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S1 Conditions for Complete Learning

This section presents a necessary and sufficient condition for complete learning within
a class of DGPs that have power tails. For simplicity, I assume that all signals are i.i.d., and
the true DGP is F.

Definition S1. A DGP F has a power tail if there exist c, α > 0 such that F 0 (x) ∼ cxα as
x → 0. The exponent α is referred to as the power of F , denoted by P (F ).

A DGP has a power tail if it can be approximated by a power function when x is close
to 0. It is easy to see that a power-tail DGP is unbounded. The power provides an intuitive
measure of informativeness: if F has a larger power, it means that its tails are thinner, so
the DGP is less “informative” . This section focuses on the power-tail DGPs and imposes
the following assumptions:

Assumption S1. F has a power tail, and F0 contains only DGPs with power tails.

Assumption S2. F0 contains finitely many DGPs, and every DGP has a different power
and is differentiable.

Assumption S1 says that the true DGP has a power tail, and individuals only perceive
DGPs with power tails. Assumption S2 is imposed for simplicity of analysis and can be
relaxed. Theorem S1 provides a necessary and sufficient condition for complete learning
under these two assumptions:

Theorem S1. Under Assumptions S1 and S2, complete learning occurs if and only if F0

satisfies:

(i) for all F ∈ F0, we have P (F ) ≥ P (F), and

(ii) there exists some F ∈ F0 such that P (F ) < P (F) + 1.

Theorem S1 says that to establish complete learning, we need to impose restrictions from
two directions. On one hand, all perceived DGPs cannot be too informative: their power
must be greater than or equal to that of the true DGP. On the other hand, some perceived
DGP must be adequately informative in the sense that its power does not exceed that of
the true model by more than 1. Before explaining the intuition, let’s examine what happens
when the conditions in Theorem S1 are violated.

Corollary S1. Under Assumptions S1 and S2, (i) if there exists some F ∈ F0 such that
P (F ) < P (F), an incorrect herd occurs with strictly positive P∗-probability; (ii) if for all
F ∈ F0, P (F ) ≥ P (F) + 1, actions do not converge P∗-almost surely.
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First, when individuals perceive some highly informative DGP, an incorrect herd occurs
with strictly positive probability. The mechanism has been explained in the paper. Sec-
ond, when all DGPs considered by individuals are inadequately informative, actions will not
converge. This stems from the fact that if individuals underestimate predecessors’ informa-
tiveness, they are more likely to break away from a herd, so society may end up reaching
no consensus. Corollary S1 implies that to achieve complete learning, we must exclude two
sources of incomplete learning: incorrect herding and action nonconvergence. To prevent
incorrect herding, F0 must not contain highly informative DGPs, which corresponds to The-
orem S1 (i). To prevent action nonconvergence, F0 must not only contain DGPs that are
too uninformative, which corresponds to Theorem S1 (ii).

S2 Conditions for Information Cascades

This section further provides two conditions that are close to necessary and sufficient for
information cascades when signals are bounded. Proposition S1 provides a necessary and
sufficient condition for a cascade to occur under some non-trivial prior. Proposition S2 pro-
vides a necessary and sufficient condition for the posterior monotonicity property, a concept
closely related to information cascades. Both conditions use a modified version of the hazard
ratio from Herrera and Hörner (2012), which I introduce below:

Definition S2. Let hθ
F (x) = fθ(x)

1−F θ(x)
and HF (x) = h1

F (x) /h0
F (x), where HF (x) is called

the hazard ratio at x under F . For any set F0, define

HF0 (x) ≡
√

sup
F∈F0

HF (x) · inf
F∈F0

HF (x),

which is referred to as the average hazard ratio at x under F0.

For convenience, I impose the following assumption:

Assumption S3. F0 contains finitely many DGPs. Every DGP in F0 is continuous and
admits a full-support density function on [1/γ, γ].

The following proposition provides a necessary and sufficient condition for an information
cascade to occur under some prior l0 in the non-cascade region:

Proposition S1. An information cascade occurs with strictly positive P∗-probability for some
prior r0 ∈ (1/γ, γ) if and only if F0 satisfies:

HF0 (x) ≥ γ or HF0 (x) ≤ 1/γ
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for some x ∈ (1/γ, γ).

Proof. Equivalently, we need to show that ri+1 enters the cascade set for some ri ∈ (1/γ, γ).
By definition, when ai = 1, we have

ri+1 =

√
max
F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× min

F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× ri

=

√
max
F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× min

F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× f 0 (1/ri)

f 1 (1/ri)
=

1

HF0 (1/ri)
.

