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Abstract

We develop an equilibrium model of venture capital markets, charac-
terized by the following cycle: (i) capitalists raise funds; (ii) capitalists
match with entrepreneurs; (iii) once matched, capitalists and entrepre-
neurs both take active roles in implementation; (iv) when the venture
matures, the capitalist exits to start the cycle anew. We determine the
durations of each phases in the cycle, the amount of funds that �ow
into the market, and the returns to both entrepreneurs and capitalists.

�Both authors are a¢ liated with The Department of Economics, University of Penn-
sylvania. For their input on work related to this project, we thank Ken Burdett, Boyan
Jovanovic, Philipp Kircher, Christian Helwig, and Iuorii Manovskii.
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1 Introduction

The venture capital (private equity) market works like this: Some entepre-

neurs with viable ideas for projects, or ventures, have trouble getting �nanc-

ing from banks or other conventional sources, typically because their ideas

are technically di¢ cult for non-experts to evaluate and/or because they lack

su¢ cient collateral. Venture capitalists, or VC�s, are agents with access to

funds that specialize in locating, evaluating, and selecting high-risk but po-

tentially high-return projects. They also have expertise in implementation

that is a key input into the project; more than just lending money, VC�s

enter into partnerships with entrepreneurs, taking an active role in devel-

opment, management, monitoring, etc. As projects mature, especially once

they can be more easily evaluated and operated by others, VC�s exit to raise

funds for new projects. This is called the venture capital cycle.1

The economics of this market seems worth investigation. There have

been rapid increases in the size of the venture capital industry over the past

two decades: private equity increased from under $5 billion in 1980 to over

$300 billion in 2004, and in the past 25 years more than $1 trillion has

passed through these funds (Lerner 2003; Lerner et al. 2004). Despite the

2001-2003 downturn, commitments to US venture capital funds increased

from $8.7 billion in 2003 to $16-17 billion in 2004. Although it still is

only a fraction of the total �nancial sector, this market is considered an

engine for economic growth. For example, a signi�cant fraction of blue-chip

�rms, including Apple, Compaq, FedEx, Intel, Microsoft and Cisco Systems,

1We�re not making this up. In the words of the experts, �To understand the venture
capital industry, one must understand the whole �venture cycle.� The venture capital
cycle starts with raising a venture fund; proceeds through the investment in, monitoring
of, and adding value to �rms; continues as the venture capital �rm exits successful deals
and returns capital to its investors; and renews itself with the venture capitalist raising
additional funds.�(Gompers and Lerner 2001).
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received venture capital in their early stages, and generally venture capital-

backed �rms perform quite well, by a variety of criteria.2

There is much research on particular aspects of this market, surveyed

e.g. in Gompers and Lerner (1999, 2001) and Kaplan and Stromberg (2001).

But we think there is much more to be done. Two questions that we think

especially interesting are, what determines the duration of each phase of

venture cycle, and what determines the size of the fund? The former (timing)

is a major concern; as Cochrane (2004) puts it, e.g., �The risk facing a

venture capital investor is as much when his or her return will occur as it is

how much that return will be.�The latter (fund size) is a decision a¤ected

by various factors discussed in the empirical literature; but scholars still

seem uncertain about the determinants of the optimal level of investment in

the industry, or, at the individual level, optimal fund size. To address these

issues, we develop an equilibrium model that makes explicit various frictions

and imperfections in the market, using some tools from search theory.3

The idea that frictions may be relevant here is not new. According to

Gompers and Lerner (2000), e.g., there is a positive relation between the

valuation of venture capital investment and liquidity in�ows in the market

not driven by improvements in potential prospects, as would be predicted

2A study by NVCAA (2002) found that during 1970-2000 �venture capital-backed
companies had approximately twice the sales, paid almost three times the federal taxes,
generated almost twice the exports, and invested almost three times as much in R&D
as the average non-venture capital-backed public company, per each $1,000 of assets.�
Kortum and Lerner (2000) estimated that although such �rms account for only about 3
percent of all R&D spending, they generate about 14 percent of the innovation.

3Search has proved a rigorous yet tractable way to study many markets with frictions;
see Rogerson et al. (2005) for a recent survey of applications to labor markets, and
the references therein for applications to the theory of marriage, monetary economics,
and industrial organization. Recent applications in �nance inclue Du¢ e, Garleanu and
Pedersen (2002), Weill (2004), and Lagos (2006). Formally, although di¤erent on several
dimensions, our framework shares some features with the macro-labor model in Pissarides
(1990) or Mortensen and Pissarides (1994) and the monetary model in Lagos and Wright
(2005).

3



by classic asset pricing theory, and interpret this as evidence against the

assumption of a perfect and frictionless market. Gompers and Lerner (1999)

and Lerner (2002) also describe recurrent imbalances between supply and

demand for funds. Our model helps clarify these observations by explaining

capital �ows into this market, the decision to enter (or not) into a venture,

and how we can simultaneously have entrepreneurs in search of funding

and capitalists with idle funds. The model also determines the lengths of

the di¤erent phases of the venture cycle, and how these depend on various

factors.

There is a considerable literature in �nancial economics that explores

how VC�s screen, select, �nance, monitor and advise their companies.4 At

the rsik of generalizing, it is mainly partial equilibrium, and focuses on

optimal contracts between VC�s and entrepreneurs in the presence of adverse

selection and moral hazard; there is little consideration of other market

frictions. Inderst and Muller (2004), Michelacci and Suarez (2004), and

Keuschnigg (2003) do consider search-based models, but our approach and

focus are very di¤erent. For instance, while they assume that every match

between an entrepreneur and capitalist is the same, we take seriously the

notion of heterogeneity, which seems critical for analyzing project selection.

We also model explicitly liquidity in a way that is realistic and has not been

done before, and is critical for analyzing the duration of the di¤eren phases

of the cycle and optimal fund size.5

4 In addition to research summarized in the surveys cited above, we mention
Aghion and Tirole (1994), Bascha and Walz (2001), Bergemann and Hege (1998),
Casamatta (2002), Cumming and MacIntosh (2002), Hellmann (1998), Hellmann and
Puri (2000,2002), Kaplan and Strömberg (2000,2001), Schmidt (2002), and Babarino and
Jovanovic (2006).

