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A Additional Figures

Figure A1: Contract Timeline and Data Sources
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Notes: This figure presents a timeline of events associated with a typical contract. Milestones located above the arrows correspond
to notices that are published on the government’s point of entry (fedbizopps.gov). Milestones below the arrows generate
information that is recorded on the Federal Procurement Data System (FPDS) - Next Generation.
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Figure A2: FedBizzOpps

(a) List of Opportunities (b) Example Solicitation

Notes: This figure shows two screenshots of FBO.gov.captured on Feb 13, 2019. Panel (a) shows a list of contract solicitations
(opportunities). Panel (b) shows a particular solicitation for athletic socks, required by an Army procurement office.
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Figure A3: Distribution of Contract Prices

(a) Non-publicized contracts (D = 0)
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(b) Publicized contracts (D = 1)
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(c) All contracts
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Notes: This figure shows the empirical distribution of the number of contracts at different price bins. Panel (a) shows the
distribution of non-publicized contracts (D = 0). Panel (b) shows the distribution of publicized contracts (D = 1). Panel (c)
displays the overall distribution, i.e., the sum of publicized and non-publicized contracts at every price. The blue line corresponds
to a polynomial fit of degree five. The orange dashed lines in panels (b) and (c) represent the distribution of contract prices after
re-centering publicized contracts by their price effect. The green dashed line in panel (c) represents the corresponding overall
interpolation in the absence of price effects and bunching.
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Figure A4: Distribution of Contract Prices

(a) Non-publicized contracts (D = 0)
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(b) Publicized contracts (D = 1)
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Notes: This figure shows the empirical distribution of the number of contracts at different price bins. Panel (a) shows the
distribution of non-publicized contracts (D = 0). Panel (b) displays the distribution of publicized contracts (D = 1). The blue
line corresponds to a polynomial fit of degree five. The orange dashed lines in panels (b) and (c) represent the counterfactual
distributions in the absence of price effects and bunching. The counterfactual distributions stem from the proposed framework.
In panel (a), The comparison between the solid blue and the dashed orange lines provide a visual interpretation of the mass of
bunched contracts. The comparison between the dashed blue and the dashed orange lines in panel (b) inform visually about the
distribution of price effects.
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Figure A5: Pre-award Characteristics Around the Threshold
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(b) Set-asides
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(c) Simplified acquisition procedures
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Notes: This figure presents four binned scatter plots, which depict an average pre-award characteristic by bins of award amounts,
as well as linear and quadratic fits at each side of $25,000. The pre-award characteristic in each Panel is as follows: (a) an indicator
equal to one if the contract was solicited the last month of the fiscal year (September); (b) an indicator equal to one if the contract
was set-aside for a preferential group (e.g. small businesses); (c) an indicator equal to one if the contract was awarded using
simplified acquisition procedures; (d) an indicator equal to one if the award is for a service contract. The data source is the
Federal Procurement Data System-Next Generation. The sample consists of non-R&D definitive contracts and purchase orders,
with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019.
Award amounts are discretized into right-inclusive bins of $3,000 dollars length.
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Figure A6: Publicity Effects on Post-Award Contract Performance

(a) Delays (days)
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(c) Number of Contract Modifications (Ex-Post)
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Notes: This figure presents three binned scatter plots, which depict an average post-award performance metric by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The outcomes in each Panel are as follows: (a) number of
days of contract implementation delays; (b) cost-overruns as a share of award value; (c) number of modification to the original
contract. The data source is the Federal Procurement Data System-Next Generation. The sample consists of non-R&D definitive
contracts and purchase orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal
years 2015 through 2019. Award amounts are discretized into right-inclusive bins of $3,000 dollars length.
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Figure A7: Correlation Complexity Degree with Other Variables
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(b) Number of Words Solicitation
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Notes: This figure displays the correlation between our measure of complexity (i.e., product-level average
cost-overruns for contracts under $20K) with product-level average delays (Panel (a)) and product-level (log)
average number of words contract synopsis from FBO. The number of words variable was residualized on office,
type of solicitation, and year fixed effects, because the text often contains information specific to the office and
the solicitation type. Every dot represents the mean of the Y-axis variable at different quantiles of the complexity
measure. The orange line provides a (linear) regression fit at the product level. The slope coefficient (and SE) are
presented in the graphs.

Figure A8: Complexity Distribution
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Notes: This figure presents the probability density function (PDF) of product complexity. Even though there’s
wide heterogeneity in the degree of complexity, the bulk of contracts in our sample have relatively low levels of
complexity. The degree of complexity is defined as the log of the product’s average overruns, and it is calculated on
all contracts for the same product category that are below $20,000. The plotted distribution of log costs is smoothed
using a kernel.
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Figure A9: Heterogeneous publicity adoption by major departments
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Notes: This figure presents three binned scatter plots, which depict the share of contracts publicized in FedBizzOpps by bins of
award amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data
System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values
between $ 5,000 and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a) restricts the
sample to awards made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts the sample to
awards made by the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.

Figure A10: Heterogeneous effects on competition by major departments
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Notes: This figure presents three binned scatter plots, which depict the average number of offers received by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next
Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 5,000
and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a) restricts the sample to awards
made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts the sample to awards made by
the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.
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Figure A11: Heterogeneous effects on winner characteristics by major departments
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Notes: This figure presents three binned scatter plots, which depict the share of contracts awarded to a foreign firm by bins of
award amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data
System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values
between $ 5,000 and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a) restricts the
sample to awards made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts the sample to
awards made by the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.

Figure A12: Heterogeneous effects on performance by major departments
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Notes: This figure presents three binned scatter plots, which depict average cost overruns by bins of award amounts, as well as
linear and quadratic fits at each side of $25,000. Cost overruns are computed as the difference between actual obligated contract
dollars and expected total obligations at the time of the award, divided by expected obligations. The data source is the Federal
Procurement Data System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with
award values between $ 5,000 and $ 45,000, awarded by the Department of Defense in fiscal years 2011 through 2017. Panel (a)
restricts the sample to awards made by the Army. Panel (b) restricts the sample to awards made by the Navy. Panel (c) restricts
the sample to awards made by the Air Force. Award amounts are discretized into right-inclusive bins of $2,500 dollars length.

OA-9



Figure A13: Heterogeneous publicity adoption: goods versus services
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Notes: This figure presents two binned scatter plots, which depict the share of publicized contracts by bins of award amounts, as
well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next Generation.
The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000 and $ 40,000,
awarded by the Department of Defense in fiscal years 2015 through 2019. Panel (a) restricts the sample to awards for goods,
while Panel (b) restricts the sample to service contracts. Award amounts are discretized into right-inclusive bins of $3,000 dollars
length.

Figure A14: Heterogeneous effects on competition: goods versus services
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Notes: This figure presents two binned scatter plots, which depict the average number of offers received by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next
Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000
and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019. Panel (a) restricts the sample to awards
for goods, while Panel (b) restricts the sample to service contracts. Award amounts are discretized into right-inclusive bins of
$3,000 dollars length.
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Figure A15: Heterogeneous effects on winner characteristics: goods versus services
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Notes: This figure presents two binned scatter plots, which depict the share of contracts awarded to a foreign firm by bins of award
amounts, as well as linear and quadratic fits at each side of $25,000. The data source is the Federal Procurement Data System-Next
Generation. The full sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000
and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through 2019. Panel (a) restricts the sample to awards
for goods, while Panel (b) restricts the sample to service contracts. Award amounts are discretized into right-inclusive bins of
$2,500 dollars length.

Figure A16: Heterogeneous effects on performance: goods versus services
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Notes: This figure presents two binned scatter plots, which depict share of contracts with cost overruns by bins of award amounts,
as well as linear and quadratic fits at each side of $25,000. Cost overruns are computed as the difference between actual obligated
contract dollars and expected total obligations at the time of the award, divided by expected obligations. The data source is
the Federal Procurement Data System-Next Generation. The full sample consists of non-R&D definitive contracts and purchase
orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years 2015 through
2019. Panel (a) restricts the sample to awards for goods, while Panel (b) restricts the sample to service contracts. Award amounts
are discretized into right-inclusive bins of $3,000 dollars length.
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Figure A17: Model Fit
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(b) Price Density
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(c) Number of Bidders
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(d) Probability of a Local Winning
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(e) Overruns
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(f) Any Overruns
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Notes: This figure presents the model fit, based on a simulated method of moments estimation. In each panel, relevant outcome
variables are shown as a function of the awarding price. Actual data points are presented in blue, while model-based simulated
data are presented in orange. Panel (a) presents the density of contract prices, Panel (b) the fraction of publicized contracts, Panel
(c) the number of actual bidders, Panel (d) the fraction awarded to local contractors, Panel (e) average cost overruns, and Panel
(f) the probability of having any overrun. The last two panels separate goods from services.
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Figure A18: Estimated Production Cost Distributions

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4
log(c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Local
Non-Local

Notes: This figure shows the estimated probability density function (PDF) of log production costs for local and non-local
contractors. This plot is estimated holding covariates fixed at their mean value and assuming log(u) = 0. The plotted distribution
of log bids is smoothed using a kernel.

Figure A19: Bidding Function
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Notes: This figure displays the bidding function of local and non-local contractors. This plot is estimated holding covariates fixed
at their mean value and assuming log(u) = 0. The plotted distribution of log bids is smoothed using a kernel.
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Figure A20: Auction Entry and Winner Identity

(a) Entry Probability
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(b) Composition of Bidders
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Notes: This figure presents participation decisions and subsequent winner identity as a function of the number of potential
bidders. Panel (a) shows the number of actual bidders from each group, Panel (b) displays the average probability of awarding
the contract to a local bidder. The higher the number of potential non-local contractors, the less likely that local contractors
participate and win. These features connect directly with the fact that local contractors have substantially higher participation
costs; thus, in equilibrium, reductions in predicted utility due to increased competition discourage their participation. Both
figures were generated keeping constant (at the mean) the number of potential local contractors.

