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A  Omitted Proofs

A.1 Proof of Theorem 1

Proof. Fix asupply function f. The realized price of the firm in state z solves f(p(z), zp(z)™") =
0. As we placed no restrictions on f, it is equivalent to think of the firm as choosing p directly.
For a given choice of p, the firm’s payoff is given by:

J(p) = Ai+ A (]@ - M) 2p(2)"TdG(A, P, M, 2) (38)

where (G is the cumulative distribution function representing the firm’s beliefs. We therefore

study the problem:
sup J(p) (39)

PRy =Ry
Given a solution p for how firms optimally adapt their prices to demand, we will recover the
optimal plan f for how firms optimally set a supply function.
We first derive Equation 8 using variational methods. Consider a variation p(z) = p(z) +

eh(z). The expected payoff under this variation is:

J(eh) = /R N A (w - M) 2 (p(2) + eh(2)) T AG(A, P, M, 2)  (40)

A necessary condition for the optimality of a function p is that J.(0; h) = 0 for all G—measurable
h. Taking this derivative and setting ¢ = 0, we obtain:
h
0= / {A%zp(z)_” —nAh(z) (I% - M) zp(z)_”_l} dG(A, P, M, z)  (41)
RY L

Consider h functions given by the Dirac delta functions on each z, h(z) = J,. This condition

becomes:

0= /R 3 {A%tp(t)n A (@ _ M) tp(t)”l] oA P M ) AAAPAM (42
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for all £ € Ry . This is equivalent to:

-

=(1—-nE [A%Lz = t} tp(t)"" + nE [AM|z = t] tp(t) "

{A%tp(t)_" — A (@ - M) tp(t)_"_l} g(A, P, M|t)dAdP dM

3
o+

Thus, we have that an optimal solution necessarily follows:

_n E[AM]z=1]
P = I RAP I = ]

as claimed in Equation 8.

We now evaluate the expectations. Using log-normality,

1 1
E[AM|z =t] = exp {MA|z(t) + pip2 () + 5012\\,2 + §Ui4|z + 0A,M|z}

_ 1 1
E[AP 'z =t] = exp {MA|Z(t) — pp|2(t) + 50?\‘2 + 5012% — O'A,pz}
where x|, = E[log X|log 2] and ox,y|. = Cov[log X,log Y|log z|. Thus,

E[AM|z = 1]
E[AP1|z = {]

1 2 1 2
= exp § imia(t) + 1pia(t) + 500 = 5P + Tami oA

Using standard formulae for Gaussian conditional expectations,

OM,z Opz
pm)=(t) = pa + 02 (logt —p.)  pp(t) = pp + 3 (logt — )
z z
2 2
o2 =2 _ IMsz o2 o2 _ TPz
M|z M O_g P|z P 0’3
ONzOM,z OA,20P2
OAM|z = OAM — 3 OAP|lz = OAP — 3
O—Z O—Z
where:
2 2 2 2 2
o, =0y +nN0op+t22owpr  Op.=0py+N0p
OM,z = OMw + NOMP OAz = OA W T N0AP

(44)

(48)

We now combine these expressions with Equation 44 to derive the optimal supply func-

tion. We first observe that
logp = wy + wy logt
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where:

o Ui 1, L,
wo = log n—1 + pm - pp — Wiy + 5Mlz T 5P + OA M|z T OA P2
50
or — Om:+0p.  Opmw +10pmp +0pw +10p (50)
L 02 o+ nPoh + 2noup

Next, using the demand curve, we observe that z = ¢p”. Therefore, logt = logq + nlogp.

Substituting this into Equation 49, and re-arranging, we obtain

logp = ap + a1 logq (51)
where:
Wo w1
%) 1_ 77&11’ a1 1— nwi ( )

We finally derive the claimed expression for aq,

UM,\I/JFUO'M,PJFUP,\IIJFWU%D 9
o +n2op+2noy p  OMu T NOMmp +Opy +1N0P

= =
1 nUM,\p+7ZUM,P+UP,\If+77‘7P 0'\% -+ Now.p — NOME — 7720'/\47}3
02 +n20%+2n0y, p

a1 =

Completing the proof.

A.2 Proof of Corollary 1

Proof. If 2nopm p + omw > opw, then the denominator of Equation 6 is decreasing in 7.
Moreover, if opp > 0, the numerator is increasing in 7. Hence, «; is increasing in 7

whenever a; > 0. O

A.3 Proof of Proposition 1

Proof. From the household’s choice among varieties, the demand curve for each variety i is

Dit Cit _’l’
7 54
P, (ﬁz‘tct> ( )

From the intratemporal Euler equation for consumption demand vs. labor supply, the house-

hold equates the marginal benefit of supplying additional labor w;,C; Y P! with its marginal

cost ¢;. Thus, variety-specific wages are given by

Wit = (bltPtC;y (55)
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From the intertemporal Euler equation between consumption and money today, the cost of
holding an additional dollar today equals the benefit of holding an additional dollar today

plus the value of an additional dollar tomorrow:

1 1 1
ol L s {c—v —] 56
t Pt Mt 6 t R ( )

Further, from the intertemporal choice between bonds, the cost of saving an additional dollar

today equals the nominal interest rate 1+, times the value of an additional dollar tomorrow:

1 1
— ] i _
6 = B+ B [CR 5 7
From Equations 56 and 57, we obtain:
Ly sE, (| = 801+ iR, |07 = (58)
Mt t t+1 P - t t t+1 1 Pt+1

It follows that: ' .
1t _
_ BiE _ o= 59
M, 5@”[“1&] 1+4, ' P (59)

where the second equality uses Equation 57 once again. This rearranges to:

() (MY
Ot_(lﬂ't) (Pt) )

We next derive the interest rate. Substituting equation 60 into Equation 57, we obtain:

144, 1 {1+it+1 1 }
: 144)E; | — — 61
4 Mt 6( t) i1 Mg ( )
Dividing both sides by (1 + i;), multiplying by M;, and then adding one, we obtain:
1+ 1+ M, 1+
5 =1+ PE, { ar —t} =1+ pE, {GXP{_NM Ut+15t+1}—t+1} (62)
n i1 Mg 41

where the second equality exploits the fact that M; follows a random walk with drift. If we

guess that 7; is deterministic and define x; = %, then we obtain that:

T =1+ 0241 (63)
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where:

0y = Bexp {—NM + %(0%1)2} (64)

We observe that 6, € [0, 5] for all ¢ due to the assumption that 1(07")* < pp. Solving this

equation forward, we obtain that for 7" > 2:
T—1 1
rp=1+0 (1 + Z H 5t+y> + 0 (H 5t+y) TeyT41 (65)
i=1 j=1

Taking the limit 7' — oo, this becomes:

Ty = 1+ 515 (1 + Z H 6t+]> + 5,5 llm (H 6t+]> L4+T+1 (66)

=1 j=1

where the final term can be bounded using the fact that ¢, € [0, 5]:

T
0 <o, Tlglgo (H 5t+j) Topri1 < Tl'ggo B ey (67)

Jj=1

The household’s transversality condition ensures that this upper bound is zero. Formally,

the transversality condition (necessary for the optimality of the household’s choices) is that:

lim g7 =1 Oy (My + (1 +i7)Br) =0 (68)
T—o00 PT

Moreover, as B; = 0 for all ¢ € N, this reduces to limy_, ﬂTCPL:MT = 0. By Equation 59,

we have that ]% = Cf; . Thus, the transversality condition reduces to limg_ o ST 27 = 0.

