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A Omitted Proofs

A.1 Proof of Theorem 1

Proof. Fix a supply function f . The realized price of the firm in state z solves f(p̂(z), zp̂(z)−η) =

0. As we placed no restrictions on f , it is equivalent to think of the firm as choosing p̂ directly.

For a given choice of p̂, the firm’s payoff is given by:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)

P
−M

)
zp̂(z)−η dG(Λ, P,M, z) (38)

where G is the cumulative distribution function representing the firm’s beliefs. We therefore

study the problem:

sup
p̂:R+→R++

J(p̂) (39)

Given a solution p̂ for how firms optimally adapt their prices to demand, we will recover the

optimal plan f for how firms optimally set a supply function.

We first derive Equation 8 using variational methods. Consider a variation p̃(z) = p(z)+

εh(z). The expected payoff under this variation is:

J(ε;h) =

∫
R4
++

Λ

(
p(z) + εh(z)

P
−M

)
z (p(z) + εh(z))−η dG(Λ, P,M, z) (40)

A necessary condition for the optimality of a function p is that Jε(0;h) = 0 for allG−measurable

h. Taking this derivative and setting ε = 0, we obtain:

0 =

∫
R4
++

[
Λ
h(z)

P
zp(z)−η − ηΛh(z)

(
p(z)

P
−M

)
zp(z)−η−1

]
dG(Λ, P,M, z) (41)

Consider h functions given by the Dirac delta functions on each z, h(z) = δz. This condition

becomes:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M, t) dΛdP dM (42)
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for all t ∈ R++. This is equivalent to:

0 =

∫
R3
++

[
Λ
1

P
tp(t)−η − ηΛ

(
p(t)

P
−M

)
tp(t)−η−1

]
g(Λ, P,M|t) dΛdP dM

= (1− η)E
[
Λ
1

P
|z = t

]
tp(t)−η + ηE [ΛM|z = t] tp(t)−η−1

(43)

Thus, we have that an optimal solution necessarily follows:

p(t) =
η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]
(44)

as claimed in Equation 8.

We now evaluate the expectations. Using log-normality,

E[ΛM|z = t] = exp

{
µΛ|z(t) + µM|z(t) +

1

2
σ2
Λ|z +

1

2
σ2
M|z + σΛ,M|z

}
E[ΛP−1|z = t] = exp

{
µΛ|z(t)− µP |z(t) +

1

2
σ2
Λ|z +

1

2
σ2
P |z − σΛ,P |z

} (45)

where µX|z = E[logX| log z] and σX,Y |z = Cov[logX, log Y | log z]. Thus,

E[ΛM|z = t]

E[ΛP−1|z = t]
= exp

{
µM|z(t) + µP |z(t) +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z

}
(46)

Using standard formulae for Gaussian conditional expectations,

µM|z(t) = µM +
σM,z

σ2
z

(log t− µz)

σ2
M|z = σ2

M − σ2
M,z

σ2
z

σΛ,M|z = σΛ,M − σΛ,zσM,z

σ2
z

µP |z(t) = µP +
σP,z

σ2
z

(log t− µz)

σ2
P |z = σ2

P − σ2
P,z

σ2
z

σΛ,P |z = σΛ,P − σΛ,zσP,z

σ2
z

(47)

where:
σ2
z = σ2

Ψ + η2σ2
P + 2ησΨ,P

σM,z = σM,Ψ + ησM,P

σP,z = σP,Ψ + ησ2
P

σΛ,z = σΛ,Ψ + ησΛ,P

(48)

We now combine these expressions with Equation 44 to derive the optimal supply func-

tion. We first observe that

log p = ω0 + ω1 log t (49)
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where:

ω0 = log
η

η − 1
+ µM + µP − ω1µz +

1

2
σ2
M|z −

1

2
σ2
P |z + σΛ,M|z + σΛ,P |z

ω1 =
σM,z + σP,z

σ2
z

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + η2σ2

P + 2ησΨ,P

(50)

Next, using the demand curve, we observe that z = qpη. Therefore, log t = log q + η log p.

Substituting this into Equation 49, and re-arranging, we obtain

log p = α0 + α1 log q (51)

where:

α0 =
ω0

1− ηω1

, α1 =
ω1

1− ηω1

(52)

We finally derive the claimed expression for α1,

α1 =

σM,Ψ+ησM,P+σP,Ψ+ησ2
P

σ2
Ψ+η2σ2

P+2ησΨ,P

1− η
σM,Ψ+ησM,P+σP,Ψ+ησ2

P

σ2
Ψ+η2σ2

P+2ησΨ,P

=
σM,Ψ + ησM,P + σP,Ψ + ησ2

P

σ2
Ψ + ησΨ,P − ησM,Ψ − η2σM,P

(53)

Completing the proof.

A.2 Proof of Corollary 1

Proof. If 2ησM,P + σM,Ψ ≥ σP,Ψ, then the denominator of Equation 6 is decreasing in η.

Moreover, if σM,P ≥ 0, the numerator is increasing in η. Hence, α1 is increasing in η

whenever α1 > 0.

A.3 Proof of Proposition 1

Proof. From the household’s choice among varieties, the demand curve for each variety i is

pit
Pt

=

(
cit

ϑitCt

)− 1
η

(54)

From the intratemporal Euler equation for consumption demand vs. labor supply, the house-

hold equates the marginal benefit of supplying additional labor witC
−γ
t P−1

t with its marginal

cost ϕit. Thus, variety-specific wages are given by

wit = ϕitPtC
γ
t (55)
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From the intertemporal Euler equation between consumption and money today, the cost of

holding an additional dollar today equals the benefit of holding an additional dollar today

plus the value of an additional dollar tomorrow:

C−γ
t

1

Pt

=
1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
(56)

Further, from the intertemporal choice between bonds, the cost of saving an additional dollar

today equals the nominal interest rate 1+it times the value of an additional dollar tomorrow:

C−γ
t

1

Pt

= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(57)

From Equations 56 and 57, we obtain:

1

Mt

+ βEt

[
C−γ

t+1

1

Pt+1

]
= β(1 + it)Et

[
C−γ

t+1

1

Pt+1

]
(58)

It follows that:
1

Mt

= βitEt

[
C−γ

t+1

1

Pt+1

]
=

it
1 + it

C−γ
t

1

Pt

(59)

where the second equality uses Equation 57 once again. This rearranges to:

Ct =

(
it

1 + it

) 1
γ
(
Mt

Pt

) 1
γ

(60)

We next derive the interest rate. Substituting equation 60 into Equation 57, we obtain:

1 + it
it

1

Mt

= β(1 + it)Et

[
1 + it+1

it+1

1

Mt+1

]
(61)

Dividing both sides by (1 + it), multiplying by Mt, and then adding one, we obtain:

1 + it
it

= 1 + βEt

[
1 + it+1

it+1

Mt

Mt+1

]
= 1 + βEt

[
exp{−µM − σM

t+1ε
M
t+1}

1 + it+1

it+1

]
(62)

where the second equality exploits the fact that Mt follows a random walk with drift. If we

guess that it is deterministic and define xt =
1+it
it

, then we obtain that:

xt = 1 + δtxt+1 (63)
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where:

δt = β exp

{
−µM +

1

2
(σM

t+1)
2

}
(64)

We observe that δt ∈ [0, β] for all t due to the assumption that 1
2
(σM

t )2 ≤ µM . Solving this

equation forward, we obtain that for T ≥ 2:

xt = 1 + δt

(
1 +

T−1∑
i=1

i∏
j=1

δt+j

)
+ δt

(
T∏

j=1

δt+j

)
xt+T+1 (65)

Taking the limit T → ∞, this becomes:

xt = 1 + δt

(
1 +

∞∑
i=1

i∏
j=1

δt+j

)
+ δt lim

T→∞

(
T∏

j=1

δt+j

)
xt+T+1 (66)

where the final term can be bounded using the fact that δt ∈ [0, β]:

0 ≤ δt lim
T→∞

(
T∏

j=1

δt+j

)
xt+T+1 ≤ lim

T→∞
βT+1xt+T+1 (67)

The household’s transversality condition ensures that this upper bound is zero. Formally,

the transversality condition (necessary for the optimality of the household’s choices) is that:

lim
T→∞

βT C
−γ
T

PT

(MT + (1 + iT )BT ) = 0 (68)

Moreover, as Bt = 0 for all t ∈ N, this reduces to limT→∞ βT C−γ
T

PT
MT = 0. By Equation 59,

we have that xt

Mt
=

C−γ
t

Pt
. Thus, the transversality condition reduces to limT→∞ βTxT = 0.