Figure A21: Relation between Production Costs and Cost Overruns
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Notes: This figure shows the relation between production cost c̃ and overruns q. The orange line shows the relation for
Non-Locals (orange) and for Locals (blue). It separates the relation for goods (dashed) and services (solid). The production
cost c̃ is backed out from the simulated bids and the first order condition. The plot is generated for fixed covariates
(estimation sample) and log(u) = 0.
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B Additional Tables

Table B.1: Summary Statistics

Mean
Panel A: Contracting Office

Navy 0.378
Army 0.441
Air Force 0.150
Other 0.031

Panel B: Contract Characteristics

Award Amount (dollars) 20,807
Expected Duration (days) 54.10
Fixed-Price Contract 0.999
Set Aside Award 0.571
Simplified Procedure 0.971
Publicized on FedBizzOpps 0.299

Panel C: Contract Competition

Number of Offers 3.542
One Offer 0.239

Panel D: Contractor Characteristics

Foreign 0.099
Within-State Firm 0.690
Small Business 0.752
Woman-Owned Business 0.188

Panel E: Contract Execution

Number of Modifications 0.439
Any Modifications 0.274
Cost-Overruns (Relative to Award Value) 0.076
Any Cost-Overruns 0.094
Delays (Relative to Expected Duration) 0.125
Any Delays 0.104

Sample Size

No. of Contracts 85,661
No. of Contracting Offices 597
No. of Awarded Firms 29,641

Notes: This table presents summary statistics. The data source is the Federal Procurement Data System-Next Generation.
The sample consists of non-R&D definitive contracts and purchase orders, with award values between $ 10,000 and $
40,000, awarded by the Department of Defense in fiscal years 2015 through 2019. An observation is a contract, defined by
aggregating all contract actions (initial award, modification, termination, etc.) associated with the same contract ID.
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Table B.2: Top Product and Service Categories

Goods Services
Rank Name N Contracts/year Name N Contracts/year
1 ADP Equipment and Software 1,374 Maintenance/Repair of Equipment 1,036
2 Laboratory Equipment 740 Utilities And Housekeeping 657
3 Medical Equipment and Supplies 685 Transport, Travel, Relocation 577
4 Electrical Equipment Compontents 653 Lease/Rent Equipment 534
5 Furniture 626 Support Services (Professional) 447
6 Communication/Coherent Radiation 530 ADP and Telecommunications 369
7 Power Distribution Equipment 320 Maintenance of Real Property 339
8 Ship And Marine Equipment 311 Education And Training 251
9 Hardware And Abrasives 295 Social Services 190
10 Construction And Building Material 291 Natural Resources Management 149

Notes: This table presents average annual counts of contracts in the most common product categories. The data source
is the Federal Procurement Data System-Next Generation. The sample consists of non-R&D definitive contracts and
purchase orders, with award values between $ 10,000 and $ 40,000, awarded by the Department of Defense in fiscal years
2015 through 2019. An observation is a contract, defined by aggregating all contract actions (initial award, modification,
termination, etc.) associated with the same contract ID. A 4-digit alphanumeric code (PSC) is observed for each contract.
The categories listed are constructed by aggregating PSC codes to two-digits for goods, and to a single digit (letter) for
services.

Table B.3: Estimated Price Effect

Estimate / Sample
All Goods Services

Complexity
Q1 Q2 Q3 Q4

(1) (2) (3) (4) (5) (6) (7)

Mean (µγ) 0.0595 0.0498 0.0782 0.0400 0.0512 0.0613 0.0808
(0.0193) (0.0437) (0.0355) (0.0622) (0.2020) (0.1598) (0.0946)

Standard 0.0643 0.0670 0.0534 0.0746 0.0690 0.0678 0.0282
Deviation (σγ) (0.0073) (0.0078) (0.0210) (0.0136) (0.0261) (0.0182) (0.0194)

Notes: This table shows the estimates corresponding to the effect of publicity on contract prices. The estimates result from
analyzing the observed contract price density distribution relative to a counterfactual distribution. The observed densities
are generated using bins of width $250. The counterfactual distribution stems from a polynomial interpolation of degree 5.
The standard deviation is calculated over the non-parametric distribution of γ. The standard errors are calculated through
bootstrap. The subgroup analysis is performed independently for each group.
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Table B.4: Reduced-form RDD: Baseline and “Donut-RD” specifications

Dependent Variable
OLS

1K 2K 3K 4K 5K 6K
(1) (2) (3) (4) (5) (6) (7)

Number of offers 0.3569 0.3139 0.2887 0.2789 0.2703 0.3020 0.2708
(0.0677) (0.0709) (0.0734) (0.0760) (0.0788) (0.0819) (0.0854)

Log distance firm-office 0.1392 0.1619 0.1508 0.1608 0.1663 0.1447 0.1497
(0.0481) (0.0502) (0.0519) (0.0536) (0.0557) (0.0578) (0.0601)

Small business -0.0277 -0.0260 -0.0251 -0.0289 -0.0325 -0.0286 -0.0278
(0.0065) (0.0068) (0.0070) (0.0072) (0.0075) (0.0078) (0.0081)

Any cost-overrun 0.0135 0.0090 0.0094 0.0101 0.0113 0.0099 0.0097
(0.0045) (0.0047) (0.0048) (0.0050) (0.0052) (0.0054) (0.0056)

Any delay 0.0130 0.0067 0.0085 0.0114 0.0146 0.0137 0.0138
(0.0047) (0.0049) (0.0051) (0.0052) (0.0054) (0.0056) (0.0058)

Number of modifications 0.0375 0.0211 0.0208 0.0278 0.0347 0.0282 0.0254
(0.0173) (0.0181) (0.0187) (0.0193) (0.0201) (0.0208) (0.0216)

Notes: This table shows Regression Discontinuity Design (RDD) estimates of the reduced-form relationship between a
series of outcome variables and an indicator of whether a contract award price exceeds $25,000. Each estimate comes from
a separate regression. Coefficients in column (1) use a linear fit above and below the discontinuity, and are identical to the
corresponding estimates in the first column of Table 1. Coefficients in columns (2) through (7) use the same specification,
but drop observations with a contract award value within a window of varying length around the $25,000 threshold. For
example, column (3) drops contract awards between $24,500 and $25,500. Standard errors are shown in parentheses.
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Table B.5: Complexity Measure: Top and Bottom Products

Rank Product Category Complexity
Top 10

1 Meat, Poultry, and Fish 0.000
2 Fuel Oils 0.000
3 Food, Oils, and Fats 0.000
4 Miscellaneous Fire Control Equipment 0.000
5 Surgical Dressing Materials 0.000
6 Medical and Surgical Instruments, Equipment, and Supplies 0.000
7 Composite Food Packages 0.000
8 Ophthalmic Instruments, Equipment, and Supplies 0.000
9 Tool and Hardware Boxes 0.000
10 Electric Arc Welding Equipment 0.000

Bottom 10
10 Facilities Operations Support 0.432
9 IT and Telecom-Internet 0.438
8 Laundry/Drycleaning 0.454
7 Lease of Office Machines and Text Processing Systems 0.470
6 Trash/Garbage Collection 0.505
5 Landscaping/Groundskeeping 0.653
4 Operation of Ships, Boats, and Floating Docks 0.712
3 Snow Removal/Salt 0.770
2 Custodial Janitorial 0.873
1 Operation Of Recreation Facilities - Non-Building 0.942

Notes: This table presents the top and bottom 10 product categories in terms of complexity index. The data source is
the Federal Procurement Data System-Next Generation. The complexity index is calculated using non-R&D definitive
contracts and purchase orders, with award values between $ 5,000 and $ 20,000, awarded by the Department of Defense
in fiscal years 2015 through 2019. The complexity index is defined as the average cost overruns at the product or service
category (PSC) level. Cost overruns are defined as the final contract price including all modifications, minus the award
price, divided by the award price. PSCs correspond to a 4-digit alphanumeric code that is observed for each contract.
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Table B.6: Model Estimation Sample Versus Full Sample

Model Full
Sample Sample Diff

Variables:
Publicized in FBO 0.393 0.300 0.093
Award Amount 21.202 20.683 0.519
Number of Offers 3.416 3.310 0.106
Overruns (relative) 1.091 1.089 0.002
Service 0.300 0.312 -0.012
Mean Overruns Prod Cat 0.068 0.073 -0.005
Awarded in September 0.272 0.254 0.018
log Expected Duration (days) 3.880 3.811 0.069

Bidders’ Classification
Local is Awarded 0.697 - -
N Potential Local Bidders 8.660 - -
N Potential Non-Local Bidders 4.452 - -

Number of Observations 28,330 84,389

Notes: This table compares the sample use in the estimation of the model, compared with the full sample of
contracts used in the reduced-form analysis. The first column shows the mean of selected variables using the
model estimation sample. The second column shows the same means, but computed over the full sample.
The third column shows the differences between these two means. The model estimation sample corresponds
to the subset of contracts for which we could identify the number of potential local and non-local bidders.
We restrict the analysis to buyer-product combinations that meet two conditions: at least four contracts were
awarded between 2013 and 2019, and neither all nor none were publicized.
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Table B.7: Complexity Measure: Top and Bottom Products

Entry Bidding Execution
(Probit) (Log Normal) (Log Normal)

baseline Coef SE Coef SE Coef SE
Panel A: Coefficients
Constant 1.00 0.0038 0.0006 3.0668 0.0001 -1.9561 0.0016
Service 0.31 -0.0125 0.0004 0.0002 0.0001 0.0138 0.0022
DegreeOfComplexity 0.07 -1.3555 0.0026 -0.0715 0.0004 3.3885 0.0027
NonLocal 7.1005 0.0017 -0.0097 0.0001 0.1828 0.0024
NonLocalxComplexity 0.0457 0.0042 -0.0381 0.0008 0.0207 0.0054
LastMonth 0.27 -0.1209 0.0003
ExpDurMedian 0.50 0.3099 0.0005
Nl 8.66 -0.0270 0.0000 -0.0017 0.0000
Nnl 4.45 -0.5756 0.0001 -0.0037 0.0000

Pabel B: Standard Deviation
SigmaConstant -4.6254 0.0007 -0.5361 0.0052
SigmaService 0.0250 0.0010 1.2891 0.0058
RhoConstant -0.1415 0.0019
RhoNonLocal -0.0104 0.0060
SigmaU 0.422 0.0054

Pabel C: Buyer Preferences
Publicity Choice

(Probit)
Coef SE

Constant -0.2907 0.0017
ExpPrice -0.9707 0.0032
ExpCostOverruns -0.0960 0.0035
ExpLocalWinning 0.4351 0.0018
Above25K 1.1930 0.0022

Notes: This table presents the top and bottom 10 product categories in terms of complexity index. The data source is
the Federal Procurement Data System-Next Generation. The complexity index is calculated using non-R&D definitive
contracts and purchase orders, with award values between $ 5,000 and $ 20,000, awarded by the Department of Defense
in fiscal years 2015 through 2019. The complexity index is defined as the average cost overruns at the product or service
category (PSC) level. Cost overruns are defined as the final contract price including all modifications, minus the award
price, divided by the award price. PSCs correspond to a 4-digit alphanumeric code that is observed for each contract.
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C Additional Details on the Setting

C.1 FedBizzOpps

FedBizOpps.gov (FBO) has been designed as a single government point of entry (GPE) for Federal

buyers to publish and for vendors to find posted Federal business opportunities across departments

and agencies. The FAR (part 5) regulates the publicity of contract actions. The goals of publicity

policy (FAR 5.002) are (a) increase competition, (b) broaden industry participation in meeting Govt

requirements (c) assist small businesses (and VO, VOSD, WO, HUBZone, etc.) in winning contracts

and subcontracts. The FAR requires that contract actions expected to exceed $25,000 must be

synopsized in the GPE. Contract actions under $25,000 must publicize “by displaying in a public

place, or by any appropriate electronic means.” The contracting officer is exempted to advertise

in GPE (FAR 5.102(a)5 and 5.202), when “disclosure compromises national security, ” “nature of

the file (e.g., size) does not make it cost-effective or practicable,” the “agency’s senior procurement

executive makes a written determination that it is not in the Government’s interest,” and several

other special cases (see FAR 5.202).