5 In Silviera and Wright (2006) we also endogenized liquidity in the market for �ideas�
in a way that is similar to the approach here, but that paper was not about the venture
capital market and had nothing to say about the venture cycle.
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Related work includes Jovanovic and B. Szentes (2006) and Pinheiro

(2007), both of which consider the initial decision of an entrpreneur try

to get venture �nancing in the �rst place (instead of alternative like, say,

saving up the funds himself), and worry about the timing of the IPO. In

particular, an issue discussed in the literature is whether the VC has an

extra incentive to go public early, since he wants to renter the market in

search of new projects, while the entrepreneur is typically not expected to

renter the market. A popular explanation since Gompers (1996) known as

granstanding says that the VC is trying to signal his ability to the rest of

the market by going public early, even if this means underpricing. Pinheiro

(2007) proposes an alternative view, which is simply that the VC has to

�nish up with one project before he starts another due to limited capacity

to be involved in several projects at the same time. This is very similar to

the line in Michelacci and Suarez (2004), and very much in the spirit of our

model.

2 A Simple Model

There are two types of risk neutral agents: entrepreneurs labeled e, and cap-

italists labeled . They need each other to start a venture. The notion is that

e has an idea and technical ability, but lacks either the funds or the expertise

to implement it, while k is a specialist in �nding and evaluating potentialy

pro�table ideas who can potentially provide funds, expertise and other in-

puts.6 For simplicity we assume that k wants to enter into one and only one

6As we said in the Introduction, e cannot easily access banks or other conventional
sources of funds because he lacks sugni�cant tangible assets and because his idea may
be hard for non-experts to evaluate. We abstract from the question of whether e should,
instead of entering the venture capital market, try to save up and �nance the project
himself (Babarino and Jovanovic 2006); even if e has access to his own funds, however, he
may still value the expertise of k in terms of implementation.
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project at a time, and symmetrically e needs exactly one VC. Let `e and `k

denote inputs, or investments, by the two parties during the implementation

stage; for now we take these as �xed, but they are endogenized below. The

marginal cost of investments for each agent can be normalized to 1 for each

agent without loss of generality. Agents meet bilaterally in continuous time

according to a standard Poisson matching process, with arrival rates �e and

�k that they take as given, but are endogenized below.

In general, when e and k meet, they draw (R;C) from some distribution

F (R;C) = pr( ~R � R; ~C � C), where C is the start-up cost and R the

return on the project when it comes to fruition in the future. Although one

could precoeed di¤erently, we assume that agents are ex ante homogenous,

but (R;C) di¤ers across matches ex post, say because k may have more or

less expertise in the area corresponding to the idea of a particular e. We

abstract from private information, not because we think it is uninteresting,

but because we want to focus on di¤erent issues; thus, when they meet, e

and k both know the realization (R;C). In this section we begin with the

simplest case where C = 0 and R > 0 are constant across matches. With

C = 0, funding is not an issue, but k still brings expertise to the table. In

any event, we will soon allow random C as well as R.

If they agree to start a venture, a payment p from e to k is negotiated,

due when the project comes to fruition. We can trivially reinterpret k as

receiving an equity share �, as is typically the case in reality, simply by

setting � = p=R; even if returns are random, it does not matter if they

bargain over a �xed payment p or an equity share �, since agents are risk

neutral. We assume that the agreement is binding � e.g. an enforcable

contract, not subject to opportunistic renegotiation. The venture comes to

fruition at some random date after implementation begins. Let � be the
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Possion rate at which this happens as a function of the investments made

during implementation, � = �(`e; `k). When the venture comes to fruition,

k receives p and returns to the market, while e keeps the residual R�p, exits,

and is replaced by a clone of himself in order to maintain steady state.7

In our framework there are four recurring stages in the life of a VC,

corresponding to the cycle described in the Introduction: (i) fund raising;

(ii) search for a partner/project; (iii) implementation; and (iv) exit upon

maturation. For now we ignore the �rst stage, since C = 0, but fund raising

will be a crucial part of the general model discussed below. The second stage

is random in duration because search takes time, and depends on market

tightness, we discuss below. The third stage is also random because the rate

at which projects come to fruition depends on investment inputs, as we also

discuss below. The exit stage can also be random, but since this is the one

phase that has been analyzed in a related model, by Michelacci and Suarez

(2004), we assume for now that k can exit and reap his return costlessly

once the project matures.

Let the value function for type i in state j be V ji , where j = 0 means that

i is in the partner search stage and j = 1 means that i in the implementation

stage. Let �p be the value of p prevailing in the market. Given the discount

rate r, the value functions for e satisfy8

rV 0e = �e(V
1
e � V 0e ) (1)

rV 1e = �(R� �p� V 1e )� `e; (2)

7 In reality, the parties may actually sell the venture � i.e. go public �but again this
does not matter because of risk neutrality, so we assume e simply pays o¤ k.

8These standard programming equations have simple interpretations: e.g. the per
period value of the venture to e is rV 1

e , which equals the rate at which it comes to fruition
�, times the capital gain R� �p�V 1

e , minus the �ow cost `e. Notice that, as we said, k goes
back to the market when he exits a project while e does not; this seems fairly realistic,
although the model works �ne with althernative assumptions �e.g. we can allow e to go
back to the market with a new idea.
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and those for k satisfy

rV 0k = �k(V
1
k � V 0k ) (3)

rV 1k = �(�p+ V 0k � V 1e )� `k: (4)

It is simple to solve these (linear) equations for

V 0e =
�e [�(R� �p)� `e]
(r + �)(r + �e)

and V 1e =
�(R� �p)� `e

r + �
(5)

V 0k =
�k (��p� `k)
r(r + � + �k)

and V 1k =
(r + �k) (��p� `k)
r(r + � + �k)

: (6)

When e and k meet, they negotiate over p for their particular project,

taking as given the market �p. We adopt the generalized Nash bargaining

solution

max
p
S�kS

1��
e (7)

where � is the bargaining power of k, while Sk = V 1k �V 0k and Se = V 1e �V 0e
are the surpluses. It is convenient rearrange (4) as V 1k =

�(p+V 0k )�`k
r+� and (2)

as V 1e =
�(R�p)�`e

r+� , to express

Sk =
�p� rV 0k � `k

r + �
(8)

Se =
�(R� p)� (r + �)V 0e � `e

r + �
(9)

as functions of the p in the current venture, as well as the outside options

V 0k and V
0
e , which are themselves functions of �p. For future reference, write

the total surplus S = Sk + Se as

S =
�R� (r + �)V 0e � rV 0k � `e � `k

r + �
: (10)

Inserting (8) and (9) into (7), taking the �rst order condition, and sim-

plifying, we �nd the p for a particular venture in terms of its expected return

and costs, plus the outside options:

�p = ��R� �`e � (1� �)`k � �(r + �)V 0e + (1� �) rV 0k (11)
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Inserting (5)-(6), setting �p = p = p�, and simplifying, we get

�p� =
�r (r + � + �k) (�R� `e) + (1� �)(r + �)(r + �e)`k

�r (r + � + �k) + (1� �) (r + �) (r + �e)
: (12)

Equilibrium thus yields p� as a weighted average of �R � `e and `k. There

are, however, two participation constraints to check: Sk � 0 and Se � 0. It

turns out that these both hold i¤S � 0, which simpli�es to �R�`k�`e � 0.