Combining this with Equation 67, we have that limT→∞
(∏T

j=1 δt+j

)
xt+T+1 = 0. An explicit

formula for the interest rate follows:

1 + it
it

= 1 + β exp

{
−µM +

1

2
(σM

t+1)
2

}(
1 +

∞∑
i=1

i∏
j=1

β exp

{
−µM +

1

2
(σM

t+j+1)
2

})
(69)

The formulae in Equation 20 then follow. In particular, Ψit = ϑitCt follows from comparing

Equations 2 and 54. Pt =
it

1+it
C−γ

t Mt follows from Equation 60. Λt = C−γ
t is the households

marginal utility from consumption. Finally, Mit =
1

ζitAt

wit

Pt
=

ϕitC
γ
t

ζitAt
follows from Equation

55.
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A.4 Proof of Theorem 2

Proof. We begin by characterizing log-linear equilibria, which is achieved by the following

Lemma:

Lemma 1 (Macroeconomic Dynamics with Supply Functions). If all firms use log-linear

supply functions of the form in Equation 21, output in the unique log-linear temporary equi-

librium follows:

logCt = χ̃0,t +
1

γ

κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

1

γ

(1− κM
t )(1− ηω1,t)

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (70)

and the aggregate price in the unique log-linear temporary equilibrium is given by:

logPt = χ0,t −
κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt +

κM
t + ω1,t

γ
(1− κM

t )

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (71)

where χ0,t and χ̃0,t are constants that depend only on parameters (including α1,t) and past

shocks to the economy.

Proof. We suppress dependence on t for ease of notation. Consider a plan:

log pi = log α̃0,i + α1 log qi (72)

where α̃0,i = eα0,i . The demand-supply relationship that the firm faces is:

log pi = −1

η
(log qi − log Ψ) + logP (73)

The realized quantity therefore is:

log qi =
−η

1 + ηα1

log α̃0,i +
1

1 + ηα1

log ΨiP
η (74)

and the realized price is:

log pi =
1

1 + ηα1

log α̃0,i +
α1

1 + ηα1

log ΨiP
η (75)

It is useful to make the change of variables ω1 =
α1

1+ηα1
to write

log pi = (1− ηω1) log α̃0,i + ω1 log ΨiP
η (76)
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Our goal is to express dynamics only as a function of ω1. We first find the optimal α̃0,i in

terms of ω1. The firm therefore solves:

max
α̃0,i

Ei

[
Λ
(pi
P

−Mi

)(pi
P

)−η

Ψi

]
(77)

Substituting for the realized price using the demand-supply relationship yields:

max
α̃0,i

E

[
Λ

(
α̃1−ηω1

0,i

P
(ΨiP

η)ω1 −Mi

)
α̃η2ω1−η
0,i (ΨiP

η)1−ηω1

]
(78)

The optimal α̃0,i is:

α̃1−ηω1

0,i =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(79)

Substituting back into the realized price yields:

pi =
η

η − 1

Ei[ΛMi (ΨiP
η)1−ηω1 ]

Ei[
Λ
P
(ΨiP η)1−ηω1+ω1 ]

(ΨiP
η)ω1 (80)

We may express this only in terms of P by using Proposition 1, where we let I = 1+i
i

for

ease of notation:

pi =
η

η − 1

Ei

[
ϕ(ζiA)

−1
(
ϑiI

− 1
γP− 1

γM
1
γP η

)1−ηω1
]

Ei

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]

×
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

(81)

Given the ideal price index formula (Equation 14), P must satisfy the aggregation:

P 1−η = E
[
ϑip

1−η
i

]
(82)

where the expectation is over the cross-section of firms. We guess and verify that the

aggregate price is log-linear in aggregates

logP = χ0 + χA logA+ χM logM (83)

Moreover, if the pi are log-normally distributed (we will verify this below), then:

logP = E[log pi] +
1

2(1− η)
Var((1− η) log pi) + const (84)
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We first simplify the numerator of the first term by collecting all the terms involving sAi

and sMi :

logEi

[
ϕi(ζiA)

−1
(
ϑI−

1
γP− 1

γM
1
γP η

)1−ηω1
]
=

[
−κA + κA

(
η − 1

γ

)
χA(1− ηω1)

]
sAi

+

[
χM

(
η − 1

γ

)
(1− ηω1)κ

M +
1

γ
(1− ηω1)κ

M

]
sMi + const

(85)

where the constants are independent of signals. We similarly simplify the denominator of

the second term:

logEi

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]
=[

χA

(
η − 1

γ

)
(1 + ω1 − ηω1)κ

A

]
sAi

+

[[
1

γ
(1 + ω1 − ηω1)− 1

] (
κM
)
+ χM

(
η − 1

γ

)
(1 + ω1 − ηω1)

(
κM
)]

sMi

+ const

(86)

where the constants are again independent of signals. Finally, we can simplify the last term:

log
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

= ω1χA

(
η − 1

γ

)
logA+ω1

[
χM

(
η − 1

γ

)
+

1

γ

]
logM+const (87)

where the constants are independent of the aggregate shocks. Hence, log pi is indeed normally

distributed and its variance is independent of the realization of aggregate shocks. We can

now collect terms to verify our log-linear guess. Substituting the resulting expression for

log pi and our guess for logP from Equation 83 into Equation 84, and solving for χA by

collecting coefficients on logA yields:

χA = − κA

1− ω1

(
η − 1

γ

)
(1− κA)

(88)

We may similarly solve for χM :

χM =
κM + ω1

γ
(1− κM)

1− ω1

(
η − 1

γ

)
(1− κM)

(89)

This proves the dynamics for the price level. The dynamics for consumption then follow

from Proposition 1.
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With this characterization in hand, by Equation 70 and market clearing Ct = Yt, we

have:

logMt =
1

χ̃M,t

(log Yt − χ̃A,t logAt − χ̃0,t) (90)

Substituting for logMt in Equation 71 and defining log P̄t = χ0,t−ϵSt χ̃0,t and δt = χA,t−ϵSt χ̃A,t

then yields Equation AS:

logPt = log P̄t + ϵSt log Yt + δt logAt (91)

Doing a similar substitution for logAt in Equation 70 then yields Equation AD:

logPt = log

(
it

1 + it

)
− ϵDt log Yt + logMt (92)

Completing the proof.

A.5 Proof of Theorem 3

Proof. We suppress dependence on t for ease of notation. We have χM and χA as a function

of ω1 from Lemma 1. We also know that:

ω1 =
σMi,z + σP,z

σ2
z

(93)

from Equation 50. As zi = ϑi

(
i

1+i

) 1
γ M

1
γP η− 1

γ and Mi = ϕi(ζiA)
−1 i

1+i
M
P
, we have that:

σMi,z = Cov

(
−(1 + χA) logA+ (1− χM) logM,

(
η − 1

γ

)
χA logA+

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

)
= −

(
η − 1

γ

)
χA(1 + χA)σ

2
A + (1− χM)

(
1

γ
+

(
η − 1

γ

)
χM

)
σ2
M

σP,z = Cov

(
χA logA+ χM logM,

(
η − 1

γ

)
χA logA+

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

)
=

(
η − 1

γ

)
χ2
Aσ

2
A + χM

(
1

γ
+

(
η − 1

γ

)
χM

)
σ2
M

σ2
z = σ2

ϑ +

(
η − 1

γ

)2

χ2
Aσ

2
A +

(
1

γ
+

(
η − 1

γ

)
χM

)2

σ2
M

(94)

Thus:

ω1 =
−(η − 1

γ
)χAσ

2
A + ( 1

γ
+ (η − 1

γ
)χM)σ2

M

σ2
ϑ + (η − 1

γ
)2χ2

Aσ
2
A + ( 1

γ
+ (η − 1

γ
)χM)2σ2

M

(95)
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Note that the optimal ω1 is common across all firms i. We may express this in fully reduced

form as:

ω1 = T (ω1) =
(η − 1

γ
) κA

1−ω1(η− 1
γ )(1−κA)

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)σ2
M

σ2
ϑ + (η − 1

γ
)2
(

κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A + ( 1

γ
+ (η − 1

γ
)

κM+
ω1
γ
(1−κM )

1−ω1(η− 1
γ )(1−κM )

)2σ2
M

(96)

or

ω1 = T (ω1) =

(η− 1
γ )κA

1−ω1(η− 1
γ )(1−κA)

σ2
A +

1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

σ2
M

σ2
ϑ +

(
(η− 1

γ )κA

1−ω1(η− 1
γ )(1−κA)

)2

σ2
A +

(
1
γ
+(η− 1

γ )κM

1−ω1(η− 1
γ )(1−κM )

)2

σ2
M

(97)

A.6 Proof of Proposition 2

Proof. We first establish equilibrium existence. First, we observe that Tt is a continuous func-

tion. The only possible points of discontinuity are: ωM
1,t =

1
(η− 1

γ
)(1−κM

t )
and ωA

1,t =
1

(η− 1
γ
)(1−κA

t )
.

