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S1 Conditions for Complete Learning

This section presents a necessary and sufficient condition for complete learning within
a class of DGPs that have power tails. For simplicity, I assume that all signals are i.i.d., and
the true DGP is F.

Definition S1. A DGP F has a power tail if there exist ¢,a > 0 such that F° (z) ~ cz® as
x — 0. The exponent « is referred to as the power of F', denoted by P (F).

A DGP has a power tail if it can be approximated by a power function when z is close
to 0. It is easy to see that a power-tail DGP is unbounded. The power provides an intuitive
measure of informativeness: if F' has a larger power, it means that its tails are thinner, so
the DGP is less “informative” . This section focuses on the power-tail DGPs and imposes

the following assumptions:
Assumption S1. F has a power tail, and Fo contains only DGPs with power tails.

Assumption S2. Fy contains finitely many DGPs, and every DGP has a different power

and is differentiable.

Assumption S1 says that the true DGP has a power tail, and individuals only perceive
DGPs with power tails. Assumption S2 is imposed for simplicity of analysis and can be
relaxed. Theorem S1 provides a necessary and sufficient condition for complete learning

under these two assumptions:

Theorem S1. Under Assumptions S1 and S2, complete learning occurs if and only if Fy

satisfies:
(i) for all F € Fy, we have P (F) > P (F), and
(i) there exists some F € Fy such that P (F) < P (F) + 1.

Theorem S1 says that to establish complete learning, we need to impose restrictions from
two directions. On one hand, all perceived DGPs cannot be too informative: their power
must be greater than or equal to that of the true DGP. On the other hand, some perceived
DGP must be adequately informative in the sense that its power does not exceed that of
the true model by more than 1. Before explaining the intuition, let’s examine what happens

when the conditions in Theorem S1 are violated.

Corollary S1. Under Assumptions S1 and S2, (i) if there exists some F € Fy such that
P(F) < P(F), an incorrect herd occurs with strictly positive P*-probability; (ii) if for all
FeFy, P(F)>P(F)+1, actions do not converge P*-almost surely.
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First, when individuals perceive some highly informative DGP, an incorrect herd occurs
with strictly positive probability. The mechanism has been explained in the paper. Sec-
ond, when all DGPs considered by individuals are inadequately informative, actions will not
converge. This stems from the fact that if individuals underestimate predecessors’ informa-
tiveness, they are more likely to break away from a herd, so society may end up reaching
no consensus. Corollary S1 implies that to achieve complete learning, we must exclude two
sources of incomplete learning: incorrect herding and action nonconvergence. To prevent
incorrect herding, Fy must not contain highly informative DGPs, which corresponds to The-
orem S1 (i). To prevent action nonconvergence, Fy must not only contain DGPs that are

too uninformative, which corresponds to Theorem S1 (ii).

S2 Conditions for Information Cascades

This section further provides two conditions that are close to necessary and sufficient for
information cascades when signals are bounded. Proposition S1 provides a necessary and
sufficient condition for a cascade to occur under some non-trivial prior. Proposition S2 pro-
vides a necessary and sufficient condition for the posterior monotonicity property, a concept
closely related to information cascades. Both conditions use a modified version of the hazard

ratio from Herrera and Horner (2012), which I introduce below:

Definition S2. Let hY (z) = % and Hp () = hk (z) /h% (z), where Hp () is called

the hazard ratio at x under F'. For any set JF, define

Hr, (z) = \/ sup Hp (z) - inf Hp (z),

FeFo FeFo
which is referred to as the average hazard ratio at z under F.
For convenience, I impose the following assumption:

Assumption S3. Fj contains finitely many DGPs. Fvery DGP in Fy is continuous and
admits a full-support density function on [1/v,7].

The following proposition provides a necessary and sufficient condition for an information

cascade to occur under some prior /g in the non-cascade region:

Proposition S1. An information cascade occurs with strictly positive P*-probability for some

prior ro € (1/7,7) if and only if Fy satisfies:
H]:o (ZL‘) > or HJ:o (I) < 1/7
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for some x € (1/7,7).