Hence, as long as we satisfy this obviously neccesary condition for a venture

to be worthwhile, the constraints are not binding.9

Even this basic model makes interesting predictions about the returns

p� and R � p� going to the two parties. For example, @p�=@� > 0, � =

1 =) p� = R, and � = 0 =) p� = 0, naturally. Also, @p=@�k > 0

and @p=@�e < 0, so higher arrival rates and hence better outside options

for the capitalist (entrepreneur) increase (decrease) p�. Also, @p�=@R > 0

and @p�=@� < 0, so more lucarative projects generate higher payments to k,

while less time-consuming ones generate lower payments. Finally, @p=@`k >

0 and @p=@`e < 0, so that when the project requires greater investment

by the capitalist (entrepreneur) p� goes up (down) in compensation. All of

these predictions seem reasonable, relevant, and potentially testable.10

revision
9This is standard in search-and-bargaining models with transferable utility, and implies

that one side wants to form a relationship i¤ the other side wants to form a relationship
(see e.g. Burdett and Wright 1998). Of course, for now all relationships are the same, but
the same result holds with (R;C) random.

10 If we interpret k as receiving an equity share � = p=R in the venture, comparative
statics on � are all obvious, except @�=@r, which is poisitive i¤ �r(r + � + �k)`e >
(1 � �)(r + �) (r + �e) `k. One can also use alternative bargaining solutions and get
similar results. Suppose e.g. the threat point of agent j is 0, rather than V 0

j , which is
equally valid (either can be derived from an underlying stategic bargaining model; see e.g.
Osborne and Rubinstein 1990). In this case, letting `k = `e = 0 to reduce notation,

�p =
�r(r + � + �k) (�R� `e) + (1� �) (r + �)(r + �k)`k

r(r + � + �k) + (1� �)�k�
:

Predictions are similar, if not exactly the same.
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Here we discuss arrival rates, without free entry. Let the measure of

type k be n and the measure of type e be (normalized to) 1. Let the number

of ventures in the implementation stage be m. Since each venture takes

one e and one k o¤ the market, there are 1 � m and n � m of each type

in the partner-search phase at any point in time. We have the identity

�k(n � m) = �e(1 � m), both sides giving the �ow of new ventures. In

steady state, this must equal �m, and therefore

m =
n�k
�k + �

:

The measures of e and k in the partner-search phase therefore at any point

in time are then 1�m = (1�n)�k+�
�k+�

and n�m = n�
�k+�

, and market tightness

is � = n�
(1�n)�k+� . The total number of meetings is given by the constant

returns technology �(1�m;n�m), and so

�k =
�(1�m;n�m)

n�m = �

�
(1� n)�k + �

n�
; 1

�
:

The RHS is a function of �k with intercept � [1=n; 1] > 0, and is increasing if

n > 1, or decreasing if n < 1. In the latter case there clearly exists a unique

�k satifying this condition, and in the former case the same is true as long

as we make the standard assumption that � is increasing and concave with

�1(1; 1) = 0. In the border line case where n = 1, �k is simply given by

the intercept � [1=n; 1]. Given �k, we recover �e from the identity

�e = �k
n�m
1�m = �

�
1;

n�

(1� n)�k + �

�
:

Obviously, increasing n lowers �k and raises �e.

revision

So far, the model determines returns, but the length of the cycle is ex-

ogenous, with hazard rate �e between the search and implementation stages
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and hazard rate � between implementation and exit. We now endogenize

these. First, following Pissarides�(1990) labor-market model, we consider

entry. Let the measure of entepreneurs and capitalists in the market be ne

and nk. If we assume a standard CRS matching technology m(ne; nk), the

arrival rates in the partner-search stage satisfy

�e = m(ne; nk)=ne = m(1; �) (13)

�k = m(ne; nk)=nk = m(1; �)=� ; (14)

where � = ne=nk denotes market tightness. Hence, we write �k = �k(�)

and �e = �e(�).

If ne and nk are �xed then so are the arrival rates, as long as we satisfy

the identity ne�e = nk�k, which is how one interprets the previous simple

model. Now we �x ne = 1, but assume a perfectly elastic supply of potential

VC�s who can enter the market as long as they pay some �xed cost � (say,

a cost to acquiring expertise; later we introduce the cost of raising funds).

Then equilibrium requires � = V 0k , which by (6) is equivalent to

� =
�k (�p� `k)
r (r + � + �k)

: (15)

Using (12) to eliminate p, then inserting �j = �j(�), we arrive at

� =
�k(�)� (�R� `k � `e)

�r [r + � + �k(�)] + (1� �) (r + �) [r + �e(�)]
: (16)

Equilibrium with entry is a pair (��; p�) solving (16) and (12). Conve-

niently, equilibrium is recursive: we �rst look for a �� solving (16); then,

given �j(��), we get p� exactly as in the model with no entry. We make the

usual assumptions that the matching technology m(�) implies �k(0) = 1,

�k(1) = 0, �0k(�) < 0, �e(0) = 0, �e(1) = 1, and �0e(�) < 0. Then it

is easy to check, that as long as � > 0, the RHS of (16) is decreasing in � ,
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approaches 0 as � !1, and approaches (�R� `k � `e) =r as � ! 0. Hence,

given �R�`k�`e � 0, which we obviously need for ventures to be pro�table

in the �rst place, there exists a unique equilibrium, with ne = �� > 0 i¤

� < �� = (�R� `k � `e) =r. Given � < ��, it is easy to verify @��=@� < 0,

@��=@R > 0, @��=@� > 0, @��=@`k < 0, @��=@`e < 0, @��=@� > 0 and

@��=@r < 0.

