�
� (";�) d (";�) :

Suppose a planner wishes to maximize the expected discounted sum of future total products

Y =
1X
s=0

�sE [Yt+s] :

We begin by characterizing the solution of the production maximization problem:

Proposition 7 The allocation of agents to cities that maximizes Y depends only on " not

on �: An agent with " locates in city l if "l � �"l = maxm "
m � �"m, where �" is the unique

vector that guarantees that the mass of agents in every city equals housing supply.

Next, we can show that productive e¢ ciency is not achieved, except in very special

circumstances:

Proposition 8 Exactly one of the following statements is true:

(i) For all cities, �pl = 0;

(ii) The linear stationary equilibrium does not maximize Y .

The previous proposition says that productive e¢ ciency is reached if and only the ex-

pected return on real estate is zero in every city. In that case, insurance against the rent

risk is available a cost zero (if the return is positive insurance carries a negative price).

Agents base their location decisions exclusively on ". Expected returns on real estate are
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zero when: (i) The covariance matrix � is such that there is no systemic risk; (ii) The local

productivity shocks are uncorrelated and the number of cities goes to in�nity (there is still

systemic risk coming from stocks). Outside these restrictive conditions, the distribution of

� matters in location choices and the equilibrium allocation does not maximize expected

product.

Of course, productive ine¢ ciency does not imply overall ine¢ ciency. Our market equi-

librium is constrained-e¢ cient given the insurance options available in the model. Full

insurance is o¤ered only if local labor shocks �and hence local house prices �are uncorre-

lated with systemic risk. Outside that special case, local real estate prices carry systemic

risk and location choices are a¤ected by the desire of agents to stay away from risk that is

costly to hedge.

To reinforce the point of this proposition, we fully solve an in closed-form. For ease of

exposition, we let S = 2, and restrict the stock market to a single stock. We assume agents

enjoy a constant insulation parameter � over life. Each cohort is equally divided in two

agent-types: type 0 agents have no insulation (� = 0), type 1 agents have full insulation,

� = 1.19 The distribution of agent-city match parameter is independent of agent type, ",

uniform over the unit interval. An agent ("; �) locates in the city if and only if

1

�2

1X
s=0

�s
�
"� �r + (1� �)

�
1� �3�s

�
��p
�
� 0:

The marginal city dwellers of type 0, "̂0, and type 1, "̂1 satisfy�
"̂0 = �r

"̂1 = �r � (1��)�p(1+��2�3)
1+�

:

The market clearing condition on the spatial market is (
1�"̂1+1�"̂0)

2 = n, which yields a

solution for the rent premium as a function of the housing price discount

�r = 1� n+
(1� �)

�
1 + � � 2�3

�
2 (1 + �)

�p:

The asset market clearing conditions are�
2n
2z

�
=

�
1 +

1

�

�
(1� �)3

2
��1

�
�p
�q

�
+

� �
1� �3

� �
n� 1

2 +
�r
2

�
0

�
:

Let � =
�
�2h �hs
�hs �2s

�
. Replacing �r with the equation above and rearranging yields a solu-

tion for the stock price discount, �q, as a function of �p, and a solution for �p, hence a full
19This example is not, strictly speaking, included in our model because it violates the assumption that

the distribution of types is continuous and has full support.
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characterization of the equilibrium

�q =
2

(1� �)3
�
1 + 1

�

�  �hs
 
2n�

�
1� �2+1

� n
2
+
(1� �)

�
1 + � � 2�2+1

�
4 (1 + �)

�p

!!
+ 2z�2s

!
;

�p =

�
2n�2h �

�
1� �2

�
n
2�

2
h + 2z�hs

��
1 + 1

�

�
(1��)3
2 +

�
1� �2+1

� (1��)(1+��2�2+1)
4(1+�) �2h

:

With numerical values � = n = z = ��hs = :5 and �h = �s =  = 1, the equilibrium

solution is "̂0 = �r = 0:69, "̂1 = 0:31, �p = 1:12, �q = 3: 52. Maximizing output would have

required "̂0 = "̂1 = :5.

