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A Proofs

Proof. (Proposition 1.) We have
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where the third and sixth equalities invoke Assumption 1, and the fourth equality

uses the law of iterated expectations. Thus
S = Var (p (1))™' Cov(p (J).Y) = E [wsps]

where wg = Var (p ()~ Cov (p(J),s(J))and B, =E[B]| S =5]. O

Proof. (Proposition 2.) The monotonicity violation rates in judicial panels and indi-
vidual decisions are given by Pr[S? € S, | /Pr[S? € S, US;] and Pr[S € S,] /Pr[S € S, US,],
respectively. It is straightforward to see that the equality of these two rates is equiv-

alent to Assumption 3:

Pr[SeS,]  Pr[SP eS|
Pr(SeS,US,] Pr[SPesS, US|

- Pr(SesS,] 3 Pr[S? € S,]
Pr[SeS,|+Pr[SeS,] Pr[SPeS,]+Pr[SPeS]

o PrisPeS) _ Pr(sPeSi
Pr(SeS,] Pr[SeS]




Proof. (Proposition 3.) Under Assumption 4, the statement is equivalent to
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Under Assumption 5, we have
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Similarly
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By insertion, we get that the statement is equivalent to Assumption 3 applied to
Judges 1 and 2:

Pr[SP (1) <SP (2)] _Pr[SP(1)>Sr(2)]
Pr(S(1)<S(2)]  Pr[S(1)>S(2)]

O

Proof. (Proposition B.1.) Part i). This is a direct application of the classical result
on binary instruments (e.g., Theorem 1 in Imbens and Angrist (1994)) applied to

the subsample of cases assigned the strictest and the most lenient judge:
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The second equality used Assumption 1 and the fourth equality used that extreme-

pair monotonicity implies Pr [S (j)<S ( J )] = 0. The result follows since
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Part ii). Assume lenient-judge monotonicity. We then have
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The second equality used Assumption 1 and the third equality used the law of
iterated expectations. The sixth equality used that S ( J ) =1= D =1 under lenient-



judge monotonicity. Moreover
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where the second equality used that E [D | S ( J ) = 1]
tonicity. Thus

E[Y]—E[Y|J=j]
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The proof of part iii) is analogous to part ii). O

Proof. (Proposition C.1.) Let everything be conditional on G. We then have for
any ¢ in the support of Q that>>

EM|Q=q]l=E[M|Q=¢T=1]=E[M|T=1]=m

The first (second) equation applied Assumption C.2 (C.3). The law of iterated ex-
pectations then gives
E[M]=E[E[M|Q]]=m

=E[M|T=1]=E[M]
which is equivalent to 7 L M since T and M are binary variables. O

Proof. (Proposition C.2.) Assume d’,/d,, = d’,/d,,. First, note that

E[S(1)-S(2)|CeC]=Pr[S(1)>S2)|CeC]-Pr[S(1)<S(2)|CeC]

32Using that T = 1 is assumed to be a non-zero probability event for all values of Q.



=Pr[S(1)>S5(12),CeC] = E[S(1)-S12)|CeC]Pr[CeC)]
+ Pr[S(1)<S(Q),CeC]

We thus have that the share of cases violating monotonicity equals the sum of ob-

servable and unobservable monotonicity violations:

Pr[S(1)>S(2)] Pr[S(1)>S(2),CeCJ]+Pr[S(1)>S(2),C¢C]
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= dyo+dyy
Similarly, Pr[S (1) < S(2)] = dyo +d,,. Define A = db,/d’, = dy,/dy,. As-
sumption 3, applied to Judges 1 and 2, then becomes
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B Additional Results

B.1 Additional Tables for The Main Result

Table B.1 shows the robustness of Table 2 to using only panels deciding more than

50 and 100 cases. Table B.2 shows a version of Table 2 with medians instead of

means.

Table B.1: Robustness: Only panels with more than 50 and 100 cases.

Share of Cases Violating Monotonicity Condition

Sao Paulo Brazilian United States
Appeal Court Superior Court Supreme Court
Cutoff Cutoff Cutoff
20 50 100 20 50 100 20 50 100
IA monotonicity violated 035 035 032 049 052 - 042 040 041
Conditional number of violations 2.00 2.07 1.75 2.05 200 - 330 335 3.25
Average monotonicity violated 0.11 0.11 0.10 0.09 0.12 - 0.04 0.03 0.02
Sum of negative 2SLS weights 0.09 0.10 0.08 0.06 0.08 - 0.01 0.01 0.01

Note: Robustness of the results in Table 2 to only including panels that decide at least 50 and 100
cases together. There are no panels in the Brazilian Superior Court deciding more than 100 cases.



Table B.2: Table 2 with Medians instead of Means

Sao Paulo Brazilian United States
Appeal Court  Superior Court Supreme Court
(Five judges)  (Five judges)  (Nine judges)

IA monotonicity violated 0.357 (0.031) 0.472(0.077)  0.404 (0.028)
Conditional number of violations 2.0(0.1) 2.1(0.2) 3.2(0.2)

Average monotonicity violated 0.077 (0.018) 0.079 (0.031)  0.030 (0.009)
Sum of negative 2SLS weights 0.059 (0.013)  0.048 (0.023)  0.008 (0.003)

Observations 1,306 76 1,516

Note: A version of Table 2 with medians across judicial panels instead of means. Each parameter
(e.g., the share of cases violating IA monotonicity) is calculated separately for each judicial panel,
and the table reports the median across panels. Bootstrapped standard errors in parentheses.

B.2 Alternatives to 2SLS

While average monotonicity ensures that 2SLS identifies a positively weighted sum
of individual treatment effects, the weights assigned by 2SLS are not uniform. For
instance, in judge IV designs, 2SLS assigns higher weights to cases with a medium
propensity to be treated and lower weights to cases violating Imbens-Angrist mono-
tonicity. As argued by Heckman and Vytlacil (2007), this particular weighted sum
is unlikely to be a parameter of policy interest. More meaningful treatment param-

eters include

LATE = E|g|S(j)=0.5(})=1]
LATT = E[ﬁlS(i‘):O,D: ]
LATUT = E|[B|S(j)=1,D=0]

where j and j are the most lenient and the strictest judges, respectively. The LATE
parameter is the local average treatment effect for defendants incarcerated by the
strictest judge but not by the most lenient judge. The LATT and LATUT param-

eters are the (local) average treatment effects on the treated and the untreated for



a similar complier population.’® These parameters can be identified under the fol-

lowing monotonicity conditions:
Definition B.1. (Monotonicity conditions)

i) Extreme-pair monotonicity holds if s () > s (]) forall s € S.

ii) Lenient-judge monotonicity holds if s (j) > s (i) forall s € S and j.

iii) Stringent-judge monotonicity holds if s (j) > s (j) forall s € S and ;.

Proposition B.1. (Alternatives to 2SLS).

) LATE = E[yW=7]-E|r=j|

- if extreme-pair monotonicity holds
E[Dl/=]]-E [D|J:i']

ii) LATT LYI-E| 1= if lenient-jud tonicity hold
ii =—— 1 =L iflenient-judge monotonicity holds
E[D]—E[D|J:i'] Juas

iii) LATUT = E[Yl/=] ]_ED;]] if stringent-judge monotonicity holds

In particular, LATE is identified by the standard Wald estimand of the effect of
being assigned the strictest judge compared to being assigned the most lenient judge
as long as monotonicity holds between these two judges. Furthermore, LATT and
LATUT are identified by the difference between the mean outcome and the expected
outcomes for cases assigned to the most lenient and the strictest judge, respectively.
These estimands require monotonicity to hold for all pairs of judges involving the
most lenient and the strictest judge, respectively.

Sigstad (2024) shows that the Proposition B.1 estimands are equivalent to the
estimands based on marginal treatment effects (MTE) invoked in the literature (e.g.,
Arnold, Dobbie, and Crystal S. Yang (2018) and Bhuller, Dahl, et al. (2020)). These
estimands can thus be estimated using the standard techniques in the MTE litera-

ture.

3The LATT and LATUT complier population includes all cases except never-takers and always-
takers. The LATE complier population also ignores, for instance, response types incarcerated by
some intermediate judges but not by the strictest nor the most lenient judge. I do not see a way to
identify a local average treatment effect that also covers such compliers.



Table B.3: Violations of Monotonicity Conditions: Alternatives to 2SLS

Sao Paulo Brazilian United States
Appeal Court  Superior Court Supreme Court
(Five judges)  (Five judges)  (Nine judges)

Panel A: Share of cases violating monotonicity condition

Extreme-pair Monotonicity 0.043 (0.005) 0.026 (0.020)  0.011 (0.003)
Lenient-judge Monotonicity ~ 0.260 (0.011)  0.105 (0.034)  0.067 (0.007)
Stringent-judge Monotonicity 0.079 (0.007)  0.197 (0.052)  0.087 (0.007)

Panel B: Number of violations in cases violating monotonicity

Lenient-judge Monotonicity 1.5 (0.04) 1.8 (0.24) 2.6 (0.16)
Stringent-judge Monotonicity 1.9 (0.11) 2.1 (0.27) 2.6 (0.16)

Panel C: Sum of Negative Weights

LATE 0.065 (0.009) 0.038 (0.033) 0.012 (0.004)
LATT 0.184 (0.015) 0.082 (0.035)  0.041 (0.006)
LATUT 0.126 (0.016) 0.326 (0.163)  0.067 (0.008)
Observations 1,306 76 1,516

Note: Violations of monotonicity conditions corresponding to alternative IV estimands. Share of
cases violating monotonicity condition is the share of cases where the monotonicity condition is
violated. Number of violations in cases violating monotonicity is the mean number of judge pairs
violating the condition in cases violating the condition. Sum of negative weights is the sum of the
negative weights the estimand would assign treatment effects if monotonicity is violated as in the
observed data. Bootstrapped standard errors in parentheses.
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Violations of Alternative Monotonicity Conditions in Judicial Panels

In Table B.3, Panel A, I show how often the Proposition B.1 monotonicity condi-
tions are violated in judicial panels. Extreme-pair monotonicity is violated in only
4.3 percent of Sao Paulo Appeal Court cases, 2.6 percent of Brazilian Superior
Court cases, and 1.1 percent of US Supreme Court cases. The sums of the negative
weights, reported in Panel C, imply that the bias induced by these monotonicity
violations is small even under severe levels of heterogeneous effects. For instance,
if the causal effect for cases satisfying average monotonicity is 0.3 and the effect
for cases violating monotonicity is 0.6, the Equation 1 bias due to negative weights
1s 0.02 in the Sao Paulo Appeal Court, 0.011 in the Brazilian Superior Court, and
0.004 in the US Supreme Court.

Estimates of LATT are not as robust as LATE estimates. Lenient-judge mono-
tonicity is violated in 26 percent of Sdo Paulo Appeal Court cases, 11 percent of
Brazilian Superior Court cases, and seven percent of US Supreme Court cases. The
Proposition B.1 LATT estimand thus relies on an assumption that is around six
times more likely to be violated than the condition necessary to identify LATE.
Conditional on a case violating lenient-judge monotonicity, I find that the condition
is violated in, on average, 1.5 out of four possible judge pairs in the Sao Paulo Ap-
peal Court, 1.8 out of four possible judge pairs in the Brazilian Superior Court, and
2.6 out of eight justice pairs in the US Supreme Court. The sums of the negative
weights indicate that the bias induced by negative weights is moderate if hetero-
geneous effects are severe. For instance, if the causal effect for cases satisfying
average monotonicity is 0.3 and the effect for cases violating monotonicity is 0.6,
the bias due to negative weights is 0.06 in the Sao Paulo Appeal Court, 0.025 in
the Brazilian Superior Court, and 0.012 in the US Supreme Court. Similar results
hold for LATUT: The share of cases violating stringent-judge monotonicity is eight
percent in the Sdo Paulo Appeal Court, 20 percent in the Brazilian Superior Court,

and nine percent in the US Supreme Court.
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B.3 Bias Due to Estimating Judge Stringencies

When estimating the rate of monotonicity violations, I use the share of cases in
which a given judge votes with the prosecution as a proxy for the judge’s true large-
sample stringency. These sample stringency measures are noisy measures of the
true stringencies. This section discusses the bias in my monotonicity violation esti-
mates due to these measurement errors.

To fix ideas, consider the case of two judges, Judge A and Judge B. Denote
by g4 (gp) the probability that Judge A (Judge B) is stricter than Judge B (Judge
A) in a randomly drawn case. Assume Judge A is the stricter judge: g4 > ¢p-.
Then the true share of cases violating monotonicity is gg. When I estimate the
share of monotonicity violations, I rely on sample analogs g4 and §p of g4 and
qgp- If G > G4, 1 wrongly conclude that B is the strictest judge, and use §4 instead
of gp as my estimate of the share of cases violating monotonicity. This causes
me to underestimate the true number of monotonicity violations. In particular, my

estimate of the share of cases violating monotonicity is
F=min{ga,qp}
which has a negative bias of>*
E[f]—gp=-Pr[dp > GalE[dr—q4a|ds > gal

In words, the amount of underestimation equals the probability of getting the
stringency order wrong times the average difference in estimated stringencies be-
tween the two judges in that case. In my settings, this bias is small. For instance,

the median distance between the stringencies of two judges with adjacent stringency

5470 see this, note that

A

E[f] =Pr[da > G4BlE[dB1da > 4Bl +Pr(da <4BIE[dalda < 4Bl

and
g =E[dpl=Pr[da>qdBlE[4p|da> 4l +Pr[Ga <gplE[dn|da < §Bl
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ranks in the Sdo Paulo Appeal Court is 0.10.%> This median judge pair—Judge Cas-
tro and Judge Coelho—decide 59 cases together. Coelho is stricter than Castro in
14% of these cases, and Castro is stricter than Coelho in 3% of the cases.”® If these
rates equal the true rates at which these two judges disagree, the bias in the esti-
mated share of cases violating monotonicity for this judge pair is only 0.0002.%’
The bias is negligible since the probability of wrongly coding Judge Castro as
strictest is low (3%), and, conditional on coding Judge Castro as strictest, the aver-
age difference between the two judges’ estimated stringencies is small (0.01).