Therefore, once we add entry, the framework implies that the number

of VC�s will increase when the cost of entry falls, when ventures are more

lucrative, and when ventures are less costly in terms of either time or other

investments. Their number will also increase when VC�s have more bargain-

ing power, and when they are more patient. By a¤ecting market tightness,

entry a¤ects the arrival rates �e and �k, and hence the duration of search

for a partner on both sides of the market. In general equilibrium, all of these

changes also a¤ect p in ways that can be easily computed. Hence, again the

model can be used to make predictions that seem reasonable, relevant, and

testable empirically.

Having determined the duration of search, we now endogenize the length

of the implemtation stage, by letting agents choose the investments (`e; `k).

We assume that more of either input increases the rate at which the project

comes to fruition � = �(`e; `k), where �(�) is strictly concave, and without

any real loss of generality restrict (`e; `k) 2 L = [0; 1]2. When e and k meet,

they bargain over p as well as (`e; `k). We can �nd the outcome by inserting

(8)-(9) into (7) and maximizing with respect to all three variables. However,

as is standard, an easier route to the same end is to �rst maximize the total

surplus S (which does not depend on p) with respect to (`e; `k), and then

split S by maximizing the Nash product with respect to p.
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The problem of maximizing the surplus is:

max
(`e;`k)2L

S =
�(`e; `k)R� [r + �(`e; `k)]V 0e � rV 0k � `e � `k

r + �(`e; `k)
(17)

Because S is continuous and L = [0; 1]2 a solution exists. Standard curvature

conditions can be imposed to guaranntee it is interior, and hence satis�es

the �rst-order conditions

`e : [rR+ rV 0k + `e + `k]�e � (r + �) = 0 (18)

`k : [rR+ rV 0k + `e + `k]�k � (r + �) = 0: (19)

It is easy to check that S is strictly concave at any point where the �rst-

order conditions hold, and so there is a unique choice (`e; `k) that solves

(17). From (18)-(19) we immediately see that �e = �k, which is natural,

since `e and `k have the same marginal cost. Also, this choice of (`e; `k)

takes all the market values V ji as given, but actually depends only on V
0
k .

In equilibrium, of course, V 0k is given by (6) as a function of the �p pre-

vailing in the market, which is in turn given by (12). Inserting these results

and simplifying, we get

�e = �k =
�r(r + � + �k) + (1� �) (r + �) (r + �e)

[r + (1� �)�e + �k] rR+ [r + (1� �)�e] (`e + `k)
: (20)

The two equalities in (20) determine (`�e; `
�
k), and then we get p

� from (12)

as in the model with `j �xed.11 Assuming for the moment that �e and �k

are �xed, we claim that an equilibrium always exists. Thus, consider an

arbitray pair (�̀e; �̀k) 2 L prevailing in the market. Clearly the values of �

and V ij prevailing in the market are continous in (�̀e; �̀k). Given this, the

unique solution (`e; `k) 2 L to (17) discussed in the previous paragraph is
11Notice the solution to the bargaining problem (17) does not depend on �, since agents

at this stage are trying simply to maximize the joint surplus; in equilibrium, however, (20)
indicates that (`�e ; `

�
k) does depend on �, since it in�uences the continuation value V

0
k .
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continuous in (�̀e; �̀k) by the Theorem of the Maximum. Since L = [0; 1]2

there exists a �xed point (`�e; `
�
k).

Thus we endogenize the implementation phase. To illustrate the essential

workings of the model, consider for simplicity the limiting case � ! 1. Then

(20) reduces to

�e = �k =
r + � + �k

(r + �k)R+ `e + `k
: (21)

It is easy to check @`e=@R ' �ek � �kk, where a ' b means a and b have

the same sign; hence, @`e=@R > 0 i¤ `e is a normal input.12 Similarly,

@`e=@r > 0 and @`e=@�k > 0 under the same conditions. Symmetrically,

@`k=@R > 0, @`k=@r > 0 and @`k=@�k > 0 i¤ `k is a normal input. The

intuition is clear: increasing R raises the value of the venture once it comes

to fruition, while increasing r or �k makes k more impatient for this to

happen, and in either case it is desirable to increase �. This means either

`e or `k must increase, and both increase if they are normal inputs.

One can of course combine the models that endogenize the partner-search

phase and the implementation phase. To ease the presentation, suppose

`k = �̀
k is given �e.g. the VC contributes some �xed factor, but does not

contribute to � at the margin �so that we can de�ne equilibrium in terms

of (`e; �) and represent the outcome using a graph in R2, and again we let

� ! 1. This has the following extreme feature: with � = 1, e gets no surplus

since he is compensated only for the cost of `e; and with free entry, k gets

no ex ante pro�t (although there is positive expected pro�t ex post once

k meets e and implemetation begins). Hence, if taken literally, this case

implies all ex ante gains from trade go to whoever is selling expertise to e at

price � �say, economics professors. But we do not need to take it literally,

12 In standard price theory, in general, saying `e is a normal input means that in the
problem min fpk`k + pe`eg s.t. �(`e; `k) = ��, the solution satis�es @`e=@�� = �k�ek �
�e�kk > 0. In our problem, since �k = �e, this reduces to �ek > �kk.
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since by continuity, all substantive conclusions also hold for � � 1.

Given �̀k is �xed, equilibrium is characterized by the �rst order condition

(20) for the optimal investment `e, and the free entry condition (16) for � .

When � = 1, after algebraic manipulation to isolate �k(�) on the LHS, these

can be written

�k(�) =
�e(`e)

�
rR+ `e + �̀k

�
� r � �(`e)

1� �e(`e)rR
(22)

�k(�) =
�r [r + �(`e)]

�(`e)R� `e � �̀k � �r
: (23)

We prove in the Appendix the following:

Claim 1 There exists a unique equilibrium; if � � �� where �� is de�ned in

terms of parameters, then the equilibrium entails ne = 0 and the market

shuts down; if � < �� then ne = �� > 0 and `e = `�e, where `
�
e is the value of

`e that maximizes � subject to free entry.

These results are illustrated in Figure 1 in (`e; �k) space, since it is

obviously equivalent to solve for either � or �k(�). The FE curve is the

locus of points satisfying the free entry condition (23) and the OI curve is

the locus of points satisfying the optimal investment condition (22), drawn

assuming � < ��. These curves intersect uniquely in the positive quadrant,

at the minimum of the FE curve over the interval (`1; `2), where `1 and

`2 are the two solutions to �(`e)R � `e � �̀
k � r� = 0.13 These curves

make it relatively easy to analyze the full equilibrium. For example, as �

increases, OI does not change while FE shifts up, increasing `� and �k(��)

(i.e., decreasing entry). As � increases, however, the interval (`1; `2) gets

smaller and eventually vanishes, so we lose equilibrium.
13Thus, `1 and `2 imply 0 pro�t given the VC gets a project without having to search.