However, at these points limω1,t→ωM
1,t
Tt(ω1,t) = limω1,t→ωA

1,t
Tt(ω1,t) = Tt(ω

M
1,t) = Tt(ω

A
1,t) = 0.

Second, we observe that limω1,t→−∞ Tt(ω1,t) = limω1,t→∞ Tt(ω1,t) = 0. Consider now the func-

tion Wt(ω1,t) = ω1,t − Tt(ω1,t). This is a continuous function, limω1,t→−∞ Wt(ω1,t) = −∞,

and limω1,t→∞Wt(ω1,t) = ∞. Thus, by the intermediate value theorem, there exists an ω∗
1,t

such that Wt(ω
∗
1,t) = 0. By Theorem 3, ω∗

1,t defines a log-linear equilibrium.

We now show that there are at most five log-linear equilibria. For ω1,t ̸= ωA
1,t, ω

M
1,t (neither

of which can be a fixed point), we can rewrite Equation 29 as:

ω1,t

[
σ2
ϑ,t

(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2

+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2
]

=
(
σA
t|s
)2(

η − 1

γ

)
κA
t

(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)
+
(
σM
t|s
)2(1

γ
+

(
η − 1

γ

)
κM
t

)(
1− ω1,t

(
η − 1

γ

)
(1− κA

t )

)2(
1− ω1,t

(
η − 1

γ

)
(1− κM

t )

)
(98)

This is a quintic polynomial in ω1,t, which has at most five real roots. Thus, by Theorem 3,
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there are at most five log-linear equilibria.

A.7 Proof of Corollary 5

Proof. We drop time subscripts for ease of notation. Substituting η = 1
γ
in Equation 29

yields:

ω1 =

1
γ

ρ2 +
(

1
γ

)2 (99)

Substituting this into Equation 24 yields:

ϵSt = γ
κM
t

(1− κM
t )

+
1

γρ2(1− κM
t )

(100)

A.8 Proof of Corollary 6

We drop time subscripts for ease of notation. The first statement follows directly from

Equation 29. Furthermore, using Equation 29, as σM
t|s → ∞, ω1 must solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κM

)
1
γ
+
(
η − 1

γ

)
κM

=
γ

1 + (ηγ − 1)κM
+

(
1− ηγ

1 + (ηγ − 1)κM

)
ω1

=
1

η

(101)

This proves the second statement. As σA
t|s → ∞ and ηγ ̸= 1, ω1 must solve:

ω1 =
1− ω1

(
η − 1

γ

) (
1− κA

)(
η − 1

γ

)
κA

=
γ

(ηγ − 1)κA
+

(
1− 1

κA

)
ω1

=
1

η − 1
γ

(102)

This proves the third statement.

A.9 Proof of Proposition 3

Proof. By Theorem 3, The map describing equilibrium ω1,t is invariant to λ for λ > 0.

Thus, ES
t (λ) is constant for λ > 0. If λ = 0, there are potentially many equilibria in
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supply functions. Nevertheless, from the proof of Theorem 1, we have that firms set

pit/Pt = η
η−1

Mit = η
η−1

(ϕitC
γ
t )/(ζitAt) under any optimal supply function. This implies

that η
η−1

Cγ
t /At = const, and so money has no real effects, which implies that ϵSt = ∞.
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B Supply Functions in Richer Economic Settings

In this appendix, we generalize the firm’s partial-equilibrium supply schedule problem in

four ways. First, we enrich both the firm’s technology and input space by allowing for many

inputs, decreasing returns to scale, and monopsony power. Second, we enrich the demand the

firm faces by decoupling the own-price elasticity and the cross-price elasticity and allowing

for non-isoelastic demand curves that feature endogenous markups (allowing for Marshall’s

Second and Third laws of demand). Third, we enrich the firm’s decisionmaking by allowing

the firm to choose additional non-price and non-quantity variables at a cost. This allows,

for example, the firm to invest in improving the quality of its product. Finally, we enrich

the firm’s problem by introducing Calvo price stickiness. In all four cases, we characterize

firms’ optimal supply functions, show that our core insights generalize, and highlight the

new economic features that each of these extensions introduces. In the interest of brevity,

we leave embedding these generalizations in general equilibrium to future research, though

it is clear to see how one could do this by embedding these characterizations in our general

equilibrium model and leveraging the techniques from our main analysis.20

B.1 Multiple Inputs, Decreasing Returns, and Monopsony

In this section, we generalize our baseline model of supply function choice to allow for

multiple inputs, decreasing returns, and monopsony. We find that: (i) supply functions

remain endogenously log-linear and (ii) decreasing returns and monopsony flatten the optimal

supply schedule.

Primitives. Consider the baseline model from Section 2 with two modifications. First, the

production function uses multiple inputs with different input shares and possibly features

decreasing returns-to-scale:

q = Θ
I∏

i=1

xai
i (103)

where xi ∈ R+, ai ≥ 0, and
∑I

i=1 ai ≤ 1. Moreover, suppose that the producer potentially

has monopsony power and faces an upward-sloping factor price curve such that the price of

acquiring any input i when the firm demands xi units is given by p̃i(xi) = pxix
bi−1
i , where

pxi ∈ R++ and bi ≥ 1. The case of no monopsony, or price-taking in the input market, occurs

20The only complication with endogenous markups would be the endogenous non-log-linearity of the
optimal supply curve. This would have to be dealt with via either approximation arguments similar to those
we adopt in our extension to allow for price stickiness or numerical methods, or both.
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when bi = 1. Thus, the cost of acquiring each type of input is given by:

ci(xi) = pxix
bi
i (104)

The firm believes that (Ψ, P,Λ,Θ, px) is jointly log-normal.

The Firm’s Problem. We begin by solving the firm’s cost minimization problem:

K(q; Θ, px) = min
x

I∑
i=1

pxi
xbi
i s.t. q = Θ

I∏
i=1

xai
i (105)

This has first-order condition given by:

λ =
bipxi
ai

xbi
i q

−1 (106)

Which implies that:

K(q; Θ, px) = λq
I∑

i=1

ai
bi

(107)

Moreover, fixing i, the FOC implies that we may write for all j ̸= i:

xj =

 bipxi
ai

bjpxj
aj

 1
bj

x
bi
bj

i (108)

By substituting this into the production function we have that:

q = Θx
ai+bi

∑
j ̸=i

aj
bj

i

∏
j ̸=i

 bipxi
ai

bjpxj
aj


aj
bj

(109)

which implies that:

xi =


q

Θ
∏

j ̸=i

(
bipxi
ai

bjpxj
aj

)aj
bj



1

ai+bi
∑

j ̸=i
aj
bj

(110)
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Returning to the FOC, we have that the Lagrange multiplier is given by:

λ = q
−1+ 1∑I

i=1
ai
bi
bipxi
ai

Θ
∏
j ̸=i

 bipxi
ai

bjpxj
aj


aj
bj


−1∑I

i=1

aj
bj

(111)

Which then yields the cost function:

K(q; Θ, px) = MPq
1
δ (112)

where:

δ =
I∑

i=1

ai
bi

and M = P−1

(
Θ

I∏
i=1

(
bipxi

ai

)ai
bi

) 1∑I
i=1

ai
bi

I∑
i=1

ai
bi

(113)

and we observe that M is log-normal given the joint log-normality of (Θ, px).

Turning to the firm’s payoff function, we therefore have:

E
[
Λ
( p

P
q −Mq

1
δ

)]
(114)

Thus, the problem with multiple inputs, monopsony, and decreasing returns modifies the

firms’ original payoff by only introducing the parameter δ. Helpfully, observe that δ = 1

when: (i) there are constant returns to scale
∑I

i=1 ai = 1 and (ii) there is no monopsony

bi = 1 for all i.