Proof. Equivalently, we need to show that r;,1 enters the cascade set for some r; € (1/7,7).

By definition, when a; = 1, we have

B 1— F'(1/r) L-F1(/ri)
T A R T RO (L) Pefs 1 — FO(L)r)
S N S V) ORI S A CVC ) RO A VL) B
PeR L= FO(1)ry)  Fer L— FO(1/ry)  fi(L/r)  Hg (1)

When a; = 0, we have

Q) o ()

min ————= X r;

i = \/ Fer FO (L)1)« Fers FO(1)r,)

1_Fo(m)><minl_Fo(‘) S ):Hf (ri)

\/Fme%m—Fl(n) Fero 1 — F1(r) 9 (ry)

where the second equality employs the symmetry of signals.! The proposition then follows
directly. ]

In addition to this condition, I then provide a necessary and sufficient condition for a
closely related concept—posterior monotonicity, which means that after any observa-
tion, the posterior is monotonically increasing in the prior. This concept is important in
the cascade literature because it provides a sufficient condition for information cascades
not to occur. Smith et al. (2021) showed that posterior monotonicity is equivalent to the
log-concavity of the signal distribution. When the action space is binary, the condition is
equivalent to the increasing hazard ratio (and decreasing failure ratio) in Herrera and Horner

(2012). Under ambiguity, we have a similar condition:

Proposition S2. r;, is strictly increasing in r; if and only if Hx, (x) is a strictly in-

creasing function in (1/7,7).
Proof. This follows directly from the proof of Proposition S1. O

Proposition S2 says that the increasing average hazard ratio property (IAHRP) is
a necessary and sufficient condition for the posterior average likelihood ratio to be increasing

in the prior average likelihood ratio. If the IAHRP holds, r; is trapped in the non-cascade

'Without the symmetry, we need introduce another concept—the failure ratio—to characterize beliefs
after a; = 0.
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Figure 1: Linear Utility Functions

set, so an information cascade cannot occur. In other words, for an information cascade to
occur, the IAHRP must be violated. This provides a necessary condition for information

cascades.

S3 Multiple Actions

The paper’s results extend to a multiple-action setting. Suppose that the action space is
A= {d',...,a"} C[0,1]. The utility function is:

a =1

u(a,0) = :
l—a 0=0

Suppose that: (i) individuals have MEU preferences and consider all DGPs as possible; and
(ii) signals are i.i.d. according to F, and F is continuous and has full-support on (0, 00). The

set, of safe actions is defined as:
A*={a€ A:min{a,1 —a} >min{a,1—d'},Va' € A},

which is the set of actions with the highest minimum payoff. It is easy to verify that A®
contains one or two actions, and when A® contains two actions, these two actions must be
symmetric with respect to 1/2. Figure 1 provides an example in which the safe actions, a?

and a?, are equally distanced from 1/2.

Proposition S3. We have lim;_,., P* (a; € A®) = 1, that is, society will only settle on A® in
the limait.

This result follows from the fact that when ambiguity is sufficiently large, individuals
ultimately hold highly ambiguous beliefs, which push them to choose only the safest actions
to hedge against ambiguity. Furthermore, as shown in the proof, an information cascade
of safe actions occurs almost surely—that is, individuals will choose the safe action(s) with

probability 1 regardless of their private signals.

Remark S1. (Ambiguity attitude) A similar result also holds when individuals are ambiguity-

loving. For example, under max-max EU preferences, society will settle on the actions with



the highest maximum payoft:
A" ={a € A:max{a,1 —a} >max{d,1—d},Vd € A}.

Geometrically, A" consists of actions with the largest distance from 1/2, and it also contains
at most two actions. In Figure 1, we have A" = {a!,a"}, so individuals will choose either
a' or a® in the limit. We can see that ambiguity attitude affects which actions individuals
choose in the limit—under ambiguity aversion, individuals settle on safe actions, whereas

under ambiguity-loving preferences, they settle on risky actions.