Note that for analytic completeness the Figure shows what happens when �k < 0, although
obviously this cannot be an equilibrium.
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Figure 1: Results in Claim 1

Similarly, one can ask about a change in R. This shifts FE down as

entry rises, reducing �k and ` along a given OI curve; but the IO curve also

shifts down, causing ` to move back up and further reducing �k since we

know the new equilibrium still lies at the minimum of FE. The net e¤ect

is a fall in �k due to increased entry, and apparently an ambiguous e¤ect

on `. But we can use the result in Claim 1 that the intersection of FE and

OI occurs at the minium of the FE curve to deduce that in fact `� actually

must rise after an increase in R, because it is easy to see that the minimum

point on FE shifts right. A similar argument can be used to establish that

`� and �k(��) must rise after an increase in r. See Figure 2 for parametric

examples.
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Figure 2: Changes in R and r in examples

3 Random Return and Cost

The models in the previous section generate as an equilibrium outcome the

return p, as well as the duration of the partner-search and implementation

stages of the VC cycle. The duration of the partner-search phase is made

endogenous through entry by VC�s, which a¤ects the arrival rates �e and

�k through market tightness. Another way to make this stage endogenous

is to let the quality of the match between e and k project be random. To

be precise, a non-negative (R;C) is observed when agents meet, but it can

di¤er across meetings, even though all agents are ex ante homogeneous. We

can summarize a general joint distribution of (R;C) by the marginal FC(C)

and the conditional FR(RjC). However, we start with C = 0 in all matches

and FR(RjC = 0) simple as FR(Rj0). We take `e and `k as �xed for now.

The value functions for implementation satisfy the same conditions as

above, (2) and (4), except V 1e = V 1e (R) and V
1
k = V 1k (R) can now vary

across matches. The value functions for partner search are slightly more
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complicated. For an entrepreneur, e.g.,

rV 0e = �e

�RZ
0

maxfV 1e ( ~R)� V 0e ; 0gdFR( ~R) = �e

�RZ
R�

h
V 1e (

~R)� V 0e
i
dFR( ~R)

(24)

where, to clarify notation, ~R is the random variable (a dummy variable for

integration), �R is the upper bound of its support, and R� is the endogenous

reservation return below which partnerships do not form. The reservation

return obviously satis�es S(R�) = Se(R�) = Sk(R�) = 0; in other words, it

generates 0 surplus, which from (10) means

�R� = rV 0k + (r + �)V
0
e + `e + `k: (25)

Inserting (9) into (24), we get

rV 0e =
�e
r + �

�RZ
R�

h
�( ~R� p)� (r + �)V 0e � `e

i
dFR( ~R): (26)

The barganing problem is the same as in the simpler model, and yields

the same solution (11), which we can insert into (26) to get

rV 0e =
�e(1� �)
r + �

�RZ
R�

h
� ~R� rV 0k � (r + �)V 0e � `e � `k

i
dFR( ~R)

=
�e(1� �)�
r + �

�RZ
R�

�
~R�R�

�
dFR( ~R);

after using (25). Integrating by parts yields

rV 0e =
�e(1� �)�
r + �

�RZ
R�

h
1� FR( ~R)

i
d ~R: (27)

Similarly,

rV 0k =
�k��

r + �

�RZ
R�

h
1� FR( ~R)

i
d ~R: (28)
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Inserting (27)-(28) into (25), we arrive at

�R� = �

�RZ
R�

h
1� FR( ~R)

i
d ~R+ `e + `k; (29)

where to save space we introduce

� = �(�; r; �; �e�k) �
� [�e(1� �)(r + �) + �k�r]

r (r + �)
(30)

Given �xed ne and nk, and �xed `e and `k, equilibrium is characterized

simply as a solution R� to (29), since given this we can compute p� = p�(R)

for any venture with R � R� from (12) (notice that p� is an increasing func-

tion). It is easy to verify that a unique equilibrium exists. The duration of

partner search for k is endogenous, with hazard rate Hk � �k[1� FR(R�)],

because the parties agree to start a venture i¤ R � R�. The expected du-

ration of partner search for the VC is 1=Hk. It is straightforward to show

@R�=@r < 0 and @R�=@� < 0; when impatience increases or projects be-

comes less time consuming, agents get less picky about R, and the expected

duration of search falls. Also, @R�=@ (`e + `k) > 0, since agents get more

picky when ventures are more costly. We cannot sign @R�=@�, in general,

as a change in � raises the outside option for one side and lowers it for the

other.

One can show @R�=@�j > 0; more frequent meetings make agents more

picky. However, @Hk=@k is ambigous, precisely because agents get more

picky. One can show @Hk=@�k > 0 if the density is log concave.14 Using

some other tricks from job search theory, one can study changes in the

distribution. For instance, a translation of FR (increase every R to R + ")

14That is, logF 0(R) is concave in R, which holds for many but not all common dis-
tributions, and has been a common tool in search since Burdett (1981). See Sec. 2.5 of
the notes at http://www.ssc.upenn.edu/~rwright/courses/oss.pdf for details concerning
results discussed in this paragraph.
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raises R�, but by less than the amount of the translation as long as `e+`k >

0, which means that Hk increases. Perhaps surprisingly, the expected return

conditional on implementation E[RjR � R�] can fall after a translation, but

we can rule this out again by log concavity. Similar results apply to a scale

transformation of FR (increase every R to R+R"). One can also show that

an increase in risk (a mean-preserving spread of FR) increases R�; intuitively,

more risk makes search more attractive due to the option to pass on poor

ventures.

As in the previous section, instead of assuming �xed ne and nk we can

add free entry, which in this model reduces to

r� =
�k(�)��

r + �

�RZ
R�

h
1� FR( ~R)

i
d ~R: (31)

Given this, we can simplify (29) using �e = �k=� to

��R� = [�r + (1� �)(r + �)� ]�+ � (`e + `k) : (32)

Equilibrium is now a pair (� ;R�) solving (31)-(32), two curves labeled FE

and RR (for Free Entry and Reservation Return) in Figure 3. It is clear that

FE is decreasing and approaches the axes under the usual assumptions on

the m(�), and that RR gives R� as a linearly increasing funciton of � .