Given this, we can write the firm’s objective as:

J(p̂) =

∫
R4
++

Λ

(
p̂(z)1−η

P
z −Mz

1
δ p̂(z)−

η
δ

)
dG(Λ, P,M, z) (115)

And, as before, we study the problem:

sup
p̂:R+→R++

J(p̂) (116)

By doing this, we obtain a modified formula for the optimal supply function:

Proposition 4 (Optimal Supply Schedule With Multiple Inputs, Decreasing Returns, and

Monopsony). Any optimal supply schedule is almost everywhere given by:

f(p, q) = log p− ω0 − log δ

1− ηω1

− ω1 +
1−δ
δ

1− ηω1

log q (117)

where ω0 and ω1 are the same as those derived in Theorem 1. Thus, the optimal inverse
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supply elasticity is given by:

α̂1 =
ησ2

P + σM,Ψ + σP,Ψ + ησM,P

σ2
Ψ − ησM,Ψ + ησP,Ψ − η2σM,P

(
1 +

1− δ

δ

σ2
Ψ + η2σ2

P + 2ησΨ,P

σM,Ψ + ησM,P + σP,Ψ + ησ2
P

)
(118)

Proof. Applying the same variational arguments as in the Proof of Theorem 1, we obtain

that p̂(t) must solve:

(η − 1)E[ΛP−1|z = t]tp̂(t)−η =
η

δ
E[ΛM|z = t]t

1
δ p̂(z)−

η
δ
−1 (119)

Which yields:

p̂(t) =

(
δ−1 η

η − 1

E[ΛM|z = t]

E[ΛP−1|z = t]

) 1

1+η( 1−δ
δ )

t

1−δ
δ

1+η( 1−δ
δ ) (120)

Thus, we have that:

log p =
1

1 + η
(
1−δ
δ

) (ω0 − log δ) +
1

1 + η
(
1−δ
δ

) (ω1 +
1− δ

δ

)
log z (121)

where ω0 and ω1 are as in Theorem 1. Rewriting as a supply function, we obtain:

log p =

1

1+η( 1−δ
δ )

(ω0 − log δ)

1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) + 1

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

)
1− η

1+η( 1−δ
δ )

(
ω1 +

1−δ
δ

) log q (122)

Which reduces to the claimed formula.

Thus, when the supply curve is initially upward-sloping (ω1 ∈ [0, η−1]), the introduction

of decreasing returns and/or monopsony unambiguously increases the supply elasticity and

makes firms closer to quantity-setting.

B.2 Beyond Isoelastic Demand

Isoelastic demand imposes both that the firm’s own price elasticity of demand and its cross-

price elasticity of demand are constant. In this appendix, we show how to derive optimal

supply functions in closed form when the firm’s own price elasticity of demand varies. This

allows the demand curve to satisfy Marshall’s second law of demand that the price elasticity

of demand is increasing in the price as well as Marshall’s third law of demand that the rate

of increase of the price elasticity goes down with the price. We show that uncertainty about

demand, prices, and marginal costs continue to operate in a very similar fashion. However,

due to endogeneity of the optimal markup, the optimal supply schedule now ceases to be
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log-linear.

To capture these features, suppose that demand is multiplicatively separable: d(p,Ψ, P ) =

z(Ψ, P )ϕ(p) for some function ϕ such that pϕ′′(p)/ϕ′(p) < −2. This latter condition is

satisfied by isoelastic demand exactly under the familiar condition that η > 1 and ensures

the existence of a unique optimal price. We further assume that z(Ψ, P ) = ν0Ψ
ν1P ν2 for

ν0, ν1, ν2 ∈ R \ {0}. This makes firms’ uncertainty about the location of their demand curve

log-normal. This assumption does rule out non-separable demand, such as the demand

system proposed by Kimball (1995). However, it is important to note that this demand

system is motivated by evidence on the firm’s own price elasticity, which is governed by

ϕ, and not the cross-price elasticity, which is governed by ν2. Thus, our proposed demand

system is equally able to capture facts about the firms’ own price elasticity as the one

proposed in Kimball (1995), or the richer structures proposed by Fujiwara and Matsuyama

(2022) and Wang and Werning (2022).

Under this demand system, we can derive a modified formula for the optimal supply

curve which is now no longer log-linear, but continues to be governed by similar forces:

Proposition 5. If demand is multiplicatively separable, then any optimal supply function is

almost everywhere given by:

f(p, q) = log q + α̂0 − log

(
ϕ(p)

{
p

[
1 +

ϕ(p)

pϕ′(p)

]} 1
ω̂1

)
(123)

where:

ω̂1 =
ν1(σM,Ψ + σP,Ψ) + ν2(σ

2
P + σM,P )

ν2
1σ

2
Ψ + ν2

2σ
2
P + 2ν1ν2σΨ,P

(124)

Proof. Applying the same variational arguments as in Theorem 1, we obtain that:

p̂(z) +
ϕ(p̂(z))

ϕ′(p̂(z))
=

E[ΛM|z]
E[ΛP−1|z] (125)

where the condition pϕ′′(p)/ϕ′(p) < −2 yields strict concavity of the objective and makes

p̂(z) the unique maximizer. Taking logarithms of both sides and evaluating the conditional

expectations as per Theorem 1, we obtain that:

log

(
p̂(z)

[
1 +

ϕ(p̂(z))

p̂(z)ϕ′(p̂(z))

])
= ω̂0 + ω̂1 log z (126)

where ω̂1 =
σM,z+σP,z

σ2
z

, which yields Equation 124. Using log z = log q − log ϕ(p) and rear-

ranging yields Equation 123.
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Demand uncertainty and price uncertainty enter the same way as before, via ω̂1, and

the intuition is the same. However, there are now two distinct notions of market power

and they therefore operate in a more subtle way. First, consider the role of the cross-price

elasticity of demand ν2. When ν2 is higher, the firm’s price is ex post more responsive to

changes in others’ prices. Second, consider the role of the own-price elasticity of demand(
pϕ′(p)
ϕ(p)

)−1

. This induces non-linearity of the optimal supply schedule to the extent that it

is not constant. This is because the firm’s optimal markup changes as it moves along its

demand curve.

B.3 Additional Choice Variables

Our approach of studying firms’ supply functions has thus far focused on firms that choose

prices and quantities. However, it is natural to imagine that firms can make richer choices,

such as deciding what quality or type of product they will sell. In this appendix, we gener-

alize our characterization of firms’ optimal supply functions to incorporate additional choice

margins. We find that supply functions remain log-linear conditional on these other choices.

We also show how to characterize the optimal values of these other choices given this fact.

To model additional choice margins, suppose that the firm, in addition to its price and

quantity decisions, chooses a vector of non-quantity decisions x ∈ X ⊆ Rn. These decisions

are made at the beginning of the period and potentially affect the joint distribution of

(Λ, P,M,Ψ) via the map G : X → ∆(R4
+). We suppose that choices of x ∈ X lead

to a dollar cost to the firm of C(x). To see how this framework accommodates quantity

investments, suppose that X ⊆ R and x ∈ X represents the quality of the good. Investing in

different qualities comes at a cost. Moreover, higher quality might increase both the mean

of firms’ demand Ψ and the mean of firms’ marginal costs M.

We now characterize firms’ optimal supply function decisions in this framework. We

let H(f, x) denote the joint distribution over (Λ, P,M,Ψ, p, q) induced by a supply function

f : R2
++ → R and other decisions x. With this, the firm’s problem of optimal supply function

and other decisions is given by:

sup
x∈X,f :R2

++→R
EH(f,x)

[
Λ
( p

P
−M

)
q
]
− EH(f,x)[Λ]C(x) (127)

This can be split into two optimization problems. First, for every choice of x ∈ X, we solve

for the optimal supply function fx:

V (x) = sup
f :R2

++→R
EH(f,x)

[
Λ
( p

P
−M

)
q
]

(128)
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Second, we can compute the optimal choice of x ∈ X by solving:

sup
x∈X

V (x)− EH(f,x)[Λ]C(x) (129)

By identical arguments to those of Theorem 1 (simply index G by x up to Equation 44), we

immediately obtain that under the optimal prices in demand state z = t must be given by:

px(t) =
η

η − 1

EG(x)[ΛM|z = t]

EG(x)[ΛP−1|z = t]
(130)

If we further assume that G(x) is a multivariate log-normal distribution with mean µx

and variance-covariance matrix Σx, then we obtain (by identical arguments to those in

Theorem 1) that the optimal supply function for a fixed choice of x ∈ X obeys the following

Proposition, the proof of which follows immediately from that of Theorem 1.

Proposition 6 (Supply Function Choice When Firms Choose More Than Prices and Quan-

tities). If for x ∈ X the distribution G(x) is multivariate normal, then the optimal supply

function is given by:

fx(p, q) = log p− α0,x − α1,x log q (131)

where α0,x and α1,x follow exactly the formulae derived in Theorem 1, where all appropriate

means and variances are computed under the distribution G(x).

From this, we observe that Theorem 1 carries as written in this extended setting. In

particular, supply functions remain log-linear and the same variances and covariances govern

their elasticity. The new feature here is that the choice of x can affect both the intercept and

the slope of the optimal supply function. In this way, the choice of x can have a non-trivial

effect on firms’ optimal pricing and production decisions.

