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C.1 Proofs omitted from the main text

Proof of Proposition 4. We explicitly construct an equilibrium yielding zero lifetime profits

for each firm. The equilibrium consists of two phases: Cooperation and Punishment. In the

Punishment phase each firm enters his home market and posts a price pPW < p
H

character-

ized below, while in his away market he enters and posts price p
H
. If both firms post their

assigned price in each market, they transit to Cooperation in the next period; otherwise they

continue in the Punishment phase. In the Cooperation phase firms play the stage strategies

characterized in the proof of Lemma B.11 supporting stage profits (Π†,Π†), where Π† is the

unique solution in [ΠC ,ΠM ] to

Π = (1− δ)(2Π−∆cD(p∗(Π)))

when δ < 1/2 and a solution exists, and otherwise Π† = ΠM . So long as no away firm posts

a price at or below the floor price, the cartel continues in the Cooperation phase in the next

period; otherwise they transit to the Punishment phase.

pPW is chosen so that beginning in the punishment phase yields zero lifetime profits for

each firm, i.e.

(1− δ)(D(pPW )(pPW − cH)− 2c) + δΠ† = 0.

Suppose that Π† ≥ 1−δ
δ
c. Then Assumption A4 ensures existence of a solution pPW ≤ p

H

to this equation. If Π† = ΠM , then δ ≥ δ combined with ΠM > Π0 guarantees that

this inequality is satisfied. So consider instead the case δ < 1/2 and Π† < ΠM . Then by
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construction Π† satisfies

Π† = (1− δ)(2Π† −∆cD(p∗(Π†))),

which when re-arranged yields the bound

Π† =
1− δ
1− 2δ

∆cD(p∗(Π†))) ≥ 1− δ
1− 2δ

∆cD(p∗H) ≥ 1− δ
1− 2δ

∆cD(p∗H).

Now, δ satisfies the identity
1− δ
1− 2δ

∆cD(p∗H) =
1− δ
δ

c,

so that

Π† ≥ 1− δ
δ

c ≥ 1− δ
δ

c.

Hence there always exists a solution pPW ≤ p
H

to the zero-profit condition. (In the knife-

edge case δ = δ, some demand functions require pPW = p
H
, which does not formally satisfy

our construction. In this case a slightly modified equilibrium can be constructed in which

the away firm enters just above pPW and plays a mixed strategy with enough support close

to p
H

that no price posted by the home firm achieves positive profits.)

We complete the proof by verifying incentive-compatibility in each phase. In the Punish-

ment phase the most profitable stage deviation by each firm is to withdraw completely from

each market, yielding stage and continuation profits of 0. So IC holds in the Punishment

phase. Meanwhile in the Cooperation phase the most profitable stage deviation involves

undercutting the floor price in the away market, yielding stage profits of 2Π†−∆cD(p∗(Π†))

and zero continuation profits. So IC is equivalent to

Π∗ ≥ (1− δ)(2Π† −∆cD(p∗(Π†))).

When δ < 1/2, either Π† satisfies this inequality exactly by construction, or else Π† = ΠM

and by construction the inequality is slack. Meanwhile when δ ≥ 1/2 the rhs is weakly

smaller than Π† for any Π† ∈ [0,ΠM ], and in particular when Π† = ΠM . So IC holds in the

Cooperation phase as well.

A direct consequence of this construction is the following result: if ΠM > Π0, then

δM < 1/2. The proof simply observes that when δ ≥ 1/2, the equilibrium just constructed

supports a monopoly division of the market in each period.

Proof of Proposition 7. Lemma B.13, implied by the proof of Proposition 4, ensures that
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δ < 1/2. Then by Lemma B.9, at most one firm can earn positive profits in a given market,

and by Lemma B.10 each firm makes positive profits in only one market. Then the payoff

vector (Π,Π) (streamlining the notation Π∗ to Π for this proof) can only be supported by

giving each firm Π in his home market and 0 in his away market. To see this, observe that

it cannot be that each firm makes Π in his away market; for this leads to a deviation worth

Π + ∆cD(p∗(Π)) > Π−∆cD(p∗(Π)) in the home market, which violates the IC constraint.

And we can rule out making negative profits in the away market, because this also increases

the value of a deviation in that market and violates the IC constraint.

Now fix a market, say market 1. As firm 1 makes positive profits in this market, he

enters w.p. 1. Further, firm 1 cannot have a profitable deviation in this market, else the IC

constraint would be violated.

Let Fi denote the price distribution of firm i in market 1, and πi their entry probability.

(We will suppress the dependence of these variables on the market to streamline notation.)

We first claim that the support of F 1 is contained in [p∗(Π), p∗H ]. Below p∗(Π) firm 1 cannot

earn profits Π, so such prices can’t be profit-maximizing. Meanwhile above p∗H he will earn

weakly lower profits than at p∗H , with profits strictly lower whenever profits at p∗H are positive.

Thus his profits above p∗H are either non-positive, thus not optimal, or else strictly lower than

at p∗H , which would introduce a profitable devition if 1 did play above p∗H in equilibrium.

Let pL1 and pU1 be the infimum and supremum of 1’s price support. We claim that

pL1 = p∗(Π) and pU1 = p∗H . Suppose that pL1 > p∗(Π). Then firm 2 has a deviation worth at

least D(pL1 )(pL1 − cA)− c > Π−∆cD(p∗(Π)), violating the IC constraint. So the lower end

of 1’s support must be p∗(Π). On the other hand, if pU1 < p∗H , then 2 must place an atom at

pU1 to avoid giving 1 a profitable deviation up to p∗H . If 1 doesn’t place an atom at pU1 , then

2 never wins at pU1 and thus makes negative profits there, which can’t be profit-maximizing.

But if he does place an atom at pU1 , then he would have a profitable deviation to just below

the atom, a contradiction. Hence pU1 = p∗H .

Now, suppose there exists an interval [pA, pB] ⊂ [p∗(Π), p∗H ] such that F1((pA, pB)) = 0.

Let F̂1 = F1(p) for p ∈ (pA, pB), and enlarge [pA, pB] if necessary so that pA = inf{p :

F1(p) = F̂1} and pB = sup{p : F1(p) = F̂1}. Given the support of F 1
1 , we must have

F̂1 ∈ (0, 1). Thus 1 has profit-maximizing prices arbitrarily close to both pA and pB.

Consider firm 2’s strategy in [pA, pB]. He can set at most one price in (pA, pB), since

stage profits are strictly increasing in the interior of the interval. Say he plays some price

pC ∈ (pA, pB) with positive probability. If he also places an atom at pA, then 1 puts no atom

there to avoid a profitable deviation. But then 2’s stage profits at pC are strictly greater than

at pA, a contradiction. So 2 places no atom at pA. But then pA must be profit-maximizing
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for 1, a contradiction given that his profits are strictly increasing on [pA, pC). So 2 does not

play in (pA, pB).

Firm 2 does play an atom at pA, else 1 would have a profitable deviation into the gap.

It follows that pA > p∗(Π) and 1 plays no atom there and is profit-maximizing in the limit

as p ↗ pA. Conversely, firm 2 does not place an atom at pB, for otherwise 1 would have a

profitable deviation just below it. It follows that 1 is profit-maximizing at pB.

From these facts we can pin down the size of firm 2’s atom at pA. Firm 1’s profits from

playing just below pA are

Π = D(pA)(pA − cH)

(
1− π2F2(pA) +

1

2
π2∆F2(pA)

)
− c,

while his profits at pB are

Π = D(pB)(pB − cH)(1− π2F2(pA))− c.

Using the second equation to eliminate F2(pA) from the first, we find that

π2∆F2(pA) = (Π + c)

(
1

D(pA)(pA − cH)
− 1

D(pB)(pB − cH)

)
.

This is the probability that 2 enters and plays in [pA, pB]. It is easy to check that this is equal

to the probability that firm 2 plays in [pA, pB] under equilibrium characterized in Proposition

6. (We will refer to this equilibrium as the “standard equilibrium” or the “no-gap case” in

what follows.)

Similarly, we may calculate the size of firm 1’s atom at pB. Suppose pB < p∗H . As firm 2

places an atom at pA, he must be profit-maximizing there. Then

0 = D(pA)(pA − cA)(1− F1(pA))− c.

It is also true that firm 2 must be profit-maximizing arbitrarily close to pB from above. For

otherwise he would not play in some interval above pB, and firm 1 would have a profitable

deviation upward from pB. Then

0 = D(pB)(pB − cA)

(
1− F1(pA)− 1

2
∆F1(pB)

)
− c.
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So

∆F1(pB) = c

(
1

D(pA)(pA − cA)
− 1

D(pB)(pB − cA)

)
.

This is the same as the probability that firm 1 plays in [pA, pB] under the standard equilib-

rium. If pB = p∗H then we must modify the argument slightly: we still know F1(pA), and

now F1(pB) = 1. This again determines the atom, which is easily checked to give the same

probability of playing in [pA, pB] under the standard equilibrium.

We conclude that, for any gap in firm 1’s mixing distribution, both firms play in the gap

with the same frequency as in the no-gap case, except that the away firm concentrates all

its support at the bottom of the gap, while the home firm prices only at the top. Hence

business-stealing is strictly higher in regions where gaps have been added.

Finally, in any interval with no gap, both firms must play the entry-adjusted mixing

distributions of the standard equilibrium. So business-stealing occurs at the same rate in

these regions as in the standard equilibrium. Finally, sum the probability of business-stealing

across all gap- and no-gap intervals. (Formally: there are at most a countable number of

maximally-sized gaps, which can be well-ordered by their upper edges. The no-gap regions

are then defined as the intervals between the upper edge of one gap and the lower edge of

the next. These are also countable, so can be summed.) This sum is strictly higher than the

standard equilibrium when gaps exist, and the standard equilibrium is the unique no-gap

equilibrium.

Proof of Proposition 8. By Lemma B.13, established in the proof of Proposition 4, δ < 1/2.

Consider a stationary equilibrium supporting profits (Π1,Π2) > (ΠC ,ΠC). Suppose wlog

that in market 1, player 2 never wins the customer’s business. Lemma B.10 ensures that

player 1 earns positive profits only in that market, so Π1
1 ≥ Π1. And as player 2 never wins

the business of that market, it must be that Π2
2 ≥ Π2.

Now, suppose player 2 does not enter market 1. Then player 1 can deviate upward to p∗H
in his own market to earn stage profits ΠM , and can undercut player 2 in market 2 to earn

Π2. Thus the IC constraint

Π1 ≥ (1− δ)(ΠM + Π2 −∆cD(p∗(Π2))) + δΠ(δ)

must hold. (If Π2
2 > Π2 then an even stricter IC constraint holds.) Meanwhile, the usual IC

constraint

Π2 ≥ (1− δ)(Π1 + Π2 −∆cD(p∗(Π1))) + δΠ(δ)

holds for player 2. (Π2
2 > Π2 would imply that 2 makes negative profits in market 1, which
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would only increase the profitability of a deviation and tighten the IC constraint.) Because

Π1 < ΠM , the first constraint is violated at (Π1,Π2) = (Π∗,Π∗). But the second constraint

would be violated if Π2 alone were lowered, as the lhs drops faster than the rhs and the

constraint is saturated at (Π∗,Π∗). Thus (Π1,Π2) must be bounded below (ΠM ,ΠM) by

continuity of D(·) and p∗(·) in order to satisfy both constraints.