My estimates of the share of disagreements violating monotonicity, g4/(ga+qp),
suffer from an additional bias due to the division by the estimated disagreement
rate. This “denominator bias” is not straightforward to sign since the disagreement
estimate in the denominator is not independent of the monotonicity violation esti-
mate in the numerator. The denominator bias, and the presence of more than two
judges, means that the sign of the bias in my monotonicity violation rate estimates
is ultimately ambiguous.’®

How large is the overall bias in my monotonicity violation estimates? To esti-
mate this bias, I use the bootstrap. In particular, I draw 1,000 bootstrap samples of
cases from my data and estimate the monotonicity violation rate for each sample.
The bootstrap bias is then the difference between the mean of the 1,000 bootstrap
estimates and my baseline estimate. The bootstrap bias is the bias in my estimator
in the hypothetical case in which the true stringencies and disagreement rates equal
those observed in the data.’® Note that since the monotonicity violation rates are

not everywhere differentiable in the judge stringencies, the bootstrap might be in-

3This median judge pair is in the Ninth Criminal Courtroom (9* CAmara Criminal). The strin-
gencies of the five judges in this courtroom, with the median judge pair in bold, are 0.42, 0.59, 0.71,
0.73, and 0.83.

3In the remaining 83% of the cases, the two judges vote in the same way.

71 obtain this bias estimate by drawing 10,000 random samples of 59 “cases” where the proba-
bility that Coelho is stricter (more lenient) than Castro in a case is 0.14 (0.03). The mean of 7/—the
estimated share of cases violating monotonicity—across these samples equals 0.0337 compared to
the true rate of 0.0339.

331n simulations, the bias in each of the Table 2 and Table B.3 estimates can be either positive or
negative, depending on the assumed true disagreement pattern across judges.

For instance, in this hypothetical case, the true share of cases where Judge Coelho is stricter
(more lenient) than Judge Castro is assumed to equal the sample rate of 14% (3%).

13



consistent.’” Still, the bootstrap bias estimate gives an indication of the magnitude
of the bias that would be expected for the sample sizes and stringency distributions
in my data.

The results of this exercise are presented in Table B.4. The bias estimates are
small. For instance, the bias in the Imbens-Angrist monotonicity violation rate
in the Sao Paulo Appeal Court is estimated to be —0.003 compared to a baseline
estimate of 0.346.

Table B.4: Bootstrap Bias Estimates

Sao Paulo Brazilian United States
Appeal Court  Superior Court Supreme Court

(Five judges)  (Five judges)  (Nine judges)

IA monotonicity violated -0.0034 -0.0181 0.0074
Conditional number of violations -0.0477 -0.0732 -0.1553
Average monotonicity violated 0.0018 0.0054 -0.0016
Sum of negative 2SLS weights -0.0041 -0.0036 -0.0009

Note: Bootstrap bias estimates for the Table 2 estimates.

Another way to assess the small-sample bias in my estimates is to restrict the
attention to judicial panels that decide a large number of cases together in which
case their stringency order is precisely estimated. For instance, in panels deciding
at least 100 cases, I can be highly confident of the stringency order.®' The Table B.1
results, showing that my findings remain robust when restricting to panels that have
decided at least 100 cases, thus also suggest that bias from measurement errors in

judge stringencies is negligible.

%0 According to Theorem 3.1 of Fang and Santos (2019), the bootstrap is inconsistent in my set-
ting if and only if the monotonicity violation rates are differentiable with respect to the true judge
tendencies. This condition is violated whenever two judges share the same large-sample stringency
levels.

61 For example, in the Sdo Paulo Appeal Court, in 92% of disagreements, I can reject at the 99.99%
level that the two disagreeing judges have equal stringencies against the alternative that the judge
estimated to be strictest is indeed strictest using a paired t-test. The monotonicity violation estimates
do not materially change if I exclude disagreements where I am not confident of the stringency order
at the 99.99% level.
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Table B.5: Violations of Monotonicity Conditions: Leave-one-out stringency mea-
sures

Sao Paulo Brazilian United States
Appeal Court  Superior Court Supreme Court

(Five judges)  (Five judges)  (Nine judges)

IA monotonicity violated 0.358 (0.015) 0.553(0.081)  0.428 (0.015)
Conditional number of violations 2.0(0.1) 2.2(0.2) 3.3(0.1)

Average monotonicity violated 0.112 (0.011) 0.092 (0.032)  0.038 (0.005)
Sum of negative 2SLS weights 0.098 (0.011) 0.061 (0.028)  0.015 (0.003)

Note: Robustness of Table 2 to using leave-one-out stringency measures.

B.3.1 Leave-one-out and other split-sample approaches

One possible way to alleviate the downward bias in my monotonicity violation es-
timates is to use a split-sample approach, where the judges’ stringency ordering is
estimated in one sample, and the monotonicity violation rate given this stringency
ordering is estimated in another sample. For instance, one can use a leave-one-out
approach, where the stringency order is determined from the judges’ votes in all
cases except the one for which monotonicity violation is assessed. Such approaches
will, however, lead us to overestimate the amount of monotonicity violations. Sup-
pose Judge B is wrongly coded as strictest in the first sample. In that case, we will
use g4 from the second sample as our monotonicity violation estimate—an overes-
timate of the true rate gp. For example, in the leave-one-out approach, if Judge A
and Judge B have the exact same observed stringencies, all disagreement between
these two judges will be coded as monotonicity violations.

In Table B.5, I show the robustness of Table 2 to using leave-one-out stringency
measures. The estimates of monotonicity violations are slightly higher, as expected.
But the increases in the estimates are very small. The reason is that the leave-one-
out approach only changes my conclusions about monotonicity violations for judge

pairs with very similar stringencies, and I have few such instances in my data.
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B.4 Do Conventional Tests Detect the Monotonicity Violations?

The judge IV literature has proposed various tests of monotonicity. In this section,
I assess whether these tests are able to reject monotonicity in my settings. When
running the tests, I disregard the fact that all judges vote in all cases. I thus delete
the case identifier from my data set, treat each vote as an independent decision in a
randomly assigned case, and run standard tests of monotonicity from the judge IV
literature.®?

Several authors have noted that monotonicity implies that judges who are strict
in one case type must also be strict in other case types (Dobbie, Goldin, and Crystal
S Yang 2018; Bhuller, Dahl, et al. 2020). Bhuller, Dahl, et al. (2020) test this impli-
cation by running a standard first-stage IV regression on various subsamples where
the instrument—the judge’s incarceration rate—is calculated based on cases outside
of the subsample. Under monotonicity, these first-stage coefficients should be non-
negative for all subsamples. I present results from such a test in Table B.6. For the
Sao Paulo Appeal Court, I use the same subsamples as Bhuller, Dahl, et al. (2020):
drug-related crimes, property crimes, violent crimes, and economic crimes.®® For
the US Supreme Court, I use the subsamples of Fourth, Fifth, Sixth, Eighth, and

Fourteenth Amendment cases.®*

All estimates are highly statistically significant
and positive. In other words, judges that are strict in, say, drug-related crimes also
tend to be strict in other cases. And justices who tend to be strict when interpreting
one constitutional amendment also tend to be strict when interpreting other consti-
tutional amendments. This test is thus far from rejecting monotonicity.

Norris (2018) proposes a stronger version of this test: Assessing monotonicity
for individual judge pairs. For instance, if Judge A is stricter than Judge B in drug-
related cases, Judge A must also be stricter than Judge B in violent crime cases.

The Norris (2018) test can be implemented by running the regression

2] thus allow the same case to appear as multiple observations—one for each judge. An alterna-
tive approach is to keep one observation for each case—the vote of a randomly chosen judge. While
this approach would make the data closer to what is observed in judge IV designs, it will drastically
reduce the size of the data and introduce statistical noise, making it harder to detect monotonicity
violations.

63Using subsamples defined by specific crimes rather than broad crime types gives similar results.

64Using subsamples based on specific clauses of each amendment gives similar results. There are
not enough observations to do a meaningful subsample analysis for the Brazilian Superior Court.
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Dij = Za’ll [l < ]] +&ij
=1

on subsamples where the judges {1,2,...,m} are ordered by their overall stringen-
cies.®> Here, D; ; 1s an indicator for a pro-prosecution vote by judge j in case i,
and g;; is an error term. The coefficient «; captures the difference in the probabil-
ity of a pro-prosecution vote between the /th most lenient judge and the (/- 1)th
most lenient judge. Under monotonicity, «; should be non-negative for all / in all
subsamples. When there are multiple panels, there are two ways of implementing
this test. One approach is to define judge / as the /th most lenient judge in the panel
and run a pooled regression across all panels. In Tables B.7 and B.8, I show the
results from this full sample specification for the Sdo Paulo Appeal Court and the
US Supreme Court, respectively. Only two estimates are negative. For instance,
the estimates indicate that the sixth most lenient justice in the US Supreme Court
is more lenient than the fifth most lenient justice in Eighth Amendment cases. But
the negative estimates are not statistically significant, and the tests can not reject
monotonicity.

Another approach to this test is to run the test on one fixed panel. To maximize
statistical power, I run this test on the panel that decides the most cases together.%°
The outcome of this test is presented in Tables B.9 and B.10. In the Sao Paulo
Appeal Court, five out of 16 estimates are negative. But among the negative esti-
mates, none are statistically significant at the five percent level. In the US Supreme
Court, 13 out of 40 estimates are negative. Among the negative estimates, only one
is statistically significant at the five percent level: Justice Stevens—who is usually
stricter—is more lenient than Justice Ginsburg in Fourth Amendment cases. Taken
at face value, this estimate is evidence of monotonicity violations for this judge pair.

But if I take into account multiple testing—using the Wolak (1987) test of multiple

%Note that lenient-judge monotonicity can be tested by running the regression D; =+
2 a1 [l = jl+&;;D;j. Stringent-judge monotonicity and extreme-pair monotonicity can be tested
in similar ways. Since these conditions are weaker than Imbens-Angrist monotonicity, they are also
not rejected by such tests in my data.

%(One could run this test across all panels, not just the panels with the largest sample size. Doing
this, however, will only exacerbate the problem of multiple testing without adding much in terms of
statistical power—panels with fewer cases will inherently have much noisier estimates.
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inequality constraints—I can not reject that all coefficients are non-negative.

Finally, I implement the joint test of monotonicity and the exclusion restriction
proposed by B. Frandsen, L. Lefgren, and E. Leslie (2023). This test requires an
outcome variable. To simulate an outcome variable, I follow Section 5 of B. R.
Frandsen, L. J. Lefgren, and E. C. Leslie (2019) and assume a treatment effect of
one for cases satisfying monotonicity and a treatment effect of -1 for cases vio-
lating monotonicity. This case can be seen as a worst-case scenario of heteroge-
neous effects, where the consequences of monotonicity violations are most severe.
When implementing the B. Frandsen, L. Lefgren, and E. Leslie (2023) test, I need
to take into account that random assignment of “cases” only holds within judicial
panels.®” Similarly, in typical judge IV applications, randomization happens only
within courts. B. Frandsen, L. Lefgren, and E. Leslie (2023) provide two ways of
dealing with multiple such “randomization units”. The first approach is to assume
separable covariates, run the test on the full sample, and control for fixed effects
at the level of the randomization unit. In Table B.11, I show the results from this
test. The test rejects both in the US Supreme Court and in the Sdo Paulo Appeal
Court (p-value < 0.005). This rejection, however, does not mean that we can reject
monotonicity—it might be that the separable covariates assumption does not hold.%®
See Section B.4.1 below for a simple example where the test asymptotically rejects
even though monotonicity is satisfied.

The second approach to implementing the B. Frandsen, L. Lefgren, and E.
Leslie (2023) across randomization units is to run the test in each randomization
unit and then adjust for multiple testing. In Table B.12, I show the results from
implementing the B. Frandsen, L. Lefgren, and E. Leslie (2023) for the five panels
deciding most cases in the Sdo Paulo Appeal Court and in the US Supreme Court.
I also report the output of the test for the panels where the test is closest to rejec-
tion. Even without adjusting for multiple testing the p-values are far from reaching

conventional levels of statistical significance. Monotonicity can not be rejected.

6’Remember, I treat each vote as an independent decision in a randomly assigned case. This
hypothetical randomization is only valid within panels of judges deciding the same cases.

%8Indeed, the separable covariates condition of B. Frandsen, L. Lefgren, and E. Leslie (2023)
can not hold in these settings: The condition implicitly requires a full support assumption—that all
judges appear in all randomization units—which is violated.
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The graphical output of the test for the panels deciding most cases in each court is
presented in Figure B.1.

Overall, even though 35 percent of Sdo Paulo Appeal Court and 42 percent of
US Supreme Court cases violate monotonicity, none of the tests employed in the
literature reject monotonicity in neither court. The tests are not powerful enough
to detect the type of monotonicity violations observed in these settings under the
available sample sizes. Not rejecting monotonicity with these standard tests should

thus not be seen as strong evidence in favor of monotonicity.

B.4.1 Fixed Effects in the Frandsen et al. (2023) Test

B. Frandsen, L. Lefgren, and E. Leslie (2023) provide two ways to implement their
test across randomization units (e.g., across different courts where random assign-
ment of cases to judges only holds within courts). The first approach is to run the
test on the full sample and control for fixed effects at the level of the randomization
unit. This test relies on an additional separable covariates assumption.®” Thus, if
the test rejects, we can not conclude that monotonicity is violated. To illustrate this,
I here show a simple example where the test rejects even though monotonicity is
satisfied.