4.4 Housing and Stock Indices

As in CAPM one can price any portfolio with respect to the market. In this model, the

relevant market is de�ned by the adjusted market portfolio M , discussed in Corollary 3.

In particular, one can price a housing-only index with weights n�R
1�[n�R] (we call it H)

and a stock-only index with weights z
1�z (called S). We have:

�pH =
Cov (H;M)

V ar (M)
�pM ;

�pS =
Cov (S;M)

V ar (M)
�pM :

Note that H can be interpreted as an index tracking the market portfolio of REITs: it is

the housing demand vector that is the same for all agents. It includes all houses that are

not owned by local residents for hedging purposes. The following result is immediate (by

putting together the two return expressions above):

Corollary 9 The relative returns of the housing index and the stock index are given by

�pH =
Cov (H;M)

Cov (S;M)
�pS :

The corollary implies that, ceteris paribus, the di¤erence between real estate returns

and stock returns is related to home-ownership rates. The higher the fraction of residential

property owned by local residents, the lower the returns on real estate.

Our model can also be used for predictions on stock returns. Often, the return of a stock

is computed according to a CAPM formula that takes into account stocks only. Namely,

the return of stock k is assumed to be

~qk =
Cov (k; S)

V ar (S)
�pS :
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In our setting, this expression is of course incorrect, because it does not take into account

the presence of housing. The correct expression is �qk = Cov(k;M)
V ar(M) �p

M . The ratio between the

wrong expression and the correct one is

~qk

�qk
=
Cov (k; S)

Cov (k;M)

V ar (S)

V ar (M)

�pS

�pM
:

If one assumes that dividend shocks are more volatile than the whole economy which includes

productivity shocks (V ar (S) > V ar (M)) and stock k is more correlated with the stock

index than with the whole economy (Cov (k; S) > Cov (k;M)), then we must conclude that

the ratio between the two expressions is greater than one, namely the beta�s predicted by

the stock-only CAPM are systematically higher than the beta�s predicted by our model.

4.5 Economies of Agglomeration

In the core of the paper we assumed that there are no production externalities (or amenity

externalities, if one embraces the amenity interpretation of our model). Our set-up can

be easily extended to incorporate externalities. Most results still hold, except possibly

uniqueness.

Assume that the income of an agent if he locates in l is now given by

ylt;t+s

�
"l;�l

�
= ylt�1 + "

l
�
El
�
+

sX
m=0

�
1� �lm

�
� lt+m;

where El is the collection of "l of other agents living in city l.

It is easy to see that Propositions 1 and 2 hold as stated. Proposition 4 can be re-stated

as follows. For every
�
";�; El

�
, let

�ul
�
";�; El

�
= "l

�
El
�
+
(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s+1

�
�ls:

As before, an agent locates in city l if and only if U l = maxm Um.

An allocation of agents to cities is described by E =
�
E1; :::;EL

�
. Hold E constant.

For every L-vector r̂, the aggregate demand for location l is

�l (r̂;E) =

Z
(";�):�ul(";�;El)�r̂l=maxm(�um(";�;Em)�r̂m)

� (";�) d (";�) :

Proposition 10 An allocation E is part of a linear stationary equilibrium if and only if:

(i) for all (";�), an agent with personal characteristics (";�) locates in city l if and only if

�ul
�
";�; El

�
� �rl = max

m
(�um (";�; Em)� �rm)

and (ii) �r is the unique value of the vector r̂ such that �l (r̂;E) = nl in all cities.
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Thus, the equilibrium characterization part of Proposition 4 is still valid. What is

missing is existence and uniqueness, which will depend on the properties of the functions

"l (�). While it would not be di¢ cult to �nd conditions on "l (�) that ensure existence,
multiplicity of equilibrium is an intrinsic feature of models with economies of agglomeration.

Our model does not help predict which equilibrium will arise, but it describes portfolio

allocation and asset pricing in each equilibrium.