S4 Multiple States

When there are multiple states, the equilibrium becomes more difficult to characterize, but
the key insights still hold.? This section shows that in a simple case, an information cascade
can still arise. Suppose that the state space © = {0, 1, ..., K'}, and the action space A = ©.

Individuals share a flat prior, 7y = ( . The utility function is

1 L)
K417 K41

1 a=240

u(a,d) = ,
0 a#0

that is, individuals get a payoff of 1 if the action matches the true state and 0 if otherwise.
Every individual has MEU preferences and updates beliefs using the full Bayesian rule. The

true DGP, G;, satisfies:
dG; (s|0) 1
— — Vs e S
Gy 1y T

I then consider a specific class of perceptions and show that large ambiguity can produce

cascades.

Assumption S4. The set of perceiwved DGP, Gy, contains all G such that

G (s|) T 1
dG (s]) © {

—. R Vse S
Rfy7 7}7 SE Y

for some R > 1.

As R becomes larger, it reflects a higher degree of ambiguity. The following proposition

shows that under sufficiently large ambiguity, an information cascade occurs almost surely.

2 Arieli and Mueller-Frank (2021) extended the SSLM to a general state and action space. Their paper
focused on correctly specified Bayesian agents, so the techniques cannot be applied here.



Proposition S4. Under Assumption Sj, there exists Ry < oo such that an information

cascade occurs P*-almost surely for all R > Ry.

Proof. Suppose that a; = #,. This reveals that
dGl (81|91) /dGl (Slml) Z 1 VG' € 0. (1)

For individual 2, she will follow the first individual if for all 8" # 6,

™ (9) dGQ (52|6) ™ (0) dGQ (82|0)
su X > su X .
7r€1_1132 QEZ@ m(0')  dGy(s2]0) werll)g bco (01)  dGy(s2|th)

Notice that

L.H.S of (2) = sup <1+ m(01)  dGa(soffh) > m(0)  dG, (52\6)>

€y s (0’) ng (82|9/) s (9’) dGQ (82’9/)

0£6,,0'

dG2 <S2’91) dGQ (82|0) K-—-1
>14+RyX —— 2 — L S 1+ R+ ——,
= 774G, (52]6) > G, (52]0") = ~

0£01,0'

where: (i) the first inequality comes from that Gy consists of all DGPs with likelihood ratios
between 1/Rvy and R+, so there exists some DGP G; € Gy under which 7 (6,)/7(0') = Ry
and 7(0)/7(0) = 1,* and (ii) the second inequality comes from that ;E’Q((”llg, > 1/ for all
0,0'. Furthermore, (1) implies 7 (61) > 7 (6) for all # € © and 7 € Iy, so

R.H.S of (2 <1+Z
0£0,

<1+ K~.
dGQ 82|09/ + Y

Thus, for sufficiently large R, the L.H.S. is greater than the R.H.S. for all possible s5, so
individual 2 will follow individual 1 immediately, and a cascade is triggered. O]

It is worth noting that the type of ambiguity in Assumption S4 represents a very special
case. An interesting direction for future research is to explore more general conditions under

which a cascade occurs.

S5 Mixed-strategy Equilibrium

In this section, I explore an extension in which individuals can use mixed strategies. I show

that when individuals have preferences for randomization, a mixed-strategy information

3Here is one example. Suppose S = {sg, 51, ..., sx } and G satisfies: (i) g1(sk|0) = ¢ when 6 # k, and (ii)
91(sk|0) = ¢ x Ry when 6 = k, where ¢ is a normalization constant.
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cascade occurs almost surely. During this cascade, individuals play the same mixed strategy

regardless of their private information.