With this, we can now explicitly characterize the value of any choice of x and thereby

solve for the optimal choice of x. Concretely, we have that:

V (x) =

∫
R4
++

Λ
z

P
px(z)

1−η dGx(Λ, P,M,Ψ)−
∫
R4
++

ΛzMpx(z)
−η dGx(Λ, P,M,Ψ) (132)

Substituting Equation 130, this becomes:

V (x) =

∫
R4
++

Λ
z

P
exp{(1− η)ω0,x}z(1−η)ω1,x dGx(Λ, P,M,Ψ)

−
∫
R4
++

ΛzM exp{−ηω0,x}z−ηω1,x dGx(Λ, P,M,Ψ)

(133)
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where ω0,x and ω1,x have the same formulae as those in the proof of Theorem 1 (with all

means, variances, and covariances indexed by x). Exploiting joint log-normality of Gx, we

can evaluate these integrals to obtain:

V (x) = exp

{
(1− η)ω0,x + µΛ,x − µP,x + (1 + ω1,x(1− η))µz,x +

1

2
σ2
R,x

}
− exp

{
−ηω0,x + µΛ,x + µM,x + (1− ηω1,x)µz,x +

1

2
σ2
C,x

} (134)

where:

σ2
R,x = Vx [log Λ− logP + (1 + ω1,x(1− η)) log z]

σ2
C,x = Vx [log Λ + logM+ (1− ηω1,x) log z]

(135)

With this, solving for the optimal choice of x ∈ X reduces to solving Equation 129 using

this V and given the exogenous function C.

We conclude by characterizing the optimal x in a simple example.

Example 1. Suppose that quality can be improved at some ex ante cost and that quality

affects how much consumers demand the product and nothing else. Formally, suppose that

C(x) = ζ
2
x2, µΨ,x = µΨ + log x, σx ≡ σ and µx is invariant to x except for µΨ,x. In the

previous formulae, observe that (ω1,x, σ
2
C,x.σ

2
R,x, µΛ,x, µP,x, µM,x) are invariant to x. Thus,

observing that ω0,x is affine in log x, we obtain that V is linear in x, i.e., V (x) = Kx for

some K > 0. It follows that the optimal choice is given by x∗ = K
ζ
.

This example shows that the approach followed in this appendix can be practically useful

in extending the supply function approach to consider firms that can choose additional

variables.

B.4 Supply Functions with Sticky Prices

In our main analysis, we allowed firms to change their prices every period to emphasize the

new economic features that supply functions generate. At the same time, our approach can

be augmented to include price stickiness. In this appendix, we show how to solve for the

optimal supply function when firms are subject to Calvo pricing.

Firms are as in our main analysis, except their prices are sticky each period with prob-

ability θ ∈ [0, 1]. For this appendix, we apply the standard second-order approximation to

firms’ profits and write the flow profit of the firm as:

−B(log p− log p∗∗)2 (136)
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where we recall that p∗∗ = η
η−1

MP and B > 0 is the curvature of the profit function. Under

this approximation, the firm’s lifetime loss from setting price pt at date t is given by:

L(pt) = B

∞∑
j=0

(βθ)j(log pt − log p∗∗t+j)
2 (137)

As in our main analysis, at date t, a price-resetting firm chooses a supply function ft and

they will produce at the price and quantity such that the ft(pt, qt) = 0 locus intersects the

demand curve log zt = log qt + η log pt. By applying similar arguments to those of Theorem

1, we obtain the following characterization of the optimal supply function:

Proposition 7 (Optimal Supply Function with Price Stickiness). For a firm with Calvo

stickiness parameter θ ∈ [0, 1] and discount factor β ∈ [0, 1), any optimal supply curve is

almost everywhere given by:

ft(pt, qt) = log pt − α0,t − α1,t log qt (138)

where the slope of the optimal price-quantity locus, α1,t ∈ R, is given by:

α1,t =
ω̂1,t

1− ηω̂1,t

(139)

where:

ω̂1,t = (1− βθ)
∞∑
j=0

(βθ)jω1,t,j (140)

and:

ω1,t,j =
σMt+j ,zt + σPt+j ,zt

σ2
zt

(141)

Proof. We first characterize the optimal zt-measurable price, p̂t(zt). Taking the first-order

condition of the firm’s expected loss, we have that:

log p̂t(zt) = (1− βθ)Et

[ ∞∑
j=0

(βθ)j log p∗∗t+j | zt
]

(142)

We moreover have that:

Et[log p
∗∗
t+j|zt] = Et

[
log

η

η − 1
+ logPt+j + logMt+j | zt

]
= ω0,t,j + ω1,t,jzt (143)
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where:

ω1,t,j =
σMt+j ,zt + σPt+j ,zt

σ2
zt

ω0,t,j = log
η

η − 1
+ µMt+j

+ µPt+j
− ω1,t,jµzt

(144)

which are both deterministic functions of t and j. Substituting this into the formula for the

firm’s optimal zt-measureable price, we obtain that:

log p̂t(zt) = (1− βθ)
∞∑
j=0

(βθ)jω0,t,j +

[
(1− βθ)

∞∑
j=0

(βθ)jω1,t,j

]
zt

= ω̂0,t + ω̂1,tzt

(145)

Using the fact that the firm’s demand curve is log zt = log qt + η log pt, we obtain that

log pt = α0,t + α1,t log qt with α0,t =
ω̂0,t

1−η ˆω1,t
and α1,t =

ω̂1,t

1−ηω̂1,t
, completing the proof.

From this, we observe that price stickiness modifies the slope of the firm’s optimal supply

function, but it remains optimally log-linear (at least under the quadratic approximation to

the firm’s flow profit that is standard in dynamic Calvo pricing models). The firm’s optimal

supply elasticity now incorporates how much the firm learns from its demand today about

the whole sequence of its current and future nominal marginal costs. The inference that it

performs about its date t+j marginal costs from today’s demand is captured by ω1,t,j, which

is precisely the least-squares regression coefficient that one obtains from regressing nominal

marginal costs at date t + j on demand at date t. In deciding its optimal price today, the

firm then must weigh its inference about future nominal marginal costs by how much it

cares about the future j periods from now (βj) and how likely its price today is to prevail

in j periods (θj). This weighting yields ω̂1,t, which captures the overall responsiveness of

the price today to demand today. Once this has been obtained, we can convert this into

the slope of the optimal supply curve as we did in our main analysis via the transformation

ω̂1,t 7→ ω̂1,t

1−ηω̂1,t
≡ α1,t.

This analysis highlights that the supply function approach is not a replacement for sticky

price models, but rather represents a different approach to modelling how firms that can reset

their prices do so. While we abstract from sticky prices in our main analysis to make plain

the new implications of supply functions, the analysis of this appendix demonstrates that it

is practically simple to combine our supply function approach with canonical approaches to

modelling sticky prices.
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C Allowing for Correlated Aggregate Shocks

In this extension, we allow for the shocks to the money supply and aggregate productivity

to be correlated. Specifically, we assume that, conditional on outcomes in period t− 1 that

(logAt, logMt) is jointly normally distributed. Our main analysis assumes that logAt and

logMt are uncorrelated. Allowing for correlation modifies firms’ conditional expectations of

the aggregate shocks to the following:

Ei,t[logAt] = const + κA
t s

A
it + κ̃A

t s
M
it

Ei,t[logMt] = const + κM
t sMit + κ̃M

t sAit
(146)

where const are terms independent of the realized shocks at date t, and (κA
t , κ̃

A
t , κ

M
t , κ̃M

t ) are

the Kalman gains.

In this extended setting, Theorem 1 on firms’ optimal supply functions holds as written.

Theorem 2 on the AS/AD representation holds with modified formulae for the slopes of

the aggregate demand and aggregate supply curves as the guess and verify argument must

be modified to account for the new formulae for firms’ expectations of aggregate shocks.

Performing this modification, we obtain the following:

Proposition 8. There exists a unique log-linear temporary equilibrium that is described by

an “Aggregate Demand/Aggregate Supply” model in which the slope of the aggregate supply

curve is given by:

ϵSt = γ
χM,t

1− χM,t

(147)

where:

χM,t =

κM
t + (1− κM

t ) 1
γ
ω1,t + κ̃A

t

(
−1−

(
η − 1

γ
ω1,t

−κA
t +(1− 1

γ
ω1,t)κ̃M

t

1−ω1,t(η− 1
γ )(1−κA

t )

))
1− ω1,t

(
η − 1

γ

)(
(1− κM

t )− ω1,t(η− 1
γ )κ̃M

t

1−ω1,t(η− 1
γ )(1−κA

t )
κ̃A
t

) (148)

Proof. As in the proof of Theorem 2, we will guess and verify that (dropping t subscripts

for notational simplicity):

logP = χ0 + χA logA+ χM logM (149)
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The same arguments as Theorem 2 imply that we must compute:

pi =
η

η − 1

Ei

[
ϕ(ζiA)

−1
(
ϑiI

− 1
γP− 1

γM
1
γP η

)1−ηω1
]

Ei

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]

×
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

(150)

Moreover, the same arguments as Theorem 2 imply that:

logP = E[log pi] +
1

2(1− η)
Var((1− η) log pi) + cons (151)

We now compute the numerator, denominator and multiplicative terms in the firm’s pricing

equation that obtain under their chosen supply function:

logEi

[
ϕ(ζiA)