On the other hand, suppose player 2 does enter market 1. As he never wins the market

by assumption, his stage profits in that market are −c. Then he must enter w.p. 1, else he

would not be optimizing by entering. Player 2’s IC constraint is the same no matter what

he plays in market 1. Meanwhile, to maximally relax player 1’s IC constraint, 2 may mix

just above the single price p1 played by player 1 in that market with sufficient density close

to p1 to deter an upward deviation. (Because 1 always wins, he can be cannot be willing to

mix between multiple prices.) In this case player 1’s IC constraint is the usual

Π1 ≥ (1− δ)(Π1 + Π2 −∆cD(p∗(Π2))) + δΠ(δ).

But now player 2’s deviation to undercut player 1 in market 1 yields additional profits

of c, so his IC constraint is tightened to

Π2 ≥ (1− δ)(Π1 + Π2 + c−∆cD(p∗(Π2))) + δΠ(δ).

By a similar argument to the previous case, solutions to this pair of inequalities are bounded

below (ΠM ,ΠM).

Proof of Proposition 12. This proposition is a direct consequence of Lemma C.2 combined

with Lemma B.13 (established in the proof of Proposition 4), which establishes that δM <

1/2. Let EB be the set of lifetime profit vectors supportable by balanced equilibria.

Definition C.1. A balanced equilibrium σ with lifetime payoffs U = (U1, U2) is B-optimal

if, for (Ũ1, U2) 6= U in EB, U i > Ũ i for some i.

Lemma C.1. Suppose δ ≤ 1/2. Let σ be an B-optimal equilibrium σ with lifetime payoffs

(U1, U2). Then there exist constants Π1,Π2 ∈ [ΠC ,ΠM ] and (Ũ1, U2) ∈ EB such that for each

i, Πi and Ũ i are firm i’s first-period expected stage and continuation profits, respectively, so

that U i = (1− δ)Πi + δŨ i; and the IC constraint

U i ≥ (1− δ)
(
Π1 + Π2 −∆cD(p∗(Π−i))

)
+ δΠ(δ)

holds. Conversely, given constants Π1,Π2 ∈ [ΠC ,ΠM ] and payoffs (Ũ1, Ũ2) ∈ EB satisfying
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the above inequalities, there exists a balanced equilibrium with initial-period expected stage

payoffs Πi and continuation payoffs Ũ i for each firm i.

Proof. Fix a B-optimal equilibrium σ with lifetime payoffs (U1, U2) and period-0 stage-game

strategy profile σ(h0) = τ. Then there exist constants Πi
m such that the period-0 stage profits

of any on-path action by firm i in market m are Πi
m.

1 Let Πi = Πi
1 + Πi

2 for each i. Then we

can decompose each U i as

U i = (1− δ)Πi + δŨ i

for some constants (Ũ1, Ũ2) ∈ EB.
Suppose first that Πi

m > 0 for all i and m. Then by the argument in the proof of Lemma

B.8, there exists a deviation for each firm yielding expected stage profits of at least 2Πi + c.

As the harshest possible punishment continuation following a deviation yields profits Π(δ),

the unprofitability of this deviation implies the IC constraint

(1− δ)Πi + δŨ i ≥ (1− δ)(2Πi + c) + δΠ(δ)

for each i. Re-arranging yields

Ũ i ≥ 1− δ
δ

2(Πi + c) + Π(δ).

Now, by definition of B-optimality, for some i we must have U i ≥ Ũ i. For this firm we have

U i = (1 − δ)Πi + δŨ i ≥ Ũ i, or Πi ≥ Ũ i. Combining this restriction with the IC constraint

produces

Ũ i ≥ 1− δ
δ

(Ũ i + c) + Π(δ),

which in turn implies δ > 1/2.

It must therefore be the case that Πi
i > 0 for each i, with all other stage profits non-

positive. Note further that each Πi
i ≥ ΠC , as otherwise we could construct an equilibrium

with strictly higher lifetime profits for some firms by playing the stage-game Nash equilibrium

in the first period for all markets m such that Πm
m < ΠC . (This cannot introduce additional

profitable deviations and thus must still be supportable as an equilibrium.) Then p∗(Πi
i) is

well-defined for each i, and firm i must play prices no lower than p∗(Πi
i) to achieve expected

stage profits Πi
i in his home market. Then each firm i has a deviation yielding stage-game

profits of at least Π1
1 + Π2

2 − ∆cD(p∗(Π−i−i)), achieved by just undercutting the infimum of

1This is a basic property of balanced equilibria; details and a complete proof may be found in the Online
Appendix.
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the home firm’s price support in firm i’s away market.

In fact, the usual partially collusive structure yields no deviations more profitable than

this one, and yields zero profits to all away firms in each market. Thus it must be the case

that Πi
m = 0 for all i and m 6= i (else we could strictly improve the equilibrium for some

firms by playing a partially collusive structure in the first period and then reverting to σ).

So Πi = Πi
i for all i, and the IC constraints

(1− δ)Πi + δŨ i ≥ (1− δ)
(
Π1 + Π2 −∆cD(p∗(Π−i))

)
+ δΠ(δ)

must hold for all i. Conversely, given any balanced equilibrium payoffs (Ũ1, Ũ2) ∈ EB, any

constants Πi ∈ [ΠC ,ΠM ] satisfying the above IC constraints yield a balanced equilibrium

with first-period profits Πi and continuation profits Ũ i.

Lemma C.2. Suppose δ ≤ 1/2. Then there exists a unique B-optimal equilibrium payoff

vector (U,U), which is supportable by a symmetric stationary equilibrium.

Proof. Let U∗ ∈ R be the supremum of all payoffs U1 such that for some U2 the payoff

vector (U1, U2) is supportable by a balanced equilibrium. Let (U
(n)
1 , U

(n)
2 ) be a sequence of

balanced equilibrium-supportable payoff vectors such that U
(n)
1 ↑ U∗. (If U∗ is itself sup-

portable as a balanced equilibrium, this could be a constant sequence.) For each n, let

Π
(n)
1 ,Π

(n)
2 and (Ũ

(n)
1 , Ũ

(n)
2 ) be the corresponding constants whose existence is ensured by

lemma C.1. Passing to a subsequence if necessary, suppose that U
(n)
2 → U∞2 , and similarly

for Π
(n)
1 ,Π

(n)
2 , Ũ

(n)
1 , Ũ

(n)
2 . (All of these sequences exist in compact subsets of the real line, so

such subsequences exist.)

Because U∗ ≥ Ũ
(n)
1 for all n, we must have U∗ ≥ Ũ∞1 . Also given U

(n)
1 = (1−δ)Π(n)

1 +δŨ
(n)
1

for all n we have

U∗ = (1− δ)Π∞1 + δU∞1 ≤ (1− δ)Π∞1 + δU∗,

or Π∞1 ≥ U∗. And since U∗ ≥ Ũ
(n)
2 for all n (by symmetry of the game) we must have

U∗ ≥ Ũ∞2 . Then from the IC constraints

(1− δ)Π(n)
2 + δŨ

(n)
2 ≥ (1− δ)

(
Π

(n)
1 + Π

(n)
2 −∆cD(p∗(Π

(n)
1 ))

)
+ δΠ(δ;N)

implied by lemma C.1, we conclude that

(1− δ)Π∞2 + δΠ∞1 ≥ (1− δ) (Π∞1 + Π∞2 −∆cD(p∗(Π∞1 )) + δΠ(δ;N),
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or equivalently

Π∞1 ≥ (1− δ)(2Π∞1 −∆cD(p∗(Π∞1 ))) + δΠ(δ;N). (1)

Thus there exists a constant Π∞1 satisfying (1) such that Π∞1 ≥ U∗. In particular, (Π∞1 ,Π
∞
1 ) ≥

(U1, U2) for every balanced equilibrium-supportable payoff vector (U1, U2).

Now, we know that every Π∞1 satisfying (1) yields a symmetric stationary equilibrium

with payoffs (Π∞1 ,Π
∞
1 ) through the usual partially collusive construction. Let Π∗ be the

maximal such Π∞1 (which we know exists by continuity of D(p∗(·)). Then it must be that

U∗ = Π∗, as there exists a balanced equilibrium supporting this outcome. Further, as there

exists a symmetric stationary equilibrium supporting payoffs (U∗, U∗), this is the unique

B-optimal payoff vector. This establishes the claims of the proposition.

C.2 Basic properties of stationary equilibria

This Appendix characterizes basic properties of stationary equilibria for the duopoly setting,

as well as for an extension of the model to N + 1 firms and N + 1 markets for any N > 1.

(See Section C.3.1 of this Appendix for a full description of this extension.) The definition

of stationarity for a duopoly setting is extended to the many-firm case in the obvious way.

Lemma C.3. Let σ be a stationary equilibrium with on-path play τ . Then for each firm i

and market m, there exists a constant Π
i

m such that Πi
m(aim, τ

−i
m ) = Π

i

m with probability 1

under τ im.

Proof. Fix a firm i and a market m, and suppose by way of contradiction there existed a Π∗

such that Πi
m ≤ Π∗ and Πi

m > Π∗ each occur with strictly positive probability under τm. Then

there exist actions ai, ãi ∈ Ai such that Πi
m(aim, τ

−i
m ) ≤ Π∗ and Πi

m(ãim, τ
−i
m ) > Π∗ and ai, ãi

are each profit-maximizing for firm i in period 0 under σ. Further, ai and ãi may be chosen to

lie along a compliant path for firm i in period 0 under σ. But then because the set of compliant

paths is rectangular, âi ≡ (ãim, a
i
−m) lies on a compliant path as well for i. In a stationary

equilibrium all actions lying on a compliant path yield the same expected continuation payoff.

But âi yields a strictly higher stage-game payoff for i than ai by construction, thus ai cannot

be profit-maximizing for i. This is the desired contradiction.

This lemma gives us a powerful accounting identity for characterizing possible equilib-

rium strategies: In each market, every firm must receive the same profits for all on-path
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actions. It is used to prove the following pair of lemmas, which establish that 1) any sta-

tionary equilibrium may be replaced by another with independent randomization across

markets on-path, and 2) any SPNE featuring the same play in each period and independent

randomization across markets on-path can be adapted to produce a stationary equilibrium.

Therefore without loss of generality, we impose stationarity by assuming that firm use the

same stage-game strategy profile in all periods and randomize independently across markets

on-path.

Lemma C.4. Let σ be a stationary equilibrium with on-path play τ. Then there exists another

stationary equilibrium σ′ with on-path play τ ′ =
∏N+1

i=1

∏N+1
m=1 τ

i
m, where τ im is the marginal

distribution of τ i in market m. Both σ and σ′ yield the same expected lifetime profits to all

firms.