Existence and uniqueness results are now rountine. It is also easy to

perform comparative static exercises. For example, if � increases, both

curves shift left, which reduces � by choking o¤ entry, but has an ambiguious

e¤ect on R�. The same thing happens if r increases; for a �xed � we earlier

showed that R� unambiguiously decreases with r, but now the impact of

changing entry on the arrival rates clouds the issue. The same thing happens

if `e+`k increases. If � or � increases, both curves shift right, which increases

entry and � and has an ambiguious e¤ect on R�. All of this says that there
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Figure 3: Equilibrium with R random and free entry

can be interesting general equilibrium e¤ects on the duration of the VC

cycle.

The case where R and C are both random is not much more di¢ cult.

In general, V 1j = V
1
j (R;C) now depends on the joint realization. Thus, e.g.,

we have

rV 0k = �k

�CZ
0

�RZ
0

maxfV 1k ( ~R; ~C)� ~C � V 0k ; 0gdFR( ~Rj ~C)dFC( ~C): (33)

Notice k has to pay C up front. The reservation return R�(C) now depends

on the realized value of C, and satis�es a generalized version of (25)

�R�(C) = rV 0k + (r + �)V
0
e + (r + �)C + `e + `k: (34)

The bargaining problem yields a generalized version of (11),

�p = ��R��`e+(1��)`k+(1� �) (r+�)C��(r+�)V 0e +(1� �) rV 0k (35)

21



where we note that p is increasing in the realization of C as long as � = 1.

This leads to a generalization of (28), and similarly, of (27), given by

rV 0k =
�k��

r + �

�CZ
0

�RZ
R�(C)

h
1� FR( ~Rj ~C)

i
d ~RdFC( ~C) (36)

rV 0e =
�e(1� �)�
r + �

�CZ
0

�RZ
R�( ~C)

h
1� FR( ~Rj ~C)

i
d ~RdFC( ~C): (37)

Inserting (36)-(37) into (34), we get the analog of (29),

�R�(C) = (r + �)C +�

�CZ
0

�RZ
R�( ~C)

h
1� FR( ~Rj ~C)

i
d ~RdFC( ~C) + `e + `k; (38)

where � = �(�; r; �; �e�k) was de�ne in (30). Thus R�(C) is linear in C,

with slope (r+�)=� and intercept R�0. This is technically useful because we

can describe the outcome in terms of a number R�0 instead of the function

R�(C). With ne and nk �xed, then, we de�ne equilibrium simply in terms

of the number R�0. Or, with free entry, we get generalizations of (31)-(32),

r� =
�k(�)��

r + �

�CZ
0

�RZ
R�0+C(r+�)=�

[1� FR(RjC)] dRdFC(C) (39)

��R�0 = [�r + (1� �)(r + �)� ]�+ � (`e + `k) ; (40)

which pin down (� ;R�0). Comparing these to (31)-(32), we see that making

C random does not change the basic model much �but this will not be true

in the next section when we introduce liquidity considerations.

4 Fund Raising and Liquidity

In this section we start to take seriously the fund raising stage of the VC

cycle. The essential idea is not that fund raising takes time, but rather that
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it inolves some cost, and therefore a VC will not enter the next stage with

an arbitrarily large amount of money. Moreover, we will assume that once

he enters the next stage he cannot easily go back and raise additional funds.

To capture this succintly, we take the position that he simply cannot spend

more than the amount he brings to partner search. This assumption is quite

realistic, based on what we read in the institutional literature, and not hard

to model rigorously based on modern monetary theory. What is important

is the idea that one may have to strike when the iron is hot: a VC who says,

�that�s a good idea, let me see if I can raise some money�may lose the deal.

This is what the notion of liqudity is all about.15

To make this interesting we need C is random �otherwise the VC would

bring in exactly enough to cover the start-up cost. Given C is random, we

can assume R is constant without much sacri�ce. We also assume FC(C)

is continuously di¤erentiable when we need it. We also set `e = `k = 0

here to reduce notation. To reiterate, the key part of the speci�cation is

that k needs to choose a fund size m before the partner-search stage; any

match with C > m is out of reach and cannot be implemented. While this

is obviously extreme, it captures the idea that VC�s do commit to a fund

size ex ante and typically have di¢ culty extending themselves beyond this

commitment ex post. One can think of as also choosing a reservation cost

C�, but it adds nothing to the outcome, since m is the binding constraint:

as long as raising funds is costly there is no sense choosing m > C�. Hence

we do not need to worry about C�, and we can focus on the choice of m.

15 In Silviera and Wright (2005) we introduced into a di¤erent but related model the
idea that agents can try to raise additional funds after they meet someone, but with some
probability � the deal falls through. To make the essential point here we assume � = 1,
but the results hold more generally.
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The value function for k at the fundraising stage is given by

Wk(m�1) = max
m

�
m�1 �m+ V 0k (m)

	
; (41)

where m�1 denotes funds he starts with, typically given by his returns from

exiting the previous cycle, and m denotes what he takes to the next cycle. If

m�1 > m he consumes the di¤erence; else he has to raise funds. We assume

he can raise m instantly �although this would be easy to relax �at unit

cost, and we restrict m 2 [0; R], obviously without loss in generality. One

interpretation is that he can borrow at the same real interest rate that he

uses to discount, which means that the cost of borrowing m between t and

t0 in present value terms is simply m.16 The important point is that m is

taken into the next stage as a state variable, which is why we write V 0k (m).

The envelope condition is @Wk=@m�1 = 1. The �rst-order condition from

the maximization problem is @V 0k =@m = 1, although as we show below, this

condition may or may not characterize the solution.