When ai = 0, we have

ri+1 =

√
max
F∈F0

F 1 (1/ri)

F 0 (1/ri)
× min

F∈F0

F 1 (1/ri)

F 0 (1/ri)
× ri

=

√
max
F∈F0

1− F 0 (ri)

1− F 1 (ri)
× min

F∈F0

1− F 0 (ri)

1− F 1 (ri)
× f 1 (ri)

f 0 (ri)
= HF0 (ri) ,

where the second equality employs the symmetry of signals.1 The proposition then follows
directly.

In addition to this condition, I then provide a necessary and sufficient condition for a
closely related concept—posterior monotonicity, which means that after any observa-
tion, the posterior is monotonically increasing in the prior. This concept is important in
the cascade literature because it provides a sufficient condition for information cascades
not to occur. Smith et al. (2021) showed that posterior monotonicity is equivalent to the
log-concavity of the signal distribution. When the action space is binary, the condition is
equivalent to the increasing hazard ratio (and decreasing failure ratio) in Herrera and Hörner
(2012). Under ambiguity, we have a similar condition:

Proposition S2. ri+1 is strictly increasing in ri if and only if HF0 (x) is a strictly in-
creasing function in (1/γ, γ).

Proof. This follows directly from the proof of Proposition S1.

Proposition S2 says that the increasing average hazard ratio property (IAHRP) is
a necessary and sufficient condition for the posterior average likelihood ratio to be increasing
in the prior average likelihood ratio. If the IAHRP holds, ri is trapped in the non-cascade

1Without the symmetry, we need introduce another concept—the failure ratio—to characterize beliefs
after ai = 0.
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Figure 1: Linear Utility Functions

set, so an information cascade cannot occur. In other words, for an information cascade to
occur, the IAHRP must be violated. This provides a necessary condition for information
cascades.

S3 Multiple Actions

The paper’s results extend to a multiple-action setting. Suppose that the action space is
A =

{
a1, ..., ak

}
⊂ [0, 1]. The utility function is:

u (a, θ) =

a θ = 1

1− a θ = 0
.

Suppose that: (i) individuals have MEU preferences and consider all DGPs as possible; and
(ii) signals are i.i.d. according to F, and F is continuous and has full-support on (0,∞). The
set of safe actions is defined as:

As ≡ {a ∈ A : min {a, 1− a} ≥ min {a′, 1− a′} ,∀a′ ∈ A} ,

which is the set of actions with the highest minimum payoff. It is easy to verify that As

contains one or two actions, and when As contains two actions, these two actions must be
symmetric with respect to 1/2. Figure 1 provides an example in which the safe actions, a2

and a3, are equally distanced from 1/2.

Proposition S3. We have limt→∞ P∗ (at ∈ As) = 1, that is, society will only settle on As in
the limit.

This result follows from the fact that when ambiguity is sufficiently large, individuals
ultimately hold highly ambiguous beliefs, which push them to choose only the safest actions
to hedge against ambiguity. Furthermore, as shown in the proof, an information cascade
of safe actions occurs almost surely—that is, individuals will choose the safe action(s) with
probability 1 regardless of their private signals.

Remark S1. (Ambiguity attitude) A similar result also holds when individuals are ambiguity-
loving. For example, under max-max EU preferences, society will settle on the actions with
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the highest maximum payoff:

Ah ≡ {a ∈ A : max {a, 1− a} ≥ max {a′, 1− a′} ,∀a′ ∈ A} .

Geometrically, Ah consists of actions with the largest distance from 1/2, and it also contains
at most two actions. In Figure 1, we have Ah = {a1, a5}, so individuals will choose either
a1 or a5 in the limit. We can see that ambiguity attitude affects which actions individuals
choose in the limit—under ambiguity aversion, individuals settle on safe actions, whereas
under ambiguity-loving preferences, they settle on risky actions.

S4 Multiple States

When there are multiple states, the equilibrium becomes more difficult to characterize, but
the key insights still hold.2 This section shows that in a simple case, an information cascade
can still arise. Suppose that the state space Θ = {0, 1, ..., K}, and the action space A = Θ.
Individuals share a flat prior, π0 =

(
1

K+1
, ..., 1

K+1

)
. The utility function is

u (a, θ) =

1 a = θ

0 a ̸= θ
,

that is, individuals get a payoff of 1 if the action matches the true state and 0 if otherwise.
Every individual has MEU preferences and updates beliefs using the full Bayesian rule. The
true DGP, Gi, satisfies:

dGi (s|θ)
dGi (s|θ′)

∈
[
1

γ
, γ

]
, ∀s ∈ S,

I then consider a specific class of perceptions and show that large ambiguity can produce
cascades.