Proof. Let Π
i

m be the constants whose existence is assured by Lemma C.3. Define A† ≡ {a ∈
A : Πi

m(aim, τ
′−i
m ) = Π

i

m ∀i,m}, and let H̃ ≡
∏∞

t=0A
†. Note that A† is a Cartesian product

of the sets A†(i,m) ≡ {aim ∈ Aim : Πi
m(aim, τ

′−i
m ) = Π

i

m} ⊂ Aim. Thus H̃ is a rectangular set

of complete histories, as for each t and h ∈ H̃t we have A∗(h) = A†.

Construct σ′ by setting σ′(h) = τ ′ for every t and h ∈ H̃t. Also, for h in some H̃t

and a ∈ A such that ai /∈
∏N+1

m=1 A
†(i,m) for at least two firms i, set σ′|(h,a) = σ. Finally,

consider h in some H̃t and a ∈ A such that ai /∈
∏N+1

m=1 A
†(i,m) for a single firm i, while

a−i ∈
∏

j 6=i
∏N+1

m=1 A
†(j,m). Let σ(i) be an SPNE yielding minimal lifetime profits for i among

all SPNEs.2 Set σ′|(h,a) = σ(i).

We claim that σ′ is the desired stationary equilibrium. We first demonstrate that H̃ is a

set of compliant paths under σ′. Note that for all i and m, τ ′im = τ im by construction, hence

for all aim ∈ Aim we have Πi
m(aim, τ

′−i
m ) = Πi

m(aim, τ
−i
m ). Thus by Lemma C.3 aim ∈ A†(i,m)

with probability 1 under τ ′im. We conclude that a ∈ A† with probability 1 under τ ′. It follows

that H̃ is a set of compliant paths path, which is rectangular by construction. Obviously

on-path play is τ ′ along any compliant path.

It remains to check that σ′ is indeed an SPNE. Following a deviation by one or more

firms, continuation play is an SPNE by construction. So we need only confirm that there are

no profitable unilateral deviations along any compliant path. Suppose there existed i and

ai /∈
∏N+1

m=1 A
†(i,m) such that (1− δ)Πi(ai, τ ′−i) + δU i(σ(i)) > Πi(τ ′). Because Πi(ai, τ ′−i) =

Πi(ai, τ−i) by summing the market-by-market equivalences derived earlier, it must also be

the case that (1 − δ)Πi(ai, τ−i) + δU i(σ(i)) > Πi(τ). But then σ is not an equilibrium, as

2If such an SPNE does not exist because the equilibrium set is not closed, the following argument goes
through by choosing an SPNE yielding profits sufficiently close to the infinum.
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no matter the continuation following play of ai in period 0 by firm i under σ, firm i has

a profitable one-shot deviation to ai. So no such ai exists, ruling out profitable deviations

along any compliant path.

The final claim of the lemma follows simply from noticing that lifetime profits to firm i

under σ and σ′ are Πi(τ) and Πi(τ ′), respectively, and recalling that Πi(τ) = Πi(τ ′).

Lemma C.5. Fix an SPNE σ. Suppose there exists a set of compliant paths H∗ and mixed

strategies τ im ∈ ∆(Aim) such that for all h ∈ H∗ and t, σ(ht) =
∏N+1

i=1

∏N+1
m=1 τ

i
m. Then there

exists a stationary equilibrium σ′ with on-path play
∏N+1

i=1

∏N+1
m=1 τ

i
m.

Proof. Let τ ≡
∏N+1

m=1 τ
i
m. We first establish the existence of constants Π

i

m for each i and

m such that Πi
m(aim, τ

−i
m ) = Π

i

m w.p. 1 under τ im. Suppose by way of contradiction that

for some i and m, there exists a profit level Π∗ such that Πi
m(aim, τ

−i
m ) ≤ Π∗ occurs with

probability strictly between 0 and 1 under τ im. Then given the independence of i’s actions

across markets, the event Ei = {Πi(ai, τ−i) ≤ Π∗ + Πi
−m(τ−m)} must occur with probability

strictly between 0 and 1 under τ i. To see this, note first that

{Πi
m(aim, τ

−i
m ) ≤ Π∗ ∧ Πi

−m(ai−m, τ
−i
−m) ≤ Πi

−m(τ−m)} ⊂ Ei,

and by independence the probability of the event on the lhs is equal to

Pτ im{Πi
m(aim, τ

−i
m ) ≤ Π∗}Pτ i−m{Πi

−m(ai−m, τ
−i
−m) ≤ Πi

−m(τ−m)},

with both terms strictly positive. So Pτ i(Ei) > 0. Similarly, letting Ei be the complementary

event to Ei, we have

{Πi
m(aim, τ

−i
m ) > Π∗ ∧ Πi

−m(ai−m, τ
−i
−m) ≥ Πi

−m(τ−m)} ⊂ Ei,

and again the probability of the set on the lhs is strictly positive. So Pτ i(Ei) > 0, or

Pτ i(Ei) < 1.

Now, note that along any compliant path τ is played in every period, thus w.p. 1 under σ

each firm j’s continuation payoff after period 0 must be Πj(τ). In particular, firm i’s expected

continuation payoff given τ−i must be Πi(τ) w.p. 1 under τ i. But then i’s expected lifetime

payoff from playing actions in Ei is strictly lower than from playing actions in Ei. This is a

contradiction of the optimality of i’s strategy in period 0. So we conclude that the desired

constants Π
i

m exist for all i and m.

Now define A†(i,m) ≡ {aim ∈ Aim : Πi
m(aim, τ

−i
m ) = Π

i

m} for each firm i and market

m, and let A† ≡
∏N+1

i=1

∏N+1
m=1 A

†(i,m). Consider the rectangular set of complete histories
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H̃ =
∏∞

t=0 A
†. Construct a repeated game strategy profile σ′ as follows. For every t and

h ∈ H̃, set σ′(h) = τ. Also, for each a ∈ A such that ai /∈
∏N+1

m=1 A
†(i,m) for at least two

firms, set σ′|(h,a) = σ. Finally, for each a ∈ A such that ai /∈
∏N+1

m=1 A
†(i,m) for some firm i

while a−i ∈
∏

j 6=i
∏N+1

m=1 A
†(i,m), set σ′|(h,a) = σ(i), where σ(i) is an SPNE yielding minimal

lifetime profits for i among all SPNEs.

We claim that σ′ is a stationary equilibrium with compliant path of play τ . Observe that

H̃ is a rectangular set of compliant paths for σ′, as a ∈ A† w.p. 1 under τ by definition of

the Π
i

m. And τ is the path of play under σ′ by construction. It remains only to check that

σ′ is an SPNE. Off-path play follows an SPNE by construction, so we need only verify that

there are no profitable deviations on-path. For each i, all ai ∈
∏N+1

m=1 A
†(i,m) are on-path;

while all ai such that Πi(ai, τ−i) < Πi(τ) yield lower immediate and continuation profits

than on-path play. Finally, the unprofitability of ai such that Πi(ai, τ−i) > Πi(τ) follows

from the fact that σ is an equilibrium, as σ′ provides continuation payoffs no higher than σ

following such actions. Thus σ′ is indeed an SPNE.

C.3 The case of many competitors

Our simple duopoly model has the implication that perfect collusion is possible even for

relatively low values of δ (in particular, δM < 1/2 from Proposition 5 in the main text). If

one interprets δ literally, i.e., as reflecting discounting at the market interest rate over the

intervals between competitive interactions, then one would typically expect to find δ > δM

in practical applications, in which case the firms would achieve perfect collusion, and the

structure of optimal collusive agreements for δ < δM would have little bearing on actual

cartel behavior.

However, one can also interpret δ more expansively (and less literally) as a reduced-form

stand-in for other factors that tend to make firms focus more on present opportunities and

less on future consequences. For example, in many simple models of oligopoly, the number

of competitors affects the feasibility of collusion through the same channel as discounting

(because adding firms increases the potential gains from current deviations and reduces

the future benefits of cooperation). Firms may also effectively discount future profits to a

greater extent than market interest rates would imply because of agency problems, leadership

turnover, uncertainty about future market conditions, or capital market imperfections that

raise internal hurdle rates.

In this section we explore the implications of multiple competitors explicitly. We show

that collusion indeed becomes more difficult to sustain as the cartel size increases, and that
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perfect collusion is infeasible even with a moderate number of firms and discount factors

close to unity. We also generalize the results of Section 5 of the main text and, for discount

factors below δM , provide a characterization of optimal collusion that is broadly similar

to the two-firm case. Our results thus provide some reassurance that our central insights

concerning cartels are robust with respect to the introduction of additional factors that make

collusion more difficult to sustain.

C.3.1 Setup

We extend our model to many-firm settings while retaining symmetry across firms: there

are now N + 1 firms and N + 1 markets, where N ≥ 2. Firm i’s marginal cost is cH for

units sold in market i (its home market), and cA > cH for units sold elsewhere. All other

features of the model are unchanged, except for the standing assumption made in Section 5.2

of the main text, which we discard. (It will turn out to be replaced by a weaker sufficiency

condition which is relaxed as N grows.)

C.3.2 Analyzing the stage game

First consider a single round of the stage game played in isolation. Because payoffs are

additively separable across markets, we can focus on play in a single market. Let {H} ∪I

be the set of firms, where H is the home firm and I = {1, ..., N} includes the away firms.

The existence of a two-firm equilibrium implies that there are many Nash equilibria when

N ≥ 2. For if H and any firm i ∈ I play the two-firm equilibrium, no away firm will have

an incentive to enter (as it would receive strictly less than i’s profits, which are zero). Hence

there are at least N Nash equilibria involving competition among pairs of firms.

In fact, for any non-empty subset of away firms, there is a Nash equilibria in which those

firms compete with the home firm. Our main result establishes a limit on the multiplicity

of equilibria: once a subset of away firms is chosen, there exists a unique Nash equilibrium

involving participation by those firms. The form of this equilibrium is broadly similar to

the two-firm equilibrium, with certain entry by the home firm, occasional entry by the away

firms, and all firms randomly choosing prices between p
A

and p∗H . Further, the equilibrium is

symmetric in that all away firms play identical strategies. The following result summarizes

these results: (The proofs for the many-firm case rely on a number of auxiliary results

developed in Appendix C.4.)

Proposition C.1. For every non-empty subset J ⊂ I of away firms, there exists a unique

Nash equilibrium of the stage game in which every firm in J enters with positive probability
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and no firm in I \J ever enters. In this equilibrium:

1. The home firm always enters and makes profits ΠH = ∆cD(p
A

).

2. Each away firm i ∈ J enters with probability strictly less than 1 and makes profits

Πi = 0.

3. Each entering firm’s price distribution has full support on [p
A
, p∗H ].

4. All entering away firms play the same strategy.

There exist no Nash equilibria in which no away firms enter with positive probability.

Proof. This is a restatement of Proposition C.10.

C.3.3 Asymmetric collusion with many firms

When many firms compete, the set of possible collusive arrangements is much richer than

with only two firms. For the latter case, we have seen that it is always optimal to allocate

production so that each firm earns all of its profits in its home market. In contrast, with

three or more firms, it can be worthwhile to spread each firm’s profits across several markets;

this reduces the profitability of undercutting in each market and thereby relaxes incentive

constraints (in some instances).