4.6 Ownership Only

In our frictionless model, there are no intrinsic advantages to owning or renting. Consider

instead the extreme case where renting is impossible. An agent can move to city l only if

he buys one house there. In this world, all houses are owned by residents and all residents

own exactly one house. Agents can still invest in stocks.

Note that the covariance matrix can be written as

� =

�
��� ���
��� ���

�
:

We �rst characterize the optimal portfolio allocation:

Proposition 11 Given a vector of stock premia �q, the optimal portfolio allocation for an

agent with parameters (";�) is264 b
1
t;t+s
...

bKt;t+s

375 = ��1��
0B@ 1

H

264 �q1

...
�qK

375�
264 cov

�
�1; � l

�
...

cov
�
�k; � l

�
375!s ��ls+1�

1CA ;
where H = �s�S+2

(1��)3 and

!s

�
�ls+1

�
=
�
1� �ls+1

� �
1� �S�s�1

�
+ �S�s�1:

The expected utility of an agent with parameters (";�) if he locates in city l can be expressed

as

U l (";�) = �0 � �1�pl + �2"l +
SX
s=1

�s�
l
s + &s

�
�ls

�2
;

where �0, �1, �s, and &s do not depend on (";�) or on �p
l.

The optimal portfolio allocation is di¤erent from the one in the frictionless case. Agents

can no longer choose their real estate investment. They must buy one house in the city they

live in and they cannot buy property elsewhere. They must resort to stocks �a less e¤ective

hedge than local real estate �to insure against the risk created by local productivity shocks.

The amount stock k that a certain agent demand is determined by two components:
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� A classical speculative element (the same that was present in Proposition 1)

� A hedging element, which is a function of �cov
�
�k; � l

�
!
�
�ls+1

�
, where !s

�
�ls+1

�
is

a measure of hedging demand and �cov
�
�k; � l

�
determines the value of stock k as

a hedge for homes in city l. If dividend shocks are positively correlated with local

productivity shocks, the hedging demand is negative.

The next proposition characterizes asset pricing:

Proposition 12 For a given allocation of agents to cities, the excess return on stocks is

given by

�q = H���z +
H

S
���
;

where 
 =
�

1 � � � 
L

�0
and


l =

S�1X
s=0

Z
l̂(";�)=l

!s

�
�ls+1

�
� (";�) d (";�) :

Our asset pricing characterization now refers only to stocks: as real estate investment

is fully determined by location decisions, nothing can be said about house prices until

location decisions are discussed. Stock prices have two components: a classical beta-pricing

element, H���z, and an additional part that depends on their use for hedging against local

productivity risk, proportional to ���
.

To understand the hedging component of the stock price, note that 
 is a vector of

aggregate hedging demands, one for every city. The total hedging demand 
l in city l

depends on the size of the city and how low the average shock-insulation parameter is for

residents of that city. The price of stock k depends on how its dividend shocks covary with

productivity shocks in all cities, weighted by the total hedging demand in every city.

To discuss optimal location, let

�ul (";�) =
1

�1

 
�2"

l +

SX
s=1

�s�
l
s + &s

�
�ls

�2!
:

For every L-vector p̂, we can write the aggregate demand for location l as

�l (p̂) =

Z
�ul(";�)��pl=maxj=0;:::L(�uj(";�)��pj)

� (";�) d (";�) :

Then, we have
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Proposition 13 There is a unique linear stationary equilibrium. In it, an agent with

personal characteristics (";�) locates in city l if and only if

�ul (";�)� �pl = max
j=0;:::L

�
�uj (";�)� �pj

�
and �p is the unique value of the vector p̂ such that �l (p̂) = nl in all cities.

The equilibrium price in city l is

plt =
1

1� � y
j
t + �p

l:

As in the frictionless case, the equilibrium housing price is ultimately determined by the

preferences of marginal residents. As before, the expected utility of an agent who locates

in city l depends only on the value of his parameters for city l (i.e. "l and �ls, for all s).
20

As in Proposition 4, there exists a unique price vector for which aggregate demand equals

aggregate supply.