Assume there are two courts, Court 1 and Court 2, with two judges each. Cases
are only randomly assigned within courts. Judge A; and Judge B; are in Court 1,
and Judge A, and Judge B; are in Court 2. Assume the incarceration rate of Judge
A1 and A; equals a, and the incarceration rates of Judge B and B, equal b < a.
Assume monotonicity is satisfied. Thus, Judge A; and Judge A, have the same
propensity to incarcerate—even after controlling for court fixed effects. However,
the (residualized) expected outcomes differ between the two judges as long as the
local average treatment effect (LATE) differ across the courts.”’ Thus, if LATE dif-

®The separable covariates assumption again relies on an implicit full support assumption which
is violated unless all judges appear in all randomization units.

"0The residualized expected outcome for Judge A; equals E[Y | j= A -E[Y | j € {A,B}] =
ElYlj :AIJEE[YU =Bil  This expression equals the local average treatment effect (LATE) in Court 1
multiplied by “T_b. Similarly, the residualized expected outcome for Judge A, equals the LATE in
Court 2 multiplied by % Thus, the residualized expected outcomes in the two courts are equal if
and only if the LATE in Court 1 equals the LATE in Court 2.

19



fers between the two courts, the B. Frandsen, L. Lefgren, and E. Leslie (2023) test

will asymptotically reject monotonicity even though monotonicity is not violated.”!

Table B.6: Reverse-sample tests.

Dependent variable: Pro-prosecution vote

Panel A: Sao Paulo Appeal Court

Drug Property Violent Economic
crimes crimes crimes crimes

(1) (2) (3) 4)
Reverse sample 0.80 1.10 1.00 1.08
pro-prosecution tendency (0.04) (0.04) (0.08) (0.10)
Observations 1,975 1,950 745 290
R? 0.244 0.350 0.287 0.306

Panel B: US Supreme Court
4th Amd. 5th Amd. 6th Amd. 8th Amd. 14th Amd.

(1) (2) (3) 4) &)
Reverse sample 1.00 1.05 1.08 1.25 1.07
pro-prosecution tendency (0.03) (0.04) (0.04) (0.04) (0.04)
Observations 1,777 1,690 1,476 854 978
R? 0.372 0.424 0.416 0.492 0.410

Note: First-stage IV regressions for subsamples of cases of different categories. The instrument,
reverse sample pro-prosecution tendency, is the judge’s rate of pro-prosecution votes in cases not
of the indicated category. Unit of observation at the vote level. Panel fixed effects. Standard errors

clustered at the case level in parentheses.

"I'The B. Frandsen, L. Lefgren, and E. Leslie (2023) test (asymptotically) rejects if two judges

have the same stringencies but different average outcomes.
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Table B.7: The Norris (2018) test for the Sdo Paulo Appeal Court. Full sample

approach.
Dependent variable: Pro-prosecution vote.
Drug Property  Violent  Economic
crimes crimes crimes crimes
(1) (2) 3) “)
Judge 2 0.200 0.446 0.403 0.466
(0.041)  (0.034)  (0.064) (0.109)
Judge 3 0.208 0.092 0.054 0.103
(0.028)  (0.027)  (0.043) (0.084)
Judge 4 0.089 0.125 0.148 0.138
(0.025)  (0.024)  (0.040) (0.060)
Judge 5 0.119 0.085 0.054 —-0.001
(0.022)  (0.020)  (0.029) (0.063)
Observations 1,975 1,950 745 290
R? 0.271 0.367 0.307 0.359

Note: The Norris (2018) test. The judge [ estimate shows the difference in the rate of a pro-
prosecution vote between the /th most lenient judge and the (/- 1)th most lenient judge in the
panel. Columns 1-4 show results for the subsamples of drug-related, property, violent, and eco-
nomic crimes, respectively. Controlling for panel fixed effects. Unit of observation at the vote
level. Criminal appeals in the Sdo Paulo Appeal Court. Standard errors clustered at the case level in

parentheses.
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Table B.8: The Norris (2018) test for the US Supreme Court. Full sample approach.

Dependent variable: Pro-prosecution vote.

4th Amd. 5th Amd. 6th Amd. 8th Amd. 14th Amd.

(1) (2) (3) “4) )
Justice 2 0.045 0.127 0.006 0.063 0.037
(0.026) (0.033) (0.020) (0.033) (0.026)
Justice 3 0.216 0.111 0.133 0.095 0.193
(0.037) (0.037) (0.034) (0.046) (0.045)
Justice 4 0.241 0.169 0.170 0.084 0.028
(0.041) (0.044) (0.041) (0.045) (0.054)
Justice 5 0.146 0.259 0.309 0.568 0.294
(0.041) (0.042) (0.048) (0.052) (0.057)
Justice 6 0.040 0.069 0.042 -0.116 0.147
(0.038) (0.037) (0.044) (0.058) (0.053)
Justice 7 -0.015 0.016 0.018 0.053 0.009
(0.038) (0.031) (0.045) (0.067) (0.049)
Justice 8 0.121 0.085 0.061 0.147 0.083
(0.032) (0.027) (0.039) (0.045) (0.048)
Justice 9 0.071 0.011 0.125 0.019 0.073
(0.028) (0.023) (0.038) (0.034) (0.042)
Observations 1,777 1,690 1,476 854 978
R? 0.406 0.427 0.425 0.527 0.417

Note: The Norris (2018) test. The Justice [ estimate shows the difference in the rate of a pro-
prosecution vote between the /th most lenient justice and the (/ — 1)th most lenient justice. The iden-
tity of the /th most lenient justice might change as the composition of the Court changes. Columns
1-5 show results for the subsamples of Fourth, Fifth, Sixth, Eighth, and Fourteenth Amendment
cases, respectively. Controlling for panel fixed effects. Unit of observation at the vote level. US
Supreme Court cases about criminal procedure. Standard errors clustered at the case level in paren-
theses.
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Table B.9: The Norris (2018) test for the Sao Paulo Appeal Court. Restricted sam-
ple approach.

Dependent variable: Pro-prosecution vote.

Drug Property  Violent Economic

crimes crimes crimes crimes
(1) (2) 3) 4)
Ricardo Sale Junior -0.097 0.857 0.703 0.700

(0.136)  (0.046)  (0.086) (0.159)

Willian Campos 0.290 0.044 -0.162 0.200
(0.107)  (0.027)  (0.083) (0.139)

Claudio Marques —-0.032 0.022 0.216 -0.100
(0.110)  (0.016)  (0.089) (0.104)

Gilda Diodatti 0.097 —-0.011 0.027 0.200
(0.072)  (0.025)  (0.027) (0.139)

Observations 155 455 185 50
R? 0.071 0.740 0.447 0.577

Note: The Norris (2018) test for the five Sao Paulo Appeal Court judges deciding most cases to-
gether. In increasing stringency, these judges are Pocas Leitdo, Ricardo Sale Junior, Willian Cam-
pos, Claudio Marques, and Gilda Diodatti. The estimates show the difference in the rate of pro-
prosecution votes between the indicated judge and the judge ranked just below in stringency. The
estimate on Ricardo Sale Junior is thus the difference between Ricardo Sale Junior and Pocas Leitao,
the estimate on Willian Campos is the difference between Willian Campos and Ricardo Sale Junior,
and so on. Columns 1-4 show results for the subsamples of drug-related, property, violent, and
economic crimes, respectively. Unit of observation at the vote level. Criminal appeals in the Sao
Paulo Appeal Court. Standard errors clustered at the case level in parentheses.
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Table B.10: The Norris (2018) test for the US Supreme Court. Restricted sample
approach.

Dependent variable: Pro-prosecution vote.

4th Amd. 5th Amd. 6th Amd. 8th Amd. 14th Amd.

(1) (2) (3) “4) &)
Stevens -0.227 —-0.063 0.000 —-0.091 —-0.143
(0.115) (0.148) (0.108) (0.095) (0.279)
Souter 0.364 0.125 0.071 0.182 0.143
(0.126) (0.129) (0.131) (0.127) (0.279)
Breyer 0.227 0.188 0.429 -0.091 0.143
(0.115) (0.140) (0.142) (0.095) (0.279)
Kennedy 0.136 0.250 0.286 0.545 0.286
(0.122) (0.149) (0.130) (0.164) (0.198)
Scalia 0.182 0.187 -0.143 0.364 0.143
(0.109) (0.169) (0.148) (0.159) (0.279)
O’Connor —-0.182 —-0.062 0.071 -0.273 —-0.286
(0.109) (0.114) (0.202) (0.147) (0.306)
Thomas 0.091 0.063 -0.143 0.182 0.286
(0.093) (0.114) (0.213) (0.190) (0.306)
Rehnquist 0.045 0.063 0.286 0.000 -0.143
(0.046) (0.114) (0.169) (0.141) (0.279)
Observations 198 144 126 99 63
R? 0.378 0.390 0.424 0.596 0.252

Note: The Norris (2018) test for the nine justices deciding most cases together. In increasing strin-
gency, these justices are Ginsburg, Stevens, Souter, Breyer, Kennedy, Scalia, O’Connor, Thomas,
and Rehnquist. Only cases where all the nine justices vote. The estimates show the difference in
the rate of pro-prosecution votes between the indicated justice and the justice ranked just below in
stringency. The Stevens estimate is thus the difference between Stevens and Ginsburg, the Breyer
estimate is the difference between Breyer and Stevens, and so on. Columns 1-5 show results for the
subsamples of Fourth, Fifth, Sixth, Eighth, and Fourteenth Amendment cases, respectively. Unit of
observation at the vote level. US Supreme Court cases about criminal procedure. Standard errors
clustered at the case level in parentheses.
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Table B.11: The B. Frandsen, L. Lefgren, and E. Leslie (2023) test.

US Supreme Sao Paulo
Court Appeal Court

Fit-based p-value 0.001 0.000
Slope-based p-value 1.000 0.035
Combined p-value 0.003 0.000
Observations 13,564 6,530

Note: The B. Frandsen, L. Lefgren, and E. Leslie (2023) test under the assumption that covariates are
separable. Three knots in the quadratic spline specification of the relationship between the outcome
and the instrument propensity. Equal weight on the fit component and the slope component of the
test in the combined p-value. The treatment effect for cases satisfying (violating) monotonicity is
assumed to be one (-1). Unit of observation at the vote level.
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Table B.12: The B. Frandsen, L. Lefgren, and E. Leslie (2023) test.

Panel A: Sao Paulo Appeal Court

Panel closest

Panel 1 2 3 4 5 to rejecting
Fit-based p-value - - - - - -
Slope-based p-value 0.84 093 1.00 1.00 0.99 0.15
Combined p-value 1.00 1.00 1.00 1.00 1.00 0.30
Observations 1,125 455 445 435 390 115
Panel B: US Supreme Court

Panel closest
Panel 1 2 3 4 5 to rejecting
Fit-based p-value 0.70 0.13 059 0.19 0.38 0.88
Slope-based p-value 0.70 1.00 1.00 0.77 1.00 0.09
Combined p-value 1.o0 025 1.00 0.39 0.75 0.18
Observations 1,638 1,557 1,377 1,170 828 603

Note: The B. Frandsen, L. Lefgren, and E. Leslie (2023) test for the five panels deciding the most
cases together in the Sdo Paulo Appeal Court (Panel A) and the US Supreme Court (Panel B).
Three knots in the quadratic spline specification of the relationship between the outcome and the
instrument propensity. Equal weight on the fit component and the slope component of the test in the
combined p-value. The treatment effect for cases satisfying (violating) monotonicity is assumed to
be one (-1). Unit of observation at the vote level. The fit-based p-value for the Sdo Paulo Appeal
Court is missing since there are only five judges in the panel (allowing for a perfect fit). The panel
closest to rejecting is the panel with the lowest combined p-value among all panels deciding at least

20 cases.
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Figure B.1: The B. Frandsen, L. Lefgren, and E. Leslie (2023) test.

(a) Sdo Paulo Appeal Court (b) The US Supreme Court
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Note: The graphical output of the B. Frandsen, L. Lefgren, and E. Leslie (2023) test for the pan-
els deciding most cases together in the Sdo Paulo Appeal Court and the US Supreme Court. The
treatment effect for cases satisfying (violating) monotonicity is assumed to be one (-1). Three knots
in the quadratic spline specification of the relationship between the outcome and the instrument
propensity.
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C DMore on Panel Effects

C.1 Peer Effects in the Sao Paulo Appeal Court

Judges might decide cases differently in panels than alone. Indeed, there is a large
literature documenting that members of judicial panels tend to be influenced by their
peers (Revesz 1997; Peresie 2004; Sunstein et al. 2007; Cox and Miles 2008; Boyd,
Epstein, and Martin 2010; Kastellec 2013). In this section, I document similar peer
effects in the Sao Paulo Appeal Court.

To get a quick sense of peer effects in the Sdo Paulo Appeal Court, consider the
following numbers: The method of Fischman (2014) applied to the first vote in all
cases imples that two judges in the Sao Paulo Appeal Court should disagree in at
least 7% of cases.”> But when they vote together in the same panel, pairs of judges
disagree in only 0.6% of cases. These numbers suggest substantial dissent aversion.

Another way to document panel effects is to exploit that, in three-judge ap-
peals, the panel composition is randomly determined. For instance, consider the
15th criminal courtroom (15* Camara de Direito Criminal). In increasing order of
seniority, this courtroom consists of the judges Gilda Diodatti, Claudio Marques,
Ricardo Sale Junior, Willian Campos, and Pocas Leitdo. As explained in Section 3,
each case is randomly assigned to one judge (the relator), who writes a preliminary
opinion and votes first. Then, the two judges with seniority below vote. For in-
stance, in cases assigned to Judge Leitao, Judge Campos is the second-voting judge,
and Judge Sale Junior is the third-voting judge. The identity of the randomly as-
signed first-voting judge thus generates random variation in the panel composition:
For instance, Judge Sale Junior is randomly assigned to sit with either Judge Leitao
and Judge Campos (as a third-voting judge), Judge Campos and Judge Marques (as
a second-voting judge), and Judge Marques and Judge Diodatti (as a first-voting

judge). Under no peer effects, the identity of the other panel members should not

2Fischman (2014) noted that if Judge A votes pro-prosecution in 50% of cases, Judge B votes
pro-prosecution in 60% of cases, and cases are randomly assigned, the two judges must disagree in
at least 10% of cases. I focus on first votes since—as shown later in this section—they are close to
being unaffected by peer effects. To avoid overestimating stringency differences, I follow Copus and
Hiibert (Forthcoming) and use half the sample to determine the stringency order and the remaining
sample to estimate stringency differences given this ordering.
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matter for a judge’s vote. To test this prediction, I run the following regression:
dji = ji(i) + BP-ji+Eji 3)

Here, dj; is an indicator for judge j voting for the prosecution in case i, @jy(;
is a judge-by-year fixed effect, and p_;; is the sum of the stringencies of the two
other members of the panel. A judge’s stringency is measured by the judge’s rate of
pro-prosecution votes in cases where this judge votes first, leaving out the current
case.”? To avoid including substitute judges, I only keep observations from panels
that decide at least 100 cases together in the given year.