In Appendix C.3.7, we describe an equilibrium which, for particular choices of c,∆c,

and δ, Pareto-dominates the best equilibrium in which firms earn profits only in their home

markets. Table 1 displays the division of profits for the special case of three firms. The table

includes a row for each firm and a column for each market; a “+” indicates positive profits

while 0 indicates zero profits.

M1 M2 M3
F1 + 0 0
F2 + + 0
F3 0 0 +

Table 1: A division of equilibrium profits that is not market-symmetric

With no further restrictions on the structure of the equilibrium, it is difficult to char-

acterize optimal collusion. Note, however, that the equilibrium depicted in Table 1 has a

feature that is arguably peculiar: within one of the markets (M1), ex ante identical away
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firms (F2 and F3) do not earn the same profits. It is reasonable to assume that symmetri-

cally situated firms are drawn to symmetric agreements because they are easier to describe,

likely simpler to negotiate, and require less coordination than asymmetric ones.

We will therefore impose symmetry going forward to provide sufficient structure for a

characterization of optimal collusion with more than two firms.

C.3.4 Optimal collusive equilibria

We begin our analysis of optimal collusive equilibria by introducing some additional notation.

Recall that ΠM is the monopoly profit of a low-cost provider in a single market. Let Π̃M

be the profit of a high-cost provider setting the same price p∗H , which satisfies ΠM − Π̃M =

∆cD(p∗H) > 0. (Note that Π̃M is not the monopoly profit of the high-cost provider, as in

general p∗A > p∗H .) With this notation, define

δM(N) ≡ 1− 1

N + 1

(
N

N + 1

Π̃M

ΠM
+

1

N + 1

)−1

.

The notation suggests that δM(N) is the minimal discount factor for which perfect collusion is

sustainable with N+1 firms, a fact we establish later, under some conditions, in Proposition

C.5. Note that ΠM > Π̃M implies that δM(N) < 1− 1/(N + 1).

Another useful discount factor threshold is δ(N) ≡
(
1− 1

N

) (
1 + c

ΠM

)
. This expression

plays an auxiliary role in our results and we will explain it shortly; for the moment, simply

note that it is greater than 1−1/N and may be either larger or smaller than δM(N). Finally,

let Π(δ;N) be the minimum SPNE-sustainable lifetime profits with discount factor δ and

N + 1 firms.

Our first proposition is the many-firm analog of Proposition 3 from the main text:

Proposition C.2. Suppose δ < δM(N) and N ≥
√

1 + ΠM/c. Then the optimal symmetric

stationary equilibrium payoff vector (Π∗, ...,Π∗) satisfies

Π∗ = (1− δ)((N + 1)Π∗ −∆cND(p∗(Π∗))) + δΠ(δ;N).

Further, Π∗ > ΠC iff Π(δ;N) < ΠC , and Π∗ is strictly increasing in δ whenever Π(·;N) is

nonincreasing in δ. Finally, Π∗ is strictly decreasing in N whenever Π(δ; ·) is nonincreasing

in N.

Proof. Note that N ≥
√

1 + ΠM/c implies δ(N) > δM(N) and thus δ < δ(N) by Lemma

C.15. Then this result is a consequence of Propositions C.12 through C.14. Proposition
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C.12 gives a necessary condition for a profit vector to be supportable as a market-symmetric

stationary equilibrium (under the conditions of the proposition), in the form of a set of

inequalities. Proposition C.13 shows that these inequalities form a sufficient condition for

existence of an equilibrium, while Proposition C.14 characterizes the unique symmetric op-

timal profit vector within the set of vectors satisfying the inequalities.

The substance of this proposition is identical to that of Proposition 3. In essence it tells

us that, provided δ is not too high, optimal collusion involves allocating markets according

to cost advantages. As the proposition shows, the characterization of maximum sustainable

profits then depends on the most severe punishment, Π(δ;N), that firms can mete out

following a deviation.

In contrast to the case of a duopoly, the optimality of allocating markets according

to cost advantages is not guaranteed for all δ < δM(N). We therefore also require that

N ≥
√

1 + ΠM/c, which rules out the possibility of achieving higher profits by allocating

business only to away firms (while respecting symmetry). In Appendix C.3.8, we show by

way of example that such an arrangement can yield profits exceeding the level indicated in

Proposition C.2 when this bound is violated. Table 2 depicts the division of profits for this

example (in which there are three firms).

M1 M2 M3
F1 0 + +
F2 + 0 +
F3 + + 0

Table 2: A cartel with all profits awarded to away firms

The condition N ≥
√

1 + ΠM/c is a lower bound on the number of competitors given the

ratio of monopoly profits to market-specific fixed costs. Because this bound grows slowly in

ΠM/c, it may be satisfied in practice. For instance, ΠM/c = 3 implies N ≥ 2 (which is true

by assumption), while ΠM/c = 15 implies N ≥ 4. Even if fixed costs were a trivial portion

of monopoly profits, say 1%, the implied bound on N would be only N ≥ 10. Consequently,

imposing N ≥
√

1 + ΠM/c (and hence δM(N) < δ(N)) strikes us as reasonably innocuous.

In fact we can do better. Arrangements in which profits are allocated against cost ad-

vantage be shown to be suboptimal whenever the regularity condition δ < δ(N) holds. (The

condition N ≥
√

1 + ΠM/c is merely a sufficient condition for regularity to hold.) And the

irregular case δ(N) ≤ δ < δM(N), when the discount factor might be low enough to re-

quire partially collusive arrangements but high enough to violate regularity is demonstrably
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unimportant. In particular:

Proposition C.3. [δ(N), δM(N)] ⊂ (1−1/N, 1−1/(N+1)). Therefore if δ ∈ [δ(N), δM(N)),

then δ < δ(N + 1) and δ > δM(N − 1).

Proof. The set inclusion follows from the fact that δM(N) < 1−1/(N +1) while δ(N) > 1−
1/N, inequalities which are obvious by inspection of the relevant definitions. The remaining

inequalities are immediate corollaries of the fact that the collection of intervals (1−1/N, 1−
1/(N + 1)) are pairwise disjoint.

This result tells us that δ ∈ [δ(N), δM(N)) is a knife-edge case: add one more firm and

we will have δ < δ(N + 1), which means we can focus on cartel structures that allocate

markets according to cost. Subtract one firm, and the resulting cartel can sustain perfect

collusion. The size of the problematic interval [δ(N), δM(N)) is also at most 1/(N(N + 1)),

and so collapses rapidly with N. We therefore consider the possibility of alternative collusive

structures (ones that allocate profits to away firms) a minor issue that we can safely ignore.

The next result generalizes Proposition 4 of the main text:

Proposition C.4. Whenever

δ ≥ δ(N) ≡
(

1− 1

N + 1

)(
1 +

N

N + 1

ΠM − Π̃M

c

)−1

,

there exists an SPNE supporting lifetime profits of 0 for each firm, so that Π(δ;N) = 0.

Proof. This is a restatement of Proposition C.15.

The structure of the punishment equilibrium resembles the one used for duopolies, but

it has an asymmetric element: the punishment for firm i consists of a price war between i

and another firm, say i + 1, in their respective markets. All other firms stay out of those

markets and play the stage-game Nash equilibrium in the remaining markets. Firms revert

to cooperation after one round of a successful price war. Note that δ(N) is increasing in N,

but is strictly bounded away from 1 given ΠM > Π̃M . Thus even with a large number of

somewhat impatient competitors, minmax punishments are feasible.

Next we generalize Proposition 5 from the main text, and fully characterize optimal collu-

sive payoffs for a range of discount factors below δM(N) under mildly restrictive conditions:

Proposition C.5. Suppose ΠM > ∆cD(p∗H) + c
N

and N ≥
√

1 + ΠM/c. Then δ(N) <

δM(N), and for all δ ∈ [δ(N), δM(N)] the optimal symmetric stationary equilibrium profit
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vector (Π∗, ...,Π∗) satisfies

Π∗ = (1− δ)((N + 1)Π∗ −∆cND(p∗(Π∗))).

Further, Π∗ is continuous, strictly greater than ΠC , and strictly increasing in δ. Finally,

δM(N) is the minimal discount factor at which perfect collusion is sustainable.

Proof. This result follows from Propositions C.2 and C.4, once we have established δ(N) <

δM(N). Write δM(N) as

δM(N) =
1

1 + 1
N

ΠM/Π̃M

and δ(N) as

δ(N) =
N

N + 1

1

1 + N
N+1

ΠM−Π̃M

c

.

Then re-arrangement of the inequality yields

1 +
N

N + 1

ΠM − Π̃M

c
>

N

N + 1

(
1 +

1

N

ΠM

Π̃M

)
.

Multiplying through by N + 1 and cancelling terms leaves

1 +N
ΠM − Π̃M

c
>

ΠM

Π̃M
.

Subtracting both sides by 1 and combining terms on the rhs allows us to cancel a common

factor of ΠM − Π̃M . Finally, we are left with Π̃M > c/N, which is equivalent to the condition

ΠM > ∆cD(p∗H) + c/N in the proposition statement.

As in the duopoly case, we impose a mild sufficiency condition on ΠM to ensure δ(N) <

δM(N). This condition is weaker than the one imposed for duopoly, grows weaker as N

increases, and is always satisfied for sufficiently large N. Note that Proposition C.5 does not

directly speak to the form of Π∗ for any discount factor when δ(N) < δM(N). To address

this deficiency, in Proposition C.16 we derive a very mild lower bound on N that ensures

δ(N) < δ(N), in which case Proposition C.5 continues to characterize optimal profits for

discount factors in the range [δ(N), δ(N)).

Finally, we characterize an equilibrium supporting profits Π∗ for each firm. As in the

case of a duopoly, this construction holds regardless of the value of Π(δ;N).
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Proposition C.6. Suppose δ < δM(N). Then lifetime profits (Π∗, ...,Π∗) are supported by

a symmetric stationary equilibrium with the following properties:

1. The home firm’s strategy is the same in all markets, and all away firms play the same

strategy in all markets.

2. The home firm enters with probability 1, while all away firms enter with a probability

that is strictly between zero and 1 and decreasing in Π∗.

3. The home firm earns profits Π∗, while all away firms make zero profits.

4. Each firm posts prices only in [p∗(Π∗), p∗H ], and firms’ price distributions have full

support on (p∗(Π∗), p∗H).

5. If Π∗ > ∆cD(p
A

), the home firm plays p∗(Π∗) with some strictly positive probability,

which is increasing in Π∗.

6. Each market is captured by an away firm with some strictly positive probability, which

is strictly decreasing in Π∗ when Π∗ ≥ 1
2
ΠM .

7. Any unilateral deviation by an away firm to a price at or below p∗(Π∗) is punished by

a continuation payoff of Π(δ;N) to that firm.

Proof. This is a special case of Proposition C.13, with the inequality of property 6 weakened

to provide a simpler expression.

This result mirrors our conclusions concerning the optimal collusive structure for a

duopoly, and features business-stealing for essentially the same reason.

C.3.5 Imperfect collusion in large cartels

The following result explores how the range of discount factors for which we have character-

ized optimal collusion changes with cartel size.