5 Conclusion

Our model is just a �rst step towards a theory of spatial asset pricing. The goal of the

present paper was to obtain a simple, tractable setup to illustrate the presence of links

between location decisions and asset prices.

The main lesson of the present paper is possibly a negative result. The properties of

asset pricing with real estate depend heavily on the underlying geographic location model.

The results we present here are valid only under a very speci�c set of assumptions about

how agents are matched to locations. If, for instance, we were to assume that agents can

move more than once, our CAPM characterization would fail (because the characteristics of

the marginal resident would no longer be time-invariant. Also, our results would no longer

be valid if labor productivity parameters did not enter the payo¤ function linearly.21

This dependance implies that real estate prices can be discussed in a meaningful way only

within the context of a spatial model of asset pricing..While this negative result makes it

harder to �nd a �universal�real estate pricing model, it also means that spatial asset pricing

can yield a wealth of testable implications involving both individual location variables and

real estate prices.
20However, now the expected utility of an agent who locates in city l takes a di¤erent form (quadratic in

�ls).
21Of course, one can always assume an exogenous location model, namely one where there is only one

location or there are many locations but agents cannot choose where they live. Such a model, while perfectly
valid at a theoretical level, would have limited practical use in economies, such as the US, where regional
price di¤erences are sizeable and they are linked to human capital mobility.
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Appendix

Proof of Proposition 1

The cash �ow at period t+ s for agent born at t, living in city l is

vt;t+s = ylt;t+s � rlt+s
�
X
j

��
pjt+s � r

j
t+s

�
ajt;t+s � p

j
t+sa

j
t;t+s�1

�
�
X
k

��
qkt+s � dkt+s

�
bkt;t+s � qkt+sbkt;t+s�1

�
for s = 0; :::; S � 1 and

vt;t+S =
X
j

pjt+Sa
j
t;t+S�1 +

X
k

qkt+Sb
k
t;t+S�1:

The end-of-life wealth of an agent born in t (evaluated at the beginning of his life) is:

wt =
1

�S

SX
s=0

�svt;t+s

Plug in the income process and the linear prices:

wt =
1

�S

S�1X
s=0

�s

 
ylt�1 + "
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sX
m=0

�
1� �lm

�
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!

+
1

�S

X
j

S�1X
s=0
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�
�
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j
t+s+1 + (1� �) �pj

�

+
1

�S

X
k

S�1X
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�
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k
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because �l0 = 0. Note that

S�1X
s=0

�s
sX
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�lm�
l
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�
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Plug back into the utility function:
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Proof of Proposition 2

The demands for assets excluding the hedging motive can be written as�
~at�s;t
bt�s;t

�
=
(1� �)3

2�s+2
�S��1

�
�p
�q

�
for s = 0; :::; S � 1. Since all agents have the same portfolio and there is a measure one of agents in
each cohort, the aggregate portfolio demand for assets (excluding the hedging motive), is
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The housing demand in city l by people with age s due to the hedging motive is�
1� �S�s+1

�Z
"

Z
�

I l";��
l
s+1� (";�) d"d�:

It is then easy to see that the total housing demand in city l due to the hedging motive is SRl,

where Rl is de�ned as in the statement of the proposition.
The supply of houses minus the hedging demand in every city is S (n�R). The housing market

clearing condition is therefore

1� �S

(1� �)�S�1
~at;t = S (n�R) :

Hence
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Plugging in the demand function yields a solution to the housing and stock risk premia yields
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(1� �)�S�1�
1� �S
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�
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�
:

Proof of Corollary 3

Note that
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The expected return of a zero-cost market portfolio containing one unit of M is given by
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The proof for k follows similar lines and is omitted.

Proof of Proposition 4

It is immediate to see that a solution to � (r̂) = n constitutes a linear stationary equilibrium: no

agent wants to change location, by de�nition rlt = y
j
t + �r

l, and the conditions for Propositions 1 and

2 are satis�ed.