Combining this with Equation 67, we have that limp_, (H].Tzl 5t+j> Ziyre1 = 0. An explicit

formula for the interest rate follows:

1 ;t i — 14 Bexp {—MM + %(gﬁl)Q} (1 + ZHﬂeXP {—HM + %(J%—j—FI)Q}) (69)

i=1 j=1

The formulae in Equation 20 then follow. In particular, ¥;; = 9;,C,; follows from comparing

Equations 2 and 54. P, = “ C’_”Mt follows from Equation 60. A; = C; 7 is the households

— 1 Wit ¢ztct
CitAr Py CitA

95. [l

marginal utility from consumptlon. Finally, M follows from Equation
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A.4 Proof of Theorem 2

Proof. We begin by characterizing log-linear equilibria, which is achieved by the following

Lemma:

Lemma 1 (Macroeconomic Dynamics with Supply Functions). If all firms use log-linear
supply functions of the form in Equation 21, output in the unique log-linear temporary equi-
librium follows:

S ki 1 (1—&M)(1 —nw
log Cy = Xo + = ¢ log A; + — ( ) nwi,¢)

log M, (70)
71—w1,t<n—%)(1—/@{‘) 71—w1,t(n—%)(1—ﬁ,{‘/1)

and the aggregate price in the unique log-linear temporary equilibrium s given by:

K N (e

log A; + N
l—th(n—%)(l—mf‘) l—wl,t<n—%>(1—f{y)

log P = X0t — log M;  (71)

where xo1 and Xo¢ are constants that depend only on parameters (including on ) and past

shocks to the economy.

Proof. We suppress dependence on t for ease of notation. Consider a plan:
log p; = log ag; + aq log g; (72)
where & ; = e**. The demand-supply relationship that the firm faces is:
logp; = —%(log ¢; —log ¥) + log P (73)

The realized quantity therefore is:

log q; = T o log & ; + T log W, P" (74)
and the realized price is:
logp; = log & + @ log W, P" (75)
1+ nay T 14+ oy
It is useful to make the change of variables w; = 5 fnlm to write
log p; = (1 — nwy) log &g ; + wy log W, P (76)
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Our goal is to express dynamics only as a function of w;. We first find the optimal &g ; in

terms of w;. The firm therefore solves:

w2 (- ) (5) )

Substituting for the realized price using the demand-supply relationship yields:

max [E
Qag,i

~ lf.nwl
A<%é<%mw—MJ%?”me“1 (78)

The optimal ¢y ; is:
n EZ[AM'L (wipn)l—ﬂwl]

~l—nwi __
G = 79
0 T TR (u Py i
Substituting back into the realized price yields:
E,[AM,; (T, P7) 7™ y
po= A BRI 0
n—LE;[5 (W Pn) ]
We may express this only in terms of P by using Proposition 1, where we let I = % for
ease of notation:
111 1=nw1
E; P(QA)_I (191‘[ P 7]\4”]377> ]
_.n
b= n—1 E; [ﬂ*%(ernm)M%(1+w1*77w1)*1191+w1—nw1 P(ﬂ*%)(ernm)} (81)
J1o1 o 1\l
X (191'[ v M~ P" 7)
Given the ideal price index formula (Equation 14), P must satisfy the aggregation:
P =E [¥p; "] (82)

where the expectation is over the cross-section of firms. We guess and verify that the

aggregate price is log-linear in aggregates
log P = xo + xalog A+ xarlog M (83)
Moreover, if the p; are log-normally distributed (we will verify this below), then:

log P = E[log p;] + Var((1 — n) log p;) + const (84)

L
2(1 —n)
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We first simplify the numerator of the first term by collecting all the terms involving s

and sM:

1 11 1—nw 1
log E; [@(QA)_l (ﬁI*?P*?M?P”> ! } = {—/@A + K4 (77 - ;) xa(l — 77W1)} s{
(85)
+ {XM (77 — %) (1 — nw )™ + %(1 — nwl)kaM} sM 4 const

where the constants are independent of signals. We similarly simplify the denominator of

the second term:

log ]Ei [11*%(1+W1*77"-’1)M%(1+W1*77W1)*1191+w1—77w1P(’?*%)(1+W1*7]w1):| _
1 Al JA
XA \n— 5 (14w —nwi)r"| s

+ H%u o — ) — 1} (") + X (n - %) (1 +wi — ) (M)} M

-+ const

(86)

where the constants are again independent of signals. Finally, we can simplify the last term:
_1 o1 1\Wl 1 1 1

log <19iI ¥ M~ P" v) = wixA (fr; - —> log A+w; {XM (77 — —) + —} log M +const (87)
Y Y Y

where the constants are independent of the aggregate shocks. Hence, log p; is indeed normally
distributed and its variance is independent of the realization of aggregate shocks. We can
now collect terms to verify our log-linear guess. Substituting the resulting expression for
log p; and our guess for log P from Equation 83 into Equation 84, and solving for x4 by

collecting coefficients on log A yields:

oA
XA = — ; (88)
1—w (77—;/) (1—r4)
We may similarly solve for x;:
kM 4 @11 — gM
1 ( ) (89)

XM:l—aq(n—%)(l—/ﬁM)

This proves the dynamics for the price level. The dynamics for consumption then follow

from Proposition 1. O
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With this characterization in hand, by Equation 70 and market clearing C; = Y;, we
have:

1 5 -
log M, = — (IOth — XAt log A; — Xo,t) (90)
XMt

Substituting for log M; in Equation 71 and defining log P; = xo.+—€. Yo, and 6 = x4t —€7 ¥ At
then yields Equation AS:

log P, = log P, + ef logY; + d; log A, (91)

Doing a similar substitution for log A; in Equation 70 then yields Equation AD:

log P, = log (%) — ePlogY, + log M, (92)
t

Completing the proof. O

A.5 Proof of Theorem 3

Proof. We suppress dependence on t for ease of notation. We have x5, and x4 as a function

of wy from Lemma 1. We also know that:

OM;,z + Op,z
W = —————>

(93)

2
0

from Equation 50. As z; = 1; (ﬁﬁ M7*P" 5 and M; = qbi(CiA)*lllﬂ.%, we have that:

1 1 1
oM, = Cov <—(1 +Xxa)log A+ (1 —xwn)log M, (n— ;) Xalog A+ <§ + (77— ;) XM> logM)
1 , 1 1 )
=3 Xa(l+xa)oaq+(1—xum) | =+ =) X ) o

Y
1 1 1
op, = Cov (XAlogA+XM10gM, <77— ;) xalog A+ (; + (77— ;) XM) logM)
N, 1 | ) (94)
= (77—;> Xa0a + XM (;Jr (77—5) XM) Om
r=air (n-2) waer s (2 (- 1)) o
v 7 Y

Thus: 1 2 1 1 2
—(n— ;)XAUA + (; + (- ;)XM)UM

(95)
o+ (= 2408 + (5 + (0= J)xm)?oiy

w1 =
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Note that the optimal w; is common across all firms . We may express this in fully reduced

form as:
Kyt (1—kar)
= Do oA+ G+ (=)o )i
—wi(n—=2)(1—ka) 2l Y l—wi(n—3 ) (1—knr)
o T — 1(n=1)0—ra 2 i w)wl(ﬂz )
2 _1y2 KA 2 (1 Ly T LTI y2,2
(96)
or 1 1 1
((n_w))’%z‘l 2 WJE(”_;)“M 2
1—w 77—% (1—k4) 1—w1 n—% (1—rnr)
wi = T(w) = . 2 D\ (97)
o5+ | — At |\ oo Thr
1 wl(n 7)(1 KA) 1 wl(n )(1 KM )
O

A.6 Proof of Proposition 2

Proof. We first establish equilibrium existence. First, we observe that 7} is a continuous func-
1 1
(n—5)(1—rp") (n—3)(1—r)"
w1t —w & Tiwie) = Tt(wﬁ) = Tt(wﬁt) = 0.

Second, we observe that lim,,, ., T} (w1) = limy,, , 00 T3 (w1+) = 0. Consider now the func-

tion. The only possible points of discontinuity are: w{\ft = and wft =

However, at these points lim M Ty(wie) = lim,,

tion Wy(w1s) = wiy — Ti(wiy). This is a continuous function, limy, , o Wi(wi,) = —00,
and limy, , 50 Wi(wi¢) = oo. Thus, by the intermediate value theorem, there exists an wy,

such that Wi(wj,) = 0. By Theorem 3, wj, defines a log-linear equilibrium.