Under no panel effects, 8 = 0. This hypothesis is strongly rejected by the results
of estimating Equation 3, reported in Panel A of Table C.1. The Column 3 esti-
mate indicates that a 10 percentage points increase of a peer’s stringency increases
the probability of a pro-prosecution vote by 3.5 percentage points. The randomiza-
tion test in Table C.2 suggests that this result is not driven by panels with stricter
members being assigned different cases: Consistent with randomization, there is no
statistically significant correlation between the stringency of peers and observable
case characteristics.

Which of the three judges on the panel is most influential? To answer this ques-
tion, I exploit that judge absences—for instance, due to health reasons—generate
further variation in panel compositions. For instance, in February 2019, Pocas
Leitdo was away. This absence meant that Judge Sale Junior became the third judge
in cases assigned to Judge Diodatti—a stricter judge than Judge Leitdo.”* To assess
whether Judge Sales Junior is affected by the identity of the first-voting judge, we
can thus compare his votes as a third-voting judge in February to his votes as a

third-voting judge in the rest of the year. Formally, I run the following regressions:

dvi = @, (i)(i) T P2i t P3i+EL 4)

doi = @jy(ii(i) T P1it P3i+E2i )

3This measure is a good proxy for a judge’s true stringency since—as shown later in this
section—judges are only weakly influenced by their peers when they vote first.

74In parts of the month, Judge Leitdo was replaced by a substitute judge, creating further variation
in panel compositions.

29



Table C.1: Peer Effects

Panel A: Overall Peer Effects

Dep. Var.: Pro-prosecution vote

(1) (2) 3)
Stringency of peers 0.492 0.346 0.349
(0.018) (0.033) (0.034)
Judge x Year FE v v
Case controls v
Observations 906,729 906,729 906,729
R? 0.142 0.193 0.236

Panel B: Peer Effects By Vote Order

Dep. Var.: Pro-prosecution vote

First judge Second judge Third judge

(1 (2) 3)
First judge stringency 0.759 0.815
(0.058) (0.040)
Second judge stringency 0.073 0.061
(0.024) (0.024)
Third judge stringency 0.028 0.055
(0.018) (0.020)
Case controls v v v
Judge x Year FE v v v
Observations 368,474 368,477 368,517
R? 0.259 0.254 0.250

Note: Stringency of peers is the sum of the stringencies of the two other judges in the panel. A
judge’s stringency is measured as the judge’s rate of pro-prosecution votes in cases where the judge
votes first. Case controls are broad crime categories interacted with whether the prosecutor appealed.
Panel A uses only panels of judges that decide at least 100 cases in the given year. Unit of observa-
tion at the vote level in Panel A and at the case level in Panel B. Sdo Paulo criminal appeals decided
by three-judge panels. Standard errors clustered at the judge level in parentheses.
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Table C.2: Randomization Test

Dependent variable:

Stringency of Peers Pro-Prosecution Vote
Coef. (se) Coef. (se)

Drug-Related Crime 0.001 (0.001) —-0.0002 (0.008)
Violent Crime 0.0001 (0.001) 0.024 (0.004)
Economic Crime 0.0002 (0.001) -0.059 (0.008)
Property Crime 0.0005 (0.001) -0.007 (0.005)
Prosecutor Appealed 0.001 (0.001) -0.315 (0.009)
Drug-Related Crime X Prosecutor Appealed  —0.0002  (0.002) 0.042 (0.011)
Violent Crime X Prosecutor Appealed —0.002 (0.001) —0.063 (0.008)
Economic Chime X Prosecutor Appealed 0.001 (0.002) 0.022 (0.009)
Property Crime X Prosecutor Appealed 0.0003 (0.001) 0.075 (0.007)
F-statistic 1.37 280.95
p-value of F-statistic 0.208 0
Observations 906,729 906,729
R? 0.918 0.230

Note: Sao Paulo criminal appeals decided by three-judge panels. Unit of observation at the vote
level. Stringency of peers is the sum of the stringencies of the two other judges in the panel. A
judge’s stringency is measured as the judge’s rate of pro-prosecution votes in cases where the judge
votes first. The excluded crime type is “other crimes”. Including only observations with panels of
judges that decide at least 100 cases together in the given year. Standard errors clustered at the judge
level.
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Table C.3: Randomization Test

Dependent variable:

First Judge Second Judge Third Judge
Stringency Stringency Stringency
Drug-Related Crime 0.0001 -0.001 0.001 0.001 0.0003 —-0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Violent Crime —-0.0004  —0.00001 0.001 0.0001 —-0.001 —-0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Economic Crime 0.00004 0.001 0.001 0.001 —-0.001 —-0.0002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Property Crime —-0.0004 -0.001 0.001 0.001 —-0.0002  -0.0005
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Prosecutor Appealed 0.002 0.003 0.0001 —0.001 —-0.002 —-0.002
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Drug-Related Crime —-0.001 0.001 —-0.001 0.0004 0.003 0.002
X Prosecutor Appealed (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Violent Crime -0.002 —-0.001 —-0.001 0.0003 0.001 0.001
X Prosecutor Appealed (0.002) (0.002) (0.001) (0.001) (0.002) (0.001)
Economic Crime —-0.003 —-0.003 0.001 0.0002 0.003 0.0002
X Prosecutor Appealed (0.001) (0.002) (0.001) (0.002) (0.002) (0.001)
Property Crime —-0.002 —-0.002 —-0.001 0.0001 0.002 0.002

X Prosecutor Appealed (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

First Judge x Year FE Yes Yes

Second Judge X Year FE Yes Yes
Third Judge x Year FE Yes Yes

F-statistic 2.12 2.00 0.73 1.07 2.13 1.24
p-value of F-statistic 0.032 0.044 0.683 0.391 0.031 0.277
Observations 368,520 368,520 368,517 368,517 368477 368,477

Note: S@o Paulo criminal appeals decided by three-judge panels. Unit of observation at the case
level. A judge’s stringency is measured as the judge’s rate of pro-prosecution votes in cases where
the judge votes first. The excluded category is “other crimes”. Standard errors clustered at the judge
level in parentheses. 32



d3i = Qi) T P1i+ P2i +HE3i (6)

Here, dy; is an indicator for the kth judge voting for the prosecution in case i,
Pii 18 the stringency of the kth judge in case i, and aj, (;);(;) are kth-judge-by-year
fixed effects. Equation 4 thus assesses how a given first-voting judge responds to
being in panels with different second-voting and third-voting judges throughout a
given year.

This specification relies on the following identification assumption: The changes
in the stringencies of peers generated by judge absences are uncorrelated with case
characteristics. Random assignment of cases is not sufficient for this identification
assumption to hold since the composition of cases could change over the year. The
condition would be violated if, for instance, the most stringent judges tended to
be more absent in months with weaker appeals. The condition can, however, be
tested on observable case characteristics. In Table C.3, I show the results of such a
test. Indeed, changes in the stringencies of peers generated by the absences are not
statistically related to observed case characteristics.

The results from estimating Equations 4—6 in Panel B of Table C.1 indicate
that the first-voting judge is the most influential judge. For instance, Column 2
indicates that a ten percentage point increase in the stringency of the first-voting
judge increases the rate of pro-prosecution votes by the second-voting judge by 7.6
percentage points. In comparison, increasing the stringency of the second-voting
judge by ten percentage points only increases the rate of pro-prosecution votes by
the first-voting judge by only 0.7 percentage points. The third-voting judge appears
to be the least influential judge. These results suggest that the first-voting judges
tend to vote according to their own preferences while the second and third judges

tend to vote according to the first judge’s vote, perhaps due to dissent aversion.

C.2 Assumption 3 and the Fischman (2011) Model

In this section, I show that there are reasonable parameter values in the Fischman
(2011) model of panel effects under which Assumption 3 is satisfied. To see this,
consider the calibrated parameter values (p. 796) for the three judges deciding

most cases in Fischman (2011)’s data: Judge Brunetti, Judge Fernandez, and Judge
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Schroeder. Under these parameter values, the model predicts that, in individual
decisions, the judges disagree in ways satisfying (violating) monotonicity in 22%
(6%) of cases.”” But when deciding cases together in a panel, they disagree in ways
satsifying (violating) monotonicity in 0.75% (0.26%) of cases. Assumption 3 is

thus very close to being satisfied:

14 14
Pr(S” €S,] _ 0.26% _ a3y 0-75% _Pr[S? € S)]
Pr(SeS,] 6% 2%  Pr[SeS]

With minor changes in the parameter values, Assumption 3 can be made to hold
exactly. This example shows that there are reasonable parameterizations of the
Fischman (2011) model under which Assumption 3 holds. Whether Assumption 3

holds in practice is ultimately an empirical question, which I address in Section 5.3.

C.3 Testing Assumption 4

In Section C.1, I documented strong peer effects among the three first-voting judges
in Sao Paulo criminal appeals. In particular, if Judge A and Judge B vote first,
Judge B has a very strong tendency to follow A’s vote. Assumption 4 in Section
5.3 assumed there is no such influence when Judge A and B are the two last-voting
judges in five-judge cases. I test Assumption 4 here.

In particular, I run similar peer effects regressions as in Section C.I to test
whether the fifth judge’s vote is influenced by the stringency of the fourth-voting
judge.”® Column 1 of Table C.4 shows the result of regressing the fifth judge’s

vote on the fourth judge’s stringency in five-judge cases controlling for year fixed

75These numbers are estimated by drawing 1,000,000 cases from the model.

76The last two judges could, of course, also be influenced by the three first-voting judges. But
such influence would be less concerning for the Section 5.3 analysis since it can be thought of as
“external” influence affecting both judges. Such influence would be similar to how precedents—
decisions by other judges in other cases—influence all judges, a type of peer influence that exists
also in settings where judges decide cases individually. Empirically identifying the influence of the
three first-voting judges would also be challenging since these judges determine which cases end
up in the sample of five-judge cases. I thus focus on the fourth judge’s influence on the fifth judge.
Note that there might also be peer effects in the other direction: the fourth judge being influenced
by the fifth judge. But the Section C.1 evidence suggests that the influence of later-voting judges on
earlier-voting judges is very limited.
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Table C.4: Peer Effects Between The Fourth- and Fifth-Voting Judge

Dep. Var.: Fifth judge
pro-prosecution vote

) 2) 3)

Fourth-judge stringency 0.011  0.019 0.036
(0.066) (0.067) (0.082)
Year FE Yes Yes Yes
Controlling for crime type No Yes Yes
Controlling for stringency of first three judges No No Yes
Observations 1,261 1,261 1,261

Note: Sao Paulo criminal appeals decided by five judges. The outcome variable is whether the
fifth-voting judge votes in favor of the prosecution. The crime types are economic crimes,
drug-related crimes, violent crimes, property crimes, and other crimes. Fourth-judge stringency is
the fourth-voting judge’s rate of pro-prosecution votes in cases where that judge votes first.
Standard errors in parentheses.

effects.”’

Consistent with no peer effects, the estimated coefficient is small and statis-
tically insignificant. This estimate should, however, be interpreted with caution.
While initial appeals are randomly assigned to first-voting judges, the selection into
five-judge cases depends on the first three judges. If the stringency of the fourth-
voting judge is correlated with the types of cases the preceding three judges tend to
“transform” into five-judge cases, the peer effect estimate might be biased. Indeed,
in Table C.5, Column 1, I show that five-judge cases about property crimes tend to
have more lenient fourth-voting judges than other cases.”® In an effort to control
for this selection, I add controls for the stringencies of the three first-voting judges.

When rerunning the balance test in Column 2, I can not reject that five-judge cases

7TThe identifying assumption is that the fourth-voting judge’s stringency is uncorrelated with
other factors determining the fifth judge’s vote conditional on the controls. This specification is
weaker than the Section C.1 specifications (Equations 4—6) since, due to insufficient variation in the
data, I am unable to control for fifth-voting judge fixed effects. But the identifying assumption can
still be tested on observable case characteristics (see Table C.5).

78The Table C.3 balance test also included whether the appeal was filed by a prosecutor. This
covariate is not included in Table C.5 since who filed the initial appeal is not easily extracted from
five-judge cases.

35



Table C.5: Randomization Test for Peer Effects Between Fourth and Fifth Judge

Dep. Var.: Fourth
judge stringency

(1 (2)
Drug-related crimes 0.005 0.014
(0.16) (0.013)
Violent crimes -0.011  0.010
(0.20) (0.017)
Economic crimes -0.033  -0.008
(0.030) (0.024)
Property crimes -0.065  -0.006
(0.016) (0.013)
Year FE Yes Yes
Controlling for stringency of first three judges No Yes
F-statistic 7.07 0.84
p-value of F-statistic 0.00 0.50
Observations 1,261 1,261
R? 0.10 041

Note: Sao Paulo criminal appeals decided by five judges. The outcome variable is the stringency of
the fourth-voting judge. A judge’s stringency is measured as the judge’s rate of pro-prosecution
votes in cases where the judge votes first. Standard errors in parentheses.
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are as good as randomly assigned to fourth-voting judges conditional on the strin-
gencies of the three first-voting judges. In Columns 2 and 3 of Table C.4, I run
updated peer effect regressions while controlling for crime type and the three first-
voting judges’ stringencies, respectively. The estimate changes only marginally. In
these more credible specifications, I can also not reject the hypothesis of no peer
effects.