Proposition C.7. δ(N) and δM(N) are strictly increasing in N, and limN→∞ δ(N) < 1

while limN→∞ δ
M(N) = 1. Further, δM(N) − δ(N) is strictly increasing in N whenever

δM(N) ≥ δ(N).

Proof. Writing δM(N) as

δM(N) = 1− 1

1 +NΠ̃M/ΠM
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proves that it is strictly increasing in N and approaches 1 as N → ∞. Similarly, writing

δ(N) as

δ(N) =

(
1 +

1

N
+

ΠM − Π̃M

c

)−1

shows that δ(N) is strictly increasing but bounded below 1.

To finish the proof, we must show that ∆(N) ≡ δM(N) − δ(N) is increasing whenever

∆(N) ≥ 0. We showed in the proof of Proposition C.5 that the latter inequality holds iff

Π̃M ≥ c/N . It is then sufficient to verify that ∆′(N) > 0 whenever N ≥ c/Π̃M .

Computing the derivative of ∆(N) yields

∆′(N) =
Π̃M/ΠM(

1 +N Π̃M

ΠM

)2 −
1/N2(

1 + 1
N

+ ΠM−Π̃M

c

)2 .

Some re-arrangement shows that ∆′(N) > 0 iff

1 +
ΠM − Π̃M

c
>

√
Π̃M

ΠM
+

1

N

(√
ΠM

Π̃M
− 1

)
.

Because ΠM > Π̃M , the rhs is largest when N is smallest, i.e. at N = c/Π̃M . It is therefore

sufficient to show that

1 +
ΠM

c
>

√
Π̃M

ΠM
+

√
ΠM Π̃M

c
.

But the first term on the lhs is strictly greater than the first term on the rhs, with a similar

comparison holding for the second terms. So indeed ∆′(N) > 0 whenever N ≥ c/Π̃M ,

completing the proof.

Because δM(N) goes to 1 as N grows large, large cartels can aspire only to imperfect

collusion even when their members are extremely patient. The minimal discount factor

required to sustain a price war yielding zero profits also grows with N, but more slowly.

Thus the range of discount factors for which we completely characterize optimal collusion

expands with N . Accordingly, this proposition establishes the robustness of our results with

respect to cartel size. It also illustrates the point that our analysis of imperfect collusion

applies in settings where firms’ discount rates are in line with market interest rates.
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C.3.6 Comparative statics

The results of this section establish straightforward generalizations of the comparative statics

results of Section 5.4 in the main text for the many-firm case. p∗∗ is defined analogously to

the two-firm case.

Proposition C.8. Fix δ ∈ (0, 1). If δ < N/(N + 1), then Π∗ → ΠC as cA ↓ cH . If δ ≥
N/(N + 1) then Π∗ = ΠM for all cA > cH .

Proof. The N = 1 case is Proposition 9 in the main text. The N ≥ 2 case is a direct

consequence of Proposition C.17 when combined with Proposition C.14, which implies that

Π† = Π∗.

Proposition C.9. Fix δ ∈ (0, 1). Let (FH(·), FA(·), πA) be the home and away firms’ price

distributions and the away firm’s entry probability, respectively, for the equilibrium char-

acterized in Proposition C.6. As c → 0, FH(·) converges uniformly to 1{p ≤ p∗∗} while

πAFA(p∗∗)→ 0. The probability of business stealing therefore falls to zero as c vanishes, and

in the limit the home firm wins the market at price p∗∗ with probability 1.

Proof. The N = 1 case is Proposition 10 in the main text. The N ≥ 2 case is a direct

consequence of Proposition C.18 when combined with Proposition C.14, which implies that

Π† = Π∗.

C.3.7 An equilibrium in asymmetric strategies

In this subsection we demonstrate parameters under which collusion in symmetric strategies

is Pareto-dominated by collusion in more general strategies. Fix D(p) = 1{p ≤ v}, N = 2,

δ = 0.6, ∆c = 0.2, and c = 0.1. v will be assumed to be sufficiently large. The largest

symmetric profits which can be supported in this environment by a stationary equilibrium

satisfy

Π∗ = (1− δ)(NΠ∗ − (N − 1)∆c),

yielding Π∗ = 0.8.

Now, consider a stationary equilibrium with profits taking the signs indicated in Table

1. Markets 2 and 3 take the standard structure of Proposition C.13.

Fix Π1
1, and in market 1, let pL ≡ Π1

1 + c+ cH , pU1 ≡ 1
2
(v+ cH), and pU2 ≡ 1

2
(v+ cA). Firm
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3 does not enter. Firms 1 and 2 always enter and play

F 1
1 (p) =



0, p < pL,

1− pL−cA
p−cA

, p ∈ [pL, pU1 ),

1− pL−cA
pU2 −cA

, p ∈ [pU1 , v),

1, p ≥ v

and

F 2
1 (p) =



0, p < pL,

1− pL−cH
p−cH

, p ∈ [pL, pU1 ),

1− pL−cH
pU1 −cH

, p ∈ [pU1 , v),

1, p ≥ v.

These two distributions are continuous with full support on [pL, pU1 ) and then have a gap on

(pU1 , v). Firm 1 also places an atom at pU1 . Finally, both firms place an atom at v, of sizes

∆F 1
1 = 2

(
Π2

1 + c

ΠM + c−∆c

)
, ∆F 2

1 = 2

(
Π1

1 + c

ΠM + c

)
,

where Π2
1 = Π1

1 −∆c. In order for this construction to be well-defined, we need pL < pU1 , or

equivalently Π1
1 <

1
2
(ΠM − c), which is satisfied for v sufficiently large.

The best deviation by each of firms 1 and 2 in market 1 is to undercut the atom at p = v,

which yields them profits 2Πi
1 + c. Meanwhile firm 3 has two possible maximally profitable

deviations, one at p = pL and another by undercutting p = v. (It can’t be more profitable

to price in the firms’ price support, as this will make firm 3 strictly less than firm 2 would

by playing there, and thus strictly less than he would make by playing p = pL.) His profits

at pL are Π2
1, while his profits undercutting v are

(ΠM + c−∆c)∆F 1
1 ∆F 2

1 − c = 4(Π2
1 + c)

Π1
1 + c

ΠM + c
− c.

For sufficiently large v, these are lower than his profits at pL.

Thus, for sufficiently large v the incentive constraints which need to be satisfied are

Π1
1 ≥ (1− δ)(2Π1

1 + c+ Π2
2 + Π3

3 − 2∆c)

22



for firm 1,

Π2
1 + Π2

2 ≥ (1− δ)(2Π2
1 + c+ Π2

2 + Π3
3 −∆c)

for firm 2, and

Π3
3 ≥ (1− δ)(Π2

1 + Π2
2 + Π3

3 −∆c)

for firm 3. It is easily checked that all firms’ profits are simultaneously maximized subject

to the IC constraints when Π1
1 = 1.4, Π2

2 = 0.2, and Π3
3 = 0.8. This equilibrium is actually a

Pareto-improvement on the best partially collusive one!

C.3.8 An equilibrium with no home market profits

In this subsection we demonstrate parameters under which (symmetric) collusion in which

profits are won in each firm’s home market is Pareto-dominated by collusion in which profits

are won only in firms’ away markets. Fix D(p) = 1{p ≤ v}, N = 2, δ = 0.62, ∆c = 0.2,

and c = 0.1. v will be assumed to be sufficiently large. The maximal profits supportable

by an equilibrium of the type characterized in Proposition C.13 (which is the best that can

be done by a symmetric stationary equilibrium when firms earn profits only in their home

market) satisfy

Π∗ = (1− δ)(NΠ∗ − (N − 1)∆c),

or Π∗ ' 1.09.

Now consider a symmetric equilibrium in which all away firms make positive profits Π/N

in each market, while the home firm makes no profits. Thus each firm makes total equilibrium

profits Π.

The home firm refrains from entering, while the away firms always enter. Let pL ≡
Π/N + c+ cA and pU ≡ cA + 1

N
(v − cA). Each away firm plays

FA(p) =



0, p < Π + c+ cA,

1−
(
pL−cA
p−cA

)1/(N−1)

, p ∈ [pL, pU),

1−
(
pL−cA
pU−cA

)1/(N−1)

, p ∈ [pU , v),

1, p ≥ v.

Each firm’s price distribution is continuous with full support on [pL, pU ], has a gap on [pU , v),
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and places an atom at pU of strength

∆FA =

[
N

(
pL − cA
v − cA

)]1/(N−1)

.

For the construction to be well-defined, we need pU > pL, i.e. Π < v − cA − Nc, which is

possible for v sufficiently large.

Now, each away firm has a deviation to undercutting p = v, yielding profits Π + (N −
1)c. Meanwhile the home firm has two candidate deviations. Setting p = pL yields profits

Π/N + ∆c, while undercutting p = v yields profits

(v − cH)(∆FA)N − c = NN/(N−1) v − cH
(v − cA)N/(N−1)

− c.

For v sufficiently large the home firm’s most profitable deviation is to pL.

The IC constraint required to support this equilibrium is then

Π ≥ (1− δ)
[(
N +

1

N

)
Π +N(N − 1)c+ ∆c

]
,

with the additional constraint that Π < v−cA−Nc. Given that (1−δ)(N+1/N) = 0.95 < 1,

any Π ≥ 3.04 will satisfy the IC constraint. So for v sufficiently high, there exist Π > Π∗

supportable in equilibrium.

C.4 Auxiliary results for the many-firm case

C.4.1 The stage game

The following result characterizes the set of Nash equilibria of the stage game.

Proposition C.10. For every non-empty subset J ⊂ I of away firms, there exists a

unique Nash equilibrium of the stage game in which every firm in J enters with positive

probability and no firm in I \J ever enters. In this equilibrium:

1. The home firm always enters and makes profits ΠH = ∆cD(p
A

).

2. Each away firm i ∈ J enters with probability strictly less than 1 and makes profits

Πi = 0.

3. Each entering firm’s price distribution has full support on [p
A
, p∗H ].
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4. All entering away firms play the same strategy.

There exist no Nash equilibria in which no away firms enter with positive probability.

Proof. Let (πH , FH , {πi, Fi}i∈I ) be a Nash equilibrium of the stage game. Define J ≡ {i ∈
I : πi > 0}. We first establish that at least one away firm must occasionally enter in

equilibrium

Lemma C.6. J is non-empty.

Proof. If no away firm entered, then each away firm makes zero profits in equilibrium. Mean-

while, the unique profit-maximizing strategy of the home firm is to post price p∗H . But then

each away firm can make strictly positive profits by pricing just under p∗H , a contradiction

of equilibrium.

Define Πi(p) to be the expected profits of firm i ∈ {H} ∪J upon entering and setting

price p given the equilibrium strategies of all other firms. We will often overload notation

by letting Πi (with no argument) represent the equilibrium profits of firm i.

The next lemma establishes that Πi(p) is continuous at p iff no other firm places an atom

at p, and that when an atom exists the profit function is discontinuous from both directions.

Lemma C.7. Πi(p−) ≥ Πi(p) ≥ Πi(p+) for all i ∈ {H}∪J and p ∈ [p
A
, p∗H ], with equality

for given firm i iff no other firm places an atom at p.

Proof. Obvious.