Assumption S4. The set of perceived DGP, G0, contains all G such that

dG (s|θ)
dG (s|θ′)

∈
[

1

Rγ
,Rγ

]
, ∀s ∈ S,

for some R ≥ 1.

As R becomes larger, it reflects a higher degree of ambiguity. The following proposition
shows that under sufficiently large ambiguity, an information cascade occurs almost surely.

2Arieli and Mueller-Frank (2021) extended the SSLM to a general state and action space. Their paper
focused on correctly specified Bayesian agents, so the techniques cannot be applied here.
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Proposition S4. Under Assumption S4, there exists R0 < ∞ such that an information
cascade occurs P∗-almost surely for all R ≥ R0.

Proof. Suppose that a1 = θ1. This reveals that

dG1 (s1|θ1) /dG1 (s1|θ′) ≥ 1 ∀θ′ ∈ Θ. (1)

For individual 2, she will follow the first individual if for all θ′ ̸= θ1,

sup
π∈Π2

∑
θ∈Θ

π (θ)

π (θ′)
× dG2 (s2|θ)

dG2 (s2|θ′)
> sup

π∈Π2

∑
θ∈Θ

π (θ)

π (θ1)
× dG2 (s2|θ)

dG2 (s2|θ1)
. (2)

Notice that

L.H.S of (2) = sup
π∈Π2

(
1 +

π (θ1)

π (θ′)
× dG2 (s2|θ1)

dG2 (s2|θ′)
+
∑

θ ̸=θ1,θ′

π (θ)

π (θ′)
× dG2 (s2|θ)

dG2 (s2|θ′)

)

≥ 1 +Rγ × dG2 (s2|θ1)
dG2 (s2|θ′)

+
∑

θ ̸=θ1,θ′

dG2 (s2|θ)
dG2 (s2|θ′)

≥ 1 +R +
K − 1

γ
,

where: (i) the first inequality comes from that G0 consists of all DGPs with likelihood ratios
between 1/Rγ and Rγ, so there exists some DGP G1 ∈ G0 under which π(θ1)/π(θ

′) = Rγ

and π(θ)/π(θ′) = 1,3 and (ii) the second inequality comes from that dG2(s2|θ)
dG2(s2|θ′) ≥ 1/γ for all

θ, θ′. Furthermore, (1) implies π (θ1) ≥ π (θ) for all θ ∈ Θ and π ∈ Π2, so

R.H.S of (2) ≤ 1 +
∑
θ ̸=θ1

dG2 (s2|θ)
dG2 (s2|θ′)

≤ 1 +Kγ.

Thus, for sufficiently large R, the L.H.S. is greater than the R.H.S. for all possible s2, so
individual 2 will follow individual 1 immediately, and a cascade is triggered.

It is worth noting that the type of ambiguity in Assumption S4 represents a very special
case. An interesting direction for future research is to explore more general conditions under
which a cascade occurs.

S5 Mixed-strategy Equilibrium

In this section, I explore an extension in which individuals can use mixed strategies. I show
that when individuals have preferences for randomization, a mixed-strategy information

3Here is one example. Suppose S = {s0, s1, ..., sK} and G1 satisfies: (i) g1(sk|θ) = c when θ ̸= k, and (ii)
g1(sk|θ) = c×Rγ when θ = k, where c is a normalization constant.
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cascade occurs almost surely. During this cascade, individuals play the same mixed strategy
regardless of their private information.

S5.1 Preferences for randomization

Before presenting the main results, I first distinguish between two different cases of mixed
strategies:

• Case 1: Suppose that the mixing probabilities appear outside the minimum expected
utility. Under strategy σ, individual i’s utility is given by:

Vi (σ) = σmin
π∈Πi

Ei
πU (1) + (1− σ) min

π∈Πi

Ei
πU (0) ,

where σ denotes the probability of taking action 1. In this case, individuals cannot
hedge against ambiguity using mixed strategies. They will assign probability 1 to the
action that maximizes their worst-case payoff, except in cases of indifference.

• Case 2: Suppose that the mixing probabilities appear inside the minimum expected
utility. Then, under strategy σ, individual i’s utility is:

Vi (σ) = min
π∈Πi

[
σEi

πU (1) + (1− σ)Ei
πU (0)

]
.