−1
(
ϑiI

− 1
γP− 1

γM
1
γP η

)1−ηω1
]
= cons

+

(
−1 +

(
η − 1

γ

)
(1− ηω1)χA

)
Ei[logA]

+

(
1

γ
(1− ηω1) +

(
η − 1

γ

)
(1− ηω1)χM

)
Ei[logM ]

(152)

logEi

[
I1−

1
γ
(1+ω1−ηω1)M

1
γ
(1+ω1−ηω1)−1ϑ1+ω1−ηω1P (η− 1

γ )(1+ω1−ηω1)
]
= cons

+

(
η − 1

γ

)
(1− ηω1 + ω1)χAEi[logA]

+

(
−1 +

1

γ
(1− ηω1 + ω1) +

(
η − 1

γ

)
(1− ηω1 + ω1)χM

)
Ei[logM ]

(153)

log
(
ϑiI

− 1
γM

1
γP η− 1

γ

)ω1

= cons

+ ω1

(
η − 1

γ

)
χA logA+ ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

(154)

From this, we have that:

log pi = cons

+

(
−1−

(
η − 1

γ

)
ω1χA

)
Ei[logA] + ω1

(
η − 1

γ

)
χA logA

+

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
Ei[logM ] + ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

(155)
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Aggregating this according to the aggregation formula, we obtain:

logP = cons

+

(
−1−

(
η − 1

γ

)
ω1χA

)
E[logA] + ω1

(
η − 1

γ

)
χA logA

+

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
E[logM ] + ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
logM

(156)

Up to this point, everything is the same as Theorem 2. The presence of correlated aggregate

shocks now changes the formulae for (E[logA],E[logM ]). These are now given by:

E[logA] = cons + κA logA+ κ̃A logM

E[logM ] = cons + κM logM + κ̃M logA
(157)

Plugging these into the formula for the aggregate price level and collecting terms:

logP = cons

+

(
ω1

(
η − 1

γ

)
χA +

(
−1−

(
η − 1

γ

)
ω1χA

)
κA +

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κ̃M

)
logA

+

(
ω1

(
1

γ
+

(
η − 1

γ

)
χM

)
+

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κM +

(
−1−

(
η − 1

γ

)
ω1χA

)
κ̃A

)
logM

(158)

Thus, by matching coefficients and simplifying, we have that:

χA = −κA + (1− κA)

(
η − 1

γ

)
ω1χA +

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κ̃M

χM = κM + (1− κM)
1

γ
ω1 + (1− κM)

(
η − 1

γ

)
ω1χM +

(
−1−

(
η − 1

γ

)
ω1χA

)
κ̃A

(159)

We can now solve this linear system of equations in (χA, χM). To do this, we first solve for

χA as a function of χM :

χA =
−κA +

(
1− 1

γ
ω1 −

(
η − 1

γ

)
ω1χM

)
κ̃M

1− ω1

(
η − 1

γ

)
(1− κA)

≡ a− bχM (160)
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where:

a =
−κA +

(
1− 1

γ
ω1

)
κ̃M

1− ω1

(
η − 1

γ

)
(1− κA)

b =
ω1

(
η − 1

γ

)
κ̃M

1− ω1

(
η − 1

γ

)
(1− κA)

(161)

Substituting this into the equation for χM , we obtain that:

χM =
κM + (1− κM) 1

γ
ω1 + κ̃A

(
−1−

(
η − 1

γ
ω1a
))

1− ω1

(
η − 1

γ

)
((1− κM)− bκ̃A)

(162)

Completing the solution. Using Proposition 1, which establishes that ϵSt = γ
χM,t

1−χM,t
, we

obtain the result.
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D Additional Quantitative and Empirical Analysis

This Appendix provides additional details for the analysis in Section 5.

D.1 Methods and Estimation

Data. We use quarterly-frequency data from the United States from 1960Q1 to 2024Q4.

We measure real GDP and the price level using data from the US BEA. From these variables,

we construct GDP growth ∆ log Yt and inflation ∆ logPt in log differences. We measure TFP

growth using the dataset of Fernald (2025), based on the work of Fernald (2014). Specifically,

we take raw data on the annualized growth rate in capacity-utilization adjusted TFP and

divide by 400 to obtain a comparable quarter-to-quarter growth rate ∆ logAt. Finally, as

described in the main text, we construct a variable corresponding to aggregate marginal cost

growth as

∆ logMt = γ ·∆ log Yt −∆ logAt (163)

where we calibrate γ = 0.11 based on the findings of Gagliardone et al. (2023), who use micro-

data from Belgian manufacturers to calculate the implied pass-through from the output gap

to real marginal costs. This calibration is also consistent with evidence of substantial wage

rigidity over the business cycle in the United States (Grigsby et al., 2021), and comparable

to what one would estimate by directly looking at the relationship between detrended real

wages and output in the US.21

Time-Varying Volatility from a GARCH Model. We estimate time-varying uncer-

tainties regarding inflation, real output, and real marginal costs using a multivariate GARCH

model. In particular, letting Xt denote the vector (∆ logPt,∆ log Yt,∆ logMt), we model

Xt = A+BXt−1 + εt, εt ∼ N(0,Σt), Σt = D
1
2
t CD

1
2
t (164)

where A is a 3×1 vector of constants, B is a 3×3 matrix of AR(1) coefficients, Dt is a diagonal

matrix of time-varying variances (and D
1
2
t is a diagonal matrix of standard deviations), and

C is a static matrix of correlations. We assume that each diagonal element of Dt, denoted

as σ2
i,t, evolves according to:

σ2
i,t = si + αiε

2
i,t−1 + βiσ

2
i,t−1 (165)

with unknown constant si and coefficients (αi, βi). Formally, this is a GARCH (1,1) model

with constant conditional correlations (Bollerslev, 1990). We estimate all of the parameters

21For example, using this latter method, Flynn and Sastry (2022) calibrate γ = 0.095.
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Table A1: Testing the GARCH Model Against Alternatives

(1) (2) (3)
Model VAR GARCH (CCC) GARCH (VCC)
Likelihood ratio — 194.82 0.10
Degrees of freedom — 6 1
p-value (χ2(df)) — 0.000 0.746

Notes: This table presents specification tests of the GARCH model used for analysis. The data are quarterly-
frequency GDP growth, GDP deflator inflation, and real marginal cost growth in the US from 1960Q1 to
2024Q4. The models are, respectively, a vector auto-regression in first differences (column 1); the same
model plus a residual GARCH (1,1) with constant conditional correlations (column 2; see also Equations
164 and 165); and the same model plus varying conditional correlations (column 3). The second row gives the
likelihood ratio for the model in question versus the nested model in the previous column. The third row gives
the degrees of freedom of the likelihood ratio test, equal to the number of additional free parameters. The
fourth row gives the p-value from evaluating the test statistic at the χ2 distribution with the corresponding
degrees of freedom.

via joint maximum likelihood.

In calibrating the model, we use volatilities dated at time t to stand in for economic

agents’ uncertainty about making decisions at time t. As is apparent from Equation 165,

these volatilities are measurable in macroeconomic history up to period t − 1. Thus, this

timing convention is consistent with our notion in the model that economic agents observe all

macroeconomic history up to time t− 1 and their priors are informed by these observations.

All in all, for each quarter t, we set

σ̂2
Ψ,t = Σ̂Y,Y,t +R2Σ̂A,A,t σ̂Ψ,P,t = Σ̂Y,P,t

σ̂M,Ψ,t = Σ̂M,M,t σ̂M,P,t = Σ̂M,P,t

(166)

where the Σ̂·,·,t are the elements of the residual covariance matrix and R = 6.5 from the

quantitative estimates of Bloom et al. (2018).

Our estimation procedure allows us to naturally test the specified model against nested

alternatives (Table A1). In column 2, we compare our GARCH model with the nested

model with constant volatility: a vector auto-regression (VAR) in first differences for the

variable Xt. This model has six fewer parameters, corresponding to the ARCH and GARCH

parameter in each residual’s equation. The likelihood ratio of 194.82 comfortably rejects the

nested VAR model. In column 3, we compare the constant conditional correlations GARCH

model (our baseline) with an expanded model that allows for varying conditional correlations

(Tse and Tsui, 2002). In particular, in this model, the covariance matrix of residuals is now
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Figure A1: Estimates of Time-Varying Uncertainty
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Notes: Both panels plot our quarterly time-series estimates of uncertainty, estimated as described in this
appendix. All lines are computed from one-quarter-ahead volatility predictions from a constant conditional
correlations (CCC) GARCH model. The left plot shows all series on a common scale, and the right plot
zooms in on the series other than demand. Both plots feature spikes that are off the scale of the graph
during the Covid-19 lockdown.