We now show that there are at most five log-linear equilibria. For w;, # wft, wi (neither

of which can be a fixed point), we can rewrite Equation 29 as:

S T S R P

T (R L (Y R )

+ (o)’ (%Jr (n—%) litM) (1—wu (n—%) (1—@“))2] .
= (02?8)2 (77 — %) e (1 — Wiy (77 - %) (1- ’@iw)y (1 — Wi (77 - %) (1- “754))
(o) (o o)) o o)

This is a quintic polynomial in wy;, which has at most five real roots. Thus, by Theorem 3,
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there are at most five log-linear equilibria. O]

A.7 Proof of Corollary 5

Proof. We drop time subscripts for ease of notation. Substituting n = % in Equation 29

yields: X
w = ——"— (99)
e
Substituting this into Equation 24 yields:
M
T AT (100
O

A.8 Proof of Corollary 6

We drop time subscripts for ease of notation. The first statement follows directly from

Equation 29. Furthermore, using Equation 29, as at]‘é — 00, w1 must solve:

1—w; <77—%> (1—,‘11\/[)
%+ (77_%> (M - 1—1—(7]77— 1) kM * (1_ 1+(77;77— l)fiM)wl (101)

w1 =

1
n

This proves the second statement. As O’;?S — oo and 7y # 1, w; must solve:

wl = = _ _A
(n _ %) jA (ny —1 K

S TSR
) (102)
1

This proves the third statement.

A.9 Proof of Proposition 3

Proof. By Theorem 3, The map describing equilibrium w;, is invariant to A for A > 0.

Thus, £°(\) is constant for A > 0. If A = 0, there are potentially many equilibria in
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supply functions. Nevertheless, from the proof of Theorem 1, we have that firms set
pi/ P = %Mit = n"j(qﬁitC’? )/(CitAy) under any optimal supply function. This implies
that %Cg /A; = const, and so money has no real effects, which implies that ¢ = co. n
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B Supply Functions in Richer Economic Settings

In this appendix, we generalize the firm’s partial-equilibrium supply schedule problem in
four ways. First, we enrich both the firm’s technology and input space by allowing for many
inputs, decreasing returns to scale, and monopsony power. Second, we enrich the demand the
firm faces by decoupling the own-price elasticity and the cross-price elasticity and allowing
for non-isoelastic demand curves that feature endogenous markups (allowing for Marshall’s
Second and Third laws of demand). Third, we enrich the firm’s decisionmaking by allowing
the firm to choose additional non-price and non-quantity variables at a cost. This allows,
for example, the firm to invest in improving the quality of its product. Finally, we enrich
the firm’s problem by introducing Calvo price stickiness. In all four cases, we characterize
firms’ optimal supply functions, show that our core insights generalize, and highlight the
new economic features that each of these extensions introduces. In the interest of brevity,
we leave embedding these generalizations in general equilibrium to future research, though
it is clear to see how one could do this by embedding these characterizations in our general

equilibrium model and leveraging the techniques from our main analysis.?’

B.1 Multiple Inputs, Decreasing Returns, and Monopsony

In this section, we generalize our baseline model of supply function choice to allow for
multiple inputs, decreasing returns, and monopsony. We find that: (i) supply functions
remain endogenously log-linear and (ii) decreasing returns and monopsony flatten the optimal

supply schedule.

Primitives. Consider the baseline model from Section 2 with two modifications. First, the
production function uses multiple inputs with different input shares and possibly features

decreasing returns-to-scale:

g=0]]a (103)

where z; € R, , a; > 0, and Zle a; < 1. Moreover, suppose that the producer potentially

has monopsony power and faces an upward-sloping factor price curve such that the price of
bi—

acquiring any input ¢ when the firm demands x; units is given by p;(x;) = puiz; ! where

pei € Riy and b; > 1. The case of no monopsony, or price-taking in the input market, occurs

20The only complication with endogenous markups would be the endogenous non-log-linearity of the
optimal supply curve. This would have to be dealt with via either approximation arguments similar to those
we adopt in our extension to allow for price stickiness or numerical methods, or both.
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when b; = 1. Thus, the cost of acquiring each type of input is given by:

Cz(l’z) = pmxfl

The firm believes that (¥, P, A, ©, p,) is jointly log-normal.

The Firm’s Problem. We begin by solving the firm’s cost minimization problem:

g
K(q;0,p,) = mianxix?i st. ¢q=0 fol
i=1 ;

This has first-order condition given by:

bi Tt P

Which implies that:

I
Q;
K(G:0,p) =X+
i=1

Moreover, fixing i, the FOC implies that we may write for all j # i:

bip:ri bj b

aq
bjp:cj

a;

N

J

T

S

l’j:

By substituting this into the production function we have that:

a.;

aitbi % bzf% b
q= @xl H bjp:tj
J# O\ Ta;
which implies that:
S S
aj+bi 34 #
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(105)

(106)

(107)

(108)

(109)
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Returning to the FOC, we have that the Lagrange multiplier is given by:

a; —1

bipx- E Z7{:1 11:7]
“lt =t b.p... i 3 J
. Z{: T 0P a;
A=gq 15 - 0 H o (111)
JFi a;
Which then yields the cost function:
K(q;0,p.) = MPgs (112)

where:

I a; p Zzl 1 Zi ! Qa;
= - P~ e = 11
Z-Zl b, and M = (@ H < ) ) 2 b (113)

and we observe that M is log-normal given the joint log-normality of (O, p,).

Turning to the firm’s payoff function, we therefore have:
p 1
E [A (Fq—Mqéﬂ (114)

Thus, the problem with multiple inputs, monopsony, and decreasing returns modifies the
firms’ original payoff by only introducing the parameter §. Helpfully, observe that § = 1
when: (i) there are constant returns to scale Y.1_ a; = 1 and (ii) there is no monopsony
b; =1 for all i.

Given this, we can write the firm’s objective as:

. ]5(2’)17” 1, n
J(p) = A 2 z—Mzip(z)7¢ | dG(A, P, M, z) (115)
R4
And, as before, we study the problem:

sup  J(p) (116)

PRy =Ryt

By doing this, we obtain a modified formula for the optimal supply function:
Proposition 4 (Optimal Supply Schedule With Multiple Inputs, Decreasing Returns, and

Monopsony). Any optimal supply schedule is almost everywhere given by:

—10g5 (Aﬁ‘*’l%;dl
- 0gq
L —nuwy 1 —nw

f(p,q) =logp — (117)

where wy and wy are the same as those derived in Theorem 1. Thus, the optimal inverse
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supply elasticity is given by:

A n0b + omw + opw +Nomp 1-5 o +n°ch +2nour
a1 = — 5 1+ 5 (118)
oy —NoMmy +N0pw — N°OMm.P 0 omuw+nomp+opw +nop

Proof. Applying the same variational arguments as in the Proof of Theorem 1, we obtain

that p(t) must solve:

@-UEmffwz:ﬂmxwﬂu:gEmﬁﬂz:tnax@*%ﬂ (119)

Which yields:

1—

9

1

. N EAM|z = 1] \ ta(55) (55
t)y=(06" s 120
pt) ( n— 1EAP1|z = {] (120)
Thus, we have that:
1 (o — log 8) + —— ( +1_5)1 (121)
08P = - 71-5\ \Wo — 108 T 1 (Wi —— | logz
L+n (%) L+n () 6
where wy and w; are as in Theorem 1. Rewriting as a supply function, we obtain:
Hn(l%) (wo — log d) Hn(ll%é) (Wl + 15;6)
logp = N 7 s ; 77 —sv log q (122)
- 1+n 1575) (wl + T) - 147 %) (wl + T)
Which reduces to the claimed formula. ]

Thus, when the supply curve is initially upward-sloping (w; € [0,77!]), the introduction
of decreasing returns and/or monopsony unambiguously increases the supply elasticity and

makes firms closer to quantity-setting.