S5.1 Preferences for randomization

Before presenting the main results, I first distinguish between two different cases of mixed

strategies:

e Case 1: Suppose that the mixing probabilities appear outside the minimum expected
utility. Under strategy o, individual ¢’s utility is given by:

Vi(0) =ominE.U (1) + (1 — o) min ELU (0),

TI'EHi WEHZ'

where ¢ denotes the probability of taking action 1. In this case, individuals cannot
hedge against ambiguity using mixed strategies. They will assign probability 1 to the

action that maximizes their worst-case payoff, except in cases of indifference.

e Case 2: Suppose that the mixing probabilities appear inside the minimum expected

utility. Then, under strategy o, individual ¢’s utility is:

Vi(0) = min [0ELU (1) + (1~ o) ELU (0)] .

mell;

In this case, individuals exhibit preferences for randomization and can use mixed

strategies to hedge against ambiguity.

The appropriate formulation of mixed strategies under ambiguity remains an ongoing dis-
cussion in the literature (e.g., Saito (2015) and Ke and Zhang (2020)). Notice that in the
first case, individuals have no incentives to randomize, so the paper’s analysis is without loss
of generality. Therefore, the rest of this section focuses on the second case, assuming that

individuals have preferences for randomization.

S5.2 Equilibrium strategy

I now characterize individuals’ equilibrium strategy:

Proposition S5. Suppose individuals have preferences for randomization. Then, a mized-



strateqy equilibrium exists, characterized as follows:

where of (a; = 1) represents the probability that individual i chooses action 1 in the equilib-

rium. The indifference cases in (3) are determined by tie-breaking rules.

The proof can be found in Appendix A.3. To interpret the proposition, consider the
following equivalent characterization: Let m; and 7; denote individual i’s minimum and

maximum posterior beliefs about state 1. Then, equation (3) is equivalent to:

oi(ai=1)=91/2 m<1/2<7;.
1 m>1/2

Thus, individuals choose action 6 with probability 1 if state 6 is more likely to be the true
state under all posteriors. Otherwise, they mix between the two actions with equal proba-
bility. In other words, individuals play a pure strategy only if all posteriors unambiguously
support a state. When beliefs are sufficiently ambiguous, they mix actions to hedge against

ambiguity.

S5.3 Information cascades with mixed strategy

For convenience, we impose a tie-breaking rule such that whenever individuals are indifferent,
they randomize over actions. Based on the equilibrium strategy, we define the following

cascade sets:
Co={(l;,l;) :0<, <l;<1/y} and Cy = {(L;, ;) : v <, < L},

which represent the sets of public beliefs—characterized by [; and I,—such that individuals

will choose only action 0 or only action 1, respectively. Similarly, we define:

Cie = {(Lmzi) 1l < %ji > 7}=

which represents the set of public beliefs under which individuals randomize between the two

actions. This is referred to as the cascade set of the mixed strategy. Once public beliefs



enter this set, we say that a mixed-strategy information cascade occurs. We now state the

following result:

Theorem S2. Suppose that Fy consists of all DGPs with support in [1/v,v]. Then, a

mixed-strateqy information cascade occurs P*-almost surely.

During a mixed-strategy information cascade, individuals randomize between the two
actions regardless of their private signals. Since the mixing probability is 1/2, Theorem S2
implies that, in the limit, the fraction of individuals choosing each action is 1/2. In this case,
even though actions continue to oscillate indefinitely, information ceases to aggregate after
a finite number of periods.

The proof can be found in Appendix A.4. The intuition behind this result is as follows: In
a social learning environment, individuals inevitably observe both actions. Ambiguity-averse
individuals interpret actions inconsistent with state 6 as negative signals about that state. As
such signals accumulate, committing to a pure strategy becomes increasingly unattractive.

Ultimately, society settles on a mixed strategy as a way to hedge against ambiguity.

10



A Omitted Proofs in the Supplementary Materials

A.1 Proof of Theorem S1

I first introduce the notion of local instability:

Definition S3. State 0 (or state 1) is locally unstable if there is some r € R, (or
R € Ri,) such that P} (r; > r for some i) = 1 (or Py (r; < R for some i) = 1) for all prior

sets Iy with ry sufficiently small (or sufficiently large).