The point estimates suggest very low levels of peer effects. Specifically, the
Column 3 estimate indicates that a ten percentage point increase in the stringency
of the fourth-voting judge raises the likelihood of a pro-prosecution vote by the
fifth-voting judge by only 0.36 percentage points. In contrast, peer effects between
the two first-voting judges are several magnitudes larger. The estimate in Table C.1
shows that a ten percentage point increase in the stringency of the first-voting judge
increases the likelihood of a pro-prosecution vote by the second-voting judge by
7.6 percentage points. Put differently, the point estimates suggest that voting after
a dissent eliminates approximately 95% of peer effects (1 —0.36/7.6). As noted in
Footnote 43, such small remaining peer effects would not affect the conclusion that

Assumption 3 is likely close to being satisfied.

C.4 Testing Assumption 5

Assumption 5 requires that the selection of cases into the five-judge sample is un-
correlated with monotonicity violation rates. I test this assumption here.

To derive a formal test, let’s first state the general version of Assumption 5.7
Redefine T to indicate whether there is a dissenting opinion and a majority vote
against the defendant among the randomly assigned three first-voting judges.®’ Let
G be whether the fourth- and fifth-voting judges would disagree with each other
if they get a chance to vote, and let M be whether such a disagreement violates

monotonicity.®! The general version of Assumption 5 is then

79 Assumption 5 is stated only for one pair of judges—“Judge 1” and “Judge 2”. Assumption C.1
below generalizes Assumption 5 to cases with any fourth- and fifth-voting judges. It is straightfor-
ward to show that a similarly generalized version of Proposition 3 holds under Assumption C.1.

807 e., the condition under which the case enters the five-judge sample.

81 Assumption 5 was stated in terms of the fourth- and fifth-voting judges’ decisions absent panel
effects. But under Assumption 4 these decisions are identical to how they would decide as fourth-
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Assumption C.1 (Selection orthogonal to monotonicity).
T1M|G

Since the three first-voting judges are randomly assigned, whether a given case
enters the five-judge sample is non-deterministic. To model this, let X be a vector
representing all case characteristics relevant to the judges’ decisions, and let g (x) >
0 denote the probability that a case with characteristics X = x enters the five-judge
sample.®> Whether the case actually ends up in the sample depends on the randomly
assigned first three judges and their idiosyncrasies.®’ Define Q = ¢ (X). Assume
that, conditional on Q, the selection into the five-judge sample is independent of the

direction in which the fourth- and the fifth-voting judges would disagree:

Assumption C.2 (Selection orthogonal to monotonicity conditional on Q ).
T 1LM|G,Q

This is a relatively mild assumption. Random judge assignment ensures that 7" is
independent of observable and unobservable case characteristics once we condition
on Q. Assumption C.2 could still be violated if the monotonicity violation rates
of fourth- and fifth-voting judges are systematically correlated with the three first-
voting judges’ tendency to generate five-judge cases. But any such correlation is
likely minimal since the fourth and fifth judges are exogenously determined by the
seniority order, with the exact voting order often dictated by small differences in

seniority.** Empirically, I find no evidence of such a correlation when using my

and fifth-voting judges.

82 All cases are thus assumed to have a non-zero probability of entering the five-judge sample. If
the probability is exactly zero for some cases, the analysis below applies only to the subset of cases
with a non-zero probability.

83Other idiosyncratic factors, such as the time of day and judges’ attentiveness, can be thought of
as additional sources of quasi-random variation in selection.

84See Section 3. The median gap between appointment dates for judge pairs in the same court-
room with consecutive seniority ranks is just 1.2 years. A quarter of these pairs were appointed
less than four months apart. Newly appointed judges are assigned to courtrooms based on vacancies
created by the retirement of existing judges. There is little overall correlation between seniority and
monotonicity violations (see Section D.3).
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estimated monotonicity violation rates.®’
Under Assumption C.2, we can evaluate Assumption C.1 by testing whether
Q is uncorrelated with monotonicity violations in the sample of five-judge cases

where the last two judges disagree:

Assumption C.3 (Montonicity orthogonal to selection probability).
M1Q|GT=1

Proposition C.1. Assumptions C.2 and C.3 imply Assumption C.1.

Assumption C.3 requires that the probability that a case enters the five-judge
sample is independent of the direction in which judges disagree. This assumption
can be tested by running the following regression on the sample of five-judge cases

where the fourth and the fifth judge disagree:

m; =a+pq;+&; @)

where m; and g; are realizations of M and Q, respectively. Assumption C.3 requires
that 5 =0.

Since Q cannot be directly observed, I estimate it using observable character-
istics. A key advantage of my setting for this exercise is access to highly detailed
case information, including the full trial court decision from Tribunal de Justica de
Sdo Paulo (2022) and a summary of the appeal arguments.®® These features cap-
ture nearly all case characteristics that are observable to the judges. Unobservable

characteristics that significantly influence selection are thus unlikely.®’

85In an OLS regression, a one standard deviation increase in the tendency of the three first-voting
judges to generate five-judge cases is associated with a 1.3 percentage point lower estimated mono-
tonicity violation rate for the last two judges. This correlation is not statistically significant.

86The median trial judge’s decision is 10,000 characters long and contains a detailed description of
the facts of the case and the judge’s justification of their decision. The median summary of the appeal
arguments is 1,600 characters long and contains the key arguments made by both the defendant’s
lawyer and the prosecutor. This summary is extracted from the opinion of the first-voting judge.

87The key unobservable characteristics are the lawyers’ arguments that are not included in the
first-voting judge’s summary. But it seems unlikely that arguments deemed irrelevant to the case by
the first-voting judge would be an important predictor of selection into the five-judge sample. In any
case, such unobservables would only pose a problem if they also are strongly correlated with mono-
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I estimate Q using a gradient-boosted decision tree model (XGBoost) with the

following features:®®

narrow crime types, 300-dimensional document embeddings
of the trial court decision and appeal arguments, trial court opinion length (in char-
acters), indicators for missing documents, and indicators for whether the prosecutor
appealed and whether the trial judge convicted the defendant.®® I train the model
on 40% of all Sao Paulo criminal appeals (N = 147,732) and predict Q in the re-
maining 60% test sample. Equation 7 is then estimated on the five-judge cases in
the test sample. I also estimate a model where Q is proxied by the share of cases
with the same crime type that enters the five-judge sample.

The results are presented in Table C.6.°° For the specification using all fea-
tures, in Column 35, a one standard deviation increase in the propensity of entering
the five-judge sample is associated with a 1.3 percentage point higher monotonicity
violation rate. Consistent with Assumption C.3, this correlation is small and statis-
tically insignificant. Cases more likely to select into the five-judge sample do not
seem to violate monotonicity at very different rates than cases less likely to enter
the sample.

To assess how the estimated correlation would affect the monotonicity viola-
tion rate, I calculate a reweighted monotonicity violation rate, where a case pre-
dicted to enter the five-judge sample with probability Q = g receives weight pro-

portional to 1/g. The resulting rate gives the monotonicity violation rate in the

tonicity violations—which also seems unlikely given that (as documented in Table C.6) there is no
such correlation between observable characteristics determining selection into the five-judge sam-
ple and monotonicity violations. Unobservable characteristics that moderately affect selection or
are only moderately correlated with monotonicity violations will not change the broad conclusions
of the paper. For example, suppose the defendant’s lawyer delivers an exceptionally strong perfor-
mance during the oral hearing in 10% of cases, increasing the likelihood of the case being included
in the five-judge sample by 40%. Even if these cases violate monotonicity at a rate 50% higher than
other cases, the resulting bias in the monotonicity violation rate is still only 10% % 40% % 50% = 2%
(i.e., 0.0024 if the true monotonicity violation rate is 0.12).

881 select hyperparameters using 3-fold cross-validation with ROC AUC as the scoring metric.

8For the document embeddings, I use a TF-IDF weighted average of FastText word embeddings.
This approach assigns higher importance to case-specific terms—those frequently appearing in cer-
tain decisions but not across all cases—while preserving semantic relationships between words. I
select the 5,000 most important tokens.

“Note that the accuracies of the predictions of selection into the five-judge sample are only
moderate, with an AUC of 0.73 for the full model. This is expected since an important explanator
of the selection, the randomly assigned three first-voting judges, is not included.
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Table C.6: Testing Assumption 5

Dep. Var.: Monotonicity violation

Baseline (D) (2) 3) 4) (5)

Five-judge propensity (normalized) 0.001  0.003 -0.018 0.021 0.013
(0.015) (0.014) (0.013) (0.017) (0.022)

Observations 557 320 320 320 320
AUC-ROC of prediction 0.61 0.60 0.58 0.73
Reweighted monotonicity violation rate 0.12 0.12 0.12 0.13 0.10 0.11
XGBoost Yes Yes Yes Yes
Features used
Narrow crime type Yes Yes Yes Yes Yes
Additional case data Yes Yes Yes
Trial court decision embeddings Yes Yes
Appeal arguments embeddings Yes

Note: Results from estimating Equation 7 using different estimates of Q. S3o Paulo criminal

appeals decided by five-judge panels where the fourth and the fifth judge disagree. The five-judge
propensity is the case’s predicted probability of entering the five-judge sample based on the
indicated observable characteristics. Columns 2—5 estimate this propensity using XGBoost, trained
in a 40% holdout sample with hyperparameters selected via 3-fold cross-validation. The
AUC-ROC metric assesses the accuracy of these predictions. Column 1 estimates the propensity by
the proportion of cases within the same narrow crime category that enter the five-judge sample.
The dependent variable is whether, between the fourth and fifth judges, the otherwise most lenient
judge is the strictest in the case. The reweighted monotonicity violation rate is the
inverse-propensity-weighted share of disagreements between the fourth and the fifth judge that
violate monotonicity. Baseline shows the unweighted monotonicity violation rate. Additional case
data are trial court opinion length (in characters) and indicators for whether the prosecutor
appealed and whether the defendant was convicted by the trial judge. Trial court decision and
appeal argument embeddings are TF-IDF weighted averages of 300-dimensional FastText word
embeddings. Indicators for missing documents are included in Columns 4 and 5. Bootstrapped
standard errors in parentheses.
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Figure C.1: Monotonicity Violations and Selection Into Five-Judge Cases

(a) Monotonicity violations between the fourth and the fifth judge
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Note: The relationship between estimated monotonicity violations and the overrepresentation in
five-judge cases across crimes in Sdo Paulo criminal appeals. Crimes that appear in more than
1,000 cases. The five-judge overrepresentation of a crime is the share of five-judge cases discussing
the crime divided by the share of all cases discussing the crime. The estimated monotonicity
violation rate is the share of disagreements in cases about the given crime where the otherwise
strictest judge is most lenient. Figure (a) estimates this rate among the two last-voting judges in
five-judge appeals. Figure (b) estimates the rate among the three first-voting judges. 95%
confidence intervals. The red lines show the Equation 7 estimated linear fits.
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full—unselected—sample of criminal appeals, if Assumption C.2 holds and Q is
correctly estimated. The reweighted monotonicity violation rate is 0.11, marginally
lower than the unweighted rate at 0.12.°" This result suggests that the monotonicity
violation rate is close to unaffected by selection effects. I obtain similar results for
the other ways of estimating Q in Columns 1-4.

The results from the Column 1 exercise is presented graphically in Figure C.1.
The x-axis shows the five-judge overrepresentation for crimes appearing in at least
1,000 cases, estimated by dividing the share of five-judge cases involving the crime
by the share of all cases involving the crime.”” Statutory rape is the most overrepre-
sented, appearing nearly four times more often in five-judge cases than in all cases,
while domestic violence is the most underrepresented, appearing five times less
often. The y-axis of Figure C.la shows the estimated monotonicity violation rate
for each crime based on the votes of the fourth and fifth judges. Consistent with
Assumption 5, there appears to be no systematic relationship between a crime’s
five-judge overrepresentation and its monotonicity violation rate. For example, the
monotonicity violation rates for statutory rape and domestic violence cases are sta-
tistically indistinguishable. The same holds true when I estimate monotonicity vio-
lation rates using the votes of the first three judges in Figure C.1b.%3

Overall, the evidence presented in this section suggests that Assumption 5 is
close to satisfied. While Assumption 5 might not hold exactly, small deviations

from it would not substantially affect the broad conclusions of the paper.”*

C.5 Testing Assumption 3 on Observable Case Characteristics

Monotonicity can not be directly measured in standard judge IV settings where

cases are randomly assigned to individual judges. But one can obtain a lower bound

9IThe unweighted rate at 0.12 differs from the Table 3 estimate because that table reports a
weighted mean across judges.

9The five-judge overrepresentation is a linear transformation of the five-judge propensity that is
easier to interpret.

93Using the first three judges increases precision at the cost of potential bias due to panel effects.

%For instance, if the cases that enter the five-judge sample violate monotonicity at a rate 10%
lower than the overall rate, a monotonicity violation rate of 0.12 in the five-judge sample implies a
monotonicity violation rate of 0.12/0.9 = 0.13 in the full sample.
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of monotonicity violations by exploiting observable case characteristics (Norris
2018). For instance, assume Judge 1 (Judge 2) incarcerates in 50% (70%) of vi-
olence cases and 60% (50%) of drug-related cases in individual decisions. If Judge
2 is overall the strictest judge, then monotonicity must be violated in at least 10%
of drug-related cases. Similarly, the two judges must disagree in a way that satisfies
monotonicity in at least 20% of violence cases.

If Assumption 3 holds, we would expect it to also hold on such “observable”
disagreements. For instance, assume that, when deciding together in a panel, Judge
1 (Judge 2) incarcerates in 55% (65%) of violence cases. Due to panel effects, their
stringency difference in violence cases is halved. If panel effects reduce disagree-
ments violating monotonicity at the same rate as disagreements satisfying mono-
tonicity (Assumption 3), we would expect the stringency difference to be halved
also in drug-related cases.” In this section, I test whether such an “observable”
analog to Assumption 3 holds in my data.