The next lemma establishes that firms set prices only in the interval [p
A
, p∗H ], that the

home firm always enters the market, and that the away firm occasionally enteres the market.

Lemma C.8. FH([p
A
, p∗H ]) = Fi([pA, p

∗
H ]) = 1 for all i ∈J and πH = 1.

Proof. Each i ∈ J receives strictly negative profits below p
A

no matter the other firms’

strategies. So Fi(pA−) = 0 in equilibrium. Then the home firm is never profit-maximizing

below p
A

given that his profits are non-positive below p
H
, zero at p

H
< p

A
, and strictly

increasing on [p
H
, p

A
]. Hence FH(p

A
−) = 0 as well. Additionally, the home firm achieves

strictly positive profits by setting a price just below p
A
, so his equilibrium profits must be

strictly positive and therefore πH = 1.

At the other end of the price support, the home firm always makes strictly lower profits

setting a price above p∗H than by pricing at p∗H , no matter the away firms’ strategies. Then

FH(p∗H) = 1. This result, combined with the fact that the home firm always enters the
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market, means that any away firm pricing above p∗H will make no sale and achieve negative

profits. This is less profitable than not entering the market, so Fi(p
∗
H) = 1 for each i ∈ J

in equilibrium.

We next establish a “no overlapping atoms” result:

Lemma C.9. For each p ∈ [p
A
, p∗H ], there exists at most one firm in {H} ∪J whose price

distribution is not continuous at p.

Proof. Suppose some firm i ∈ {H} ∪J places an atom at p ∈ (p
A
, p∗H ]. Then i must be

profit-maximizing at p. If some other firm also placed an atom at p, then the limit of i’s

profits for prices just below p would be strictly higher than his profits at p, by the previous

lemma. This contradicts the optimality of p for i, so no other firm can have an atom at p.

Finally, consider placement of an atom at p
A

by two firms. At least one of these firms

must be an away firm; but as the away firm loses the market with positive probability at that

price, he makes strictly negative profits given the definition of p
A
. This means p

A
cannot be

optimal for that firm, ruling out the placement of an atom there. Reaching a contradiction,

we conclude that at most one firm can place an atom at p
A
.

Let pUi ≡ sup{p : Fi(p) < 1} be the supremum of firm i’s price support for i ∈ {H}∪J ,

and similarly let pLi ≡ inf{p : Fi(p) > 0} be the infimum.

Lemma C.10. pUi = p∗H for all i ∈ {H} ∪J .

Proof. We first show that pUi = pUj for all i, j ∈ {H}∪J . Suppose pUi > maxj 6=i p
U
j ≡ pU−i for

some i ∈ {H} ∪J . As i makes non-negative equilibrium profits, he must win with strictly

positive probability when playing any price (strictly) above pU−i. Thus his profits are strictly

increasing on (pU−i, p
∗
H ], meaning i places an atom at p∗H and does not set prices in (pU−i, p

∗
H).

Now, if no atom existed at pU−i, then some firm j whose support supremum lies at pU−i

has continuous profits there. Hence pU−i must be profit-maximizing for j. In particular, as

j makes non-negative profits, he wins with positive probability by pricing at pU−i, so also

by setting prices in [pU−i, p
∗
H). But then j’s profits are also strictly increasing on [pU−i, p

∗
H), a

contradiction.

Then it must be that some firm, say j again, places an atom at pU−i. But by the overlapping

atoms result no other firm can place an atom there. Then j’s profits are strictly increasing

on [pU−i, p
∗
H), contradicting the optimality of pU−i for j implied by his placement of an atom

there. We conclude that every firm’s price ceiling is the same, say pU .

Suppose pU < p∗H . If no firm places an atom at pU , then each firm’s profits are continuous

at pU and hence this price is profit-maximizing for all firms. For equilibrium profits to be
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non-negative, each firm must win the market with positive probability at pU , meaning profits

are strictly increasing on [pU , p∗H ], a contradiction of optimality. So some firm i must place an

atom at pU , which is then profit-maximizing for i. Since there can be no overlapping atoms,

i’s profits are continuous at pU , meaning they are strictly increasing on [pU , p∗H ], another

contradiction. Hence pU = p∗H .

Lemma C.11. pLi = p
A

and Πi = D(p
A

)(p
A
− ci)− c for all i ∈ {H} ∪J .

Proof. Suppose pLi < minj 6=i p
L
j ≡ pL−i for some i. Then i wins w.p. 1 on [pLi , p

L
−i], meaning

his profits are strictly increasing on this interval. This contradicts the optimality of prices

strictly less than pL−i. Hence pLi = pL for some pL ∈ [p
A
, p∗H ] and all i ∈ {H} ∪J .

Suppose some firm placed an atom at pL. Then every other firm’s profits at pL are strictly

higher than at prices just above pL, meaning no other firm’s price distribution assigns positive

measure to (pL, pL+ε) for ε > 0 sufficiently small. But given the definition of pL, this means

every other firm must place an atom at pL, contradicting the overlapping atom result.

So there exist no atoms at pL, meaning by continuity of the profit function there that each

firm’s profits are maximized at pL. Hence Πi = D(pL)(pL− ci)− c for all i. Suppose pL > p
A

.

Then Πi > 0 for all i, meaning πi = 1 for each i. Now consider the possible existence of an

atom at p∗H . In light of the previous lemma, there must be profit-maximizing prices for each

firm arbitrarily close to p∗H . But then at most one firm can place an atom there, say firm i.

In this case given sure entry by all other participating firms below this price, i makes −c < 0

at p∗H , a contradiction of Πi > 0. So no firm places an atom at p∗H . But then each firm’s

profits are continuous at p∗H , meaning that each firm’s profits are maximized there. But their

profits are again −c < 0 there, another contradiction. So we must have pL = p
A
.

Lemma C.12. There can exist at most one atom in equilibrium, by the home firm at p∗H .

Proof. Suppose some firm i places an atom at p ∈ [p
A
, p∗H). Then there exists an ε > 0 such

that each firm j 6= i places no support on [p, p+ε). Now, we know that i has profit-maximizing

prices arbitrarily close to p∗H given that this is the supremum of his price support. Then i

wins with positive probability arbitrarily close to p∗H , meaning he must win with (constant)

positive probability on [p, p+ ε) (assuming p+ ε < p∗H , which we can assume wlog by taking

ε small). But then i’s profits are strictly increasing on [p, p + ε). This contradicts the fact

that p is profit-maximizing for i implied by his placement of an atom there. So no such atom

exists.

The existence of at most a single atom at p∗H follows from the overlapping atoms result.

If this atom were placed by an away firm, the fact that πH = 1 implies that the away firm
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never wins the market at p∗H and thus that his profits are −c < 0 there. This contradicts

the optimality of p∗H implied by placement of an atom there. Hence only the home firm can

place an atom at p∗H .

Lemma C.13. FH has full support on [p
A
, p∗H ].

Proof. Suppose not. Then there exists a non-degenerate open interval S ⊂ (p
A
, p∗H) assigned

zero measure under FH . Let F̂ ≡ FH(p) for any p ∈ S. Because the infimum and supremum

of the support of FH are p
A

and p∗H , we must have F̂ ∈ (0, 1). Expand S so that S = (pL, pH),

where pL ≡ inf{p : FH(p) = F̂} and pH ≡ sup{p : FH(p) = F̂}. Because F̂ ∈ (0, 1), each

of pL and pH is finite and lies in [p
A
, p∗H ]. Also, by assumption pL < pH .

Because no other firm can place an atom at pL or pH , the home firm’s profits are continu-

ous at these prices, and therefore both prices are profit-maximizing for him given F̂ ∈ (0, 1).

Then no price in S can provide higher profits than at one of the endpoints. This implies the

inequalities

D(p)(p− cH)
∏
j∈J

(1− πjFj(p)) ≤ D(pH)(pH − cH)
∏
j∈J

(1− πjFj(pH)) ∀p ∈ S,

with the lhs and rhs being H’s profits at p and pH respectively. (Recall that no away firm

places an atom in S.) Now multiply each side by p−cA
p−cH

1−πHFH(p)
1−πiFi(p)

for i ∈J . Then we obtain

D(p)(p− cA)
∏
j 6=i

(1− πjFj(p))

≤ D(pH)(pH − cH)
p− cA
p− cH

1− πHFH(p)

1− πiFi(p)
∏
j∈J

(1− πjFj(pH))

< D(pH)(pH − cH)
pH − cA
pH − cH

1− πHF̂
1− πiFi(pH)

∏
j∈J

(1− πjFj(pH))

= D(pH)(pH − cA)(1− πHF̂ )
∏

j∈J \{i}

(1− πjFj(pH)).

The second inequality follows from the fact that (p− cA)/(p− cH) is strictly increasing in p,

1− πHFH(p) is constant, and 1− πiFi(p) is (weakly) decreasing in p on S. We arrive at the

inequalities

D(p)(p− cA)
∏
j 6=i

(1− πjFj(p)) < D(pH)(pH − cA)(1− πHF̂ )
∏

j∈J \{i}

(1− πjFj(pH)) ∀p ∈ S.
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The lhs are i’s profits for p ∈ S (recall that no firm places on atom in S). Meanwhile the

rhs are i’s profits in the limit for prices just below pH . (No away firm places an atom at pH .)

Thus no price in S can be profit-maximizing for i, as there is always some price very close

to pH which will do better. So i’s price distribution assigns zero measure to S as well.

This reasoning holds for all i, so we conclude that no firm plays in S. As no firm places

an atom at pL, the home firm’s profits are then strictly increasing on [pL, pH), contradicting

the optimality of pL. Hence no such interval S can exist.

Lemma C.14. Fi has full support on [p
A
, p∗H ] for each i ∈J .

Proof. Suppose not. Then for some i ∈ J we can construct an S = (pL, pH) as in the

previous lemma. We know that the home firm’s price distribution has full support in this

interval; if no other away firm played in S, then the home firm’s profits would be strictly

increasing in S, a contradiction. We will show, however, that no other away firm will play

in S, proving the result. If |J | = 1, then the result is trivial, so assume |J | ≥ 2.

It can’t be the case that the home firm places an atom at pH , for then neither this price

nor any price just above it would be profit-maximizing for i. (Recall F̂ < 1, so i must have

profit-maximizing profit-maximizing prices arbitrarily close to pH from above.) Because

no other firm places an atom at pH , firm i’s profits are continuous there and hence pH is

profit-maximizing for i. Then

D(p)(p− cA)
∏
j 6=i

(1− πjFj(p)) ≤ D(pH)(pH − cA)
∏
j 6=i

(1− πjFj(pH)) ∀p ∈ S.

Choose k ∈J \ {i}. Multiplying both sides by 1−πiFi(p)
1−πkFk(p)

yields

D(p)(p− cA)
∏
j 6=k

(1− πjFj(p))

≤ D(pH)(pH − cA)
1− πiFi(p)
1− πkFk(p)

∏
j 6=i

(1− πjFj(pH))

≤ D(pH)(pH − cA)
1− πiFi(pH)

1− πkFk(pH)

∏
j 6=i

(1− πjFj(pH))

= D(pH)(pH − cA)
∏
j 6=k

(1− πjFj(pH)).