Σt = D
1
2
t CtD

1
2
t (cf. Equation 164) where

Ct = (1− λ1 − λ2)C + λ1Ψt + λ2Ct−1 (167)

where λ1, λ2 ≥ 0 are parameters governing the dynamics of the correlations, which satisfy

the restriction 0 ≤ λ1 + λ2 < 1; C is a long-run mean of the correlations; and Ψt is a

4-period (number of variables plus one) rolling estimator of the standardized residuals ε̃t =

D
− 1

2
t εt. Due to the additional restriction on λ1 and λ2, this model has only one more free

parameter than the nested constant conditional correlations model. The likelihood ratio

of 0.10 demonstrates an only marginal and statistically insignificant improvement in fit.

Thus, the data suggest that a model with time-varying volatility, but constant conditional

correlations, is a good fit for recent US history.

Estimates of Time-Varying Uncertainty. In Figure A1, we plot the raw time series for

each of our uncertainty measures. We observe that our estimates of demand uncertainty are

an order of magnitude larger than our estimates of other uncertainties. This is natural given

our large assumed value of R, the (square root of the) ratio between idiosyncratic demand

uncertainty and aggregate real marginal cost uncertainty. But this does not necessarily imply
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Figure A2: Inflation, Inflation Uncertainty, and the Slope of Aggregate Supply

0.00 0.01 0.02 0.03

∆ logPt, Quarterly Inflation

0.10

0.15

0.20

0.25

εS t
,

S
lo

p
e

o
f

A
g
.

S
u
p
p
ly Corr.: 0.62

A. Slope vs. Inflation

0 1 2 3

σ̂2
P,t, Inflation Uncertainty (×10−5)

0.10

0.15

0.20

0.25

εS t
,

S
lo

p
e

o
f

A
g
.

S
u
p
p
ly Corr.: 0.93

B. Slope vs. Uncertainty

0.00 0.01 0.02 0.03

∆ logPt, Quarterly Inflation

0

1

2

3

σ̂
2 P
,t

,
In

fl
.

U
n
c
e
rt

a
in

ty
(×

1
0
−

5
)

Corr.: 0.64

C. Uncertainty vs. Inflation

Notes: This figure shows the bivariate relationships between the estimated slope of aggregate supply (see
Section 5.1 and Appendix D.1), the level of inflation (quarterly log difference in GDP deflator), and uncer-
tainty about inflation (estimated one-quarter-ahead from a constant conditional correlations GARCH model;
see Section 5.1 and Appendix D.1) in US data. Each observation corresponds to one quarter. The numbers
in the top left indicate the correlations for each pair of variables.

that demand uncertainty is the only influential force shaping the slope of microeconomic

or macroeconomic supply, since uncertainties enter our formulae in interaction with the

elasticity of demand η. This is apparent from our results—the fluctuations in the slope of

aggregate supply in Figure 4 clearly reflect significant fluctuations in the other components

of uncertainty that are plotted in the second panel of Figure A1.

Inflation Levels, Inflation Uncertainty, and the Estimated Slope. Figure A2 shows

the correlations between our estimated slope, the level of inflation, and uncertainty regarding

inflation. Broadly speaking, we estimate the slope of aggregate supply to be high when the

level and uncertainty regarding inflation are high (panels A and B). Moreover, the level of

inflation and inflation uncertainty are highly correlated with one another (panel C). This

finding echoes the observation of Ball et al. (1988) that it is difficult, empirically, to find

circumstances in which levels and volatilities of inflation are decoupled from one another,

posing a difficulty for testing different models of state-dependent aggregate supply against

one another. However, as observed in Section 5.3, our model based on relative uncertainty

gives quite different predictions than simple models based on the level of or one-dimensional

uncertainty regarding inflation when confronted with global data.
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Figure A3: Rising Market Power and Flattening Aggregate Supply
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Notes: This figure plots the slope of aggregate supply under different scenarios of declining market power and
shows how trends in market power affect the slope of aggregate supply. We calibrate the model under two
scenarios: a fixed value of ηt ≡ 8 (grey line, “Constant Market Power”) and a linear trend over the sample
from an initial value of η1960Q1 = 11 to a final value of η2024Q4 = 5 (blue dashed line, “Rising Market Power”).
All other parameters, including the measured uncertainties, are exactly as in our baseline calculations (see
Section 5.1 and Appendix D.1). Panel A shows the time series behavior of average markups, ηt

ηt−1 , implied
by our different assumptions about the elasticity of demand. Panel B shows the resulting calculations for
the slope of aggregate supply, averaged over years.

D.2 Market Power and Aggregate Supply

A recent literature has suggested that market power, as measured by rising markups, has

risen throughout time (De Loecker et al., 2020; Demirer, 2020; Edmond et al., 2023). Com-

bined with our theoretical finding that increased market power flattens aggregate supply

under plausible parameter values, this suggests another potentially relevant culprit for the

long-run flattening of supply.

To study this possibility, we consider alternative calibrations of the slope of aggregate

supply in which we allow a secular downward trend in the elasticity of demand. Specifically,

we consider a scenario in which η linearly declines from 11 to 5 between 1960 and 2024. This

implies an increase in average markups from 11/10 = 1.10 to 5/4 = 1.25. These exercises

are not counterfactuals, which would require fully estimating the model and accounting for

the effects of market power on macroeconomic uncertainty. Instead, they are alternative

calibrations that would be more appropriate than our baseline if the elasticity of demand

has truly fallen over time.

Introducing a decline in market power increases the slope of aggregate supply in the 1970s

and decreases the slope in modern times (Figure A3). Calibrating to this different scenario

implies that the slope of aggregate supply flattens by 41% from 1978-1990 to 1991-2018,

compared to an estimate of 28% in our baseline model and an empirical estimate of 51%
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from Hazell et al. (2022). Thus, allowing for an increase in market power allows the model to

more closely match empirical estimates for the flattening of aggregate supply from the 1970s

to the 2010s. These calculations provide suggestive evidence that market power interacts

in a quantitatively relevant way with the slope of aggregate supply in our model. We leave

further analysis of this interaction to future work.

D.3 International Evidence

Data. We take annual data from 1960-2019 from the most recent edition of the Penn

World Tables (Feenstra et al., 2015; Zeileis, 2023). In particular, we measure real GDP, GDP

deflator (expressed in local currency), total hours, and the real value of the capital stock.

We construct real GDP growth and inflation as log differences (annual) in the corresponding

variables. We calculate TFP at the level of countries c and years t based on a constant labor

share of 2/3 as

logAct = logRealGDPt −
1

3
log RealCapitalStockct −

2

3
log LaborHoursct (168)

Finally, we construct growth in real marginal costs as described in Equation 163, using the

same calibration for γ. To calculate the slope of aggregate supply in each country, we also

carry over our calibration of η = 8, R = 6.5, and κM = 0.29.

Volatility from a VAR Model. Because our interest is cross-sectional differences, we

estimate a VAR model with time-invariant volatility for each country, rather than a model

of time-varying volatility (e.g., a GARCH model). In particular, letting Xt again denote the

vector (∆ logPt,∆ log Yt,∆ logMt), we model

Xct = Ac +BcXc,t−1 + εct, εct ∼ N(0,Σc), (169)

where (Ac, Bc) are country-specific coefficients and Σc is a country-specific covariance matrix.

We map the covariances from the VAR to the model using the same method described in

Equation 166, but with an estimate for Σ that depends on countries rather than time periods.

Finally, we drop three outliers from our calculations, Greece, Iceland, and Sweden, for

which we calculate a slope of aggregate supply and/or inflation-output relationship more

than 3 standard deviations away from the median.

Empirical Proxies for the Slope of Aggregate Supply. We calculate two country-

level proxies for the slope of aggregate supply. The first is the country-level, reduced-form

relationship between inflation and real output growth. That is, the coefficient βS
c from the

74



regression

∆ logPct = αc + βS
c ·∆ log Yct + εct (170)

estimated by ordinary least squares for each country c, using variation across time periods.

The coefficient

βS
c =

Cov[∆ logPct,∆ log Yct]

Var[∆ log Yct]
(171)

measures the strength of the reduced-form relationship between real output growth and

inflation. This is in the spirit of the reduced-form tests of Lucas (1973) and Ball et al. (1988),

who similarly look at covariances of real and nominal components of GDP. To understand

the structural interpretation of βS
c , we observe from Theorem 2 that, in the equilibrium of

the model,

∆ logPt = ϵS∆ log Yt +
(
δt∆ logAt +∆ log P̄t

)︸ ︷︷ ︸
=ε̃ct

(172)

where the term in parenthesis can be interpreted as the structural residual of Equation 170.