In other words, state @ is locally unstable if posteriors escape from a small neighborhood
around &y almost surely, where beliefs are described by the average likelihood ratio. The
notion of local stability is defined in the appendix to the main paper, which says that beliefs
remain in the neighborhood with strictly positive probability, and is omitted here. We begin

with two lemmas:
Lemma S1. Complete learning occurs if and only if r; — 0 with probability 1.

Proof. First, complete learning requires that a herd of action 0 occurs eventually, which
implies r; — 0 with probability 1 by Lemma 6 in the paper. Second, if r; — 0 with
probability 1, a herd of action 0 occurs almost surely, also by Lemma 6, which implies

complete learning. O]
Lemma S2. Complete learning occurs if 0 is locally stable and state 1 is locally unstable.

Proof. Since state 1 is locally unstable, beliefs will enter {r; < R} infinitely many often.
Whenever r; < R, we can find a finite K such that K consecutive actions of 0 drive r; <
r. Since state 0 is locally stable, once r; < 7, we have r; — 0 with positive probability.
Therefore, the probability of r; — 0 is greater than some positive constant across all histories,

and complete learning occurs from Levy’s 0-1 Law. ]
Now, we characterize local stability under the assumptions of the theorem.

Proposition S6. Under Assumptions S1 and S2, we have:
(a) if for all F € Fy, P (F) > P (F), state 1 is locally unstable;
(b) if there exists some F € Fy such that P (F) < P (F), state 1 is locally stable;
(c) if for all F € Fo, P(F) > P (F)+ 1, state 0 is locally unstable;
(d) if there exists some F' € Fy such that P (F) < P (F) + 1, state 0 is locally stable.

Let @ = P (F), apaz = maxper, P (F) and i = minger, P (F). Let Fo, and Fop,

be the DGPs that attain the maximum and minimum powers, respectively.

11



Proof. Proof of Proposition S6 (a): Given 7, the probability of a herd of action 1 is:

o o0 1
lim P} (a1 =ay = ..a; =1) = HIP):O (a; = 1|h;) = H {1 — O (_>} 7
T
i=1

i—00 .
=1

where 7; is the average likelihood ratio after h; = (1,1, ...,1). The probability is zero if and
only if Y F° (rl) 00, or equivalently, Y — = co. The sequence {r;} evolves according to:

max ————— X Inin

B 1—FU(1/r)) . 1—F'(1/r)
et =T R T FO (1) Fero L — FO (1))

When ry is sufficiently large, % ~ 1+ F°(1/r;) for all 4, so its maximum is obtained

at Fj,;, and it minimum is obtained at F),,,. Therefore, when r( is sufficiently large,

_ 1—F,(/r) 1=FL (1/r;) L—F, ., (1/r)
Tirl =i X \/1 FO (fr) ST=F0 (1r) = 12 mm(l/n)

By the definition of F},;,, we have H,’Z}—*w ~ 14+Chin X Ta%, for some constant C,,,;, > 0.

man

Suppose that for all F' € F;, we have P (F') > P (F), that iS, Cymin > @. Then,

1- Fr}’nn(l/r) 1- Fr&zzn(l/r) _1 2aChy;
ﬁﬁ —_— L?L’Ln
lim F)..(1/r) — 1 1— Fromn(l/r) % o
r—00 2aCmin 1/a _r~>oo 20Cmin 20Cmin 1/a
(1 ) T e (g
1
. szn Xnin _
=1 —— a
T—00 Q‘XCL’“"
TO(
1 . 1 0 Qmin >
= 3 x lim = — = < 1,
r—oo0 rmin— 1 _ =
2 Qi = Q

. _ \a
S0 % < (1 + M%) . Therefore, for all i > 0,

min

2_Omzn 1= a o
Tir1 < (1 + a = ) X r, = (7";l + ZGCmm) l/a

i

Five < (1Fy 4 20C5) """ < (P + 20C 5, x 2) /"

Titt < (T? + 2&077“” X t) 1/5'
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As a consequence, when rq is sufficiently large,

[e.9]

1 1
ZT—VZ@HWWXFOO’

=1 " =1

so a herd of action 1 occurs with probability 0. This property holds for all 7o € R, ., so

state 1 is unstable.