To formalize this test, let the random variable C € C denote an observable “case
type” (e.g., crime type).”® Denote by C, C C the case types violating monotonic-

ity.”” Define observable disagreements violating monotonicity by
dv, =E[S(1)-S5(2)|CeC,]Pr[CeC]

This parameter—discussed by Norris (2018)—uses observable case character-
istics to obtain a lower bound of monotonicity violations. It is a lower bound for
two reasons. First, Judge 1 might be stricter than Judge 2 also in some C ¢ C, cases.
Second, Judge 2 might be stricter than Judge 1 also in some C € C, cases, in which
case the stringency difference E[S (1) —S(2) | C € C,] underestimates the share of

C € C, cases that violate monotonicity.”® The magnitude of such “unobservable”

%This could be obtained by, for instance, Judge 1 (Judge 2) incarcerating in 57.5% (52.5%) of
drug-related cases.

%Such a case type could be determined by any vector of fixed observable characterstics of the
case. But due to statistical power issues, I will stick to relatively broad case categories in the empir-
ical tests.

9TThe case types where the overall strictest judge is more lenient.

%In the motivating example, if Judge 2 is strictest in 5% of drug-related cases, Judge 1 must be
strictest in 15% of drug-related cases for their stringency difference in drug-related cases to be 10%.
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monotonicity violations is given by:*’
dy, =Pr[S(1)>8(Q2),C¢C,]+Pr[S(2)>S5(1),CeC)]

For instance, assume monotonicity holds conditional on crime type and defen-
dant gender, but gender is unobserved. Then d,, are the monotonicity violations
along the unobserved gender dimension. Finally, define observable disagreements

satisfying monotonicity by
dso EE[S(Z)_S(l) | CQCv]Pr[Cﬁcv]

Let db,, d¥,, and d%, be the corresponding variables when the judges decide
cases in a panel (replacing S with S”). The observable analog to Assumption 3 is
then:

Assumption C.4 (Panel effects reduce observable disagreements satisfying and vi-

olating monotonicity at the same rate.).

dvo _ dso
dVO dSO

Assumption C.4 holding can be thought of as suggestive evidence in favor of
Assumption 3. It is only suggestive since panel effects might influence unobserv-

able disagreements at a different rate. Formally:

Proposition C.2. Assume d’,/d,, = d’,/d,,. Then Assumption 3 holds for Judges
1 and 2 if and only if Assumption C.4 holds.

The condition d’,/d,, = d’,/d,,—panel effects reducing observable and un-
observable monotonicity violations at the same rate—while a natural condition, is
hard to test. But unless the influence of panel effects on unobservable monotonic-
ity violations is very different, Assumption C.4 holding would at least suggest that

Assumption 3 is not grossly violated.'%

% As shown in the proof of Proposition C.2, d,,, =Pr[S (1) > S (2)] = d,0.
10For instance, if Assumption C.4 holds but d%,/d,, deviates 10% from d?,/d,,, the rates at
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To test Assumption C.4, I exploit that first-voting judges in the Sdo Paulo Ap-
peal Court are close to unaffected by panel effects (see Section C.1). The votes
of first-voting judges are thus a good proxy for how these judges would decide
cases had they decided them individually. Since the first-voting judge is randomly
determined, I can thus estimate the stringency difference between judge pairs in
all case types both in a setting where they decide cases “individually” and when
they decide together in the same judicial panel. For instance, I can estimate the
“individual-decisions” stringency difference between Judge 1 and Judge 2 in vio-
lence cases by comparing their tendencies to favor the prosecution as first-voting
judges in violence cases. To measure the influence of panel effects, I can compare
this stringency difference to the stringency difference between the same two judges
in violence cases they decide together as a panel.

As observable case characteristics, I use broad crime categories—drug-related
crimes, economic crimes, property crimes, violent crimes, and other crimes—and
whether the prosecutor appealed.'®! T exclude judge pairs where one judge decides
less than 1,000 cases.'" To avoid overestimating the share of cases violating mono-
tonicity, I use a split-sample approach:'%® First, I estimate the judges’ stringency
order in one-half of the data (training sample). Then, I estimate the share of cases
violating monotonicity, given this stringency order, in the remaining half (hold-
out sample). For instance, suppose that, in the training sample, Judge 2 is overall
stricter than Judge 1 but more lenient in drug-related cases. The estimated share of
drug-related cases violating monotonicity is then Judge 1’s stringency minus Judge
2’s stringency in drug-related cases in the hold-out sample.'®* While the naive ap-

proach tends to overestimate monotonicity violations, the split-sample approach is

which panel effects reduce disagreements violating and satisfying monotonicity can be shown to also
differ by around 10%. I discuss the consequences of such moderate deviations from Assumption 3
in the next subsection.

1017 obtain similar results using only broad crime categories in Table C.S8.

102Judges deciding few cases induce noise, which tends to bias downwards the disagreement and
monotonicity violation estimates.

103Copus and Hiibert (Forthcoming) use a similar approach to bound disagreements across judges.

1041f Judge 2 is strictest also in drug-related cases in the training sample, the share of drug-related
cases violating monotonicity is estimated to be zero. I exclude observations where the two judges
are equally strict in the training sample.
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Table C.7: Influence of Panel Effects on Observable Monotonicity Violations

Individual decisions Panel decisions

(D (2)
Observable disagreements 0.12 0.0068
satisfying monotonicity (dy,) (0.0015) (0.0004)
Observable disagreements 0.0048 0.00023
violating monotonicity (d,,) (0.0006) (0.00012)
Observable monotonicity violation rate 0.039 0.033
(0.004) (0.014)

Note: Lower bound estimates of disagreements and monotonicity violations based on observable
case characteristics. Using broad crime types—violent crimes, property crimes, drug-related crimes,
economic crimes, and other crimes—and whether the prosecutor appealed as case characteristics.
The stringency order of the judges in each case type is estimated in half the sample (training sample).
The lower bound disagreement rates based on this stringency order are estimated in the remaining
half (hold-out sample). If Judge A is stricter than Judge B in a given case category in the train-
ing sample, the observable disagreement in such cases is Judge A’s stringency minus Judge B’s
stringency in the hold-out sample. If Judge A is overall stricter (more lenient) than Judge B in
the training sample, these observable disagreements count as observable disagreements satisfying
(violating) monotonicity. The observable monotonicity violation rate equals the ratio between ob-
servable monotonicity violations and observable disagreements. Keeping only judges with at least
1,000 cases in the training sample. Column 1 is based on first-voting judges in Sdo Paulo crimi-
nal appeals. Column 2 is based on votes by judge pairs appearing in the same panel in Sdo Paulo
criminal appeals. Bootstrapped standard errors clustered at the case level in parentheses.
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conservative.'?

I estimate observable disagreements satisfying monotonicity—the lower bound
of the share of cases where a given judge pair disagrees in a way that satisfies
monotonicity—in a similar way. Finally, I estimate the lower bound of the mono-
tonicity violation rate as the estimated observable monotonicity violations divided
by the sum of the estimated observable disagreement rates.'’® To assess how panel
effects influence observable monotonicity violations, I compare these estimates to
similar estimates of observable disagreements among judges appearing in the same
panel.'?’

The results are presented in Table C.7. In individual decisions—as proxied by
the decisions of first-voting judges in Column 1—observable disagreements satis-
fying (violating) monotonicity are estimated to sum to 12% (0.48%) of all cases,
giving an observable monotonicity violation rate of 3.9%.

In Column 2, I consider the same judges when they appear together in a panel.
Due to panel effects, measured disagreements are substantially reduced: Observ-
able disagreements satisfying monotonicity are reduced to 0.7%, and observable
monotonicity violations to 0.02%. But panel effects are estimated to reduce ob-
servable disagreements satisfying and violating monotonicity at very similar rates:
db,/ds, = 0.0068/0.12 = 0.056 and d%,/d,, = 0.00023/0.0048 = 0.048. Assump-
tion C.4 thus appears to be nearly satisfied. As a consequence, the observable
monotonicity violation rate ends up being very similar in panels as in individual de-
cisions. Unless panel effects influence unobservable monotonicity violations very

differently, these results suggest that Assumption 3 is also close to being satisfied.

105For instance, if Judge 2 and Judge 1 are equally strict in drug-related cases, the naive approach
leads, in expectation, to a positive estimated share of drug-related cases violating monotonicity for
this judge pair: Due to statistical noise, Judge 1 will in 50% of samples appear stricter than Judge
2. But the split-sample estimator is unbiased when the judges are equally strict in drug-related cases
and downward biased otherwise.

106See Appendix C.6 for why this ratio identifies a lower bound of the monotonicity violation rate.
The direction of the estimator’s finite sample bias is, however, unclear.

107For instance, for Judge 2 and Judge 1, I first collect all appellate decisions where these two
judges are both part of the panel. I then delete the case identifier and apply the same method as
when calculating observable monotonicity violations in the single-judge decisions.
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Table C.8: Robustness of Table C.7 to Using Only Broad Crime Categories

Individual decisions Panel decisions

(1) (2)
Observable disagreements 0.11 0.0064
satisfying monotonicity (ds,) (0.0015) (0.0004)
Observable disagreements 0.0018 0.00015
violating monotonicity (d,,) (0.0005) (0.00010)
Observable monotonicity violation rate 0.016 0.023
(0.004) (0.013)

Note: Robustness of Table C.7 to using only broad crime types—and not whether the prosecutor
appealed—as case characteristics.

C.6 The “Observable’” Monotonicity Violation Rate

In this section, I explain why the observable monotonicity violation rate in Section
5.3 is a lower bound of the true monotonicity violation rate. Let 7i and d be the
observable share of cases violating monotonicity and the observable disagreement
rate, respectively. Denote the true rates by m and d. First, note that any unobserved
monotonicity violation must be counteracted by unobserved disagreements satis-
fying monotonicity. For instance, in the example of Section 5.3, if Judge A and
Judge B convict in, respectively, 50% and 60% of drug-related cases, the observ-
able share of drug-related cases violating monotonicity is 10%. If there are 5% more
drug-related cases violating monotonicity (where Judge B is stricter than Judge A),
there must also be 5% disagreements in drug-related cases satisfying monotonicity
(where Judge A is stricter than Judge B). Otherwise, their stringency difference in
drug-related cases will no longer be 10 percentage points. Thus if m = i +a for
a >0, we must have d = d +2a. It is then easy to see that the ratio 7i1/d is a lower
bound of m/d: 3

<M _oDYE 0 <a(d-2m)

d d+2a

Q‘z| =
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where d > 27 is trivially satisfied.
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D External Validity

To what extent do my monotonicity violation estimates reflect those in typical judge

IV settings? This section examines three key threats to external validity:
1. Judges in my three main settings decide only questions of law.

2. Cases in appellate courts may not be representative of those in trial courts,

where the judge IV is typically applied.
3. Appellate judges tend to be older and more politicized than trial judges.

I then explore how monotonicity varies across different subsets of cases and judges,

identifying factors that may help predict monotonicity violations in new settings.

D.1 External Validity: Questions of Fact

In the settings discussed in the main part of the paper, the judges decide only ques-
tions of law. To test whether monotonicity violations are different when judges
also decide questions of fact, I here consider two settings where judges also dis-
cuss questions of fact: Sao Paulo criminal trials decided by panels and Norwegian

criminal appeals.

Sao Paulo Criminal Trials Decided By Panels. First, I exploit that in Brazil,
criminal offenses committed by certain public officials are decided by a panel of
judges already at the trial stage. In S3o Paulo, criminal cases involving mayors,
state legislators, judges, prosecutors, and some other offices are tried by a panel of
25 appeal judges (Cavalcante Filho and Lima 2017).'%% T collect all such cases in
the period 2011-2023. Only five of these cases were non-unanimous—two against
state legislators and three against prosecutors. The large number of judges per case,
however, allows for a reasonably precise estimate of monotonicity violations be-

tween pairs of judges. I only keep disagreements between judges that disagree at

108Dye to abstentions, the number of judges voting in a given case varies between 21 and 24 judges
in my sample.
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Table D.1: Additional settings

Time Judges
Court Types of cases coverage per panel  Cases Judges
Sao Paulo Appeal Court Criminal trials 2011-2023 21-24 5 37
Norwegian Appeal Courts Criminal appeals 1993-2019 Two-Three 96 64

Note: Only cases with dissents.

least twice—a monotonicity violation can not be detected for judge pairs disagree-
ing only once. I end up with 169 disagreements between 65 judge pairs in my
sample. The benefit of this setting is that the cases are actual criminal trials. The
drawback is that the cases are few and not necessarily representative of criminal

cases in judge IV studies.

Norwegian Criminal Appeals. My final setting is Norwegian criminal appeals.
Full criminal appeals in Norway are essentially retrials of the case. The parties can
produce new evidence, there is a full oral hearing, and the sentence can be altered
due to issues of both facts and law. A Norwegian criminal appeal thus closely
resembles a criminal trial, a setting where the judge IV design is routinely applied.
Full appeals are decided by a panel of two to three professional judges and a varying
number of lay judges.'"

A drawback of the Norwegian setting is that the judges do not decide cases
in fixed panels: Judges from across the court are randomly assigned to each new
appeal. Thus, unlike the other settings, I rarely observe the same panel deciding
multiple cases. I do, however, observe pairs of judges deciding multiple cases

together, allowing me to measure the rate of monotonicity violations between pairs

109Norwegian criminal appeals were decided by a panel of three professional judges and four lay
judges up until 2018. After 2018, the appeals were decided by two professional judges and five
lay judges. Before 2018, appeals related to criminal cases with statutory sentence length above six
years were decided by three professional judges and a jury of ten lay judges. I disregard lay judges
in my analysis, as monotonicity violations involving lay judges are almost impossible to detect—lay
judges decide cases infrequently and are thus unlikely to be observed disagreeing multiple times
with the same judge. For a more thorough discussion of the Norwegian criminal appeal process, see
Bhuller and Sigstad (Forthcoming).
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Table D.2: Share of Judge-Pair Disagreements Violating Monotonicity.