Figure A2 displays screenshots to the website. Panel (a) shows the list of opportunities, Panel

(b) includes the information contained a specific solicitation :

C.1.1 Types of FBO Notices

There are two broad types of FBO notices: pre-award and post-award notices. The pre-award notices

are divided into four actions:61

- Presolicitation: The pre-solicitation notice makes vendors aware that a solicitation may follow.

Vendors may add themselves to the Interested Vendors List, if the posting agency has enabled

this feature. This helps government agencies determine if there are qualified vendors to

perform the work scope and allows the contracting office to gather information on the

interested vendors.

- Combined Synopsis/Solicitation: Most opportunities classified this way are open for bids

from eligible vendors. These opportunities include specifications for the product or service

requested and a due date for the proposal. The notice will specify bidding procedures in the

details of the solicitation.

- Sources Sought: The Sources Sought notice is a synopsis posted by a government agency

seeking possible sources for a project. It is not a solicitation for work or a request for proposal.

For more information, see FAR 7.3 and OMB Circular A-76.
61Here we omit uncommonly used actions: Sale of Surplus Property, Justification and Approval (J&A), Fair Opportunity /

Limited Sources Justification, Foreign Government Standard, and Intent to Bundle Requirements (DoD-Funded).
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- Special Notice: Agencies use Special Notices to announce events like business fairs, long-range

procurement estimates, pre-bid/pre-proposal conferences, meetings, and the availability of

draft solicitations or draft specifications for review.

The post-award notices are essentially award notices:

- Award Notice: When a federal agency awards a contract in response to a solicitation, they may

choose to upload a notice of the award to allow the interested vendors to view the vendor

receiving the awarded contract, and amount agreed upon.

Figure A1 describes the life-cycle of a project and how different stages are linked to FBO actions.

C.2 Dataset Details

Our analysis combines data from two sources: Federal Procurement Data System - Next Generation

(FPDS-NG) and data scrapped directly from FedBizzOpps.gov (FBO).

FPDS-NG. The FPDS-NG tracks the universe of federal awards that exceed $5,000.62 The Federal

Acquisition Regulation (FAR) requires Contracting Officers (COs) must submit complete reports on

all contract actions. Thus, every observation corresponds to a contract action, representing either an

initial award or a follow-on action, e.g., modification, termination, renewal, or exercise of options.

For each observation, we observe detailed information, such as the dollar value of the funds

obligated by the transaction; a four-digit product category code (PSC); six-digit Industry (NAICS)

code; identification codes for the agency, sub-agency, and contracting office making the purchase;

the identity of the private vendor (DUNS); the type of contract pricing (typically, fixed-price or

cost-plus); the extent of competition for the award; characteristics of the solicitation procedure; the

number of offers received; and the applicability of a variety of laws and statutes. We collapse all

actions by contract ID. As a reference, 80% of awarded contracts are smaller than $50, 000.

Our analysis contemplates overruns in terms of cost and time of completion. We define contract

delays and cost overruns based on related literature (Decarolis et al., 2020a). We exclude outliers

on both variables as they are likely associated with data entry issues. We cross-checked dates

and amounts for contract award notices that appeared in FBO and found that mismatches are

uncommon.

FBO Data. We use daily archives of all information posted in FBO. Every data row corresponds to a

different notice action. Each action is associated with a unique URL. The two primary IDs to match

FBO data with other datasets are “solicitation number” and “contract award number. The former

identifies pre-award actions, whereas award notices are identified using “contract award number.”

A relevant fraction of the award-notices are not linked with any of the pre-award notices. FPDS

data contain both IDs. Roughly, an annual database contains 300,000 notices.

62The data can be downloaded from usaspending.gov
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The data preparation consists in three steps; first, we clean IDs and classify different actions

associated with each ID. Second, we merge with FPDS data using contract number, then update

solicitation number when both exist, finally merge and append unmatched observations using

solicitation number. The last step is to collapse the data at the FPDS contract ID level. So the

resulting dataset contains all the contract ids that also appeared in FBO.

We define that a contract appeared in FBO (treatment indicator) if the contract award has a

solicitation number associated with at least one of the FBO pre-award actions described above.
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D Empirical Framework for Estimating the Effects of Publicity on

Contract Outcomes

This Section presents a detailed exposition of the empirical framework introduced in Section 3.

Section D.1 presents our theoretical framework and the set of results that motivate the density

analysis. Section D.2 explains the density analysis in detail, including all implementation details.

Section D.3 discusses how to correct naive RDD estimates to account for price effects and potential

measurement error. Section D.4 explains how we account for potential bunching responses in the

RDD framework.

D.1 Empirical Model

D.1.1 Preliminaries

Consider a series of observed contract awards t ∈ {1, .., T}. Let p̃t be the ex-ante award price of

contract t, which corresponds to the agency’s estimate of what the contract price will be. Let pt

be the observed award price of contract t. p̃t and pt are normalized relative to a policy threshold of

$25,000 and measured in logs. Therefore, negative (positive) values of p̃t and pt are said to be below

(above) the threshold for the purpose of the policy described below.

Prior to the award, the buyer decides whether to publicize the solicitation (Dt = 1) or not (Dt =

0). Let pd
t ( p̃t) be the potential price that we would observe for contract t, given an ex-ante estimate

of p̃t and a publicity decision Dt = d, for d ∈ {0, 1}. There is a policy that encourages buyers to

choose Dt = 1 for awards expected to exceed the threshold (i.e. for p̃t > 0).

The buyer may choose to strategically bunch (Bt = 1), which means that she modifies the

characteristics of the initial purchase in order to obtain an award price equal to pB
t ( p̃t), choosing

Dt = 0 without being affected by the policy. pB
t ( p̃t) is equal to, or slightly below 0.

Therefore, observed prices can be written as:

pt = p0
t ( p̃t) + Dt ·

[
p1

t ( p̃t)− p0
t ( p̃t)

]
+ Bt · (1− Dt) ·

[
pB

t ( p̃t)− p0
t ( p̃t)

]
We assume the following:

A1 p̃t are i.i.d. draws from a distribution with smooth density f p̃(·).

A2 p0
t ( p̃t) = p̃t + ξt, with ξt ∼ Fξ(·), E[ξt] = 0, and ξt ⊥ p̃t.

A3 p1
t ( p̃t) = p̃t + γt, with γt ∼ Fγ(·), γt ⊥ p̃t, and γt ⊥ ξt.

A4 Pr(Dt = 1| p̃t) ≡ π̃D( p̃t) = π̃∗D( p̃t) + δ · 1[ p̃t > 0], for a continuous function π̃∗D(·).

A5 There exist pH > 0 such that Bt = 0 for all p̃t > pH.
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Note that here we present a slightly more general version of the model than in Section 3. In

particular, A2 allows for measurement error in agencies’ ex-ante estimates.

D.1.2 Discretizing award values

Consider the division of the range of possible (normalized) award values into a set of equally-sized

and right-inclusive bins around the threshold b ∈ {−R, (−R + 1), ...,−1, 0, 1, ..., (R− 1), R}. Note

that bin b = 0 includes awards right at, or slightly below, the policy threshold.

Let {nd
b}R

b=−R be the frequency distribution of observed awards conditional on treatment

(publicity) status Dt = d, for d ∈ {0, 1}, so that nd
b denotes the number of contracts with treatment

status d and observed award value pt ∈ b. Likewise, let {ñd
b}R

b=−R represent the (unobserved)

frequency distribution of latent ex-ante prices. We also denote the distribution of all awards (both

publicized and non-publicized) by simply omitting the superscript. That is, nb = n0
b + n1

b, and

ñb = ñ0
b + ñ1

b.

Consider also a shifted distribution of publicized contracts {n1,s
b (γ̄)}R

b=−R, which is obtained by

subtracting a mean price effect γ̄ to every publicized (Dt = 0) contract. That is, n1,s
b (γ̄) denotes the

number of publicized contracts with award value pt such that (pt + γ̄) ∈ b.

Finally, let ∆ denote the discrete change in the number of publicized contracts at the

discontinuity. Given A4, note that this is defined as ∆ = δ ·∑b nb.

D.1.3 Propositions

We now make a series of propositions that motivate our estimation method that we label “density

analysis” in Section 3.

Proposition 1. There exist some (b1, b̄1) such that E[ñ1
b] = E[ns,1

b (γ̄)], for γ̄ = E[γt], b < b1 < 0 and

b > b̄1 > 0. That is, far enough from the threshold, the distribution of realized award prices, appropriately

shifted to cancel out mean price effects, coincides with the distribution of ex-ante award prices for publicized

contracts.

Proposition 2. There exist some (b0, b̄0) such that E[ñ0
b] = E[n0

b], for b < b0 < 0, and b > b̄0 > 0.

In other words, far enough from the threshold, the distributions of ex-ante and realized award prices for

non-publicized contracts coincide.

Corollary 1. E[ñb] = E[n0
b + ns,1

b (γ̄)], for γ̄ = E[γt], b < b = min{b0, b1} < 0 and b > b̄ =

max{b̄0, b̄1} > 0.