Proof of Proposition S6 (b)

To show that state 1 is locally stable, we need to show that the probability of an action-1
herd is greater than some ¢ > 0 when 7r( is large. Recall that
]P)ro (Hl):iliglopm (alzagz...aizl):H 1—-F ; .
i=1 v
In order to establish local stability, we need to find a uniform lower bound for the probability
on the right-hand side for all large ry. Suppose that F°(z) ~C x 2% for some constant
C > 0. On one hand, we can find a sufficiently large R such that whenever r, > R, we have

5Fj((11_//::))a € [1 — 1,1+ ¢eq] for some g1 > 0, so

PjO(Hl):ﬁ{l—Fo(%)}zﬁ{l—(ﬂra)x@x% | (4)

We also want R to be sufficiently large such that the infinite product on the right-hand side
is strictly positive. On the other hand, recall that

1= FS,, (I/r) 1= Fo,, (1/r)

max

1—F (1/r,)) 1—FL (1/r
nﬂzmx¢ in (1/7:) b (1/74)
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Define 8 = (1 — ¢) SmnXmin for some small € > 0, then we have

Fin(/ri)

\/1 F')}un(l/'rl) X maz(l/ri) _ 1 \/1 F'r}un(l/rl) X 17F71na.:v(1/,r’i) _ 1 1- F'r&un
llm 1 szn(l/r’b) 1 F'rgzaz(l/ri) 1 1 szn(l/ri) 17F797,a.z(1/,r’i) % llm mzn
r—00 8 1/amin - oo Fl. (1/r;) r—00 B 1/omin o
(]‘+rmzn) 1 w—l (]‘+ro‘min) 1
I=Fl. (/r)
— 1 x lim —V "m0
r—00 (1 + Tafnn)l/amin 1
1 r.
A 1 vl
_ i x lim rimin__
e r%min rree (1 + QB- ) /a'"”" - ].
o Cmm X Qmin o 1 > 1
N 23 I

When R sufficiently large, we have

B

1/05m1n
T’L'—i-]_ Z T X (1 _|_ ) — (,r.lamzn + 5)1/amin = i 2 (Tgmin + /B X i)l/amin ) (5)

Combining (4) and (5), we obtain:

* = Val 1
Py (Hy) > ,”1 _1 —(1+e1)xCx =
zﬁ 1—(1+€1)X6X - 1 'a/amin]
i=1 (ro™™ + B x i)

IV
8

1 (Ramm + 5 X Z‘)a/amm

[ _ 1

I—(14¢)xCx — ]
for all ro > R. Again, R is chosen to be sufficiently large such that each term is strictly
positive. Suppose that there exists some F' € Fj such that P (F) < P (F). This fact implies

that oy, < @, so

1
> T < 00,
(Remin + B x §)/@min
which further implies that
st — 1
]P): (Hl)z 1—(1+€1)XCX — : ::5>O,
0 E (Ramm + B X Z‘)a/amm

for all rg > R. In other words, the probability of an action-1 herd is greater than § > 0,
which proves that state 1 is locally stable.
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Proof of Proposition S6 (c) & (d)

The proofs of Proposition S6 (c) and (d) are almost identical to those of (a) and (b). The
only difference is that the cutoff value becomes P (IF) + 1. To see why this new cutoff arises,

note that the probability of an action-0 herd is

P;, (Ho) = lim B, (a1 = a3 = .. HIFO( ) I F ()],
i=1

where 7; denotes the average likelihood ratio after h; = (0,...,0). An action-0 herd occurs
with strictly positive probability if and only if > F! (r;) < co. During a herd of action 0,
we have r; — 0; besides, it can be verified that F! () ~ C12% as  — 0 for some C; > 0.4
As a consequence, an action-0 herd occurs with a strictly positive probability if and only if

S r?tt < co. The remainder of the proofs follows exactly the same logic as in parts (a) and
(b). O

From Lemma S2, Proposition S6 implies Theorem S1, so the theorem is proved.