The second inequality is strict whenever Fk(pH) > Fk(p), in which case the inequality implies

k’s profits at pH are strictly higher than at p. (Recall no firm places an atom at pH .)
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Suppose by way of contradiction that Fk assigns positive measure to some subset of S.

Then given continuity of Fk there exists a p ∈ S such that p is profit-maximizing for k and

Fk(pH) > Fk(p). But the latter inequality implies that k’s profits at p are strictly lower than

at pH , a contradiction of profit-maximization. So k assigns zero measure to S. This yields

the desired contradiction.

It is an immediate consequence of the previous lemma that each firm’s profits are equal

to Πi = D(p
A

)(p
A
− ci) − c for all p ∈ [p

A
, p∗H). For the lack of atoms implies continuity

of profits at all such p, and the full support result implies a sequence of profit-maximizing

prices converging to p.

We now construct the unique equilibrium for a given (arbitrary) non-empty subset J ⊂
I of entering away firms. In light of continuity of each Fi below p∗H , the profit-maximization

condition on [p
A
, p∗h) is

D(p
A

)(p
A
− ci)− c = D(p)(p− ci)

∏
j 6=i

(1− πjFj(p))− c

for all i ∈ {H} ∪J and p ∈ [p
A
, p∗H). For i = H this becomes

∏
j∈J

(1− πjFj(p)) =
D(p

A
)(p

A
− cH)

D(p)(p− cH)
.

Inserting into the condition for i ∈J yields

1− πiFi(p) =
D(p

A
)(p

A
− cH)

c

p− cA
p− cH

(1− πHFH(p)).

Hence, inserting back into the i = H condition,

πHFH(p) = 1− c

D(p
A

)(p
A
− cH)

p− cH
p− cA

(
D(p

A
)(p

A
− cH)

D(p)(p− cH)

)1/|J |

.

As πH = 1, this pins down FH(p) for p < p∗H . Note that FH(·) is strictly increasing in p, as

required. Further, FH(p∗H−) < 1, so H must place an atom at p∗H .

We re-write H’s mixing distribution in final form as

FH(p) = 1−
(

c

D(p)(p− cA)

)(
D(p)(p− cH)

D(p
A

)(p
A
− cH)

)1−1/|J |
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for p < p∗H , with FH(p
A

) = 0 and FH(p∗H) = 1.

Next, by inserting FH(·) into the relationship between Fi and FH , we find that each away

firm’s mixing distribution satisfies

πiFi(p) = 1−
(
D(p

A
)(p

A
− cH)

D(p)(p− cH)

)1/|J |

.

Because Fi must be continuous and equal to 1 at p∗H , this pins down πi as

πi = 1−
(
D(p

A
)(p

A
− cH)

D(p∗H)(p∗H − cH)

)1/|J |

.

Solving for Fi(·) yields each away firm’s mixing distribution. Note that all participating

away firms play an identical strategy.

Finally, we must check that it is optimal for each non-participating away firm not to

enter. But each away firm i ∈ J makes zero profits when playing any p ∈ (p
A
, p∗H) when

faced with |J | − 1 other away firms. Then at each price p > p
A
, all non-participating firms

make strictly lower profits than i because they will occasionally lose the sale to i. Then

no non-participating firm wants to enter above p
A
. And entering at p

A
yields zero profits.

So indeed it is optimal for all firms in I \J to refrain from entering. This completely

characterizes all Nash equilibria of the stage game.

C.4.2 Optimal collusion in stationary equilibria

Lemma C.15. N ≥
√

1 + ΠM/c implies δ(N) > δM(N).

Proof. δ(N) ≥ δM(N) is equivalent to

1− (N − 1)c

ΠM
≤ 1

N+1
N
− ∆cD(p∗H)

ΠM

.

As the rhs of this inequality is always greater than N/(N + 1), a sufficient condition is

1− (N − 1)c

ΠM
≤ 1− 1

N + 1
⇒ N ≥

√
1 + ΠM/c.

Definition C.2. Fix a stationary equilibrium σ with associated on-path stage-game strategy

profile τ. Then σ is market-symmetric if, for each market m and all away firms i and j,

τ im = τ jm.
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This class is more general than the stationary equilibria studied in Appendix C.3, as

every symmetric equilibrium is also market-symmetric, but not vice versa. Most of the

results in this appendix go through in the broader class. In addition, in the two-firm case

every stationary equilibrium is automatically market-symmetric. Thus any restriction to

market-symmetric equilibrium has no consequences in the two-firm case. Hence focusing on

market-symmetric equilibria simplifies the proof structure, as results may be proven all at

once for arbitrary N .

Proposition C.11. Suppose that δ < δM(N). Then if N = 1 or δ < δ(N), at most one

firm earns positive intra-period profits in each market in every market-symmetric stationary

equilibrium.

Proof. We first show that the existence of multiple firms making positive profits in a given

market implies a minimally profitable deviation for each such firm.

Lemma C.16. Fix a stationary equilibrium yielding strictly positive intra-period profits to

2 ≤ K ≤ N + 1 firms i1, i2, ..., iK ∈ I in market m. Then for each i = i1, ..., iK, stage

profits are bounded above as

Πi
m ≤

1

K
(ΠM + c−∆cD(p∗A)1{i 6= m})− c

and there exists a deviation in market m yielding intra-period profits of at least KΠi
m+(K−

1)c.

Proof. Wlog fix m = 1. (It will not matter whether the home firm is one of the firms receiving

positive profits.) As a first observation, we must have πik1 = 1 for all k = 1, ..., K. For strictly

positive intra-period profits in market 1 imply existence of an on-path action a involving

entry which gives strictly positive profits. Failing to enter yields lower intra-period profits

and a lower continuation than playing a, so each firm must choose to enter w.p. 1.

Define piU ≡ sup{p : F i
1(p) < 1} for i ∈ I . Then piU is the supremum of the support of

firm i’s price distribution in market 1. piU <∞ for i = i1, ..., ik given (A1) and the fact that

intra-period on-path profits are strictly positive for each such firm in market 1.

We claim that pikU = p
ik′
U for all k, k′ ∈ {1, ..., K}. Suppose not, say pi1U > maxk=2,...,K p

ik
U ≡

p
i−1

U . Then there exists an interval [pA, pB] ⊂ (p
i−1

U , pi1U ] such that F i1
1 ([pA, pB]) > 0. In

particular, there exists a pC ∈ [pA, pB] such that Πi1
1 (pC) = Πi1

1 . But given πik1 = 1 and

F ik
1 (pC) = 1 for all k ≥ 2, we have Πi1

1 (pC) = −c < 0, contradicting the assumption that

Πi1
1 > 0.
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Let pU be the mutual supremum of the price supports for firms i1 through iK . We next

argue that each of these firms places an atom at pU . Suppose that some firm, say i1, places no

atom at pU . Then each of i2 through iK receive intra-period profits of −c < 0 at pU given that

πi11 = 1. So none of these firms places an atom at pU either. But then Πi1
1 (pU−) = −c, since

for prices approaching pU firm i1 will be underbid by one of i2 through ik with probability

approaching 1. Then i1’s profits are non-positive for prices sufficiently close to pU , meaning

they cannot be profit-maximizing. But then for some ε > 0 the interval [pU − ε, pU ] is

assigned measure zero by F i1
1 , a contradiction of the definition of pU . So i1 must place an

atom at pU .

Now, the existence of overlapping atoms generates a profitable intra-period deviation for

each firm. Consider the case of firm i1. His equilibrium intra-period profits in market 1 are

equal to his profits at pU , which are bounded above as

Πi1
1 ≤

 ∏
j /∈{i1,...,iK}

(1− πjF j
1 (pU−))

[ ∏
k=2,..,K

∆F ik
1 (pU)

]
1

K
D(pU)(pU − ci1)− c.

(The inequality will be strict if some other firm also places an atom at pU .) This bound is

loosest if no firms enter below pU and the price ceiling is set to the profit-maximizing value

for a given firm. This yields the upper bound in the lemma statement.

Meanwhile, by deviating to just under pU he can obtain profits of at least

Π̃i1
1 =

 ∏
j /∈{i1,...,iK}

(1− πjF j
1 (pU−))

[ ∏
k=2,..,K

∆F ik
1 (pU)

]
D(pU)(pU−ci1)−c ≥ KΠi1

1 +(K−1)c.

This is the deviation claimed in the lemma statement.

Now, consider an arbitrary market-symmetric stationary equilibrium. Assume that in

some market, at least two firms earn positive profits.

The N = 1 case: Wlog suppose both firms make positive profits in market 1. There are

two possibilities: either both firms earn positive profits in market 2 as well, or some firm i

earns non-positive profits. In the former case, firm i has a deviation worth 2Πi
m + c in each

market, which when summed imply the IC constraint

Πi ≥ (1− δ)(2Πi + 2c) + δΠ(δ;N) ≥ (1− δ)(2Πi + 2c).

In the latter case, firm i has a deviation worth at least 2Πi
1 + c in market 1 and 2Πi

2 in
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market 2 (the latter following trivially from Πi
2 ≤ 0), hence the IC constraint

Πi ≥ (1− δ)(2Πi + c) + δΠ(δ;N) ≥ (1− δ)(2Πi + c)

holds. In either case incentive-compatibility demands Πi ≥ (1 − δ)2Πi. Now, Πi > 0, else i

could deviate and obtain positive profits by exiting market 2 given Πi
1 > 0. So this inequality

implies δ ≥ 1/2 > δM(1).

The N ≥ 2 case:

Lemma C.17. Suppose N ≥ 2. Fix a stationary equilibrium in which for some market, at

least two firms earn positive intra-period profits in each period on-path. Then there exists a

firm i ∈ I and an integer n ∈ {1, ..., N,N + 1} for which the IC constraint

Πi ≥ (1− δ)(NΠi + n(N − 1)c)

holds, and 0 < Πi ≤ n
N

(ΠM − (N − 1)c).

Proof. Suppose first that the home firm makes strictly positive profits in every market.

Assume multiple firms make positive profits in market 1. Then by market symmetry all

N + 1 firms make positive profits in that market, and firm 1 therefore has a deviation worth

(N + 1)Π1
1 +Nc in that market by Lemma C.16. Additionally, in every other market m ≥ 2

he either makes non-positive profits, and so trivially has a deviation worth (N + 1)Π1
1; or

else he makes positive profits and has a deviation worth (N + 1)Π1
m +Nc in that market as

well.

Summing the profits for firm 1 from deviating across all markets, assuming that 1 makes

positive profits in n− 1 markets other than his own, we obtain the IC constraint

Π1 ≥ (1− δ)((N + 1)Π1 + nNc).

As Π1 > 0 (else he could deviate by withdrawing from all markets i ≥ 2 to make positive

profits), this IC constraint implies the desired one.

Further, the previous lemma implies that his profits in each positive-profit market m are

at most
1

N + 1
(ΠM + c−∆cD(p∗A)1{m ≥ 2})− c < ΠM

N + 1
− N

N + 1
c.