Given the fund size m, the value to partner search is

rV 0k (m) = �k

mZ
0

h
V 1k (

~C) +m� ~C � V 0k (m)
i
dFC( ~C): (42)

Note that if the venture has startup cost C < m then k cashes in the

di¤erence immediately, and, again, if C > m he simply cannot a¤ord it. Note

also that the implementation value V 1k (C) may depend on C, even though it

is a sunk cost at the implementation stage, because the payment p = p(C;m)

in general can depend on C. Emulating the analysis of bargaining in the

16Because agents are risk neutral, there is a perfectly elastic supply of funds available
at rate r. Alternatively, we can say that if m > m�1 then k takes the di¤erence out of an
endowment � it does not matter with risk neutrality. In any case, with R deterministic
m > m�1 it does not arise in steady state �no one is going to take funds to the market
in excess of his share of the value of the venture �although, of course, a new entrant VC
has to either borrow or work to raise the initial fund.
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previous sections, we get the generalization of (35):

�p = ��R� �(r+ �)V 0e + (1� �) rV 0k + (1� �) (r+ �)C � (1� �) rm (43)

As long as � < 1, p is again increasing in C, and now it is also decreasing in

m if we hold V 0k constant at some given level; but if the �rst-order condition

for m holds then @V 0k =@m = 1, and hence @p=@m = 0.17

Further emulating the analysis in the previous sections, we get the gen-

eralized versions of (27)-(28)

rV 0e =
�e(1� �)
r + �

MZ
0

h
�R+ rM � (r + �) ~C � rV 0k � (r + �)V 0e

i
dFC( ~C)

rV 0k =
�k�

r + �

mZ
0

h
�R+ rm� (r + �) ~C � rV 0k � (r + �)V 0e

i
dFC( ~C): (44)

Note that we write V 0e in terms of the value M that e expects the repre-

sentative k to hold in equilibrium, while V 0k depends directly on the m that

k himself chooses. In equilibrium, of course, we can set m = M , and solve

these (linear) equations for

V 0e =
�e(1� �)F (m) [�R+ rm� (r + �)E (CjC � m)]
r (r + �) + �k�F (m)r + �e(1� �)F (m)(r + �)

(45)

V 0k =
�k�F (m) [�R+ rm� (r + �)E (CjC � m)]
r (r + �) + �k�F (m)r + �e(1� �)F (m)(r + �)

; (46)

where E (CjC � m) =
Rm
0

CdFC(C)
FC(m)

.

Now consider the fund-raising decision in (41). Di¤erentiation of both

sides of (44) (which gives V 0k before we impose the equilibrium condition

17The key point is that the realization of C applies only to the current match, while
the value of m is carried forward in the outside option V 0

k .
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m =M) leads to

r
@V 0k
@m

=
�k�

r + �

mZ
0

�
r � r@V

0
k

@m

�
dFC( ~C)

+
�k�

r + �

�
� (R�m)� rV 0k (m̂)� (r + �)V 0e

�
F 0C(m);

using Leibnez�s rule. By virtue of the �rst-order condition @V 0k =@m = 1,

this reduces to

r =
�kF

0
C(m)�

�
�(R�m)� rV 0k � (r + �)V 0e

�
r + �

: (47)

This equates the marginal cost of funds, r, to the marginal bene�t, which is

given by the probability per unit time that an additional dollar just allows

some venture to be funded, �kF 0C(m), times the VC�s share of the surplus,

appropriately discounted.

This marginal calculation takes V 0k and V
0
e as given. To describe equi-

librium, we can insert (45)-(46) into (47) and reduce the system to

T (m) = T1(m)T2(m)� T3(m)T4(m) = 0; (48)

where

T1(m) = �k�FC(m)F
0
C(m) [r�k� + (r + �)�e(1� �)]

T2(m) = [�R+ rm� (r + �)E (CjC � m)]

T3(m) = [r(r + �) + �k�FC(m)r + �e(1� �)FC(m)(r + �)]

T4(m) =
�
�k��(R�m)F 0C(m)� r(r + �)

�
:

This is almost our �nal answer. Since T (m) equals (in sign) marginal cost

minus marginal bene�t, T (m) = 0 is the �rst-order condition for an interior

solution for fund size in equilibirum; but we also must check the second-

order condition and the participation condition V 0k (m) � m. One can show
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the second-order condition holds i¤ T 0(m) > 0 (which simply says marginal

cost is increasing faster than marginal bene�t). The participation condition

turns out to hold i¤ R is above some threshold, as we now discuss.

The �rst thing to do is to graph T (m) (see Figure 4 below). The relevant

range is m 2 [0; R], and notice that T (R) > 0. Suppose T (m) � 0 8m 2

[0; R], which must be true if R is small enough; thenm = 0 is an equilibrium,

since the marginal cost exceeds the bene�t 8m 2 [0; R]. So suppose T (m) <

0 for some m 2 [0; R). Then two things are clear: there is at least one

solution to T (m) = 0 in (0; R) with T 0(m) � 0, and hence there is a value of

m that satis�es �rst- and second-order conditions; and if there are multiple

solutions, one of them �m acheives the maximum over [0; R] of w(m) =

V 0k (m) � m, where V 0k (m) is given by (??).18 If w( �m) � 0 then �m is an

equilibrium, since it satis�es the �rst- and second-order conditions, plus

participation. If w( �m) < 0 then no solution to the �rst- and second-order

conditions satis�es participation, and hencem = 0 is the unique equilibrium.

In either case we have existence of an equilibrium.

In Figure 4, an example with Fc log-normal shows T (m) in red, with the

dashed curve corresponding to R = 1 and the solid curve corresponding to

R = 1:2. The dashed and solid blue curves show w(m) for the same two

values of R. For each case, there are two solutions to T (m) = 0 (two places

where each red curve cuts the horizontal axis), and hence two values of m

that satisfy the �rst-order condition; but only the higher value of m satis�es

the second-order condition, which requires T 0(m) > 0. With the lower R = 1

shown as the dashed curve, the relevant solution violates participation since

w(m) < 0 and hence the only equilibrium ism = 0. With the higher R = 1:2

shown as the solid curve, the relevant solution satis�es participation since
18We assume that T (m) is continuous, and that there there are at most a �nite number

of solutions to T (m) = 0, which can be guaranteed with primitive assumptions on FC(�).
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w(m) > 0 and hence it is an equilibrium.

The key point is that equilibrium always exists, but if R is su¢ ciently

small then the only equilibrium is m = 0 �i.e. the venture capital market

shuts down �and ifR is su¢ ciently small then equilibrium exists withm > 0.

Since an increase in R shifts T (m) up, it is also clear that this will increase

the equilibrium value of m, assuming equilibrium with m > 0 exists, since

T 0(m) > 0 in equilibrium by the second-order condition.

5 Appendix

We prove Claim 1. First, we can work with �k, instead of � , since �k =

�k(�). Second, given �̀k is �xed, we can normalize it to 0. Then equilibrium

is a pair (`e; �k) satisfying

�k = �Fk (`e) �
r� [r + �(`e)]

�(`e)R� `e � r�

�k = �Ik(`e) �
�e(`e)(rR+ `e)� [r + �(`e)]

1� �e(`e)R
:

28



As `e ! 0, �(`e) ! 0 and �e(`e) ! 1 by assumption, and therefore

l�Hopital�s Rule implies �Ik(`e)! �r. Also, clearly, �Fk (0) = �r.