Proposition 3. ∑b≤0(ñb − nb) = ∑b>0(nb − ñb). This means that the excess mass below the threshold

equals the missing mass above the threshold.

Proposition 4. ∆ · Fγ′(x) = E[n1,s
bx
(γ̄)− ñ1

bx
], for x ∈ bx, bx ≤ 0, and γ′ = γ− γ̄.
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D.1.4 Convolution of densities

The key to our propositions stems from characterizing the distribution of observed prices pt,

given the distributions of ex-ante estimates, price effects, and measurement error. Throughout

this section, we normalize the price of publicized contracts by subtracting the mean of the price

effects. This is for convenience so that we deal with a mean-zero price effect, but is without loss of

generality, as the propositions appropriately adjust for γ̄ when appropriate.

Consider first the density of publicized contracts, h1
p. Because observed prices are given by

the sum of two independent random variables, ex-ante estimates, and price effects (see A3), their

density is given by the convolution of the densities f 1
p̃ ≡ f p̃|D=1 and fγ. That is:

h1
p(pt) =

∫ ∞

−∞
f 1
p̃(pt − γt) fγ(γ)dγ (14)

On the other hand, using Bayes’ rule:

f 1
p̃( p̃t) =

π̃D( p̃t) · f p̃( p̃t)

Pr(Dt = 1)
(15)

So that (14) and (15) imply:

h1
p(pt) =

∫ ∞

−∞

π̃D(pt − γ) · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ

=
∫ ∞

−∞

(π̃∗D(pt − γ) + δ · 1[pt − γ > 0]) · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ

=
∫ ∞

−∞

π̃∗D(pt − γ) · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ +

∫ pt

−∞

δ · f p̃(pt − γ) · fγ(γ)

Pr(Dt = 1)
dγ

Or,

h1
p(pt) ≡

∫ ∞

−∞
f 1∗
p̃ (pt − γ) · fγ(γ) · dγ +

∫ pt

−∞
∆(pt − γ) · fγ(γ) · dγ (16)

Consider pt ≪ 0, so that fγ(pt) ≈ 0. In words, consider a price sufficiently below the

threshold, so that the probability that the ex-ante estimate for this contract was above the

threshold is negligible. In this case, the second term in Equation (16) is zero. On the other

hand, f 1∗
p̃ (pt − γ) = f 1

p̃(pt − γ) when pt < 0, so that the first term is the convolution between the

densities of p̃ and γt. If the former is sufficiently smooth, then adding a mean-zero price effect

has no effect on the observed density, and h1
p(pt) = f 1

p̃(pt). It follows that the expected number

of contracts with observed price pt equals the expected number of contracts with ex-ante price

estimate equal to pt. Abandoning the normalization to allow for non-zero average price effects

implies that this equality of expectations holds only once observed publicized prices are adjusted

by adding the mean of γ. The first part of Proposition 1 follows: for sufficiently low pt ∈ b,

E[ñ1
b] = E[ns,1

b (γ̄)], for all b ≤ b.
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As we move closer to the threshold from below, the second term in Equation (16) becomes

positive. This corresponds to the excess mass of contracts relative to the counterfactual density

of the first term. Intuitively, this term is given by the mass of contracts with ex-ante estimates to the

right of the threshold that receive a sufficiently high price effect so as to end up at the left of it. This

is what allows us to identify Fγ in Proposition 4. Consider pt = x closely below the threshold, so

that ∆(x− γ) ≈ ∆. With a constant ∆, it immediately follows that ∆ · Fγ(pt) = h1
p(pt)− f 1

p̃(pt).

A symmetric argument can be given for pt closely above the threshold. In this case, the second

term becomes the missing mass of the observed density h1
p(pt), relative to the counterfactual density

of p̃. Once we get to a high enough value of pt >> 0, once again fγ(pt) goes to zero, and this missing

mass disappears. Observed and counterfactual densities converge, which completes Proposition 1:

for sufficiently high pt ∈ b, E[ñ1
b] = E[ns,1

b (γ̄)], for all b > b.

The argument for non-publicized contracts is directly analogous. Observed awards are the sum

of unobserved ex-ante estimates p̃ and a mean-zero error term ξ. This error term only generates a

discrepancy between h0
p and f 0

p when the latter is not smooth, which happens only at the threshold.

Proposition 2 follows: for pt << 0 and pt >> 0, the two densities coincide.

All this discussion ignored the potential effect of bunching responses. However, strategic

bunching does not affect any of the aforementioned results. This is because of A5: bunching

responses occur only within a window around the threshold. Therefore, all of our arguments

remain unchanged, as long as bH ≤ b, where pH ∈ bH.

Finally, Proposition 3 follows directly from the fact that our model assumes no extensive margin

responses. Contracting officers can avoid the mandate via bunching responses but still need to

complete the purchase. We think this assumption is natural for this setting, so the overall number

of observed and counterfactual contracts needs to coincide.

D.2 Density Analysis: Estimation of Price Effects and Counterfactual Densities

We know explain our density analysis estimation method in detail, building on the Propositions of

the previous section.

Step 1

Our method starts from the observation that, relative to ex-ante prices, linear price effects will

impact the distribution of publicized contracts in two ways: (i) they will shift the full distribution

to the left by E[γt]; and (ii) they will smooth out the discontinuity in the distribution around the

threshold, because of V(γt) (see Figure A22 (d)).

Suppose that we knew the true value of mean price effects E[γt] ≡ γ̄. From the observed

frequency distribution of publicized contracts {n1
b}, we can simply undo the first impact of price
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Figure A22: Impact of Bunching and Price Effects on Award Distributions

(a) Bunching for D = 0
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Number of
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(b) Bunching for D = 1
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(c) Bunching + Price Effects for D = 0
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(d) Bunching + Price Effects for D = 1
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Notes: This figure shows conceptually how the distributions of non-publicized and publicized awards are impacted by the
existence of both strategic bunching responses and price effects due to increased competition. Panels (a) and (b) show, respectively
for non-publicized and publicized contracts, the distributions of ex-ante award prices (p̃, in dashed black lines), as well as realized
award prices (p, in solid orange and green lines) when we allow for strategic bunching responses. Panels (c) and (d) plot the
additional effect of having price effects associated with publicity (in solid red lines).

effects by shifting this distribution back to the right. That is, we construct the shifted distribution

{n1,s
b (γ̄)}, which is obtained by adding the value of γ̄ to the price award of every publicized

contract. If the number of contracts is large, the shifted distribution should coincide with the

unobserved distribution of ex-ante prices {ñd
b}, except near the threshold.

On the other hand, a similar argument can be made for non-publicized contracts, given the

assumption that bunching responses are local to the threshold (A4). Except for a window around

the threshold where bunching responses manifest, the observed distribution {n0
b} should coincide

with the unobserved distribution {ñd
b} (see Figure A22 (c)).

This intuition is supported by Propositions 1 and 2. Once we get “far enough” from the

threshold, the distribution of non-publicized awards and the appropriately shifted distribution

of publicly solicited awards should coincide with the latent distributions of ex-ante prices. In
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particular, we have that: n0
b + n1,s

b (γ̄) ≈ ñ0
b + ñ1

b = ñb for b sufficiently far from 0. On the contrary,

close to the threshold, we have n0
b + n1,s

b (γ̄) ̸= ñb due to the effects of bunching and the variance in

price effects.

Finally, because we know that the unobserved distribution {ñb} should be smooth everywhere

due to A1, we can use a standard bunching estimation procedure (Chetty et al., 2013; Kleven and

Waseem, 2013) to infer the shape of it around the threshold. This means fitting a polynomial

function through our constructed distribution {n0
b + n1,s

b (γ̄)}, ignoring the contribution of the bins

close to the threshold.

More concretely, we estimate the following specification:

[
n0

b + n1,s
b (̂̄γ)] = Q

∑
x=0

αx · bx +
b

∑
j=b

γj · 1[b = j] + νb, for b = {−R, ..., R} (17)

and obtain fitted values:

n̂b =
Q

∑
x=0

α̂x · bx for b = {−R, ..., R}.

Now, this discussion started by assuming that we knew the value of the mean price effect γ̄. Yet,

in practice, this is the main unknown parameter that we seek to recover. So in order to estimate

it, we rely on the integration constraint of Proposition 3: ∑R
b=−R(n

0
b + n1,s

b (γ̄)) = ∑R
b=−R

̂̃nb. As

the intuition from Figure A23 shows, the integration constraints will bind only when we shift the

distribution of publicized contracts according to the right value of γ̄. We, therefore, start from an

initial guess of ̂̄γ, and iterate until we find a value such that the constraint is satisfied.
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Figure A23: Intuition of Method to Estimate Mean Price Effects

(a) By publicity status, ̂̄γ = E[γ]
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Publicized, shifted

(b) All contracts, ̂̄γ = E[γ]

p̃, p
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p̄
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A

B

A=B

Non-publicized

shifted publicized
+

(c) By publicity status, ̂̄γ > E[γ]

p̃, p

Number of

p̄

contracts

← ̂̄γ→

Non-publicized

Publicized, shifted

Publicized, observed

(d) All contracts, ̂̄γ > E[γ]

p̃, p

Number of

p̄

contracts

A

B

A<B

Non-publicized

shifted publicized
+

(e) By publicity status, ̂̄γ < E[γ]

p̃, p

Number of

p̄
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̂̄γ

Non-publicized

Publicized, observed

Publicized, shifted

(f) All contracts, ̂̄γ < E[γ]

p̃, p

Number of

p̄

contracts

A

B

A>B

Non-publicized

shifted publicized
+

Notes: This figure provides (graphical) intuition of the procedure to estimate the mean price effect based on the integration
constraint condition, i.e., the sum of excess of mass below the threshold equals the sum of missing masses above the threshold.
Panels (a), (c), and (e) display distributions of publicized and non-publicized contracts. Panels (b), (d), and (f) show the
corresponding overall distributions, i.e., the blue line in panel (b) corresponds to the sum of the yellow and red lines in panel (a).
The key intuition is that the integration constraint condition is only met if the distribution of publicized contracts is re-centered
by the correct mean of price effect, i.e., the resulting distribution has mean zero.
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For the implementation, we choose the following parameters. We use a fifth-degree polynomial,

i.e. Q = 5. We use bins of constant width of 0.01 log-points. This implies bins of roughly $250 at the

discontinuity. Indeed, bin b = 0 includes all contracts with price greater than $24,75163 and smaller

than or equal to $25,000. Our estimation is performed on a total set of 150 bins centered around

zero, from -0.75 to 0.75. In dollar terms, this corresponds to contracts between $11,809 and $52,925.