Monotonicity Bootstrap

Setting Violation Rate  (s.e.) N bias estimate
Sao Paulo Criminal Appeals

With Five Judges 0.16 (0.006) 5,888 -0.0044

Three First Judges 0.20 (0.004) 10,889 -0.0081
Brazilian Superior Court 0.20 (0.023) 388 -0.0087
US Supreme Court 0.10 (0.005) 24,823 -0.0009
Sao Paulo Criminal Trials 0.15 (0.031) 357 -0.0214
Norwegian Appeal Courts 0.11 (0.006) 110 -0.0130

Note: Unit of observation at the case-by-judge-pair level. Keeping only observations where the
two judges disagree. The monotonicity violation rate is the sum of all disagreements violating
monotonicity divided by the total number of disagreements. A judge pair violates monotonicity in a
case if the judge who is most often the stricter judge in cases the pair decides together is most lenient
in this particular case. Bootstrapped standard errors clustered at the case level. The two last rows
estimate the bootstrap bias with an adapted bootstrap showing the bias under the assumption that
the true monotonicity violation rate for each judge pair equals the overall estimate. The standard
bootstrap implicitly assumes that judge pairs not observed violating monotonicity in the data never
violate monotonicity, which is unreasonable when we observe judge pairs disagreeing in only a few
cases.

of judges.

I rely on the raw text of the decision in all Norwegian criminal appeals receiv-
ing a full hearing between 1993 and 2019, available from the Lovdata Foundation
(N =37,473)."1° From the raw text, I extract the prison length voted for by each
judge using regular expressions. There are 420 cases where at least one pair of
judges disagree about sentencing. As for the Sao Paulo criminal trials, I only keep
disagreements between judges that disagree at least twice. I end up with 52 judge
pairs and 96 cases in my sample. I manually verify all observations in my final

sample to avoid falsely coding a case as violating monotonicity.

110 About half of Norwegian criminal appeals are rejected in an initial screening. I exclude such
cases.
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Results. In Table D.2, I report the estimated share of disagreements that violate
monotonicity across all settings. The estimated violation rates are 11 percent for
Norwegian criminal appeals and 15 percent for Sdo Paulo criminal trials. Due to the
limited number of observations per judge, these estimates are moderately downward
biased. The bootstrap bias estimates in the last column suggest that this bias is
approximately 1-2 percentage points.

For comparison, the estimated monotonicity violation rates for judge pairs are
16 percent in Sdo Paulo five-judge appeals, 20 percent in the Brazilian Superior
Court, and 10 percent in the US Supreme Court. For completeness, I also report
that the pairwise violation rate for the first three votes in all Sao Paulo criminal
appeals is 20 percent.

These results suggest that monotonicity is violated to a similar degree in the two

settings that most closely resemble criminal trials as in the other settings.

D.2 External Validity: Selection of Cases in Appeal Courts

Not all cases are appealed. The monotonicity violation rate among appealed cases
may thus not be representative of the overall monotonicity violation rate. To as-
sess whether my monotonicity violation estimates are influenced by the selection
of cases into appeal courts, I use data on all available decisions from Sdo Paulo
criminal trials in the period 2018—2021 (Tribunal de Justica de Sio Paulo 2022).'!!
Focusing on cases decided on the merits, I obtain a sample of 282,405 trial cases.
Using the cases’ unique identifiers, I can determine whether a given case was ap-
pealed.

A large share of cases (39%) are appealed, placing a limit on selection ef-
fects. But the appealed cases are not a random sample of trial cases. In Table
D.3, Columns 1-2, I report the results from regressing whether a trial case is ap-
pealed on observable case characteristics. Compared to the average criminal trial,
appealed cases tend to be more serious (longer potential punishments) and more

complex (more characters in the trial judge’s opinion). Columns 1 and 2 of Table

T remove cases decided before 2018, since they substantially less likely to appear in the data on
appellate decisions, suggesting incomplete data. I exclude cases decided after 2021, since many of
these cases are still waiting for their appeals to be decided.
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D.4 compare summary statistics among trial cases and appealed cases, showing a

similar pattern.

Table D.3: The Selection of Cases into Appeal Courts: Regressions

Dep. Var.: Case Appealed

(1 2

Trial Court Conviction 0.241 0.264
(0.003) (0.003)

Log(Characters in Trial Court Decision) 0.150 0.133
(0.002) (0.002)

Minimum Statutory Years of Prison 0.029
(0.003)

Maximum Statutory Years of Prison 0.001
(0.001)
Drug-Related Crime 0.108 -0.036
(0.003) (0.007)
Violent Crime 0.018 —0.058
(0.004) (0.010)

Economic Crime 0.062 0.048
(0.004) (0.005)
Property Crime 0.050 —-0.007
(0.002) (0.003)

Mean Dependent Variable 0.39 0.39
Observations 282,405 228,110

R? 0.101 0.110

Note: Sao Paulo criminal trials 2018-2021. Intercept omitted. Standard errors in parentheses.

Suppose more serious or complex cases have different monotonicity violation
rates than other cases. In that case, my monotonicity violation estimates might not
well approximate monotonicity violations in typical criminal cases studied in judge

IV designs.
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Table D.4: The Selection of Cases Into Appeal Courts: Summary Statistics

Trial cases Appeals

ey 2)

Panel A: Case Characteristics

log(Characters in trial court decision) 9.3 9.5
Max. statutory years prison 6.5 7.4
Min. statutory years prison 22 2.5
Convicted in trial court 0.83 0.95

Panel B: Type of Crime

Robbery 0.184 0.231
Aggravated Theft 0.150 0.148
Theft 0.123 0.102
Drug Trafficking 0.092 0.124
Traffic Offenses 0.066 0.053
Receiving Stolen Property 0.059 0.052
Firearms 0.041 0.039
Threat 0.033 0.024
Fraud 0.032 0.033
Domestic Violence 0.026 0.014
Aggravated Robbery 0.017 0.022
Use of Fake Documents 0.014 0.013
Bodily Injury 0.011 0.006
Embezzlement 0.010 0.010
Tax Crimes 0.007 0.008
Observations 282,405 110,961

Note: Sao Paulo criminal trials 2018-2021. Column 1 includes all cases. Column 2 includes only
appealed cases. Panel B contains the top 15 most common crimes.
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Table D.5: Monotonicity Violations By Case Characteristics

Monotonicity Violation Rate

Case Characteristic Quintile

Case Characteristic 1 2 3 4 5

Minimum Statutory Prison Length 0.11 008 0.14 0.16 0.13
(0.02) (0.01) (0.01) (0.02) (0.01)

Characters in the Trial Judge’s Opinion  0.13  0.17  0.10 0.16  0.16
(0.01) (0.02) (0.01) (0.01) (0.01)

Predicted Probability of Appeal 0.13 0.14 0.13 0.13 0.18
(0.01) (0.02) (0.01) (0.01) (0.01)

Note: The share of disagreements violating monotonicity among judge pairs in the Sdo Paulo Appeal
Court by case characteristics. The minimum statutory prison length is the minimum years of prison
the defendant must be sentenced to if convicted of the alleged crime. Characters in the trial judge’s
opinion is the number of characters in the trial judge’s decision in the case. The predicted probability
of appeal is obtained from regressing an indicator for the trial decision being appealed on narrow
crime categories, an indicator for a trial court conviction, and log(number of characters in the trial
judge’s opinion). Sao Paulo criminal appeals decided by three-judge panels with trial court decisions
between 2018-2021. Standard errors in parentheses.
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In Table D.5, I thus estimate monotonicity violations according to the serious-
ness and complexity of the case. Reassuringly, I find similar monotonicity violation
rates across quintiles of case seriousness and complexity. Differences across quin-
tiles are mostly statistically insignificant and show no clear pattern. For instance,
the monotonicity violation rate is 0.11 for the least serious quintile and 0.13 for the
most serious quintile.

In the last row, I report monotonicity violations by quintiles of predicted prob-
ability of appeal.''> These predictions are obtained from regressing an indica-
tor for appeal on narrow crime categories, a trial court conviction indicator, and
log(number of characters in the trial court decision) in the sample of all trial cases.
I find similar monotonicity violation rates in cases with a high ex-ante probability
of being appealed as in cases with a low such probability.''® These analyses suggest
that the selection of trial cases into appeal courts does not substantially influence

my monotonicity violation estimates.

D.3 External Validity: Judges

Judges in appeal courts are often politically appointed senior judges. Are the mono-
tonicity violations among these judges representative of the monotonicity violations
among the more junior and less politicized judges in lower courts where the judge
IV design is typically applied?

To address this question, I exploit that in the Sdo Paulo Appeal Court one-fifth
of judges are politically appointed, with the remaining being appointed from among
trial court judges by the court administration. I also use data on the birth date of all
the judges and the year they entered the appeal court from Tribunal de Justica de
Sédo Paulo (2024).

12The idea behind this exercise is that cases with a low ex-ante probability of appeal are likely
more “marginal” appeals that are more similar to unappealed cases than cases with a high ex-ante
probability of appeal. Seeing only small differences in monotonicity violation rates across these two
types of cases thus indicates that monotonicity violation rates in appealed and unappealed cases are
similar.

13While the quintile with the highest predicted appeal probability has a somewhat higher mono-
tonicity violation rate, the monotonicity violation rate is essentially identical across the other quin-
tiles. The predicted appeal probability is 27% (62%) for the lowest (highest) quintile.
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Table D.6: Pairwise Monotonicity Violations By Judge Characteristics

Panel A: Political Appointment

Without Controlling for

Stringency Differences

Controlling for

Stringency Differences

Judge 1 politically

Judge 2 politically appointed

appointed Yes No Yes No

Yes 0.23 0.22

No 0.18 0.20 0.27 0.28

Panel B: Judge Age

Age quintile Age quintile of judge 2

of judge 1 1 2 3 4 5 1 2 3 4 5
1 (47-60 years) 0.11 0.21

2 (60—64 years) 0.20 0.20 0.27 0.29

3 (6468 years) 0.17 021 0.21 0.24 0.22 0.18

4 (68-72 years) 0.16 0.19 0.18 0.14 0.23 025 0.17 0.11

5 (72-76 years) 0.17 020 0.20 0.22 0.27 0.30 0.24 0.30 0.26 0.32
Panel C: Judge Experience

Exp. quintile Experience quintile of judge 2

of judge 1 1 2 3 4 5 1 2 3 4 5
1 (0-5 years) 0.11 0.32

2 (5-8 years) 0.15 0.16 0.31 0.19

3 (8-12 years) 0.24 0.19 0.20 0.26 0.20 0.24

4 (12-15 years) 0.19 0.17 0.27 0.22 0.35 0.23 0.28 0.28

5 (15-23 years) 0.21 0.15 0.31 0.28 0.25 0.24 024 023 0.28 0.32

Note: Share of disagreements violating monotonicity for judge pairs in the Sao Paulo Appeal Court.
The left part of the table shows the mean monotonicity violation rate across all cases decided by
judge pairs of the indicated category. The right part of the table shows weighted means where
weights are given by the inverse propensity of the judge pair’s stringency difference being of the
given decile among judge pairs of the indicated category. S@o Paulo criminal appeals decided by

three-judge panels.
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In the left panel of Table D.6, I present the variation in raw monotonicity Vvi-
olation rates across judge pairs based on the judges’ age, experience, and type of
appointment. Monotonicity is estimated to be higher than average among politically
appointed judges and lower than average for the youngest and the most recently ap-
pointed appeal judges. These differences are, however, driven by the fact that the
stringency dispersion is lower (higher) than average for politically appointed judges
(young and inexperienced judges).''* In the right panel of Table D.6, I account for
these stringency dispersion differences using inverse probability weighting.'!> Af-
ter accounting for these differences, there are small differences in monotonicity
violations across judge groups. The judges with the least experience are mostly
recently promoted trial judges.!'® The fact that their monotonicity violation rate is
comparable to the overall rate suggests that the monotonicity violations might be

similar among trial court judges and appellate judges.

D.4 Monotonicity Across Case Types

The extent to which the monotonicity violation rates in this paper generalize may
depend on case types. For instance, monotonicity might be violated to a different
degree in a judge IV study on the effects of drug trafficking convictions than in a
study on traffic offense convictions. Table D.7 shows how monotonicity violations
for judge pairs vary across case types. Reassuringly, the monotonicity violation
rates are quite similar: among the ten most common crimes in the Sao Paulo Appeal
Court, eight have violation rates between 13% and 18%.

But some case types have notably lower violation rates: economic crimes (8%)

114 A5 shown in Table D.8, monotonicity violations tend to decrease as stringency differences in-
crease. That the stringency dispersion is higher than average among recently appointed appeal
judges could, for instance, be explained by a learning story. It might take time for recently ap-
pointed judges to adapt to the norms of a new court (Abrams et al. 2022).

15Tn particular, T group all judge pairs into deciles according to the difference in stringencies
between the two judges in the pair. Then, for instance, a politically appointed judge pair belonging to
the fifth decile is weighted by the inverse of the share of politically appointed judge pairs that belong
to the fifth decile. This way, I calculate the monotonicity violation rate in a pseudo-population
of politically appointed judge pairs whose stringency difference distribution resembles the overall
distribution.

116The politically appointed judges are appointed from among prosecutors and lawyers. The mono-
tonicity violation rate between former trial judges in the bottom experience quintile is 0.25.

60



Figure D.1: Stringency Differences and Monotonicity Violations

(a) Sdo Paulo Appeal Court  (b) Sdo Paulo Appeal Court (c) US Supreme Court

0.21

0-
Traffic Offenses
0
. Aggravated Theft

[Drug Trafficking ‘{ Aggravated Robbery]
Robbery
Receiving Stolen Property

Firearms
.