B.2 Beyond Isoelastic Demand

Isoelastic demand imposes both that the firm’s own price elasticity of demand and its cross-
price elasticity of demand are constant. In this appendix, we show how to derive optimal
supply functions in closed form when the firm’s own price elasticity of demand varies. This
allows the demand curve to satisfy Marshall’s second law of demand that the price elasticity
of demand is increasing in the price as well as Marshall’s third law of demand that the rate
of increase of the price elasticity goes down with the price. We show that uncertainty about
demand, prices, and marginal costs continue to operate in a very similar fashion. However,

due to endogeneity of the optimal markup, the optimal supply schedule now ceases to be
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log-linear.

To capture these features, suppose that demand is multiplicatively separable: d(p, ¥, P) =
z2(¥, P)¢p(p) for some function ¢ such that p¢”(p)/¢’'(p) < —2. This latter condition is
satisfied by isoelastic demand exactly under the familiar condition that n > 1 and ensures
the existence of a unique optimal price. We further assume that z(¥, P) = vo¥" P*2 for
v, v1,v2 € R\ {0}. This makes firms” uncertainty about the location of their demand curve
log-normal. This assumption does rule out non-separable demand, such as the demand
system proposed by Kimball (1995). However, it is important to note that this demand
system is motivated by evidence on the firm’s own price elasticity, which is governed by
¢, and not the cross-price elasticity, which is governed by 1. Thus, our proposed demand
system is equally able to capture facts about the firms’ own price elasticity as the one
proposed in Kimball (1995), or the richer structures proposed by Fujiwara and Matsuyama
(2022) and Wang and Werning (2022).

Under this demand system, we can derive a modified formula for the optimal supply

curve which is now no longer log-linear, but continues to be governed by similar forces:

Proposition 5. If demand is multiplicatively separable, then any optimal supply function is

almost everywhere given by:

f(p,q) =logq+ dg —log <¢(p) {p [1 4 22 } }W) (123)

p¢'(p)
where: )
. vi(omu +0opw) +12(0p + orp)
wi = 2 2 2 2 (124)
Vio0y + V50p + 2V11/20'\I;7p
Proof. Applying the same variational arguments as in Theorem 1, we obtain that:
) o(p(z E[AM]|z

T 0() T EAP]

where the condition p¢”(p)/¢'(p) < —2 yields strict concavity of the objective and makes
p(z) the unique maximizer. Taking logarithms of both sides and evaluating the conditional

expectations as per Theorem 1, we obtain that:

. ¢(p(2)) A
log(pz [l—i—% = Wy + wy log 2z 126
D FmeeE]) ~0 (120
where w; = UM‘ZU—JQGP’Z, which yields Equation 124. Using log z = log ¢ — log ¢(p) and rear-
ranging yields Equation 123. [
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Demand uncertainty and price uncertainty enter the same way as before, via w;, and
the intuition is the same. However, there are now two distinct notions of market power
and they therefore operate in a more subtle way. First, consider the role of the cross-price
elasticity of demand 5. When 15 is higher, the firm’s price is ex post more responsive to
changes in others’ prices. Second, consider the role of the own-price elasticity of demand
<%>1. This induces non-linearity of the optimal supply schedule to the extent that it
is not constant. This is because the firm’s optimal markup changes as it moves along its

demand curve.

B.3 Additional Choice Variables

Our approach of studying firms’ supply functions has thus far focused on firms that choose
prices and quantities. However, it is natural to imagine that firms can make richer choices,
such as deciding what quality or type of product they will sell. In this appendix, we gener-
alize our characterization of firms’ optimal supply functions to incorporate additional choice
margins. We find that supply functions remain log-linear conditional on these other choices.
We also show how to characterize the optimal values of these other choices given this fact.

To model additional choice margins, suppose that the firm, in addition to its price and
quantity decisions, chooses a vector of non-quantity decisions x € X C R". These decisions
are made at the beginning of the period and potentially affect the joint distribution of
(A, P, M, ¥) via the map G : X — A(R%). We suppose that choices of z € X lead
to a dollar cost to the firm of C(z). To see how this framework accommodates quantity
investments, suppose that X C R and x € X represents the quality of the good. Investing in
different qualities comes at a cost. Moreover, higher quality might increase both the mean
of firms’ demand ¥ and the mean of firms’ marginal costs M.

We now characterize firms’ optimal supply function decisions in this framework. We
let H(f,x) denote the joint distribution over (A, P, M, ¥, p, q) induced by a supply function
f:R3, — Rand other decisions . With this, the firm’s problem of optimal supply function

and other decisions is given by:

sup Epra [A (5 = M) q| — EngnAIC(@) (127)

zeX,f:R3, =R P

This can be split into two optimization problems. First, for every choice of x € X, we solve

for the optimal supply function f,:

V(z) = sup Epuga [A <— - M) q} (128)

f:R?H_%R
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Second, we can compute the optimal choice of x € X by solving:

sup V(z) — En(sa)[A]C(2) (129)

zeX

By identical arguments to those of Theorem 1 (simply index G by x up to Equation 44), we

immediately obtain that under the optimal prices in demand state z = ¢ must be given by:

o n Eg(@ [AM‘Z = t]
Pz (t) = —1|. —
n—1Equ APz =1]

(130)

If we further assume that G(x) is a multivariate log-normal distribution with mean g,
and variance-covariance matrix >, then we obtain (by identical arguments to those in
Theorem 1) that the optimal supply function for a fixed choice of z € X obeys the following

Proposition, the proof of which follows immediately from that of Theorem 1.

Proposition 6 (Supply Function Choice When Firms Choose More Than Prices and Quan-
tities). If for x € X the distribution G(z) is multivariate normal, then the optimal supply
function is given by:

fz(p,q) =logp — g, — a1, logq (131)

where oy, and o, follow exactly the formulae derived in Theorem 1, where all appropriate

means and variances are computed under the distribution G(z).

From this, we observe that Theorem 1 carries as written in this extended setting. In
particular, supply functions remain log-linear and the same variances and covariances govern
their elasticity. The new feature here is that the choice of x can affect both the intercept and
the slope of the optimal supply function. In this way, the choice of x can have a non-trivial
effect on firms’ optimal pricing and production decisions.

With this, we can now explicitly characterize the value of any choice of  and thereby

solve for the optimal choice of x. Concretely, we have that:

V(a:):/ A%pz(z)”de(A,P,M,\If)_/ AzMp,(2)7"dG, (A, P, M, W) (132)
R R

4 4
++ ++

Substituting Equation 130, this becomes:

4 P
i (133)
= [, AsMesp{om b 4G (A, PML )
R

4
++

V(z) = / Ai exp{(1l — n)wo,x}z(l_”)‘”’m dG. (A, P, M, )
R

61



where wg, and w;, have the same formulae as those in the proof of Theorem 1 (with all
means, variances, and covariances indexed by x). Exploiting joint log-normality of G, we

can evaluate these integrals to obtain:

1
V(x) = exp {(1 e+ e — pipe + (L4 w1a (L= 1))ion + —aé,x}

2
X (134)
— exp {—nwO,m + pae + e + (1= nwi ) fhze + 50%@}
where:
afm =V, [logA —log P+ (1 + w; (1 — 7)) log z] (135)
0t = Vg [log A +log M + (1 — nwi ;) log 2]

With this, solving for the optimal choice of x € X reduces to solving Equation 129 using
this V' and given the exogenous function C'.

We conclude by characterizing the optimal z in a simple example.