The excluded window for step 1 is symmetric, excluding 12 bins below zero and 12 bins above. In

dollar terms, the excluded window consists of contracts between $22,173 and $28,187.

Step 2

The second step seeks to estimate separate counterfactual distributions by publicity status, i.e. { ̂̃n0
b}

and { ̂̃n1
b}. To do this, we can go back to the intuition from Figure A22, assuming that there are

neither price effects nor bunching responses so that the distributions of ex-ante prices and observed

realized prices coincide. In this case, the distributions for treated and control units should be

continuous, except at the threshold, where we should see a discontinuous jump in publicized

contracts mirrored by a discontinuous dip in non-publicized contracts. Suppose that we knew

the size of this change, which we denote as ∆. Knowledge of ∆ would allow us to undo these

discontinuities by shifting the right part of each distribution vertically. Indeed, the distributions

{n0
b + ∆ · 1[b > 0]} and {n1

b − ∆ · 1[b > 0]} should be continuous.

In the presence of bunching and price effects, these vertical shifts will not make the observed

distributions continuous. However, just as in the discussion above, price effects and bunching

should only affect the distributions within some window around the threshold. So, we use this

logic again and use a polynomial interpolation to estimate the counterfactual distributions around

the threshold.

First, we construct distributions that are vertically shifted above the threshold: {n0
b + ∆ · 1[b >

0]}R
b=−R and {n1,s

b ( ̂̄γb)− ∆ · 1[b > 0]}R
b=−R. We then apply the same interpolation method as before

for each of the two distributions. That is, we separately estimate the following two specifications:

(
n0

b + ∆ · 1[b > 0]
)
=

Q

∑
x=0

α0
x · bx +

b0

∑
j=b0

γ0
j · 1[b = j] + ν0

b , for b = {−R, ..., R} (18)

(
n1,s

b ( ̂̄γb)− ∆ · 1[b > 0]
)
=

Q

∑
x=0

α1
x · bx +

b1

∑
j=b1

γ1
j · 1[b = j] + ν1

b , for b = {−R, ..., R} (19)

and compute fitted values ignoring the contribution of the bins within the excluded window:

n̂∗0b =
Q

∑
x=0

α̂0
x · bx, for b = {−R, ..., R}

63log(x)− log(25, 000) = 0.01 ⇐⇒ x = 25, 000 · exp(−0.01)
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n̂∗1b =
Q

∑
x=0

α̂1
x · bx, for b = {−R, ..., R}

Finally, our estimates of the counterfactual distributions do incorporate the discontinuous effect

of the policy. We estimate these by re-adding the shift that we originally removed:

n̂0
b = n̂∗0b − ∆ · 1[b > 0] for b = {−R, ..., R}

n̂1
b = n̂∗1b + ∆ · 1[b > 0] for b = {−R, ..., R}

Again, this exposition assumes that we know the value of ∆. Since, in practice, this is not directly

observed, our method iterates over guesses of ∆̂. The convergence criterion, in this case, is based

on the fit of the interpolations outside the excluded window. Indeed, if the vertical shift we guess

is too low or too high, the polynomial interpolation will fit poorly just outside of the excluded area.

Figure A24 shows this intuition graphically.

So, given a guess of ∆̂, we compute the residuals for each of the two regressions (18) and (19).

We then search over ∆̂ to minimize:

W
(

∆̂
)
= 0.5 · ∑

b ̸=Z0

ν̂0
b

(
∆̂
)2

+ 0.5 · ∑
b ̸=Z1

ν̂1
b

(
∆̂
)2

,

where Z0 = {b0, ..., b0} and Z1 = {b1, ..., b1} correspond to the excluded regions.

For step two, we keep the polynomial degree, binning, and range fixed as in step 1. However,

we change the excluded region for the specification using non-publicized contracts (18). The

justification for this is that we expect bunching to be concentrated closely below the threshold.

Concretely, we choose 5 bins below the threshold and 12 bins above for Z0 and keep the symmetric

window of 12 bins above and below for Z1.
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Figure A24: Intuition of Method to Estimate Ex-Ante Price Distributions

(a) Non-publicized, correct ∆
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(e) Non-publicized, ∆ too low
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(f) Publicized, ∆ too low
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∆
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Notes: This figure provides (graphical) intuition of the procedure to estimate the ex-ante price distribution. The method considers
identifying the discrete change in the distribution of publicized contracts (∆) that matches with the drop in the distribution of
non-publicized contracts. Panels (a), (c), and (e) display distributions of non-publicized contracts. Panels (b), (d), and (f) show
the distributions of publicized contracts. The procedure builds upon the general interpolation (dashed blue line) that relates the
distributions of publicized and non-publicized contracts. We recover the ∆ by identifying the vertical shift of the distributions
that matches the counterfactual distribution.
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Step 3

In step 3, we rely on the formula from Proposition 4 and use our estimates from above to compute:

F̂γ′(x) =
n1,s

bx
(̂̄γ)− ̂̃n1

bx

∆̂

for x ∈ bx, bx ∈ {b1, ..., 0}, and γ′ = γ− ̂̄γ. This is straightforward, given the implementation

of steps 1 and 2. We obtain the Fγ′ evaluated at each bin on the lower half of the excluded region

Z1. For values x < b1, we impose Fγ′ = 0, since below the excluded region, there is no longer

any influence of price effects. Finally, we then obtain estimates for the rest of the CDF by imposing

symmetry so that Fγ′(x) = 1− Fγ′(−x).

For all of our estimates, we compute standard errors via bootstrap. We sample with replacement

from the original distribution of contracts and implement steps 1 through 3, obtaining a set of

estimates θ̂. We repeat this process H times. The standard errors correspond to the empirical

standard deviation of θ̂(h), for h = {1, 2, ..., H}.

D.3 RDD Correction for Price Effects and Measurement Error

Consider again the model described in Section D.1. Observed prices as a function of ex-ante prices

are given by:

pt = p̃t + (1− Dt) · ξt + Dt · γt (20)

where pt are observed normalized (i.e. logged and re-centered around 0) award prices, p̃t are

normalized ex-ante prices, Dt ∈ {0, 1} are publicity decisions, γt is the price effect of publicity, and ξt

is measurement error. Let γt ∼ Fγ(·), with E[γt] = µγ and V[γt] = σ2
γ. Let ξt ∼ Fξ(·), with E[ξt] = 0

and V[ξt] = σ2
ξ . Assume γt ⊥ ξt ⊥ p̃t.

To assess the causal impact of Dt on outcomes of interest yt, we assume a piece-wise linear

relationship between expected outcomes and latent ex-ante prices. In particular:

E[yt| p̃t] = 1( p̃t ≤ 0) · (α0 + β0 · p̃t) + 1( p̃t > 0) · (α1 + β1 · p̃t) (21)

For simplicity, we focus on this reduced form relationship, but it would be straightforward to

extend it to a two-equation model with a structural equation relating yt and Dt, and a first-stage

equation relating Dt and p̃t. Our parameters of interest are (α, β) = (α0, α1, β0, β1). In particular, we

focus on (α1 − α0), the reduced form effect at the discontinuity.

The problem we face is that we do not observe a sample analog of E[yt| p̃t], but rather of E[yt|pt].

Our “naive RDD” coefficients correspond to an estimate of
(
limp→0+ E[yt|p]− limp→0− E[yt|p]

)
,

which in general will not be equal to (α1 − α0) =
(
limp̃→0+ E[yt| p̃]− limp̃→0− E[yt| p̃]

)
. Here, we
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propose an alternative estimator of (α1 − α0) based on the following proposition.

Proposition 5. Expected outcomes conditional on observed award prices E [yt|pt] can be expressed as an

explicit linear function of the structural parameters (α, β), as well as other variables that we can directly

observe or estimate. In particular:

E [yt|pt] = α0 · ψ1(pt) + β0 · ψ2(pt) + α1 · ψ3(pt) + β1 · ψ4(pt) ,

where ψk(·), k ∈ {1, 2, 3, 4} are explicit functions of observed prices (pt), observed treatment probabilities at

a given price (πD(pt)), and moments of the distributions of price effects and measurement error evaluated at

a given price (Fγ(pt), Fξ(pt)).

Below, we derive the explicit expressions for each ψk. We then compute these using our data and

the estimate F̂γ(pt) that we obtained from the density analysis. We also assume no measurement

error, so that ξt = 0 for all t. However, the formulas we derive are general, allowing for any arbitrary

distribution of measurement error. Once we compute these estimates ψ̂k(pt), we use the equation

in Proposition 5 to estimate (α, β) by OLS. We are particularly interested in (α̂OLS
1 − α̂OLS

0 ), which

we then directly compare to the “naive RDD” reduced form coefficients.

D.3.1 Proof of Proposition 5

We now derive the explicit expression for E[yt|pt]. First, we use the Law of Total Probability to

write:

E[yt|pt] = E[yt|pt, p̃t ≤ 0])︸ ︷︷ ︸
Λ1

·Pr( p̃t ≤ 0|pt)︸ ︷︷ ︸
Λ2

+ E[yt|pt, p̃t > 0]︸ ︷︷ ︸
Λ3

·Pr( p̃t > 0|pt)︸ ︷︷ ︸
Λ4

(22)

For each Λk, k ∈ {1, 2, 3, 4}, we find an expression that depends only on magnitudes that we can

directly observe or estimate.