To prove existence, note that �l (r̂) is continuous in r̂ and that limr̂l!�1 �
l (r̂) = 1 and

limr̂l!1 �
l (r̂) = 0.
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To prove uniqueness, suppose that the system � (r̂) = n has two distinct solutions �r and �r0.
Assume without loss of generality that there exists a non-empty set of cities ~L for which (�r0)l < �rl.
The set of agents who locate in a city in ~L is given by�

(";�) : max
l2~L

�
�ul (";�)� r̂l

�
� max

j =2~L

�
�uj (";�)� r̂j

��
Note however, that this set must become strictly larger when �r is replaced by �r0, because all elements

�ul (";�) � r̂l on one side become strictly larger and all elements �uj (";�) � r̂j on the other side do

not become larger. Hence, more agents will want to locate in cities in ~L, but this is impossible as

the mass of agents who locate in ~L must sum up to
P

l2~L n
l in both solutions.

Proof of Proposition 5

In the limit,
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�
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�
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As ~�ls+1 are the same for all agents and the ~"�s are uniformly distributed, we write
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Z
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d~"

This problem is symmetric in l. Hence, the unique solution to �l (r̂) = 1
LN for l = 1; :::; L must

be symmetric in l, namely �rl = �r. This means that the mass of agents who locates in the city is
�0 (r̂) = �rL. This implies �r = (1�N)

1
N . The equilibrium rent is given by
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(1� �)2
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�
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Proof of Proposition 6

Given the assumed relationship between �ls and s,

Dl
s =

�
1� �S�s

�
k

s

S � 1 :

It is easy to see that lims!0+ D
l
s = 0 and D

l
S = 0. Next note that

d
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�
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�
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and
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ds2
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1
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2
�S�sk

s
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Proof of Proposition 7

Consider any allocation of agents to cities. Suppose an agent with
�
"l; "m

�
is allocated to city l

and another agent with
��
"l
�0
; ("m)

0
�
is allocated to m. Swapping agents does not increase total

expected production if and only if

"l �
�
"l
�0 � "m � ("m)0

If this holds true for every agent, one can �nd a unique vector �" such that the condition in the

statement is satis�ed.

Proof of Proposition 8

According to proposition 4, in a linear stationary equilibrium agents are assigned to cities according
to

�ul (";�) = "l +
(1� �)2

1� �S
�pl

SX
s=1

�
1� �S�s+1

�
�ls

suppose that an agent with a certain (";�) locates in city l. His next preferred city is m, and the
utility di¤erence between the two cities is given by

D = �ul (";�)� �um (";�) ;

where D is su¢ ciently low. Consider another agent with ("0;�0) which is identical to (";�) except

that ("0)l = "l + � and
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�
1� �S�s�1

�
(�0)

l
s =
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�
1� �S�s�1

�
�ls � �. Given a positive �pl,

it is always possible to �nd � and � such that �ul ("0;�0) < �um ("0;�0). By the assumption that � has

full support, agents with (";�) and ("0;�0) exist. The sum of expected outputs of the two agents

would be higher if the agents switched cities.

Proof of Proposition 10

The �rst part is immediate. If E is an allocation and prices are linear, then every agent is using

�ul
�
";�; El

�
� �rl as a criterion to locate and rents must equate demand and supply. The argument

for the uniqueness of �rl (given E) is unchanged from the proof of Proposition 4.

Proof of Proposition 11

Consider an agent born in period t with parameters (";�) who locates in city l. His wealth at the
end of his life is

wt =
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Conjecture plt =
1

1�� y
l
t��pl. This implies plt+S = 1
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We have therefore
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The �rst-order condition for the optimal stock investment is
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The expectation and the variance of �nal wealth are given respectively by
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Proof of Proposition 12

The market clearing condition is
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where
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Proof of Proposition 13
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The rest of the proof is similar to the proof of Proposition 4 and it is omitted.
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