Example 1. Suppose that quality can be improved at some ex ante cost and that quality
affects how much consumers demand the product and nothing else. Formally, suppose that
C(z) = §x2, oz = pw +logz, 0, = 0 and p, is invariant to x except for py . In the
previous formulae, observe that (wlyx,créx.a}zm,u/m,,upvx,,quw) are invariant to x. Thus,

observing that wy . is affine in logx, we obtain that V is linear in x, i.e., V(z) = Ka for

some K > 0. It follows that the optimal choice is given by x* = %
This example shows that the approach followed in this appendix can be practically useful
in extending the supply function approach to consider firms that can choose additional

variables.

B.4 Supply Functions with Sticky Prices

In our main analysis, we allowed firms to change their prices every period to emphasize the
new economic features that supply functions generate. At the same time, our approach can
be augmented to include price stickiness. In this appendix, we show how to solve for the
optimal supply function when firms are subject to Calvo pricing.

Firms are as in our main analysis, except their prices are sticky each period with prob-
ability € € [0, 1]. For this appendix, we apply the standard second-order approximation to
firms’ profits and write the flow profit of the firm as:

—B(logp — log p™*)? (136)
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where we recall that p™* = %MP and B > 0 is the curvature of the profit function. Under

this approximation, the firm’s lifetime loss from setting price p; at date t is given by:

L(p) = B _(80) (log pi — log pj7;)° (137)

j=0

As in our main analysis, at date ¢, a price-resetting firm chooses a supply function f; and
they will produce at the price and quantity such that the f;(p;, ¢:) = 0 locus intersects the
demand curve log z; = log ¢; + nlog p;. By applying similar arguments to those of Theorem

1, we obtain the following characterization of the optimal supply function:

Proposition 7 (Optimal Supply Function with Price Stickiness). For a firm with Calvo
stickiness parameter 0 € [0,1] and discount factor € [0,1), any optimal supply curve is

almost everywhere given by:

fi(pe, ) =logpr — gy — a1 log g (138)

where the slope of the optimal price-quantity locus, oy, € R, is given by:

W1t
= —— 139
M- nw1 ¢ (139)

where: .

Wiy = (1= 80) Y (BOYwiy, (140)

7=0

and: N

o . +op..

Wi = Metoz 5 Pijt (141)

Uzt

Proof. We first characterize the optimal zi-measurable price, p;(z;). Taking the first-order

condition of the firm’s expected loss, we have that:

log pr(2¢) = (1 — BO)E,

> (B9) logpi7; | ] (142)

=0

We moreover have that:

Eq[log pi3,|2] = K¢ |log ” i [ 108 Pryj + log Muy; | Zt} = Wo,tj + W% (143)
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where:

o O Myt j,2¢ + OPiy ;2
w17t7j - 2
O'Zt

(144)

W()ﬂg,j = log 0 "

] + MMH-]' + /’LPtJ,-j — Witz

which are both deterministic functions of ¢ and j. Substituting this into the formula for the

firm’s optimal z;-measureable price, we obtain that:

log pe(z) = (1= B0) Y (B0 wory + |(1L—B0)> (B0 wies| 2
J=0 7=0 (145)

= Wo + W12

Using the fact that the firm’s demand curve is logz; = logq + nlogp;, we obtain that

@o,t
1-—nwi¢

and oy, =

log py = apy + a1 log g, with agy = , completing the proof. O

Wi,t
1—ndwy
From this, we observe that price stickiness modifies the slope of the firm’s optimal supply
function, but it remains optimally log-linear (at least under the quadratic approximation to
the firm’s flow profit that is standard in dynamic Calvo pricing models). The firm’s optimal
supply elasticity now incorporates how much the firm learns from its demand today about
the whole sequence of its current and future nominal marginal costs. The inference that it
performs about its date ¢+ 7 marginal costs from today’s demand is captured by wy ¢ j, which
is precisely the least-squares regression coefficient that one obtains from regressing nominal
marginal costs at date ¢ + j on demand at date t. In deciding its optimal price today, the
firm then must weigh its inference about future nominal marginal costs by how much it
cares about the future j periods from now (/) and how likely its price today is to prevail
in j periods (7). This weighting yields &, which captures the overall responsiveness of
the price today to demand today. Once this has been obtained, we can convert this into

the slope of the optimal supply curve as we did in our main analysis via the transformation

1,6 —
1 —nwie Oélﬁt'

This analysis highlights that the supply function approach is not a replacement for sticky

wlt»—>

price models, but rather represents a different approach to modelling how firms that can reset
their prices do so. While we abstract from sticky prices in our main analysis to make plain
the new implications of supply functions, the analysis of this appendix demonstrates that it
is practically simple to combine our supply function approach with canonical approaches to

modelling sticky prices.
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C Allowing for Correlated Aggregate Shocks

In this extension, we allow for the shocks to the money supply and aggregate productivity
to be correlated. Specifically, we assume that, conditional on outcomes in period ¢ — 1 that
(log Ay, log M) is jointly normally distributed. Our main analysis assumes that log A; and
log M; are uncorrelated. Allowing for correlation modifies firms’ conditional expectations of

the aggregate shocks to the following:

A A =AM
E;([log A] = cons; + K} s;; + K} sj,

(146)
E;.[log M;] = cons, + kM sM 4 &Ms?

where cons; are terms independent of the realized shocks at date t, and (k#, &, kM, &M) are

the Kalman gains.

In this extended setting, Theorem 1 on firms’ optimal supply functions holds as written.
Theorem 2 on the AS/AD representation holds with modified formulae for the slopes of
the aggregate demand and aggregate supply curves as the guess and verify argument must
be modified to account for the new formulae for firms’ expectations of aggregate shocks.

Performing this modification, we obtain the following:

Proposition 8. There exists a unique log-linear temporary equilibrium that is described by
an “Aggregate Demand/Aggregate Supply” model in which the slope of the aggregate supply
curve is given by:

S XMt
_ _ 147
T (147)

where:

=l

~ —f{f‘—i— 1-1w ot Ri”
l{y+(1—lii\4)%{w17t+1{f (—1— (n—%wlvt ( )E ) A)))

1—wi ¢ (77—; 1—xj

B 1 MY Wl,t(n_l>‘%é\/[ ~A
1 Wit (77 »y) (<1 i ) l—wl,t(ﬂ—g)(l_“?)ﬁt

Proof. As in the proof of Theorem 2, we will guess and verify that (dropping ¢ subscripts

XM,t = (148)

for notational simplicity):

log P = xo + xalog A+ xalog M (149)
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The same arguments as Theorem 2 imply that we must compute:

£ fotgart (nr-tp-iarte) ™

_n
Di n— 1 El [[1—%(l—l,-wl—nwl)M%(l—‘—wl—nwl)—lﬁlerl,nwlP(T]—%)(l—i—wl—nwﬂ]

Sl 1\wl
x (17 ME P
Moreover, the same arguments as Theorem 2 imply that:

log P = Ellog p;] + Var((1 — n) log p;) + cons

L
2(1—n)

(150)

(151)

We now compute the numerator, denominator and multiplicative terms in the firm’s pricing

equation that obtain under their chosen supply function:
_1 111 1=nw:
log E; |6(GA) (W P vaP") — cons
1
# (-1 (n-2) 0= maa ) Eilog
1 1
+ (;(1 — nw1) + <77 - ;) (1- le)XM) E;[log M]
10g Ez [Il—%(l'f‘wl—ﬁwl)M%(1"""01—770-11)—11914“01_77“’1P(W—%)(H‘Wl—ﬂwl)] — cons
1
+ (77 - ;) (1 = nwi + wi)xaE;[log A]
1 1
+ (—1 + ;(1 —nwy +wip) + (77 — ;) (1 — nw, +W1)XM> E;[log M|
11 1\ w1
log (19Z-I_WMW P”_v) = cons