We start with Λ2:

Λ2 = Pr( p̃t ≤ 0|pt)

= Pr( p̃t ≤ 0|pt, Dt = 0) · Pr(Dt = 0|pt) + Pr( p̃t ≤ 0|pt, Dt = 1) · Pr(Dt = 1|pt)

= Pr(pt − ξt ≤ 0|pt) · [1− πD(pt)] + Pr(pt − γt ≤ 0|pt, Dt = 1) · πD(pt)

=
[
1− Fξ(pt)

]
· [1− πD(pt)] + [1− Fγ(pt)] · πD(pt)

≡ Λ2(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(23)

OA-35



Similarly for Λ4:

Λ4 = Pr( p̃t ≥ 0|pt)

= Pr( p̃t ≥ 0|pt, Dt = 0) · Pr(Dt = 0|pt) + Pr( p̃t ≥ 0|pt, Dt = 1) · Pr(Dt = 1|pt)

= Pr(pt − ξt ≥ 0|pt) · [1− πD(pt)] + Pr(pt − γt ≥ 0|pt, Dt = 1) · πD(pt)

= Fξ(pt) · [1− πD(pt)] + Fγ(pt) · πD(pt)

≡ Λ4(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(24)

For Λ1 and Λ3, the analysis is slightly more complicated. First, observe that:

Λ1 = E[yt|pt, p̃t ≤ 0])

= E[α0 + β0 · p̃t|pt, p̃t ≤ 0]

= α0 + β0 · E[ p̃t|pt, p̃t ≤ 0]

= α0 + β0 · {E[ p̃t|pt, p̃t ≤ 0, Dt = 1] · Pr(Dt = 1|pt, p̃t ≤ 0)

+ E[ p̃t|pt, p̃t ≤ 0, Dt = 0] · Pr(Dt = 0|pt, p̃t ≤ 0)}

= α0 + β0 · {E[pt − γt|pt, p̃t ≤ 0, Dt = 1] · Pr(Dt = 1|pt, p̃t ≤ 0)

+ E[pt − ξt|pt, p̃t ≤ 0, Dt = 0] · Pr(Dt = 0|pt, p̃t ≤ 0)}

= α0 + β0 · {(pt − E[γt|γt ≥ pt, pt]) · Pr(Dt = 1|pt, p̃t ≤ 0)

+ (pt − E[ξt|ξt ≥ pt, pt]) · Pr(Dt = 0|pt, p̃t ≤ 0)}

⇐⇒

Λ1 = α0 + β0 · pt + β0 · {E[γt|γt ≥ pt, pt]) · Pr(Dt = 1|pt, p̃t ≤ 0)

− E[ξt|ξt ≥ pt, pt]) · Pr(Dt = 0|pt, p̃t ≤ 0)}
(25)

Now, applying Bayes’ rule to Pr(Dt = 0|pt, p̃t ≤ 0):

Pr(Dt = 0|pt, p̃t ≤ 0) =
Pr( p̃t ≤ 0|Dt = 0, pt) · Pr(Dt = 0|pt)

Pr( p̃t ≤ 0|pt)

=
Pr( p̃t ≤ 0|Dt = 0, pt) · Pr(Dt = 0|pt)

Λ2

=
Pr(pt − ξ ≤ 0|pt) · [1− πD(pt)]

Λ2

=

[
1− Fξ(pt)

]
· [1− πD(pt)]

Λ2

(26)
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And, therefore,

Pr(Dt = 1|pt, p̃t ≤ 0) = 1− Pr(Dt = 0|pt, p̃t ≤ 0)

=
[1− Fγ(pt)] · πD(pt)

Λ2

(27)

Combining (25), (26) and (27) implies:

Λ1 = α0 + β0

[
pt +

E[γt|γt ≥ pt, pt] · [1− Fγ(pt)] · πD(pt)− E[ξt|ξt ≥ pt, pt] ·
[
1− Fξ(pt)

]
· [1− πD(pt)]

Λ2

]
≡ Λ1(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(28)

Analogous calculations yield the following expression for Λ3:

Λ3 = α1 + β1

[
pt +

E[γt|γt ≤ pt, pt] · Fγ(pt) · πD(pt)− E [ξt|ξt ≤ pt, pt] · Fξ(pt) · [1− πD(pt)]

Λ4

]
≡ Λ3(pt, πD(pt), Fγ(pt), Fξ(pt), α, β)

(29)

Finally, combining (22), (23), (24), (28), and (29), we obtain:

E[yt|pt] = α0 · ψ1(pt) + β0 · ψ2(pt) + α1 · ψ3(pt) + β1 · ψ4(pt)

where:

ψ1(pt) =
[
1− Fξ(pt)

]
· [1− πD(pt)] + [1− Fγ(pt)] · πD(pt)

ψ2(pt) = ψ1(pt) · pt + E[γt|γt ≥ pt, pt] · [1− Fγ(pt)] · πD(pt)− E[ξt|ξt ≥ pt, pt] ·
[
1− Fξ(pt)

]
· [1− πD(pt)]

ψ3(pt) = Fξ(pt) · [1− πD(pt)] + Fγ(pt) · πD(pt)

ψ4(pt) = ψ3(pt) · pt + E[γt|γt ≤ pt, pt] · Fγ(pt) · πD(pt)− E [ξt|ξt ≤ pt, pt] · Fξ(pt) · [1− πD(pt)]

D.4 Accounting for Bunching

A standard test for the validity of the RDD framework consists of verifying the continuity of the

density of the running variable around the threshold. If the running variable is not distributed

smoothly around the cutoff, then it is said to be “manipulated”. In recent work, Gerard, Rokkanen

and Rothe (2020) shows that, while point identification of causal effects is infeasible in this case, it

is possible to obtain sharp bounds on the effects of interest.

In their model, the extent of manipulation can be quantified as the excess bunching in the density
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of the running variable below the threshold. While one cannot identify which are the units below

the threshold that are manipulating, the excess bunching πB tells us what share of the observed

units is in this group. Bounds on treatment effects are then computed by excluding a share πB of

the observations below the threshold in ways that yield the most extreme values for the estimate.

This process can be quite involved in general since one does not know the treatment assignment

of the units that are manipulated. This transforms the computation of the bounds in an optimization

problem, searching for the worst- and best-case scenarios in terms of how outcomes are distributed

across treatment groups below the threshold.

However, our setting allows us to make a behavioral assumption that tremendously simplifies

the problem. In particular, our model assumes that all units that manipulate the ex-ante price to

bunch below the threshold successfully avoid the publicity mandate.Therefore, our model implies

that the share πB of units that manipulate all belong to the control group (Dt = 0). Bounds on

treatment effects are straightforwardly obtained in this case by simply chopping the tails of the

distribution of outcomes Yt below the threshold for units in the control group.

In practice, we implement this procedure as follows. For each bin b closely below the threshold:

1. Compute the excess bunching in the control group, as BUNCHb = (n0
b −

̂̃n0
b), obtained from

our density analysis.

2. Sort control units according to the outcome variable Y0
b .

3. Drop the BUNCHb units with the highest value of Y0
b . Compute treatment effects. This yields

the lower bound.

4. Drop the BUNCHb units with the lowest value of Y0
b . Compute treatment effects. This yields

the upper bound.
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E Discussion on Modeling of Execution Performance

We measure execution performance by the magnitude of cost-overruns, which we model based on

two important assumptions:

1. The ex-post realization of qt is not strategic, but a result of a type-specific shock. This

assumption is in line with related papers (Bajari et al., 2014; Eun, 2018; Ryan, 2020). It is

also consistent with the reduced-form evidence discussed in Section 3.5, where we find that

variation in the competitive environment does not generate changes in firm performance in

terms of cost overruns or delays. We, therefore, think of contract execution as a stochastic

realization that depends on a production technology that is fixed—at least in the short run—,

and that cannot be modified after observing the competitive environment.

2. The ex-post realization of qt is fully passed through to the buyer. This implies that cost

overruns do not enter the utility function of the firm. Modelling choices in related papers

are context-specific in this regard. For example, Bajari et al. (2014) and Eun (2018) study

highway construction and consider that ex-post cost overruns negatively affect firms’ utility

as they involve costly re-negotiations and additional layers of bureaucracy. On the other hand,

Ryan (2020) studies energy procurement and highlights that certain firms (e.g., politically

connected) take advantage of these shocks to obtain better conditions.

In our setting, contract ex-post modifications do not involve major bureaucratic hurdles

beyond clarifying that the amendment is needed and that it involves unbudgeted costs that

can be justified with invoices. This implies that the assumption that cost shocks are fully

passed through resonates with the particularities of our institutional context. However, note

that even if the model was misspecified, future overruns would only affect firm behavior

in expectation due to risk neutrality. Moreover, if expected overruns do affect firms’ utility,

the estimated distributions of production and entry costs would be shifted by an (unknown)

amount reflecting a “taste for expected overruns”, i.e., ĉjt = cjt + ψ ·E[qjt], where ψ is a taste

parameter that could be positive or negative. Importantly, if we did impose such a structure,

there would be a limit to what we could identify. Related papers (e.g., Ryan (2020); Bajari et

al. (2014)) are explicit about how ψ enters the utility function, yet they impose this structure

at the expense of assuming that firms are symmetric. Instead, we allow for full flexibility

in the asymmetry of all primitive distributions between locals and non-locals, but at the

expense of being agnostic about ψ. We argue that our modeling choice in this regard takes

better advantage of the variation available in our data and provides more flexibility to our

counterfactual exercises.
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F Model Identification

Lemma 1. The expected k-th order statistic of B with n draws can be written in terms of the expected k-th

and (k + 1)-th order statistics with n + 1 draws

Proof. The probability density function of B is gB(b), then the k-th order statistic of B, g
B(n)

k
(b), is:

g
B(n)

k
(b) = k

(
n
k

)
gB(b)GB(b)k−1 [1− GB(b)]

n−k

=
n!

(n− k)!(k− 1)!
fB(b)GB(b)k−1 [1− GB(b)]

n−k

Thus, the difference is expected k-th order statistics with n and n + 1 actual competitors is
expressed as follows:

E[B(n)
k ]−E[B(n+1)

k ] =
∫ b̄

b
bg

B(n)
k
(b)db−

∫ b̄

b
bg

B(n+1)
k

(b)db

=
∫ b̄

b
bk
(

n
k

)
gB(b)GB(b)k−1 [1− GB(b)]

n−k db−
∫ b̄

b
bk
(

n + 1
k

)
gB(b)GB(b)k−1 [1− GB(b)]

n+1−k db

=
∫ b̄

b

(
n!(n + 1− k)− (n + 1)! [1− GB(b)]

(k− 1)!(n + 1− k)!

)
bgB(b)GB(b)k−1 [1− GB(b)]

n−k db

=
∫ b̄

b

(
(n + 1)!GB(b)− n!k
(k− 1)!(n + 1− k)!