In this case, individuals exhibit preferences for randomization and can use mixed
strategies to hedge against ambiguity.

The appropriate formulation of mixed strategies under ambiguity remains an ongoing dis-
cussion in the literature (e.g., Saito (2015) and Ke and Zhang (2020)). Notice that in the
first case, individuals have no incentives to randomize, so the paper’s analysis is without loss
of generality. Therefore, the rest of this section focuses on the second case, assuming that
individuals have preferences for randomization.

S5.2 Equilibrium strategy

I now characterize individuals’ equilibrium strategy:

Proposition S5. Suppose individuals have preferences for randomization. Then, a mixed-
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strategy equilibrium exists, characterized as follows:

σ∗
i (ai = 1) =


0 λi · li < 1

1/2 λi · li < 1 < λi · li
1 λi · li > 1

, (3)

where σ∗
i (ai = 1) represents the probability that individual i chooses action 1 in the equilib-

rium. The indifference cases in (3) are determined by tie-breaking rules.

The proof can be found in Appendix A.3. To interpret the proposition, consider the
following equivalent characterization: Let πi and πi denote individual i’s minimum and
maximum posterior beliefs about state 1. Then, equation (3) is equivalent to:

σ∗
i (ai = 1) =


0 πi < 1/2

1/2 πi < 1/2 < πi

1 πi > 1/2

.

Thus, individuals choose action θ with probability 1 if state θ is more likely to be the true
state under all posteriors. Otherwise, they mix between the two actions with equal proba-
bility. In other words, individuals play a pure strategy only if all posteriors unambiguously
support a state. When beliefs are sufficiently ambiguous, they mix actions to hedge against
ambiguity.

S5.3 Information cascades with mixed strategy

For convenience, we impose a tie-breaking rule such that whenever individuals are indifferent,
they randomize over actions. Based on the equilibrium strategy, we define the following
cascade sets:

C0 =
{(

li, li
)
: 0 ≤ li ≤ li < 1/γ

}
and C1 =

{(
li, li

)
: γ < li ≤ li

}
,

which represent the sets of public beliefs—characterized by li and li—such that individuals
will choose only action 0 or only action 1, respectively. Similarly, we define:

C1/2 =

{(
li, li

)
: li ≤

1

γ
, li ≥ γ

}
,

which represents the set of public beliefs under which individuals randomize between the two
actions. This is referred to as the cascade set of the mixed strategy. Once public beliefs
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enter this set, we say that a mixed-strategy information cascade occurs. We now state the
following result:

Theorem S2. Suppose that F0 consists of all DGPs with support in [1/γ, γ]. Then, a
mixed-strategy information cascade occurs P∗-almost surely.

During a mixed-strategy information cascade, individuals randomize between the two
actions regardless of their private signals. Since the mixing probability is 1/2, Theorem S2
implies that, in the limit, the fraction of individuals choosing each action is 1/2. In this case,
even though actions continue to oscillate indefinitely, information ceases to aggregate after
a finite number of periods.

The proof can be found in Appendix A.4. The intuition behind this result is as follows: In
a social learning environment, individuals inevitably observe both actions. Ambiguity-averse
individuals interpret actions inconsistent with state θ as negative signals about that state. As
such signals accumulate, committing to a pure strategy becomes increasingly unattractive.
Ultimately, society settles on a mixed strategy as a way to hedge against ambiguity.
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A Omitted Proofs in the Supplementary Materials

A.1 Proof of Theorem S1

I first introduce the notion of local instability:

Definition S3. State 0 (or state 1) is locally unstable if there is some r ∈ R++ (or
R ∈ R++) such that P∗

r0
(ri > r for some i) = 1 (or P∗

r0
(ri < R for some i) = 1) for all prior

sets Π0 with r0 sufficiently small (or sufficiently large).

In other words, state θ is locally unstable if posteriors escape from a small neighborhood
around δθ almost surely, where beliefs are described by the average likelihood ratio. The
notion of local stability is defined in the appendix to the main paper, which says that beliefs
remain in the neighborhood with strictly positive probability, and is omitted here. We begin
with two lemmas:

Lemma S1. Complete learning occurs if and only if ri → 0 with probability 1.

Proof. First, complete learning requires that a herd of action 0 occurs eventually, which
implies ri → 0 with probability 1 by Lemma 6 in the paper. Second, if ri → 0 with
probability 1, a herd of action 0 occurs almost surely, also by Lemma 6, which implies
complete learning.