1 1 1
+ wq (7]— —> xalog A+ wy (——i— (77— —) XM) log M
Y 7 v

From this, we have that:

log p; = cons

1 1
+ (—1 - (77 — ;) w1XA) E;[log A] + w; (77 - ;) Xalog A
1 1 1 1
+ (1 - —w; — (77 — —) leM> E;[log M| + w; (— + <77 — —) XM) log M
7 v Y Y
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Aggregating this according to the aggregation formula, we obtain:

log P = cons
1 — 1
+ (—1 - (77 - ;) WlXA) Eflog A] + w; (77 - ;) xalog A
1 1 — 1 1
+ (1 - —wq — (77 — —) leM) El[log M| + w; (— + (77 — —) XM) log M
Y Y Y Y

Up to this point, everything is the same as Theorem 2. The presence of correlated aggregate
shocks now changes the formulae for (E[log A], E[log M]). These are now given by:

(156)

E[log A] = cons + % log A 4 & log M (157)
E[log M| = cons + ™ log M + & log A

Plugging these into the formula for the aggregate price level and collecting terms:

log P = cons
1 1 A 1 1 M
+lw(n—=)xa+|-1—(n——]wxa) "+ (1—--wi—|(n——)wixmu )R |logA
Y Y Y Y
1 1 1 1 1 15
Gl O O A N (e G B B S G RO D
g v g 8 v
Thus, by matching coefficients and simplifying, we have that:
A A 1 1 1 Y
Xa=—K +(1=r")(n—=]Jwuxa+|(l——wi—(n—=)wixu |k
Y Y Y

(159)
1 1 1 .
i = &M+ (1 — KM);M + (1 — &™) (77 - 5) wiXm + <—1 - (77 - ;) WlXA) R4

We can now solve this linear system of equations in (xy*, x™). To do this, we first solve for
X4 as a function of xj:

—Kk + <1 — %wl — <77 — %) leM> gM

1—w (77 - %) (1 —rK4) = o bxw (160)

XA
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where:

Substituting this into the equation for xj;, we obtain that:

M+ (1= kM) Zwr + &Y (—1 - (77 — %wla))

1w (n— 1) (1= KM) - bRA)

XM =

Completing the solution. Using Proposition 1, which establishes that €

obtain the result.
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D Additional Quantitative and Empirical Analysis

This Appendix provides additional details for the analysis in Section 5.

D.1 Methods and Estimation

Data. We use quarterly-frequency data from the United States from 1960Q1 to 2024Q4.
We measure real GDP and the price level using data from the US BEA. From these variables,
we construct GDP growth AlogY; and inflation A log P, in log differences. We measure TFP
growth using the dataset of Fernald (2025), based on the work of Fernald (2014). Specifically,
we take raw data on the annualized growth rate in capacity-utilization adjusted TFP and
divide by 400 to obtain a comparable quarter-to-quarter growth rate Alog A;. Finally, as
described in the main text, we construct a variable corresponding to aggregate marginal cost

growth as
Alog M; =~ -AlogY; — Alog A; (163)

where we calibrate v = 0.11 based on the findings of Gagliardone et al. (2023), who use micro-
data from Belgian manufacturers to calculate the implied pass-through from the output gap
to real marginal costs. This calibration is also consistent with evidence of substantial wage
rigidity over the business cycle in the United States (Grigsby et al., 2021), and comparable
to what one would estimate by directly looking at the relationship between detrended real

wages and output in the US.%!

Time-Varying Volatility from a GARCH Model. We estimate time-varying uncer-
tainties regarding inflation, real output, and real marginal costs using a multivariate GARCH
model. In particular, letting X, denote the vector (Alog P;, AlogY;, Alog M;), we model

1 1
Xt =A + BXt_l + &4, Er ~ N(O, Et), Zt = Dt2 C'.Dt2 (164)

where A is a 3x 1 vector of constants, B is a 3x3 matrix of AR(1) coefficients, D; is a diagonal
1

matrix of time-varying variances (and D} is a diagonal matrix of standard deviations), and

C is a static matrix of correlations. We assume that each diagonal element of D;, denoted

as 02,, evolves according to:

0-1'2,15 =s; + Ozi€it_1 + ﬁiazt_l (165)

with unknown constant s; and coefficients («;, ;). Formally, this is a GARCH (1,1) model

with constant conditional correlations (Bollerslev, 1990). We estimate all of the parameters

21For example, using this latter method, Flynn and Sastry (2022) calibrate v = 0.095.
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Table A1l: Testing the GARCH Model Against Alternatives

(1) (2) (3)

Model VAR GARCH (CCC) GARCH (VCC)
Likelihood ratio — 194.82 0.10
Degrees of freedom — — 6 1
p-value (x%(df)) — 0.000 0.746

Notes: This table presents specification tests of the GARCH model used for analysis. The data are quarterly-
frequency GDP growth, GDP deflator inflation, and real marginal cost growth in the US from 1960Q1 to
2024Q4. The models are, respectively, a vector auto-regression in first differences (column 1); the same
model plus a residual GARCH (1,1) with constant conditional correlations (column 2; see also Equations
164 and 165); and the same model plus varying conditional correlations (column 3). The second row gives the
likelihood ratio for the model in question versus the nested model in the previous column. The third row gives
the degrees of freedom of the likelihood ratio test, equal to the number of additional free parameters. The
fourth row gives the p-value from evaluating the test statistic at the x? distribution with the corresponding
degrees of freedom.

via joint maximum likelihood.

In calibrating the model, we use volatilities dated at time ¢ to stand in for economic
agents’ uncertainty about making decisions at time t. As is apparent from Equation 165,
these volatilities are measurable in macroeconomic history up to period ¢ — 1. Thus, this
timing convention is consistent with our notion in the model that economic agents observe all
macroeconomic history up to time ¢ — 1 and their priors are informed by these observations.

All in all, for each quarter ¢, we set

) 2 2¢ A 2
Oy = Dyye + R°24 4, Ow.pt = 2Y,Pt

. . (166)
OMUt = MMt OM,Pt = 2, Pt

where the 3., are the elements of the residual covariance matrix and R = 6.5 from the
quantitative estimates of Bloom et al. (2018).

Our estimation procedure allows us to naturally test the specified model against nested
alternatives (Table Al). In column 2, we compare our GARCH model with the nested
model with constant volatility: a vector auto-regression (VAR) in first differences for the
variable X;. This model has six fewer parameters, corresponding to the ARCH and GARCH
parameter in each residual’s equation. The likelihood ratio of 194.82 comfortably rejects the
nested VAR model. In column 3, we compare the constant conditional correlations GARCH
model (our baseline) with an expanded model that allows for varying conditional correlations

(Tse and Tsui, 2002). In particular, in this model, the covariance matrix of residuals is now
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Figure A1l: Estimates of Time-Varying Uncertainty
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Notes: Both panels plot our quarterly time-series estimates of uncertainty, estimated as described in this
appendix. All lines are computed from one-quarter-ahead volatility predictions from a constant conditional
correlations (CCC) GARCH model. The left plot shows all series on a common scale, and the right plot
zooms in on the series other than demand. Both plots feature spikes that are off the scale of the graph
during the Covid-19 lockdown.

Y= Dt% C’tDt% (cf. Equation 164) where
Ct - (1 - )\1 - )\2)0 + )\1\1175 + )\QCt_l (167)

where A\j, Ao > 0 are parameters governing the dynamics of the correlations, which satisfy
the restriction 0 < A\; + Xy < 1; C' is a long-run mean of the correlations; and W, is a
4-period (number of variables plus one) rolling estimator of the standardized residuals &, =
D, %Q. Due to the additional restriction on \; and Ag, this model has only one more free
parameter than the nested constant conditional correlations model. The likelihood ratio
of 0.10 demonstrates an only marginal and statistically insignificant improvement in fit.
Thus, the data suggest that a model with time-varying volatility, but constant conditional

correlations, is a good fit for recent US history.