Intuitively, the structural residual of the reduced-form relationship between aggregate prices

and aggregate quantities can be thought of as the “shock to aggregate supply,” and the

reduced-form relationship traces out the “aggregate supply curve” if and only if all variation

in real GDP growth is induced by “aggregate demand” shocks (i.e., money supply shocks).

If this does not hold (i.e., if some variation in real GDP growth, in deviation from the mean,

is driven by productivity), then we expect Cov[∆ log Yct, ε̃ct] < 0 and a downward bias in the

ordinary least squares estimate, or plim β̂S,OLS
c < ϵS

As a second strategy, we construct a model-based instrument for money supply growth.

Using the money demand equation (the second equation in Proposition 1), we observe that,

in equilibrium,

Mt = Y γ
t Pt

1 + it
it

(173)

Abstracting from nominal interest rate changes, which is what our model implies under the

imposed simplification of time-invariant volatility (and time-invariant ϵS), the model implies

∆ logMt = γ∆ log Yt +∆ logPt (174)

and moreover, due to the random-walk behavior of the money supply, that these increments

are idiosyncratic across time and uncorrelated with shocks to productivity. Therefore, we

construct the money growth instrument ∆ log M̃ct = γ∆ log Yct + ∆ logPct and use it as an

instrument for real GDP growth. The first-stage equation is

∆ log Yct = ζc + βF
c ·∆ log M̃ct + νct (175)
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Table A2: Predicting the Slope of Aggregate Supply

(1) (2) (3) (4) (5) (6)

Outcome is β̂S
c (Reduced-form) Outcome is β̂S,IV

c (Structural)

ϵ̂Sc , Slope of ag. supply 0.261 0.132 0.0174 7.226 7.618 8.823
(0.0379) (0.0392) (0.0565) (2.410) (3.406) (4.996)

Mean inflation -7.542 22.86
(1.583) (137.7)

Inflation uncertainty -84.96 556.1
(17.14) (1516.1)

Observations 29 29 29 29 29 29
R2 0.638 0.807 0.814 0.250 0.251 0.254

Notes: This table reports the cross-country relationship between empirical and theoretical proxies for the
slope of aggregate supply. All estimates are from linear regressions where the unit of observation is an
OECD country. In columns 1-3, the outcome is the “reduced-form” slope of aggregate supply defined in
Equation 171. In columns 4-6, the outcome is the “structural” slope of aggregate supply defined in Equation
176. The independent variables are the model-implied slope of aggregate supply, calculated based on a
macroeconomic calibration and measurements of relative uncertainty in each country; the mean value of
GDP deflator inflation from 1960-2019; and the one-step-ahead forecast variance of inflation from a three-
variable VAR model (see Equation 169) over the same period. Standard errors are in parentheses.

and the structural equation remains Equation 170. The population two-stage least squares

coefficient of the slope of supply is

βS,IV
c =

Cov[∆ logPct,∆ log M̃ct]

Cov[∆ log Yct,∆ log M̃ct]
=

γCov[∆ logPct,∆ log Yct] + Var[∆ logPct]

Cov[∆ logPct,∆ log Yct] + γVar[∆ log Yct]
(176)

Cross-Country Evidence. Table A2 summarizes the relationship between our empirical

proxies and model-based calculations for the slope of aggregate supply. Column 1 shows the

positive relationship between the reduced-form slope and model-based slope that is visualized

in the left panel of Figure 5. This relationship is robust to controlling for the level of

inflation (column 2). The relationship becomes statistically insignificant when controlling

for one-step-ahead inflation uncertainty (column 3), although the coefficient on the latter is

inconsistent with the theoretical prediction. Turning to the structural estimates (columns

4-6), we estimate a large and quantitatively stable relationship between the data-based and

model-based estimates. The larger magnitudes in columns 4-6 versus 1-3 are consistent

with the hypothesis that the reduced-form coefficients are biased toward zero by spurious

correlation with aggregate supply shocks. The coefficients on mean inflation and inflation

uncertainty in columns 5 and 6 are consistent with theory, but imprecisely estimated and of
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marginal consequence to the R2 of the model.

While these results are to be interpreted with caution, given the limited sample size and

abundance of confounding factors in cross-country analysis, they offer suggestive evidence

that the model-based slope of aggregate supply helps predict cross-country variation in the

inflation-output relationship. Moreover, our model’s prediction based on relative variance

has predictive power over and above the mean and one-step-ahead uncertainty regarding

inflation, which are the main factors influencing the slope of aggregate supply in other

theories of state-dependent firm adjustment (Ball et al., 1988). Further investigation of

the differences between these models may be possible by incorporating both time-series and

cross-sectional variation in an international panel or by turning to micro data. We leave

these investigations to future work.

D.4 Counterfactual Analyses and Equilibrium Multiplicity

The analysis in the main text leveraged the “reduced form” uncertainties relevant to the firm

in Theorem 1 and did not estimate the structural uncertainties that mediate firms’ supply

functions slopes via the fixed point in Theorem 3. As noted in the main text, an advantage of

this approach is that the economic analyst can measure the slope of firms’ supply functions

without taking a stance on the general equilibrium features of the economy. Moreover, by

using such observational data, the analyst can bypass issues of equilibrium selection.

However, a limitation of this approach is that this method precludes conducting counter-

factuals which would be relevant when model parameters endogenously respond to policy. In

this section, we outline how one can use our theory to conduct counterfactual exercises and

demonstrate that a unique equilibrium exists for a reasonable calibration of the US economy.

Methodology and Calibration. Solving the fixed point in Theorem 3 requires values

for the preference parameters (η, γ) and uncertainties (σϑ,t, σ
A
t , σ

M
t , κA

t , κ
M
t ). To simplify the

analysis, we assume that these parameters are time-invariant. We set η = 8 and γ = 0.11

as in the main text. Moreover, we set σ2
ϑ,t = 0.0026 to match the unconditional mean of

our GARCH estimates in Section 5 over our sample period. Next, we back out the latent

aggregate demand shock using the observation that Mt =
1+it
it

Cγ
t Pt from Proposition 1. We

calibrate σM
t to match the mean unconditional variance in ∆ logMt following Equation 16.

We also calibrate σA
t to match the mean unconditional variance in ∆ logAt, where we measure

TFP growth At using the dataset of Fernald (2025). Finally, we set κM
t and κA

t to zero. We

do so to keep our analysis consistent with the methodology of Golosov and Lucas (2007),

which directly estimates firms’ uncertainty using realized inflation rates. Nevertheless, the

basic message of equilibrium uniqueness is not sensitive to these parameter choices.
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Figure A4: Fixed Point of Firms’ Supply Function Slopes

A. US Parameters: Unique Equilibrium
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Notes: Panel A plots the fixed point from Theorem 3 under a parameterization with a unique
equilibrium when parameters are calibrated to the US economy: (κA, κM , σ2

M , σ2
A, η, γ, σ

2
ϑ) =

(0, 0, 0.00017, 0.000068, 8, 0.11, 0.0026). Panel B plots a parameterization with three equilibria:
(κA, κM , σ2

M , σ2
A, η, γ, σ

2
ϑ) = (0.1, 0.9, 5, 10, 2, 0.02, 5).

Results. Figure A4 plots the fixed point in Theorem 3 for various parameter values. The

left panel depicts the fixed point for a parameterization of the US economy, described above.

The right panel depicts the fixed for an alternative parameterization which features multiple

equilibria.

Observe that the US parameterization features a unique equilibrium (panel A). The in-

tuition for this result is that idiosyncratic demand uncertainty is large in our estimation

relative to other sources of uncertainty. For this reason, the fixed point for firms’ microeco-

nomic supply elasticities is well approximated by a linear function. To obtain equilibrium

multiplicity in computational experiments, we had to increase firms’ relative uncertainty

about aggregate vs. idiosyncratic demand conditions by more than ten-fold, as well as fix

a particularly low value of γ (panel B). To provide some intuition for multiplicity in this

environment, observe that the dynamics of real GDP are described by the following Equation

(see Lemma 1):

logCt = χ̃0,t+
1

γ

κA
t

1− ω1,t

(
η − 1

γ

)
(1− κA

t )
logAt+

1

γ

(1− κM
t )(1− ηω1,t)

1− ω1,t

(
η − 1

γ

)
(1− κM

t )
logMt (177)

In particular, higher values of ω1,t reduce the volatility of aggregate consumption that arises

through productivity shocks. But this in itself is a force that favors steeper supply functions,

since even small shifts in demand are likely to imply large changes in marginal costs. Con-

sequently, this economy can feature multiple equilibria in firms’ supply function elasticities,
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through a general equilibrium feedback loop that arises between supply function choice and

firms’ endogenous uncertainties, as we described in Section 4.4. Nevertheless, we have found

it challenging to construct examples with multiple equilibria and quantitatively reasonable

parameter values for the US. Consequently, we believe that our framework is also amenable

to counterfactual analyses for the US economy.
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