Lemma S2. Complete learning occurs if 0 is locally stable and state 1 is locally unstable.

Proof. Since state 1 is locally unstable, beliefs will enter {ri < R} infinitely many often.
Whenever ri < R, we can find a finite K such that K consecutive actions of 0 drive ri <

r. Since state 0 is locally stable, once ri < r, we have ri → 0 with positive probability.
Therefore, the probability of ri → 0 is greater than some positive constant across all histories,
and complete learning occurs from Levy’s 0-1 Law.

Now, we characterize local stability under the assumptions of the theorem.

Proposition S6. Under Assumptions S1 and S2, we have:
(a) if for all F ∈ F0, P (F ) ≥ P (F), state 1 is locally unstable;
(b) if there exists some F ∈ F0 such that P (F ) < P (F), state 1 is locally stable;
(c) if for all F ∈ F0, P (F ) ≥ P (F) + 1, state 0 is locally unstable;
(d) if there exists some F ∈ F0 such that P (F ) < P (F) + 1, state 0 is locally stable.

Let α := P (F), αmax := maxF∈F0 P (F ) and αmin := minF∈F0 P (F ). Let Fmax and Fmin

be the DGPs that attain the maximum and minimum powers, respectively.
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Proof. Proof of Proposition S6 (a): Given r0, the probability of a herd of action 1 is:

lim
i→∞

P∗
r0
(a1 = a2 = ...ai = 1) =

∞∏
i=1

P∗
r0
(ai = 1|hi) =

∞∏
i=1

[
1− F0

(
1

ri

)]
,

where ri is the average likelihood ratio after hi = (1, 1, ..., 1). The probability is zero if and
only if

∑
F0
(

1
ri

)
= ∞, or equivalently,

∑
1
rαi

= ∞. The sequence {ri} evolves according to:

ri+1 = ri ×

√
max
F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
× min

F∈F0

1− F 1 (1/ri)

1− F 0 (1/ri)
.

When r0 is sufficiently large, 1−F 1(1/ri)
1−F 0(1/ri)

∼ 1 + F 0 (1/ri) for all i, so its maximum is obtained
at Fmin and it minimum is obtained at Fmax. Therefore, when r0 is sufficiently large,

ri+1 = ri ×

√
1− F 1

min (1/ri)

1− F 0
min (1/ri)

× 1− F 1
max (1/ri)

1− F 0
max (1/ri)

≤ ri ×
1− F 1

min (1/ri)

1− F 0
min (1/ri)

.

By the definition of Fmin, we have 1−F 1
min(1/ri)

1−F 0
min(1/ri)

∼ 1+Cmin× 1
r
αmin
i

, for some constant Cmin > 0.
Suppose that for all F ∈ F0, we have P (F ) ≥ P (F), that is, αmin ≥ α. Then,

lim
r→∞

1−F 1
min(1/r)

1−F 0
min(1/r)

− 1(
1 + 2αCmin

rα

)1/α − 1
= lim

r→∞

1−F 1
min(1/r)

1−F 0
min(1/r)

− 1

2αCmin

rα

×
2αCmin

rα(
1 + 2αCmin

rα

)1/α − 1

= lim
r→∞

Cmin × 1
rαmin

2αCmin

rα

× α

=
1

2
× lim

r→∞

1

rαmin−α
=

0 αmin > α

1
2

αmin = α
< 1,

so 1−F 1
min(1/ri)

1−F 0
min(1/ri)

<
(
1 + 2αCmin

rαi

)1/α
. Therefore, for all i ≥ 0,

ri+1 <

(
1 +

2αCmin

rαi

)1/α

× ri =
(
rαi + 2αCmin

)1/α
ri+2 <

(
rαi+1 + 2αCmin

)1/α
<
(
rαi + 2αCmin × 2

)1/α
...

ri+t <
(
rαi + 2αCmin × t

)1/α
.
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As a consequence, when r0 is sufficiently large,

∞∑
i=1

1

rαi
>

∞∑
i=1

1

rα0 + 2αCmin × i
= ∞,

so a herd of action 1 occurs with probability 0. This property holds for all r0 ∈ R++, so
state 1 is unstable.

Proof of Proposition S6 (b)

To show that state 1 is locally stable, we need to show that the probability of an action-1
herd is greater than some ε > 0 when r0 is large. Recall that

P∗
r0
(H1) = lim

i→∞
P∗
r0
(a1 = a2 = ...ai = 1) =

∞∏
i=1

[
1− F0

(
1

ri

)]
.