Estimates of Time-Varying Uncertainty. In Figure A1, we plot the raw time series for
each of our uncertainty measures. We observe that our estimates of demand uncertainty are
an order of magnitude larger than our estimates of other uncertainties. This is natural given
our large assumed value of R, the (square root of the) ratio between idiosyncratic demand

uncertainty and aggregate real marginal cost uncertainty. But this does not necessarily imply
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Figure A2: Inflation, Inflation Uncertainty, and the Slope of Aggregate Supply
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Notes: This figure shows the bivariate relationships between the estimated slope of aggregate supply (see
Section 5.1 and Appendix D.1), the level of inflation (quarterly log difference in GDP deflator), and uncer-
tainty about inflation (estimated one-quarter-ahead from a constant conditional correlations GARCH model;
see Section 5.1 and Appendix D.1) in US data. Each observation corresponds to one quarter. The numbers
in the top left indicate the correlations for each pair of variables.

that demand uncertainty is the only influential force shaping the slope of microeconomic
or macroeconomic supply, since uncertainties enter our formulae in interaction with the
elasticity of demand 7. This is apparent from our results—the fluctuations in the slope of
aggregate supply in Figure 4 clearly reflect significant fluctuations in the other components

of uncertainty that are plotted in the second panel of Figure Al.

Inflation Levels, Inflation Uncertainty, and the Estimated Slope. Figure A2 shows
the correlations between our estimated slope, the level of inflation, and uncertainty regarding
inflation. Broadly speaking, we estimate the slope of aggregate supply to be high when the
level and uncertainty regarding inflation are high (panels A and B). Moreover, the level of
inflation and inflation uncertainty are highly correlated with one another (panel C). This
finding echoes the observation of Ball et al. (1988) that it is difficult, empirically, to find
circumstances in which levels and volatilities of inflation are decoupled from one another,
posing a difficulty for testing different models of state-dependent aggregate supply against
one another. However, as observed in Section 5.3, our model based on relative uncertainty
gives quite different predictions than simple models based on the level of or one-dimensional

uncertainty regarding inflation when confronted with global data.
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Figure A3: Rising Market Power and Flattening Aggregate Supply

<)
- A. Scenarios for Market Power & B. Implications for Aggregate Supply
& ,’. U>)> "\ I
d( // E h/" '\
2 1.21 < = 0.2 1
— /’ n
g ’/’/ (<)
> el §D
%’ ’’’’’ -7 ;;:’b 0.1 1 AAVAN
4 - &0 v
::% 11 T T T T <f: T T T T
1960 1980 2000 2020 no 1960 1980 2000 2020
Year Year
—— Constant Market Power ---- Increasing Market Power

Notes: This figure plots the slope of aggregate supply under different scenarios of declining market power and
shows how trends in market power affect the slope of aggregate supply. We calibrate the model under two
scenarios: a fixed value of 1, = 8 (grey line, “Constant Market Power”) and a linear trend over the sample
from an initial value of 7196001 = 11 to a final value of 7202404 = 5 (blue dashed line, “Rising Market Power”).
All other parameters, including the measured uncertainties, are exactly as in our baseline calculations (see

Section 5.1 and Appendix D.1). Panel A shows the time series behavior of average markups, %, implied

by our different assumptions about the elasticity of demand. Panel B shows the resulting calculations for
the slope of aggregate supply, averaged over years.

D.2 Market Power and Aggregate Supply

A recent literature has suggested that market power, as measured by rising markups, has
risen throughout time (De Loecker et al., 2020; Demirer, 2020; Edmond et al., 2023). Com-
bined with our theoretical finding that increased market power flattens aggregate supply
under plausible parameter values, this suggests another potentially relevant culprit for the
long-run flattening of supply.

To study this possibility, we consider alternative calibrations of the slope of aggregate
supply in which we allow a secular downward trend in the elasticity of demand. Specifically,
we consider a scenario in which 7 linearly declines from 11 to 5 between 1960 and 2024. This
implies an increase in average markups from 11/10 = 1.10 to 5/4 = 1.25. These exercises
are not counterfactuals, which would require fully estimating the model and accounting for
the effects of market power on macroeconomic uncertainty. Instead, they are alternative
calibrations that would be more appropriate than our baseline if the elasticity of demand
has truly fallen over time.

Introducing a decline in market power increases the slope of aggregate supply in the 1970s
and decreases the slope in modern times (Figure A3). Calibrating to this different scenario
implies that the slope of aggregate supply flattens by 41% from 1978-1990 to 1991-2018,

compared to an estimate of 28% in our baseline model and an empirical estimate of 51%
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from Hazell et al. (2022). Thus, allowing for an increase in market power allows the model to
more closely match empirical estimates for the flattening of aggregate supply from the 1970s
to the 2010s. These calculations provide suggestive evidence that market power interacts
in a quantitatively relevant way with the slope of aggregate supply in our model. We leave

further analysis of this interaction to future work.

D.3 International Evidence

Data. We take annual data from 1960-2019 from the most recent edition of the Penn
World Tables (Feenstra et al., 2015; Zeileis, 2023). In particular, we measure real GDP, GDP
deflator (expressed in local currency), total hours, and the real value of the capital stock.
We construct real GDP growth and inflation as log differences (annual) in the corresponding
variables. We calculate TF'P at the level of countries ¢ and years ¢ based on a constant labor
share of 2/3 as

1 2
log A, = log Real GDP; — 3 log RealCapitalStock,, — 3 log LaborHours,; (168)

Finally, we construct growth in real marginal costs as described in Equation 163, using the
same calibration for . To calculate the slope of aggregate supply in each country, we also

carry over our calibration of n =8, R = 6.5, and ™ = 0.29.

Volatility from a VAR Model. Because our interest is cross-sectional differences, we
estimate a VAR model with time-invariant volatility for each country, rather than a model
of time-varying volatility (e.g., a GARCH model). In particular, letting X, again denote the
vector (Alog Py, AlogY;, Alog M;), we model

Xct = Ac + BcXc,t—l + Ecty Ect ™ N(O, Ec>7 (169)

where (A., B.) are country-specific coefficients and X.. is a country-specific covariance matrix.
We map the covariances from the VAR to the model using the same method described in
Equation 166, but with an estimate for 3 that depends on countries rather than time periods.

Finally, we drop three outliers from our calculations, Greece, Iceland, and Sweden, for
which we calculate a slope of aggregate supply and/or inflation-output relationship more

than 3 standard deviations away from the median.

Empirical Proxies for the Slope of Aggregate Supply. We calculate two country-
level proxies for the slope of aggregate supply. The first is the country-level, reduced-form

relationship between inflation and real output growth. That is, the coefficient 32 from the
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regression

Alog Py = cc + 37 - Alog Yo + e (170)

estimated by ordinary least squares for each country ¢, using variation across time periods.

The coefficient
s _ Cov[Alog P.i, Alog Y]

& Var[Alog Y]

(171)

measures the strength of the reduced-form relationship between real output growth and
inflation. This is in the spirit of the reduced-form tests of Lucas (1973) and Ball et al. (1988),
who similarly look at covariances of real and nominal components of GDP. To understand
the structural interpretation of 39, we observe from Theorem 2 that, in the equilibrium of

the model,

Alog P, = *Alog Y, + (3Alog A, + Alog ) (172)

-~
=Ect

where the term in parenthesis can be interpreted as the structural residual of Equation 170.
Intuitively, the structural residual of the reduced-form relationship between aggregate prices
and aggregate quantities can be thought of as the “shock to aggregate supply,” and the
reduced-form relationship traces out the “aggregate supply curve” if and only if all variation
in real GDP growth is induced by “aggregate demand” shocks (i.e., money supply shocks).
If this does not hold (i.e., if some variation in real GDP growth, in deviation from the mean,
is driven by productivity), then we expect Cov[Alog Y, é4] < 0 and a downward bias in the
ordinary least squares estimate, or plim BCS’OLS <€

As a second strategy, we construct a model-based instrument for money supply growth.
Using the money demand equation (the second equation in Proposition 1), we observe that,

in equilibrium,
141

M, =Y,P,
1t

(173)