_ | Other Crimes

Property Crimes
D

.
Violent Crimes

Drug-Related Crimes

°

10-

Pairwise monotonicity violation rate
Pairwise monotonicity violation rate
Pairwise monotonicity violation rate

' Copyright Infringement & 8th Amd. Je

0.01 0.02 0.03 001 0.03 0.10 0.32 036 0.40
Mean stringency difference between judges Mean stringency difference between judges Mean stringency difference between judges

Note: The relationship between stringency differences and monotonicity violations across case
types. The monotonicity violation rate in, for instance, drug-related cases is calculated as follows:
If Judge A and Judge B disagrees in 20 drug-related cases and Judge B is stricter than Judge A in
16 of these, monotonicity is considered to be violated in the four cases where Judge A is strictest.
The pairwise monotonicity violation rate is the sum of all monotonicity violations across all judge
pairs divided by the sum of all disagreements among cases of the indicated type. The stringency
difference between Judge A and Judge B in drug-related cases is the absolute difference in the rates
of pro-prosecution votes in drug-related cases they decide together. The mean stringency difference
between judges is the average of this difference across cases. Figures (a) and (b) use all Sdo Paulo
criminal appeals decided by three-judge panels. Figure (c) uses all US Supreme Court cases about
civil procedure, including unanimous cases. Log-transformed scales.

and copyright infringement cases (4%) in Sdo Paulo, and Eighth Amendment cases
(3%) in the US Supreme Court. What might explain these lower rates? It turns out
that these case types also have the largest stringency differences between judges. As
shown in Figure D.1, much of the variation in monotonicity violation rates across
case types can be explained by stringency differences. This relationship is expected:
For instance, if Judge 1 has a much higher stringency than Judge 2, the share of

disagreements where Judge 2 is stricter than Judge 1 must necessarily be low.'!”

7For instance, if Judge 1 (Judge 2) votes with the prosecution in 80% (10%) of copyright infringe-
ment cases, the share of disagreements violating monotonicity can at most be 0.1/(0.8+0.1) =0.11.
As shown in Section D.5, there is a strong negative association between stringency differences and
monotonicity violations across judge pairs.
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Table D.7: Monotonicity Violations By Crime Type

Monotonicity
Violation
Crime Type Rate Std. Error Observations
Panel A: Broad Categories
Drug-Related Crimes 0.16 (0.004) 7,600
Property Crimes 0.18 (0.004) 7,408
Other Crimes 0.20 (0.009) 2,214
Economic Crimes 0.08 (0.006) 2,012
Violent Crimes 0.17 (0.009) 1,594

Panel B: Narrow Categories

Drug Trafficking 0.16 (0.004) 7,582
Aggravated Robbery 0.16 (0.006) 3,690
Aggravated Theft 0.16 (0.010) 1,346
Copyright Infringement 0.04 (0.005) 1,314
Theft 0.13 (0.011) 868
Firearms 0.10 (0.013) 528
Traffic Offenses 0.17 (0.017) 508
Robbery 0.15 (0.016) 502
Receiving Stolen Property 0.13 (0.021) 264
Homicide 0.18 (0.024) 260
Panel C: US Supreme Court
Fourth Amendment 0.07 (0.003) 6,388
Fifth Amendment 0.06 (0.003) 6,060
Sixth Amendment 0.08 (0.004) 5,560
Eighth Amendment 0.03 (0.003) 3,232
Fourteenth Amendment 0.06 (0.004) 3,578

Note: Monotonicity violations for judge pairs. The monotonicity violation rate in, for instance, drug-
related cases is calculated as follows: If Judge A and Judge B disagrees in 20 drug-related cases and
Judge B is stricter than Judge A in 16 of these, monotonicity is considered to be violated in the
four cases where Judge A is strictest. The monotonicity violation rate is the sum of all monotonicity
violations across all judge pairs divided by the sum of all disagreements. Observations is the number
of disagreements for the given case type. Sdo Paulo criminal appeals decided by three-judge panels
in Panels A—B and non-unanimous US Supreme Court cases about criminal procedure in Panel C.
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This result suggests that researchers can use stringency differences between
judges to predict monotonicity violations in new settings. I discuss how to make
such predictions in Section D.5.'®

Table D.7 also suggests that more homogeneous cases tend to have slightly
lower monotonicity violation rates. In Panel B, which focuses on narrow crime cat-
egories, violation rates are somewhat lower than in Panel A, which covers broader

categories. These differences are, however, minor.

D.5 Factors Associated with Monotonicity Violations

In this section, I use my data to assess which observable characteristics of a group
of judges are associated with higher rates of monotonicity violations. I first cre-
ate hypothetical groups of judges based on all possible subsets of judges from the
judicial panels in my data. For instance, for the Sdo Paulo Appeal Court panel con-
sisting of the judges Leitdo, Sale Junior, Campos, Marques, and Diodatti, I create
the subsets { Campos, Marques, Diodatti}, {Leitdo, Diodatti }, and all other possible
subpanels consisting of two, three, or four of the judges. I also include the full five-
judge panel. Then, I calculate measures of monotonicity violations for each judge
subset in cases they decide together. Finally, I regress measures of monotonicity
violations on characteristics of the judge subsets. As characteristics, I include the
number of judges and the variance and standard deviation of the judges’ stringen-
cies. As monotonicity violation measures, I consider the share of cases violating A
monotonicity and the sums of negative 2SLS weights.

Results for the Sao Paulo Appeal Court and the US Supreme Court are presented
in Table D.8."'” TA monotonicity tends to be violated at a higher rate as the number
of judges increases. With more judges, there are more judge pairs for which mono-
tonicity could be violated. But the sum of negative 2SLS weights decreases. Intu-

itively, as the number of judges increases, monotonicity violations between some

8Note that the stringency differences in Figure D.1 are muted due to panel effects. In Section
D.5, I seek to transform these differences into “individual-decision” differences that can be used to
predict monotonicity violations in settings where cases are randomly assigned to individual judges.

119The Brazilian Superior Court is excluded due to the limited number of judge subsets, which
results in highly imprecise estimates.
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judge pairs are more likely to be offset by disagreements satisfying monotonicity
between other judge pairs, ensuring that the overall 2SLS weight remains positive.

Groups of judges with greater stringency standard deviations tend to have lower
non-negative weights. This relationship is concave, as indicated by the positive
estimated coefficients on stringency variance (standard deviation squared). These
results suggest that researchers worried about monotonicity violations in judge IV
design can—perhaps as a robustness exercise—exclude randomization units (e.g.,
courts) with few judges or a low stringency dispersion. Note, however, that since
judge IV estimands already place low weight on such randomization units, exclud-
ing these units would likely be of limited importance in practice.'*

In Table D.9, I show how the monotonicity violation measures vary with the
number of judges in the subpanel and their stringency differences. To obtain mea-
sures of stringency differences comparable to those in judge IV settings where cases
are randomly assigned to individual judges, I engage in the following exercise in
the Sao Paulo Appeal Court: I first calculate each judge’s “single-judge” stringency
by the rate of pro-prosecution votes in cases where this judge votes first.'?! T then
regress the panel-based stringency variance on the “single-judge” stringency vari-
ance across subpanels. I use the stringency variance predicted from this regression
as the subpanel’s stringency variance.'”” For the US Supreme Court, where I do
not have access to such “single-judge” stringencies, I calculate the stringency vari-
ance of a subpanel using all cases about criminal procedure, including unanimous
cases.'”?? The predicted standard deviation of the stringencies is the square root of
the predicted variance. For each bin, I report the monotonicity violation measures
for the US Supreme Court and Sdo Paulo Appeal Court subpanels side by side,
separated by “/”.

Consistent with Table D.8, the share of cases violating IA monotonicity (the

sum of negative 2SLS weights) is increasing (decreasing) in the number of judges

120For instance, 2SLS with court fixed effects is a weighted sum of court-specific 2SLS estimates
where the weights are proportional to the courts’ stringency variance and the number of cases in the
court. The number of cases is again typically highly correlated with the number of judges.

121 As shown in Section C.1, the first vote is close to unaffected by panel effects.

122Directly using the single-judge stringency variance introduces considerable noise.

123In a judge IV setting, unanimous cases are included in the stringency measures. Due to panel
effects, these stringency differences are likely underestimates of the true differences.
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and decreasing in the stringency standard deviation. Note that there is considerable
agreement between the two settings, which lends some support to using Table D.9
as a rough guide to external validity. For instance, in a setting with four judges per
court and stringency standard deviation in the range 0.15-0.20, one might expect
IA monotonicity to be violated in roughly 20% of cases and the sum of negative
2SLS weights to be around 0.05-0.10.'%*

The potential value of Table D.9 becomes evident in its ability to explain, to a
large extent, the differences in monotonicity violations reported in Table 2 between
the US Supreme Court and the Sao Paulo Appeal Court. Among subpanels of five
US Supreme Court justices with a stringency standard deviation between 0.15 and
0.20—approximately the median for the Sao Paulo Appeal Court—the IA mono-
tonicity violation rate is 0.29, and the sum of negative 2SLS weights is 0.08. These
figures closely resemble the corresponding values of 0.35 and 0.093 reported for
the Sdo Paulo Appeal Court in Table 2.

The fact that the US Supreme Court has a lower sum of negative 2SLS weights
than the Sao Paulo Appeal Court can thus largely be attributed to a combination
of having more judges and greater polarization (i.e., larger differences in strin-
gency).!”> The estimates for the US Supreme Court in Table D.9 would have
predicted the monotonicity violation rate in the Sao Paulo Appeal Court quite ac-
curately. Notably, the only required parameters—the number of judges and their
stringency differences—are easily obtainable in any new setting. The reliability of
such predictions in other contexts can, of course, not be guaranteed. I leave the eval-

uation of Table D.9’s usefulness as a guide to external validity to future research.

1241f the number of judges and stringency levels vary across courts, a weighted average can be
computed. For the sum of negative 2SLS weights, the appropriate weights are the courts’ stringency
variances, as these correspond to the weights assigned by 2SLS with court fixed effects.

125The median stringency standard deviation is 0.15 in the Sio Paulo Appeal Court and 0.22 in the
US Supreme Court.
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Table D.8: Factors Associated with Monotonicity Violations

Sao Paulo Appeal Court US Supreme Court

Share of cases Share of cases
violating A Sum negative  violating A Sum negative
monotonicity  2SLS weights monotonicity 2SLS weights

(D (2) (3) “4)

Number of judges 0.084 -0.055 0.030 -0.009

(0.012) (0.014) (0.008) (0.004)
Stringency standard -1.240 -3.305 -0.381 -1.872
deviation (0.393) (1.171) (0.463) (0.656)
Stringency variance 0.894 3.438 -0.523 2.206
distance squared (0.482) (1.493) 0.477) (0.960)
Mean Dep. Var 0.21 0.19 0.19 0.079
Observations 511 511 3612 3612
R? 0.46 0.25 0.31 0.28

Note: OLS estimates showing the association between characteristics of a group of judges and the
degree of monotonicity violations among this judge group. The unit of observation is a subset of
judges from a judicial panel. All potential subsets of judges, including the full panel. Share of cases
violating IA monotonicity is the share of cases with disagreement that violate IA monotonicity. Sum
of negative 2SLS weights is the sum of the negative weights the estimand would assign treatment
effects if monotonicity is violated as in the subpanel. Stringency standard deviation (variance) is
the standard deviation (variance) in stringencies across judges in the group. Intercept omitted. Mean
Dep. Var is the mean of the dependent variable. Excluding groups of judges where the stringency
difference between the strictest and the most lenient judges is below 0.1. Sao Paulo criminal appeals
decided by five-judge panels and non-unanimous US Supreme Court cases about criminal procedure.
Standard errors clustered at the panel level in parentheses.
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Table D.9: Number of Judges, Stringency Differences, and Monotonicity

Number Standard deviation of stringencies

of judges 0.05-0.10  0.10-0.15  0.15-0.20 0.20-0.25  0.25-0.30

Panel A: Share of cases violating IA monotonicity

2 0.09/021 0.09/0.14 0.09/0.10 0.08/0.06 0.047/0.028

3 0237035 021/030 0.17/0.16 0.12/0.07 0.083/0.006
4 032/046 0.27/041 023/018 0.17/0.06 0.111/
5 038/ 0.35/0.50 0.29/0.20 0.20/ 0.135/
6 0.39/ 0.42/ 0.34/ 0.23/ 0.168/
0.44/ 0.43/ 0.39/ 0.26/ 0.208 /
0.20/ 0.44/ 0.29/ 0.252/
9 0.50/ 0.23/ 0.282/

Panel B: Sum of negative 2SLS weights

2 020/0.83 0.16/030 0.15/0.14 0.11/0.07 0.061/0.031
3 022/058 0.12/020 0.12/0.08 0.06/0.04 0.046/0.003

4 0.19/036 0.09/0.15 0.08/0.06 0.05/0.01 0.026/
5 0.16/ 0.07/0.14 0.08/0.05 0.04/ 0.016/
6 0.14/ 0.06/ 0.07/ 0.03/ 0.009 /
7 012/ 0.04/ 0.07/ 0.02/ 0.008 /
8 0.01/ 0.07/ 0.02/ 0.011/
9 0.07/ 0.03/ 0.047/

Note: Mean monotonicity violation measures across bins of subpanels. In the notation “X / Y”,
“X” (“Y”) is the measure in the US Supreme Court (Sdo Paulo Appeal Court). Stringency standard
deviation is the standard deviation of the judges’ stringencies. In the US Supreme Court, I use strin-
gencies based on all cases about criminal procedure, including unanimous cases. In the Sdo Paulo
Appeal Court, I transform the standard deviation in stringencies as measured in panel decisions as
follows: First, I regress the panel-based stringency variance on the variance of the judges’ strin-
gencies as first-voting judges. Then, I calculate the square root of the variance predicted from this
regression. Share of cases violating IA monotonicity is the share of cases with disagreement that
violate IA monotonicity. Sum of negative 2SLS weights is the sum of the negative weights 2SLS
would assign treatment effects if monotonicity is violated as in the subpanel. Excluding subpanels
where the stringency difference between the strictest and the most lenient judge is below 0.1.
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