)
bgB(b)GB(b)k−1 [1− GB(b)]

n−k db

=
∫ b̄

b

(n + 1)!
(k− 1)!(n + 1− k)!

bgB(b)GB(b)k [1− GB(b)]
n−k db

−
∫ b̄

b

n!k
(k− 1)!(n + 1− k)!

bgB(b)GB(b)k−1 [1− GB(b)]
n−k db

=
k

(n + 1− k)

(
E[B(n+1)

k+1 ]−E[B(n)
k ]
)

Rearranging the terms, we get the expected k-th order statistic of n draws can be expressed as a

simple weighted average of the k-th and k + 1-th order statistic under n + 1 draws:

E[B(n)
k ] =

k
n + 1

E[B(n+1)
k+1 ] +

n + 1− k
n + 1

E[B(n+1)
k ] (30)

F.1 Identification under Unobserved Heterogeneity

Below we show that identification can be achieved when only the winning bid and the number of

(symmetric) bidders are observed as long as the number of bidders is exogenous. In particular, in

our setting, bidders define bidding strategies without knowing the actual number of bidders, n, but

based on beliefs about market conditions. Thus, n is exogenous conditional on (N, φ). We leverage
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variation in actual bidders to separately identify the private and the common cost components’

distributions. To ease notation, we omit (N, φ) as conditions for exogeneity of n.

Proposition 6. First price auctions with unobserved heterogeneity can be identified when only the winning

bid and the number of bidders are observed as long as the number of active bidders is exogenous.

Proof. The ratio of first-order statistics is identified by comparing observed winning bids for

different values of n:

1
Tn,N

∑t(B1,t|nt = n)
1

Tn′ ,N
∑t(B1,t|nt = n′)

→ E[B1:n]

E[B1:n′ ]
=

E[B̃1:n · u]
E[B̃1:n′ · u]

=
E[B̃1:n] ·E[u]
E[B̃1:n′ ] ·E[u]

=
E[B̃1:n]

E[B̃1:n′ ]
(31)

where (B1,t|nt = n) is auction’s t observed winning bid with n active bidders. E[B̃1:n] is the

expected first order statistic normalized based on ut = 1. Finally, u is assumed independent of the

number of bidders and cancels out in the last identity. The normalization E[u] = 1 pins down the

scale of the first order statistics.

By contradiction; assume (Ĝb̃, Ĥu) provide the same distribution observed in the data,

B̃1:nu d
= ˆ̃B1:nû

B̃1:n′u
d
= ˆ̃B1:n′ û

Construct b̃∗n′ ,
˜̂b∗n′ ũ

∗, and ˜̂u∗ as random variables that are independent of and have the same

conditional distributions as their asterisk-free counterparts. Then it follows that

(B̃1:nu) ·
(

ˆ̃B∗1:n′ û
∗
)

d
=

(
ˆ̃B1:nû

)
·
(

B̃∗1:n′u
∗)

=⇒ B̃1:n · ˆ̃B∗1:n′
d
= ˆ̃B1:n · B̃∗1:n′ (32)

Taking expectations on both sides:

E[B̃1:n] ·E[ ˆ̃B1:n′ ] = E[ ˆ̃B1:n] ·E[B̃1:n′ ]

E[B̃1:n]

E[B̃1:n′ ]
=

E[ ˆ̃B1:n]

E[ ˆ̃B1:n′ ]

If (Ĝb̃, Ĥu) rationalizes the data, it has a normalized distribution with the same ratio of first

order statistics. Using, order statistic’s recurrence relation (Lemma 1), we have that E[B1:n−1] =
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1
n E[B2:n] +

n−1
n E[B1:n], we can link together these ratios when n′ = n− 1:

E[B̃1:n]

E[B̃1:n′ ]
=

E[ ˆ̃B1:n]

E[ ˆ̃B1:n′ ]

E[B̃1:n]
1
n E[B̃2:n] +

n−1
n E[B̃1:n]

=
E[ ˆ̃B1:n]

1
n E[B̂2:n] +

n−1
n E[ ˆ̃B1:n]

E[B̃1:n]

E[B̃2:n]
=

E[ ˆ̃B1:n]

E[ ˆ̃B2:n]

Ĝb̃ has the same ratio of second-order statistics. With sequential values of n ∈ {2, . . . , N}, we

can iterate forward from the identified first-order and second-order statistics using the recursive

relation between order statistics from Proposition 1. Therefore, Gb̃ and Ĝb̃ are identical up to the

first N order statistics from B̃

Corollary 2. The distribution of the unobserved heterogeneity, Hu is obtained once Gb̃ is identified.

Proof. By Independence of B̃ and u, leveraging basic properties of characteristic functions we can

write ψlog(B1:n) = ψlog(B̃1:n)
ψlog(u), where ψlog(B1:n) is the characteristic function of the log of observed

winning bids under n active bidders. We can construct this characteristic function for different

values of n. Once the characteristic function of Gb̃ is obtained, we can pin down Hu

Corollary 3. The distribution of normalized private costs, Fc̃ is identified once Gb̃ and equilibrium entry

probabilities are obtained.

This corollary follows from Guerre et al. (2000). If the distribution of Gb̃ is recovered, and the

equilibrium entry probabilities are observed from entry choices. Then, we can use the first order

and the boundary conditions to recover the latent distribution Fc̃.
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G Model Estimation Details

G.1 Classifying Contractors’ Types

Based on the patterns of contractor’s participation, we identify two separate groups of firms:

contractors who win awards without relying on publicity —which we refer to as locals—, and

contractors that only win when contract solicitations are publicized —which we label non-locals.

The logic is that, if a contractor wins without publicity, this indicates that the buyer informed

her directly (e.g. through email or a phone call). The existence of direct communication reveals

a buyer’s preference for these contractors. Conversely, if a contractor requires a FedBizzOpps

announcement to participate (and win), this suggests that there is no specific preference from that

buyer for that contractor. This distinction came up frequently in conversations with procurement

officers from several organizations.

To classify contractors empirically, we restrict the analysis to buyer-product combinations

observed at least 4 times between 2013 and 2019 and with at least one —but not all— contracts

publicized.64 Table B.8 compares buyer-contractor distance and performance for contracts

performed by local and non-locals. The third column shows the mean difference in performance

between these two groups. As a reference, if the information source is irrelevant, locals and

non-locals would have similar outcomes. However, we observe that contracts executed by non-local

contractors experience 13.8 percentage points (240%) more cost-overruns and 13.7 percentage

points (130%) more delays than locals.

Table B.8: Summary Statistics: Local vs. Non-Local Contractors

Local Non-Local Diff
log Distance 3.283 3.421 -0.138
Located in the Same State 0.707 0.635 0.072
Overruns (relative) 0.057 0.195 -0.138
Delays (relative) 0.106 0.243 -0.137
Number of Modifications 0.435 0.721 -0.286

Notes: This table presents summary statistics for distance and execution variables for contracts
performed by local and non-local contractors. The sample includes contracts between 10,000
and 40,000 dollars, and buyer-product combinations that appeared at least four times between
2013 and 2019. The need for observing multiple buyer-product observations stems from how
we categorize these contractors. The variables “Overruns” and “Delays” are measured relative
to dollars obligated and duration at the time of the award, respectively. The differences between
the first two columns are all statistically significant at the 1% level.

64We noted that the Federal Procurement Data System (FPDS) sometimes misclassifies local buyers, assigning the
same code to different branches that depend on a single (higher-level) office. This contrasts with the nature of most
procurement officers’ job, who typically contract within a particular area, leveraging their local market knowledge. We
address this misclassification by defining a buyer based on the office code and the Metropolitan Statistical Area (MSA) of
the purchase. As before, the definition of a product category is given by the 4-digit PSC code.
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G.2 Estimation

Denote the target moments by mn as a vector of moments from the data. The simulated moments

are denoted by ms(θ). The depends on the parameters θ ∈ Θ ⊂ RP. The estimator minimizes the

standard distance metric:

θ̂ = argmin
θ

(mn −ms(θ))
′Wn (mn −ms(θ))

Where Wn is the weighting matrix, which is chosen using the standard two-step approach.

Letting Ms(θ) be the (P× J) Jacobian matrix of the vector of simulated moments; under standard

regularity assumptions, we have:

√
n
(
θ̂ − θ0

) d−→ N
(

0,
(

1 +
1
s

)
(M′WM)−1M′WΩW ′M(M′WM)−1

)
(33)

where W is the probability limit of Wn, M is the probability limit of Ms(θ0), and Ω is

the asymptotic variance of mn (Pakes and Pollard, 1989). The vector of parameters is: θ =

(αk, νk, τk, γk, ξk, ιk, λ⃗, η, ζ, σ)

G.2.1 Standard Errors

We compute standard errors using the asymptotic variance formula given by (33). The variance-

covariance matrix of θ̂ is:

V(θ̂) =
1
n

(
1 +

1
s

)
(M̂′WM̂)−1M̂′WΩ̂W ′M̂(M̂′WM̂)−1

Where Ω̂ is estimated via bootstrap: re-sampling contracts with replacement from the original

data, and recompute the smoothed vector of moments, repeating this process 500 times. Ω̂ is the

sample variance of these 500 vectors. M̂ is the numeric derivative of the SMM objective function

(11) evaluated at θ̂.

G.2.2 Minimization

We keep the underlying random draws constant throughout the minimization of the objective

function. Nonetheless, the simulated objective is not continuous with respect to θ. Thus, we

leverage the stochastic optimization algorithm Differential Evolution (Storn and Price, 1997) to

perform the objective minimization. This algorithm does not rely on gradient methods, and given

its heuristic approach for minimizing possibly nonlinear and non-differentiable continuous space

functions, it is robust to poorly behaved objectives. Given the stochastic nature of the procedure,

we estimated the model for 25 different seeds that generate a different vector of random draws and
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model parameters. We select the parameters that yield the minimum objective function.

G.3 Moments

We use three sets of target moments.

• First set of moments,

– m⃗11 = E[x(y)
′

t yt] and m⃗12 = E[x(y)
′

t y2
t ], where yt = log winning bid, number of bidders, wins

local, log overruns, and contract is publicized, and x(y)t include a constant and covariates

associated with outcome variable y

• Second set:

– m⃗2 = E[yt|Bt ∈ (Bl , Bl+1)], for l ∈ {1, . . . , L − 1}, where yt = number of bidders, wins

local, log overruns, and contract is publicized. We separate these moments based on goods

and services, and partition the domain of contract prices in bins of width $5,000

• Third set of moments:

– m⃗3 = E[1{bt ∈ (bl , bl+1)}], for l ∈ {1, . . . , L − 1}. This set of moments correspond to

the normalized frequencies on the relevant window of contract prices. The bin width is

$5,000.