In order to establish local stability, we need to find a uniform lower bound for the probability
on the right-hand side for all large r0. Suppose that F0 (x) ∼C × xα for some constant
C > 0. On one hand, we can find a sufficiently large R such that whenever r0 ≥ R, we have
F0(1/ri)

C×(1/ri)
α ∈ [1− ε1, 1 + ε1] for some ε1 > 0, so

P∗
r0
(H1) =

∞∏
i=1

[
1− F 0

(
1

ri

)]
≥

∞∏
i=1

[
1− (1 + ε1)× C × 1

rαi

]
. (4)

We also want R to be sufficiently large such that the infinite product on the right-hand side
is strictly positive. On the other hand, recall that

ri+1 = ri ×

√
1− F 1

min (1/ri)

1− F 0
min (1/ri)

× 1− F 1
max (1/ri)

1− F 0
max (1/ri)

.

13



Define β = (1− ε) Cmin×αmin

2
for some small ε > 0, then we have

lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

× 1−F 1
max(1/ri)

1−F 0
max(1/ri)

− 1(
1 + β

rαmin

)1/αmin − 1
= lim

r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

× 1−F 1
max(1/ri)

1−F 0
max(1/ri)

− 1√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1
× lim

r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1(
1 + β

rαmin

)1/αmin − 1

= 1× lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1(
1 + β

rαmin

)1/αmin − 1

= lim
r→∞

√
1−F 1

min(1/ri)

1−F 0
min(1/ri)

− 1

β
rαmin

× lim
r→∞

β
rαmin(

1 + β
rαmin

)1/αmin − 1

=
Cmin × αmin

2β
=

1

1− ε
> 1.

When R sufficiently large, we have

ri+1 ≥ ri ×
(
1 +

β

rαmin
i

)1/αmin

= (rαmin
i + β)1/αmin ⇒ ri ≥ (rαmin

0 + β × i)1/αmin . (5)

Combining (4) and (5), we obtain:

P∗
r0
(H1) ≥

∞∏
i=1

[
1− (1 + ε1)× C × 1

rαi

]

≥
∞∏
i=1

[
1− (1 + ε1)× C × 1

(rαmin
0 + β × i)α/αmin

]

≥
∞∏
i=1

[
1− (1 + ε1)× C × 1

(Rαmin + β × i)α/αmin

]

for all r0 ≥ R. Again, R is chosen to be sufficiently large such that each term is strictly
positive. Suppose that there exists some F ∈ F0 such that P (F ) < P (F). This fact implies
that αmin < α, so ∑ 1

(Rαmin + β × i)α/αmin
< ∞,

which further implies that

P∗
r0
(H1) ≥

∞∏
i=1

[
1− (1 + ε1)× C × 1

(Rαmin + β × i)α/αmin

]
=: δ > 0,

for all r0 ≥ R. In other words, the probability of an action-1 herd is greater than δ > 0,
which proves that state 1 is locally stable.
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Proof of Proposition S6 (c) & (d)

The proofs of Proposition S6 (c) and (d) are almost identical to those of (a) and (b). The
only difference is that the cutoff value becomes P (F) + 1. To see why this new cutoff arises,
note that the probability of an action-0 herd is

P∗
r0
(H0) = lim

i→∞
P∗
r0
(a1 = a2 = ...ai = 0) =

∞∏
i=1

F0

(
1

ri

)
=

∞∏
i=1

[
1− F1 (ri)

]
,

where ri denotes the average likelihood ratio after hi = (0, ..., 0). An action-0 herd occurs
with strictly positive probability if and only if

∑
F1 (ri) < ∞. During a herd of action 0,

we have ri → 0; besides, it can be verified that F1 (x) ∼ C1x
α+1 as x → 0 for some C1 > 0.4

As a consequence, an action-0 herd occurs with a strictly positive probability if and only if∑
rα+1
i < ∞. The remainder of the proofs follows exactly the same logic as in parts (a) and

(b).

From Lemma S2, Proposition S6 implies Theorem S1, so the theorem is proved.

A.2 Proof of Proposition S3

Without loss of generality, I index all actions in descending order, i.e., a1 > a2 > ... > ak.
The proof focuses on the case in which ak < 1/2 < a1, since the case in which all actions
belong to one side of 1/2 is a simple extension of this benchmark. Define the following four
actions:

aL = ak, aH = a1, al = max {a ∈ A : a ≤ 1/2} , and ah = min {a ∈ A : a > 1/2} .