A.2 Proof of Proposition S3

Without loss of generality, I index all actions in descending order, i.e., a'! > a? > ... > a”.

1

The proof focuses on the case in which a* < 1/2 < a!, since the case in which all actions

belong to one side of 1/2 is a simple extension of this benchmark. Define the following four

actions:

ab =ad* a" =a'al =max{a € A:a<1/2} ,and a" =min{a € A:a > 1/2}.

Also, suppose that these four actions are different.’
Lemma S3. For all v > 1, individual © will a.s. choose from A* = {aL, a, al, ah}.

Proof. Let V;(a) denote the minimum expected utility of individual ¢ from choosing action

4Recall that FO (2) ~ C x 2% as © — 0, so

Fl(z F! 1 0 a O a —
i &) gy F@) T Ak G R A el ) S o
x—>0:c+1 z—0 (@+1)z® a+1a-0 &1 a+1z-0 z@ a+1
hence F! (z) ~ =25C x 2®*! as o — 0.

°It is possible that some actions may coincide. For example, if there is only one action below 1/2, then

a! = a”. The analysis can be easily extended to incorporate such cases.
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a. By definition,

Aili 1
Vi (a) = 1+):Z-Lia T TN (1-a) a>1/2 (6)
Nl 1 ’
IS WAL TS (1-a) a<1/2

which is a piecewise linear function, so the optimal a can be only obtained at one of the

endpoints, i.e., in A*. n

Lemma S4. All actions in A*\ A* will be chosen with probability zero in the limit.

Proof. First, it is easy to verify that the first person will only choose a” or a?, and a; =

L .
a” it A\ <1 ) .
. Without loss of generality, I assume that a; = al. There are three cases
H .
a if Ay >1
to consider: (i) A* = {a'}, (ii) A* = {a"}, and (iii) A* = {d/, a"}. Since the logic is parallel
across these cases, I focus on the case where A% = {al}, ie., a'4+a" > 1.5 Because a; = a”,

we have [y = 0o and [, = 1. Substituting /; and [, into (6), individual 2’s optimal choice is:

all Ay > 1
ag=4qa" XN e(\,1),

al Ay < )\3

where )3 is the signal such that individual 2 is indifferent between a” and a!, so it satisfies

A} 1
l 2 h h
- a" + 1—a").
T 1+)\§( @)

Since a' < 1/2, it follows that A3 < 1. Let p; denote the probability that individual ¢ chooses
a'. Then py = F° ()\3). Suppose a; = a'. Then:

L s ELO)
l3 =15 % 2. =
TR

Fl *
X Ay =00 and nglzxi%f ()\2):0

FO(X3)

Substituting them into the utility functions yields:
Vs (aL) =daV (al) =d, Vs (ah) =1—a" and V4 (aH) =1-d".

Therefore, individual 3 will choose action a' regardless of her private signal, i.e., p; = 1, and

an information cascade on a' begins. Therefore, Lemma S4 holds. Now suppose as = a”.

5For the other two cases, we can follow similar arguments and show that posteriors will become extremely
ambiguous, i.e., [; = co and [, = 0, after finitely many individuals.
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Then: o ) o )
- B _ — 5
l3=00 and [3=1,X 11}1} FO(1) = FO (Ay)

From the perspective of individual 3, her optimal choice is

SLQZl‘

az=<a" X3€ (N5, 1/15)
al )\3 < )\§
where A} solves:

A3l 1
l 323 h h
= a" + 1—a").
T I 1+A§g3( @)

Thus, 5 = \3/l; > X;. The probability of individual 3 choosing a' is p3 = F°(A\3) > po.