One can check that �Fk (`e) > 0 i¤ `e 2 (`1; `2), where `1 and `2 are

the two solutions to �(`e)R � `e = r�, which means (`1; `2) is nonempty i¤

� < �� = max f�(`e)R� `eg. One can check that �Fk is strictly convex in

(`1; `2). It is also easy to check that �Ik is strictly increasing i¤ `e 2 (0; ~̀),

with ~̀> `2, and �Ik ! �1 as `e ! `D from the left or right, where `D is

the zero of the denominator of �Ik. Notice that as long as � < ��, we have

`D 2 (`1; `2), because `D = argmax f�(`e)R� `e � r�g while (`1; `2) are the

zeros of �(`e)R� `e � r�.

Hence the situation is as depicted in Figure 1 in the text. Indeed we

can prove the following: �Ik meets �
F
k at `e = `� where `� minimizes �Fk

over (`1; `2). To verify this, notice that since �Fk is strictlty convex over

this interval, a necessary and su¢ cient condition for the minimization is

@�Fk =@`e = 0, which can be rearranged as

�e(`
�) =

r + �(`�)

rR+ `e + r�
:

Minor algebra reveals �Ik(`
�) = �Fk (`

�). This establishes the claim: equilib-

rium exists i¤ � < ��, since this is required for (`1; `2) to be nonempty, and

when it exists it is uniquely determined by `e = `� and �k = �Fk (`
�). �

Next we consider the model discussed in Claim 1 for the case of a general

value of � 2 [0; 1]. To simplify the notation slightly we set `k = 0 and write

`e = `. The free entry and optimal investment conditions are given by

� =
�k(�)� [� (`)R� `]

�r [r + � (`) + �k(�)] + (1� �) [r + � (`)] [r + �e(�)]

�e =
�r [r + � (`) + �k] + (1� �) [r + � (`)] (r + �e)
[r + (1� �)�e + �k] rR+ [r + (1� �)�e] `

:
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We can solve each of these equations for �k

�k (�) =
� f�r [r + � (`)] + (1� �) [r + � (`)] [r + �e(�)]g

� [� (`)R� `� r�]

�k (�) =
[r + � (`)] f�r + (1� �) [r + �e(�)]g

r [�e (`)R� �]

� [r + (1� �)�e(�)] (rR+ `)�e (`)
r [�e (`)R� �]

;

although these are not that useful, since �e(�) appears on the RHS. But if

we equate the two expressions, after some minor algebra, a minor miracle

occurs and �e(�) vanishes, leaving T (`) = 0, where

T (`) = � [r + � (`)� (rR+ `)�e (`)] [� (`)R� `]

�r� [(1� �)rR+ � (`)R� �`]�e (`) :

This is nice because an equilibrium with ` > 0 has to satisfy at least

T (`) = 0, which one equation in `, independent of any other endogenous

variable. Now, if � = 0 there are obviously no solutions to T (`) = 0, and if

� = 1 from Claim 1 we already know there exists a solution i¤ � is not too

big. Hence, given � not too big, there is a solution to T (`) = 0 i¤ � is not

too small. Suppose there is a solution `� to T (`�) = 0; then `� is a candidate

equilibrium, but we still have to check that no side conditions are violated. In

particular, the expression for �Ek (�) derived above indicates that �k (�) � 0

at the candidate solution i¤ � (`�)R � `� � r�, which is a participation

constraint conditional on having found a partner; one can also interpret it

as a non-negative pro�t condition in th limiting case where �k (�) ! 1,

since � (`�)R� `� is the expected �ow payo¤ during implementation and r�

is the capitalized entry cost. It is clear that � (`)R � ` � r� i¤ ` 2 (`1; `2),

where `1 > 0, and `2 > `1 i¤ � < �� = max` f� (`)R� `g.
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Notice that at ` = `1 or ` = `2, we have � (`)R � ` = r�, and T (`) =

r� [r + � (`)] [� � �e(`)R]. For small �, T (`) < 0 8` 2 (`1; `2), so T (`) = 0

has no solution in (`1; `2); for � = 1 we already know T (`) = 0 has a solution

i¤ � is not too big; therefore, in general, there is a solution i¤ � is not too

small, given that � is not too big. As shown in the Figure, again given

that � is not too big, there are two solutions to T (`) = 0 when � < �̂ and

no solutions when � > �̂. We now check whether these solutions satisfy the

participation constraint, which holds for an arbitrary ` i¤� (`)R�`�r� � 0,

as shown in the Figure. From the analysis of the case with � = 1, and

continuity, for any � � 1 we know the participation condition holds at the

lower but not the upper solution; i.e., we know T (`1) < 0 and T (`2) > 0,

or in other wordes, the lower solution is in (`1; `2) and the upper solution is

not. As we lower �, T (`) unambiguously shifts down, until we reach some ~�

such that T (`2) = 0. As we continue to lower � from ~� to �̂ both solutions

are in (`1; `2) and hence satisfy the participation constraint. And, again,

once we lower � past �̂ there are no solutions to T (`) = 0.
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The above argument, based on the parametric example in the Figure,

proceeds as if T were concave in the relevant interval (`1; `2), which we

have not been able to establish, in general, since it depends on the third

derivative of �. This however does not a¤ect the logic, except that there

could potentially be more than two solutions to T (`) = 0 for some �; the

generalized version of the discussion would say the lowest solution (rather

than the lower solution) satis�es participation and the highest one (rather

than the higher one) does not satisfy participation for big �, while all of

them (rather than both of them) satisfy participation for intermediate �.

Taking the case where there are exactly two solutions, the next �gure shows

the candidate equilibrium values of ` �i.e. the upper and lower solutions of

T (`) = 0 �when they exist as we vary �. Also shown are the values of �k

and � (`)R�`�r� implied by the candidate equilibrium values of `. As can

be seen, when � > ~� � 0:72, the upper solution implies � (`)R� `� r� < 0,

or equivalently, there is no �k consistent with free entry because �k ! 1

as � ! ~�. For � 2 (~�; �̂) � (0:44; 0:72) both solutions satisfy participation,

although notice that the upper solution imples a much higher �k and lower

pro�ts as measured by � (`)R�`�r�. At � = �̂ � 0:44 the upper and lower

solutions coalesce; below �̂ there is no solution, so the only equilibrium

implies the market shuts down.
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