Abstracting from nominal interest rate changes, which is what our model implies under the

imposed simplification of time-invariant volatility (and time-invariant €), the model implies
Alog M, = vAlogY; + Alog P, (174)

and moreover, due to the random-walk behavior of the money supply, that these increments
are idiosyncratic across time and uncorrelated with shocks to productivity. Therefore, we
construct the money growth instrument A log M, = vAlogY, + Alog P, and use it as an

instrument for real GDP growth. The first-stage equation is
Alog Yy = (. + B - Alog My + vy (175)
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Table A2: Predicting the Slope of Aggregate Supply

(1) (2) (3) (4) () (6)

Outcome is 35 (Reduced-form) Outcome is 35V (Structural)

éJ, Slope of ag. supply  0.261 0.132 0.0174 7.226 7.618 8.823
(0.0379) (0.0392)  (0.0565)  (2.410) (3.406) (4.996)

Mean inflation -7.542 22.86
(1.583) (137.7)
Inflation uncertainty -84.96 556.1
(17.14) (1516.1)
Observations 29 29 29 29 29 29
R? 0.638 0.807 0.814 0.250 0.251 0.254

Notes: This table reports the cross-country relationship between empirical and theoretical proxies for the
slope of aggregate supply. All estimates are from linear regressions where the unit of observation is an
OECD country. In columns 1-3, the outcome is the “reduced-form” slope of aggregate supply defined in
Equation 171. In columns 4-6, the outcome is the “structural” slope of aggregate supply defined in Equation
176. The independent variables are the model-implied slope of aggregate supply, calculated based on a
macroeconomic calibration and measurements of relative uncertainty in each country; the mean value of
GDP deflator inflation from 1960-2019; and the one-step-ahead forecast variance of inflation from a three-
variable VAR model (see Equation 169) over the same period. Standard errors are in parentheses.

and the structural equation remains Equation 170. The population two-stage least squares

coefficient of the slope of supply is

Cov[Alog P, Alog ]\7[ct] ~ 7Cov[Alog Py, Alog Y| + Var[Alog P
Cov[AlogY,, Alog M,  Cov[Alog Py, AlogYe] + vVar[Alog Vo]

poY = (176)

Cross-Country Evidence. Table A2 summarizes the relationship between our empirical
proxies and model-based calculations for the slope of aggregate supply. Column 1 shows the
positive relationship between the reduced-form slope and model-based slope that is visualized
in the left panel of Figure 5. This relationship is robust to controlling for the level of
inflation (column 2). The relationship becomes statistically insignificant when controlling
for one-step-ahead inflation uncertainty (column 3), although the coefficient on the latter is
inconsistent with the theoretical prediction. Turning to the structural estimates (columns
4-6), we estimate a large and quantitatively stable relationship between the data-based and
model-based estimates. The larger magnitudes in columns 4-6 versus 1-3 are consistent
with the hypothesis that the reduced-form coefficients are biased toward zero by spurious
correlation with aggregate supply shocks. The coefficients on mean inflation and inflation

uncertainty in columns 5 and 6 are consistent with theory, but imprecisely estimated and of
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marginal consequence to the R? of the model.

While these results are to be interpreted with caution, given the limited sample size and
abundance of confounding factors in cross-country analysis, they offer suggestive evidence
that the model-based slope of aggregate supply helps predict cross-country variation in the
inflation-output relationship. Moreover, our model’s prediction based on relative variance
has predictive power over and above the mean and one-step-ahead uncertainty regarding
inflation, which are the main factors influencing the slope of aggregate supply in other
theories of state-dependent firm adjustment (Ball et al., 1988). Further investigation of
the differences between these models may be possible by incorporating both time-series and
cross-sectional variation in an international panel or by turning to micro data. We leave

these investigations to future work.

D.4 Counterfactual Analyses and Equilibrium Multiplicity

The analysis in the main text leveraged the “reduced form” uncertainties relevant to the firm
in Theorem 1 and did not estimate the structural uncertainties that mediate firms’ supply
functions slopes via the fixed point in Theorem 3. As noted in the main text, an advantage of
this approach is that the economic analyst can measure the slope of firms’ supply functions
without taking a stance on the general equilibrium features of the economy. Moreover, by
using such observational data, the analyst can bypass issues of equilibrium selection.
However, a limitation of this approach is that this method precludes conducting counter-
factuals which would be relevant when model parameters endogenously respond to policy. In
this section, we outline how one can use our theory to conduct counterfactual exercises and

demonstrate that a unique equilibrium exists for a reasonable calibration of the US economy.

Methodology and Calibration. Solving the fixed point in Theorem 3 requires values
for the preference parameters (1, ) and uncertainties (o, o{t, oM, k*, kM). To simplify the
analysis, we assume that these parameters are time-invariant. We set n = 8 and v = 0.11
as in the main text. Moreover, we set o5, = 0.0026 to match the unconditional mean of
our GARCH estimates in Section 5 over our sample period. Next, we back out the latent
aggregate demand shock using the observation that M; = 1j—t“Cz P, from Proposition 1. We
calibrate o to match the mean unconditional variance in Alog M; following Equation 16.
We also calibrate o' to match the mean unconditional variance in A log A;, where we measure
TFP growth A; using the dataset of Fernald (2025). Finally, we set x and s to zero. We
do so to keep our analysis consistent with the methodology of Golosov and Lucas (2007),
which directly estimates firms’ uncertainty using realized inflation rates. Nevertheless, the

basic message of equilibrium uniqueness is not sensitive to these parameter choices.
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Figure A4: Fixed Point of Firms’ Supply Function Slopes

A. US Parameters: Unique Equilibrium B. Alternative Parameters: Multiple Equilibria
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Notes: Panel A plots the fixed point from Theorem 3 under a parameterization with a unique

equilibrium when parameters are calibrated to the US economy: (k% k™ 02, 0%, n,7,03) =

(0,0,0.00017,0.000068, 8,0.11, 0.0026). Panel B plots a parameterization with three equilibria:
(kA kM 02, 0%, n,7,03) = (0.1,0.9,5,10,2,0.02,5).

Results. Figure A4 plots the fixed point in Theorem 3 for various parameter values. The
left panel depicts the fixed point for a parameterization of the US economy, described above.
The right panel depicts the fixed for an alternative parameterization which features multiple
equilibria.

Observe that the US parameterization features a unique equilibrium (panel A). The in-
tuition for this result is that idiosyncratic demand uncertainty is large in our estimation
relative to other sources of uncertainty. For this reason, the fixed point for firms’ microeco-
nomic supply elasticities is well approximated by a linear function. To obtain equilibrium
multiplicity in computational experiments, we had to increase firms’ relative uncertainty
about aggregate vs. idiosyncratic demand conditions by more than ten-fold, as well as fix
a particularly low value of v (panel B). To provide some intuition for multiplicity in this
environment, observe that the dynamics of real GDP are described by the following Equation
(see Lemma 1):

~ 1 /ﬂ}A 1 1—l€M 1 — nw
log Cy = Xo+— ¢ log A;+— ( e )( w1t

71—w17t<n—%>(1—/{{‘) 71—w17t<n—%>(1—/<£”)

log M; (177)

In particular, higher values of w; ; reduce the volatility of aggregate consumption that arises
through productivity shocks. But this in itself is a force that favors steeper supply functions,
since even small shifts in demand are likely to imply large changes in marginal costs. Con-

sequently, this economy can feature multiple equilibria in firms’ supply function elasticities,
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through a general equilibrium feedback loop that arises between supply function choice and
firms’ endogenous uncertainties, as we described in Section 4.4. Nevertheless, we have found
it challenging to construct examples with multiple equilibria and quantitatively reasonable
parameter values for the US. Consequently, we believe that our framework is also amenable

to counterfactual analyses for the US economy.
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