Also, suppose that these four actions are different.5

Lemma S3. For all i ≥ 1, individual i will a.s. choose from A∗ =
{
aL, aH , al, ah

}
.

Proof. Let Vi (a) denote the minimum expected utility of individual i from choosing action

4Recall that F0 (x) ∼ C × xα as x → 0, so

lim
x→0

F1 (x)

xα+1
= lim

x→0

F1 (x)

(α+ 1)xα
=

1

α+ 1
lim
x→0

f0 (x)

xα−1
=

α

α+ 1
lim
x→0

F0 (x)

xα
=

α

α+ 1
C,

hence F1 (x) ∼ α
α+1C × xα+1 as x → 0.

5It is possible that some actions may coincide. For example, if there is only one action below 1/2, then
al = aL. The analysis can be easily extended to incorporate such cases.
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a. By definition,

Vi (a) =


λili

1+λili
a+ 1

1+λili
(1− a) a > 1/2

λili
1+λili

a+ 1
1+λili

(1− a) a ≤ 1/2
, (6)

which is a piecewise linear function, so the optimal a can be only obtained at one of the
endpoints, i.e., in A∗.

Lemma S4. All actions in A∗\As will be chosen with probability zero in the limit.

Proof. First, it is easy to verify that the first person will only choose aL or aH , and a1 =aL if λ1 < 1

aH if λ1 > 1
. Without loss of generality, I assume that a1 = aH . There are three cases

to consider: (i) As =
{
al
}
, (ii) As =

{
ah
}
, and (iii) As =

{
al, ah

}
. Since the logic is parallel

across these cases, I focus on the case where As =
{
al
}
, i.e., al + ah > 1.6 Because a1 = aH ,

we have l2 = ∞ and l2 = 1. Substituting l2 and l2 into (6), individual 2’s optimal choice is:

a2 =


aH λ2 > 1

ah λ2 ∈ (λ∗
2, 1)

al λ2 < λ∗
2

,

where λ∗
2 is the signal such that individual 2 is indifferent between ah and al, so it satisfies

al =
λ∗
2

1 + λ∗
2

ah +
1

1 + λ∗
2

(
1− ah

)
.

Since al < 1/2, it follows that λ∗
2 < 1. Let pi denote the probability that individual i chooses

al. Then p2 = F0 (λ∗
2). Suppose a2 = al. Then:

l3 = l2 × sup
F

F 1 (λ∗
2)

F 0 (λ∗
2)

= ∞× λ∗
2 = ∞ and l3 = l2 × inf

F

F 1 (λ∗
2)

F 0 (λ∗
2)

= 0.

Substituting them into the utility functions yields:

V3

(
aL
)
= aL, V3

(
al
)
= al, V3

(
ah
)
= 1− ah, and V3

(
aH
)
= 1− aH .

Therefore, individual 3 will choose action al regardless of her private signal, i.e., p3 = 1, and
an information cascade on al begins. Therefore, Lemma S4 holds. Now suppose a2 = ah.

6For the other two cases, we can follow similar arguments and show that posteriors will become extremely
ambiguous, i.e., li = ∞ and li = 0, after finitely many individuals.
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Then:
l3 = ∞ and l3 = l2 × inf

F

F 1 (1)− F 1 (λ∗
2)

F 0 (1)− F 0 (λ∗
2)

≤ l2 = 1.

From the perspective of individual 3, her optimal choice is

a3 =


aH λ3 > 1/l3

ah λ3 ∈ (λ∗
3, 1/l3)

al λ3 < λ∗
3

,

where λ∗
3 solves:

al =
λ∗
3l3

1 + λ∗
3l3

ah +
1

1 + λ∗
3l3

(
1− ah

)
.

Thus, λ∗
3 = λ∗

2/l3 ≥ λ∗
2. The probability of individual 3 choosing al is p3 = F0 (λ∗

3) ≥ p2.
Suppose that a2 = aH , then we still have l3 = ∞ and l3 = 1, so individual 3 will act as
if she were individual 2, and hence p3 = p2. To summarize, we have p3 ≥ p2 regardless of
individual 2’s action. Analogously, we have pi ≥ p2 for all i ≥ 2. Levy’s 0-1 Law implies
that al will almost surely be taken by some individual i. Once it is taken, li+1 becomes 0,
and an information cascade of action al is triggered. Hence, in the limit, only actions in As

will be chosen; furthermore, there is an information cascade.