As a result we use 109 moments to estimate 35 parameters.

OA-45



H Sensitivity of Parameter Estimates to Estimation Moments

We measure the sensitivity of our parameter estimates to estimation moments following the

methodology and recommendations from Andrews, Gentzkow and Shapiro (2017). Following the

notation introduced in Appendix G, sensitivity Λ is given by:

Λ = −(M′WM)−1M′W

Since the units in our vector of moments are not directly comparable, we consider a normalized

sensitivity matrix Λ̃ that scales each element in Λ by the standard deviation of the corresponding

data moment:

Λ̃pj = Λpj

√
Ωjj

where Aik denotes the element in row i and column k of matrix A.

We construct an estimate of Λ̃ by directly plugging in our estimates of M, W, and Ω, which

we compute as explained in Appendix G. The normalized sensitivity matrix Λ̃ provides a measure

of the relative importance of each moment j for determining the value of each parameter p. Since

Λ̃ is a very large matrix (dimension 109× 35), the analysis that follows focuses on a few selected

parameters to keep the discussion tractable. We choose parameters that involve different key

components of our model, namely entry, ex-post performance, unobserved heterogeneity, and

buyers’ preferences.

H.1 Entry, Ex-post Performance, and Unobserved Heterogeneity

Our identification discussion in Section 4.3 implies that we should expect that parameters that

govern entry are most sensitive to actual entry choices (i.e., number of actual bidders and

probability of a local winner) and their interactions with market structure. Similarly, parameters

that characterize firm performance should be most sensitive to moments that measure the existence

and magnitude of cost overruns. Finally, the unobserved heterogeneity should be sensitive to the

density of contract prices and to the number of potential and actual bidders.65

Following this logic, we classify certain estimation moments as “relevant” for each set of

parameters based on this a priori reasoning,66 and then contrast this with the estimated sensitivity.

65The distribution of unobserved heterogeneity is identified from the observed price and its sensitivity to variation in
auction competition.

66Following the notation in Appendix Section G.3, for entry we select moments m⃗11 for which the yt is either the
number of bidders or a dummy for a local winner. For cost overruns, we select moments m⃗11 and m⃗2 for which yt
is either the level of cost overruns, the log of cost overruns, or a dummy for any cost overruns. For the unobserved

heterogeneity, we select moments m⃗11 for which the yt is the number of actual bidders and x(y)t is the number of potential
bidders, as well as moments m⃗3.
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Figure A25 presents the absolute value of selected columns of Λ̃, ranked by magnitude from left

to right, and highlighting the difference between (ex-ante) relevant moments and the rest. In

each panel, we focus on a single parameter and plot the sensitivity to each of the 109 estimation

moments. For entry (Panel (a)), we focus on the constant parameter τL in the entry probit

specification, interpreted as a sort of baseline entry probability for local bidders. For cost overruns

(Panel (b)), we focus on the constant γL parameter in the cost overruns specification, again a sort

of baseline level of overruns for local firms. In Panel (c), we naturally focus on the only unknown

parameter that governs the unobserved heterogeneity, i.e., its variance.

Across all panels, we see that the highlighted moments generate, on average, higher sensitivity

than the rest of the moments. More importantly, the right tale of high sensitivity is completely

dominated by moments that we ex-ante deemed as most relevant for identification. This

means that, while not all of the ex-ante relevant moments end up mattering for the parameter

estimates—something not completely surprising in an estimation procedure with so many

moments—, virtually all of the moments that do significantly affect the estimate correspond

to the relevant type. We take this as evidence that the sensitivity analysis is largely consistent with

the identification discussion in Section 4.3.

H.2 Buyer Preferences

For buyers’ preferences, we focus on the parameter η, which is a measure of the disutility that

buyers experience when going against the publicity regulation (i.e., not publicizing when exceeding

the threshold). We choose η because it is an important parameter shaping buyers’ choices in our

setting, but also because it allows us to explore how the policy variation that we leverage in our

reduced form analysis aids with the identification of the model.

In Section 4.3, we argue that η is identified from the discontinuous nature of the policy, following

the logic of the RDD in Section 3. In particular, η is identified from the first stage of our RDD,

i.e., the probability of publicizing a contract as a share of its expected price. In the context of the

RDD, the size of the discontinuity at the policy threshold corresponds to the effect of the policy on

buyers’ actions. Our model imposes structure such that the effect of the policy on buyers’ preferences

is homogeneous across contract size (i.e., η is constant). Therefore, the identification of η comes

from the difference in publicity levels below and above the threshold throughout the contract price

range. This argument implies that moments measuring the share of publicized contracts below

the threshold should contribute to reducing the estimate, whereas analogous moments above the

threshold should increase it by the same amount.

Figure A26 shows the sensitivity of the parameter η to the share of publicized contracts at

different price bins and separately for goods (Panel (a)) and services (Panel (b)). In both cases,

we estimate an average negative sensitivity for moments below the threshold and a positive
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Figure A25: Sensitivity of Parameter Estimates to Estimation Moments
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(b) Cost Overruns
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(c) Unobserved Heterogeneity
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Notes: This figure presents estimates of the sensitivity (Λ̃) of three selected parameters estimates with respect to estimation
moments. In Panel (a), the parameter is the constant on the entry probability specification for local bidders. In Panel (b),
the parameter is the constant on the cost overruns specification for local bidders. In Panel (c), the parameter is the variance
of the unobserved heterogeneity. In all panels, we plot the absolute value of the sensitivity of the relevant parameter with
respect to all 109 estimation moments, ranked in magnitude from left to right. Moments that are deemed ex-ante relevant
for the identification of each parameter are highlighted in orange.
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Figure A26: Sensitivity of Buyers’ Preferences for Publicity (η) to Estimation Moments Around the
Threshold
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Notes: This figure presents estimates of the sensitivity (Λ̃) of buyers’ estimated preference for publicity (η) with
respect to selected estimation moments. In Panel (a), the estimation moments are the share of publicized contracts for
goods in six different bins of award price: ($10, 000, $15, 000], ($15, 000, $20, 000], ($20, 000, $25, 000], ($25, 000, $30, 000],
($30, 000, $35, 000], ($35, 000, $40, 000]. In Panel (b), the estimation moments are analogous, but for service contracts. Dots
and diamonds represent the point estimate of sensitivity. Dashed lines in each panel represent the average sensitivity for
moments below and above the threshold.

sensitivity above the threshold. Consistent with our identification argument, the magnitude of

both sensitivities is similar. These results show a clear connection between the policy variation and

our model estimates and provide a bridge between our reduced form and structural analyses.
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I The Role of Buyers’ Preferences

In this section, we study the extent to which buyers’ specific preference parameters explain contract

outcomes. To do so, we leverage our model estimates and vary buyers’ preferences, focusing on

two hypothetical scenarios. First, we say that the buyer has “Cost-Oriented Preferences” if she puts

equal weight on price reductions ex-ante and ex-post and has no idiosyncratic preference for local

contractors. Second, we say that the buyer has “Local-Oriented Preferences” if they are geared

toward favoring local contractors with no emphasis on costs. The specific preference parameters

under each scenario are described in Table B.9. It is worth noting that these two benchmark

scenarios are based on the estimated coefficients, but turn off specific taste parameters. Therefore,

they can be seen as reference points for policies oriented to affect buyers’ motives.

Table B.9: Buyers’ Preferences

Estimated Benchmarks
Preference Cost-Oriented Local-Oriented
Parameters Preference Preference

λP -0.971 -0.971 0
λQ -0.096 -0.971 0
λL 0.435 0 0.435
Mean Pub. 0.275 0.393 0.263

Notes: This table shows estimates of buyer preferences parameters. The first column shows the estimated
parameters for ex-ante prices, ex-post overruns, and awarding to local contractors. The second column shows
the preference parameters associated with a buyer with cost-oriented preferences, i.e., with no idiosyncratic
preference for local contractors. The third column shows preference parameters for a buyer that is fully
oriented to local contractors, without a preference for prices ex-ante or ex-post. The last row describes the
average use of publicity under each of these types of preferences.

Figure A27 shows changes in (log) final prices relative to a benchmark of no publicity as a

function of the level of complexity of the purchase and for different counterfactual scenarios.

We consider preference counterfactuals assuming full discretion (i.e., no threshold) and also

compare these to the full publicity counterfactual discussed above. If buyers had “Cost-Oriented

Preferences,” they would exercise discretion to generate savings of roughly 0.5 percentage points

relative to observed preferences across the full spectrum of product complexity. On the other

hand, since “Local-Oriented” agents would seek to benefit local contractors, they would publicize

infrequently, and, as a result, final prices would be higher than with no publicity for most of the

complexity spectrum. If contracts are complex enough, the full publicity rule obtains prices that are

(even) higher than those obtained by “Local-Oriented” buyers because favored local contractors

tend to better execute these contracts, reducing cost overruns.

The existing literature on rules versus discretion in public procurement emphasizes that

regulation can be an effective antidote to waste and abuse whenever these are pervasive. Yet, it

can backfire if buyers are relatively aligned with the government’s goals (Carril, 2022; Bosio et
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Figure A27: Counterfactual Analysis II: Buyers’ Preferences
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Notes: This figure shows changes in log final prices as a function of product complexity, relative to a
benchmark of no publicity, and for different counterfactual policies and assumptions on buyers’ preferences
parameters. The blue line is a counterfactual where all contracts are publicized and the red line represents
the current policy (with a threshold at 25,000). The green and brown dashed lines represent counterfactuals
where buyers have cost-oriented and local-oriented preferences, respectively. Each line corresponds to a
flexible polynomial fit. The degree of complexity is defined as the log of the product category’s average
overruns for contracts below $20,000.

al., 2020). Our findings contribute to this literature by highlighting that this trade-off depends

as well on the level of contract complexity. Publicity rules can be detrimental even when agents

are misaligned since favoring local vendors has the positive effect of reducing cost overruns. On

the other hand, strict publicity requirements may reduce procurement costs even when agents are

aligned, provided that the transaction unit is sufficiently simple.67

67The intuition is that strict publicity requirements leverage the ex-ante price benefits of competition by removing the
idiosyncratic variation in buyers’ preferences that leads them not to publicize some contracts. At the same time, this is
done at virtually no cost ex-post since simple contracts tend not to experience any overruns.
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