Suppose that a; = af, then we still have I3 = oo and I; = 1, so individual 3 will act as

if she were individual 2, and hence p3 = p;. To summarize, we have p3 > py regardless of
individual 2’s action. Analogously, we have p; > p, for all ¢ > 2. Levy’s 0-1 Law implies
that o' will almost surely be taken by some individual i. Once it is taken, /,,; becomes 0,
and an information cascade of action a’ is triggered. Hence, in the limit, only actions in A*

will be chosen; furthermore, there is an information cascade. O

A.3 Proof of Proposition S5

Proof. Suppose that individuals favor randomization, i.e., when mixing different strategies,

the mixing probability appears inside the minimum. That is,

Vi(o) = inf [ZJ (a) E,U (a, 9)] )

nelly (Ii,aii) !

Let 0 =0 (a=1) and 7 = 7 (1), then we have

> o (a)E.U (a,0) = om + (1 —0) (1 — )

acA
=Q2c—-1)7m+(1—-0).

So, the utility becomes:

V’(U): (20—1)ﬂ+<1—0):(2&—1)0’-{—1—& 0'6[1/2,1]
i 20 -7 +(1—-0)=0Qm —1)o+1-T, 06[071/2]'
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Now consider the following cases:

1. Suppose m; < 7T; < 1/2. Then,
Vi (o) is decreasing over o € [0,1],

so the optimal strategy is o = 0, i.e., individual ¢ chooses action 0 with probability 1.

2. Suppose m; < 1/2 < 7;. Then,
Vi (o) is increasing on [0,1/2] and decreasing on [1/2,1],

so the optimal strategy is o = 1/2, i.e., individual i randomizes evenly between the

two actions.

3. Suppose 1/2 < m; <7;. Then,
V; (o) is increasing over o € [0,1],

so the optimal strategy is o = 1, i.e., individual ¢ chooses action 1 with probability 1.

Finally, noting that 7; = . and m; = ESw

the proposition follows directly. ]

A.4 Proof of Theorem S2

Without loss of generality, suppose that a; = 1. Then, we have [, = v and [, = 1. I first

state the following claim:
Lemma S5. For all i > 1, suppose a1 = .. = a; = 1, then l; ., = v and i, =1

Proof. The lemma clearly holds for ¢ = 1. Suppose it also holds for ¢ = k, and that ax,, = 1.
From Proposition S5 and the tie-breaking rule, ay,; = 1 occurs in one of the following two

cases:

o If \pyy1 > 1/, =1, then individual k£ + 1 always takes action 1;

o If Nyt € [1/lk1,1/0, 1] = [1/7,1], then individual k + 1 takes action 1 with a
probability of 1/2.

Thus, for all signals A € [1/7,~], individual k+1 takes action 1 with positive probability, and
this probability is the same in both states. As a result, the public belief remains unchanged,
implying that Zk+1 =], = yand [, =1, = 1.

O
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Lemma S6. For all i > 1, suppose a1 = .. = a; = 1 and a;p1 = 0. Then, l o = v and

£i+2 = 1/7-
Proof. Note that a;,1 = 0 occurs only when
Ait1 € [1/7%1’ 1/£i+1} = [1/7,1],

where the equality comes from Lemma S5. Let Fj denote the uninformative signal structure

and F., denote the most informative signal structure, i.e., supp (Fp) = {1} and supp (F,) =

< < Fj(1) = F1(1)
{1/7,7}. Therefore, we have l;19 = [;11 X ) = lizn = vand [ 5 = [, % o =
Ligg X 1/y=1/~. U
Now define H!"¥ = {a1 = ... = a; # a;41}, which represents the event that a herd of

mix

action 1 is disrupted by individual ¢ 4+ 1. The previous two lemmas establish that once Hj}j

occurs, a mixed-strategy information cascade occurs.
Lemma S7. Let H™* = U;HYT, then P* (H™*) = 1.
Proof. Suppose that a; = 1. Then,

F (1)

P* (ai—l-l = 0’@1 = ... =Qa; = 1) =P (ai—l—l == 0|>\2‘+1 € [1/’)/, 1]) = 9

Given a; = 1, we have

FO(1)]"
P*(alz...:ai+1|a1:1): [1—#} — 0 as 1 — o0.
Therefore, P* (H™|a; = 1) = 1. The case for a; = 0 is identical, so P* (H™*) = 1. O
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