A.3 Proof of Proposition S5

Proof. Suppose that individuals favor randomization, i.e., when mixing different strategies,
the mixing probability appears inside the minimum. That is,

Vi (σ) = inf
π∈Πi(Ii,σ∗

−i)

[∑
a∈A

σ (a)EπU (a, θ)

]
.

Let σ = σ (a = 1) and π = π (1), then we have∑
a∈A

σ (a)EπU (a, θ) = σπ + (1− σ) (1− π)

= (2σ − 1) π + (1− σ) .

So, the utility becomes:

Vi (σ) =

(2σ − 1) πi + (1− σ) =
(
2πi − 1

)
σ + 1− πi σ ∈ [1/2, 1]

(2σ − 1) πi + (1− σ) = (2πi − 1)σ + 1− πi σ ∈ [0, 1/2]
.
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Now consider the following cases:

1. Suppose πi ≤ πi ≤ 1/2. Then,

Vi (σ) is decreasing over σ ∈ [0, 1] ,

so the optimal strategy is σ∗
i = 0, i.e., individual i chooses action 0 with probability 1.

2. Suppose πi ≤ 1/2 ≤ πi. Then,

Vi (σ) is increasing on [0, 1/2] and decreasing on [1/2, 1] ,

so the optimal strategy is σ∗
i = 1/2, i.e., individual i randomizes evenly between the

two actions.

3. Suppose 1/2 ≤ πi ≤ πi. Then,

Vi (σ) is increasing over σ ∈ [0, 1] ,

so the optimal strategy is σ∗
i = 1, i.e., individual i chooses action 1 with probability 1.

Finally, noting that πi =
λili

1+λili
and πi =

λili
1+λili

, the proposition follows directly.

A.4 Proof of Theorem S2

Without loss of generality, suppose that a1 = 1. Then, we have l2 = γ and l2 = 1. I first
state the following claim:

Lemma S5. For all i ≥ 1, suppose a1 = .. = ai = 1, then li+1 = γ and li+1 = 1.

Proof. The lemma clearly holds for i = 1. Suppose it also holds for i = k, and that ak+1 = 1.
From Proposition S5 and the tie-breaking rule, ak+1 = 1 occurs in one of the following two
cases:

• If λk+1 > 1/lk+1 = 1, then individual k + 1 always takes action 1;

• If λk+1 ∈
[
1/lk+1, 1/lk+1

]
= [1/γ, 1], then individual k + 1 takes action 1 with a

probability of 1/2.

Thus, for all signals λ ∈ [1/γ, γ], individual k+1 takes action 1 with positive probability, and
this probability is the same in both states. As a result, the public belief remains unchanged,
implying that lk+1 = lk = γ and lk+1 = lk = 1.
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Lemma S6. For all i ≥ 1, suppose a1 = .. = ai = 1 and ai+1 = 0. Then, li+2 = γ and
li+2 = 1/γ.

Proof. Note that ai+1 = 0 occurs only when

λi+1 ∈
[
1/li+1, 1/li+1

]
= [1/γ, 1] ,

where the equality comes from Lemma S5. Let F∅ denote the uninformative signal structure
and Fγ denote the most informative signal structure, i.e., supp (F∅) = {1} and supp (Fγ) =

{1/γ, γ}. Therefore, we have li+2 = li+1 ×
F 1
∅ (1)

F 0
∅ (1)

= li+1 = γ and li+2 = li+1 ×
F 1
γ (1)

F 0
γ (1)

=

li+1 × 1/γ = 1/γ.

Now define Hmix
i+1 = {a1 = ... = ai ̸= ai+1}, which represents the event that a herd of

action 1 is disrupted by individual i+1. The previous two lemmas establish that once Hmix
i+1

occurs, a mixed-strategy information cascade occurs.

Lemma S7. Let Hmix = ∪iHmix
i+1 , then P∗ (Hmix) = 1.

Proof. Suppose that a1 = 1. Then,

P∗ (ai+1 = 0|a1 = ... = ai = 1) = P∗ (ai+1 = 0|λi+1 ∈ [1/γ, 1]) =
F0 (1)

2
.

Given a1 = 1, we have

P∗ (a1 = ... = ai+1|a1 = 1) =

[
1− F0 (1)

2

]i
→ 0 as i → ∞.

Therefore, P∗ (Hmix|a1 = 1) = 1. The case for a1 = 0 is identical, so P∗ (Hmix) = 1.
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