Hence by making positive profits in n markets, he can make no more than n
N+1

(ΠM −Nc),
implying the desired bound given that N/(N + 1) > (N − 1)/N.
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Now suppose that the home firm makes non-positive profits in some market, say market

1. Then firm 1 must make positive profits in some other market m ≥ 2, else he could

deviate to achieve positive profits by undercutting in whatever market yields positive profits

to multiple firms. In market m all other away firms also make positive profits by market-

symmetry, hence 1 has a deviation worth NΠ1
m + (N − 1)c. The same reasoning holds in all

other markets in which he makes positive profits. And when he makes non-positive profits,

he trivially has a deviation worth N times his profits. Summing these deviations, assuming

1 makes positive profits in n markets, we obtain the IC constraint

Π1 ≥ (1− δ)(NΠ1 + n(N − 1)c),

which is the desired one. Reasoning as in the previous case shows that he can make no more

than n
N

(ΠM − (N − 1)c).

By the lemma just proven, for two or more firms to make positive profits in some market

there must be some form i and integer n between 1 and N + 1 such that

δ ≥ 1− Πi

NΠi + n(N − 1)c
.

Further Πi ≤ n
N

(ΠM − (N − 1)c), so that

δ ≥ 1−
n
N

(ΠM − (N − 1)c)

n(ΠM − (N − 1)c) + n(N − 1)c
= δ(N).

Proposition C.12. Suppose δ < δM(N) and N = 1 or δ < δ(N). Then payoffs (Π1, ...,ΠN+1)

of any market-symmetric stationary equilibrium must satisfy Πi ∈ [0,ΠM ] and

Πi ≥ (1− δ)

(
N+1∑
j=1

Πj −∆c
∑
j 6=i

D(p∗(Πj))

)
+ δΠ(δ;N),

for all i ∈ I , where p∗(Π) is the unique solution in [p
H
, p∗H ] to D(p)(p − cH) − c = Π for

Π ∈ [0,ΠM ].

Further, any such equilibrium yields strictly positive profits to each firm in at most one

market. When N ≥ 2, this market is the firm’s home market.

Proof. Assume the conditions of the proposition statement, and fix a market-symmetric

stationary equilibrium with profits (Π1, ...,ΠN+1). We must have Πi ≥ 0 for all i, else any
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firm earning negative profits could withdraw from all markets permanently as a profitable

deviation.

Lemma C.18. Each firm i ∈ I can receive positive profits in at most one market.

Proof. Suppose some firm, say firm 1, received positive profits in two or more markets. Then

by the pigeonhole principle, along with the fact (Proposition C.11) that at most one firm

can earn positive profits in any one market, there must be some firm i ≥ 2 which receives

non-positive profits in all markets and hence non-positive lifetime profits. But firm i has

a deviation yielding positive lifetime profits by undercutting the infimum of firm 1’s price

support in some market in which 1 is an away firm and makes positive profits. (Such a market

exists by assumption.) So no firm can receive positive profits in multiple markets.

The lemma implies that each Πi ≤ ΠM , as this is the most any firm could make in a

single market. So p∗(·) is well-defined over the range of profits allowable in equilibrium.

Also, when N ≥ 2 market symmetry implies that firm i’s positive-profit market must be his

home market, else all other away firms would also make positive profits in that market.

Let m(i) be the (unique) market in which firm i ∈ I receives positive profits. If i

receives positive profits in no market, choose m(i) to be some market in which he receives

zero profits. m : I → I can always be constructed so that it is a bijection, which we will

assume in what follows.

Now consider the following deviation by firm i : he follows his equilibrium strategy in

market i, while for each j 6= i firm i just undercuts the infimum of firm j’s price support in

market m(j). Because firm j makes his entire profits Πj in market m(j), his price support

infimum must be at least p∗(Πj) there. Hence, since D(p∗(·)) is a decreasing function, i

makes at least Πj − ∆cD(p∗(Πj)) through undercutting in market m(j). (He makes more

from undercutting if the infimum of j’s price support is larger than p∗(Πj), or if m(j) is not

j’s home market, but we will not need to make use of this fact.)

Summing the intra-period profits from this deviation yields

N+1∑
j=1

Πj −∆c
∑
j 6=i

D(p∗(Πj)).

Thus, to deter a profitable deviation the IC constraint stated in the problem statement must

hold.
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Proposition C.13. Fix a profit vector (Π1, ...,ΠN+1) ∈ [∆cD(p
A

),ΠM ]N+1 satisfying

Πi ≥ (1− δ)

(
N+1∑
j=1

Πj −∆c
∑
j 6=i

D(p∗(Πj))

)
+ δΠ(δ;N)

for all i ∈ I . Then there exists a market-symmetric stationary equilibrium supporting this

profit vector with the following properties:

1. If Πm = Πm′ for markets m and m′, then the home and away firms’ strategies are the

same in both markets.

2. The home firm in market m enters with probability 1, while all away firms enter with

a probability that is strictly between zero and 1 and decreasing in Πm.

3. The home firm earns profits Πm in market m, while all away firms make zero profits.

4. Each firm posts prices only in [p∗(Πm), p∗H ] in market m, and firms’ price distributions

have full support on (p∗(Πm), p∗H).

5. If Πm > ∆cD(p
A

), the home firm in market m plays p∗(Πm) with some strictly positive

probability, which is increasing in Πm.

6. Each market where Πm < ΠM is captured by an away firm with some strictly positive

probability, which is strictly decreasing in Πm when Πm ≥ N−1
2N−1

ΠM − N
2N−1

c.

7. Any unilateral deviation by an away firm to a price at or below p∗(Πm) in any market

m is punished by a continuation payoff of Π(δ;N) to that firm.

Proof. We construct an equilibrium analogous to the stage-game, with a higher price floor.

Fix a market m. If Πm = ΠM , then the home firm plays p∗H w.p. 1 while the away firms

do not enter. So assume Πm < ΠM . The home firm mixes so as to make each away firm

indifferent over prices in (p∗(Πm), p∗H). The indifference condition, assuming symmetric play

by all away firms, is

0 = D(p)(p− cA)(1− πAFA(p))N−1(1− FH(p))− c.

Meanwhile the away firms play to make the home firm indifferent over all prices in the same

interval, yielding

Πm = D(p)(p− cH)(1− πAFA(p))N − c.

37



Hence

πAFA(p) = 1−
(

Πm + c

D(p)(p− cH)

)1/N

,

which when substituted into the away firm’s indifference condition allows us to solve for

FH(p) on (p∗(Πm), p∗H) :

FH(p) = 1− c

D(p)(p− cA)

(
Πm + c

D(p)(p− cH)

)1−1/N

.

In the limit as p↘ p∗(Πm), we have

FH(p∗(Πm)+) = 1− c

D(p∗(Πm))(p∗(Πm)− cA)
= 1− c

Πm + c−∆cD(p∗(Πm))
.

Then whenever Πm > ∆cD(p
A

) ≥ ∆cD(p∗(Πm)), this expression is strictly positive. So the

home firm places an atom at p∗(Πm) of size

∆FH(p∗(Πm)) = 1− c

Πm + c−∆cD(p∗(Πm))
.

Note that p∗(·) is increasing while D(·) is decreasing, and hence Πm−∆cD(p∗(Πm)) is strictly

increasing in Πm. Thus ∆FH(p∗(Πm)) is strictly increasing in Πm.

Further, as p↗ p∗h we have

FH(p∗H−) = 1− c

ΠM + c−∆cD(p∗H)

(
Πm + c

ΠM + c

)1−1/N

,

which is strictly less than 1. So the home firm places another atom at p∗H of size

∆FH(p∗H) =
c

ΠM + c−∆cD(p∗H)

(
Πm + c

ΠM + c

)1−1/N

.

Finally, we complete our characterization of the strategy played by all away firms. Note

that πAFA(p∗(Πm)+) = 0, so the away firm’s price distribution is continuous at its lower

end. On the other hand,

πAFA(p∗H) = 1−
(

Πm + c

ΠM + c

)1/N

,

which is strictly positive. In order to avoid the away firm placing an atom at p∗H (which
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would not be optimal given the atom placed there by the home firm), we set

πA = 1−
(

Πm + c

ΠM + c

)1/N

,

which lies strictly between zero and 1 and is decreasing in Πm.

Having exhibited a strategy profile in each market, we must show that it is supportable in

equilibrium. The home firm has no profitable deviation in each market, while the away firms’

most profitable deviation is to just below p∗(Πm), yielding profits Πm − ∆cD(p∗(Πm)). So

each firm has N profitable deviations in each market other than his own, and our strategies

are an equilibrium iff the IC constraint stated in the proposition holds.

The fact that business-stealing occurs is immediate from the fact that the home and away

firms play price distributions with overlapping support. To evaluate when it is decreasing in

Πm, we first compute the probability of business-stealing. The probability that some firm

undercuts a given price p is the complement of the probability that no firm does, which is

(1− πAFA(p))N . Then, taking account of the atom by the home firm at p∗H , we have

P{Business stealing} = (1− (1− πA)N)∆FH(p∗H) +

∫
(p∗(Πm),p∗H)

(1− (1− πAFA(p))N) dFH(p).

(The open-set notation for the limits of integration indicates that the atoms at the top and

bottom of the support of FH(·) are excluded from the integral.)

Let F̃H(p) ≡ FH(p)

(Πm+c)1−1/N . Note that F̃H(p) has the property that its increments are

independent of Πm. Now, inserting the expression for πAFA(p) derived earlier, we obtain

P{Business stealing}

= (Πm + c)1−1/N

(
1− Πm + c

ΠM + c

)
∆F̃H(p∗H)

+

∫
(p∗(Πm),p∗H)

(Πm + c)1−1/N

(
1− Πm + c

ΠM + c

)
dF̃H(p).

Now we differentiate wrt Πm, assuming that both F̃H and p∗ are differentiable. (We will show

later that this assumption is innocuous.) Differentiating wrt Πm in the limit of integration

yields no contribution, as the integrand is zero at the lower limit. The remaining terms are
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then

d

dΠm
P{Business stealing}

= (Πm + c)−1/N

[(
(1− 1/N)− (2− 1/N)

Πm + c

ΠM + c

)
∆F̃H(p∗H)

+

∫
(p∗(Πm),p∗H)

(
(1− 1/N)− (2− 1/N)

Πm + c

D(p)(p− cH)

)
dF̃H(p)

]
.

(Recall that the increments of F̃H are not a function of Πm.) Both the leading term and the

integrand are negative over the entire integration range when(
(1− 1/N)− (2− 1/N)

Πm + c

ΠM + c

)
≤ 0,

i.e. when

Πm ≥ 1− 1/N

2− 1/N
(ΠM + c)− c =

N − 1

2N − 1
ΠM − N

2N − 1
c.

Recall that we had assumed sufficient regularity to be able to differentiate wrt the lower

limit of integration. In the general case, the increase in business stealing for small increase

in Πm will be less than if we had assumed p∗(Πm) to be fixed, as the integrand is non-

negative and the integrator is increasing. Thus, an upper bound on the first-order change

in business-stealing is the one just derived. Whenever that bound is negative, the change in

business-stealing must also be negative for sufficiently small changes in Πm.

Proposition C.14. Suppose N ≥ 2 and δ < δM(N). Among symmetric stationary equilib-

rium payoff profiles (Π, ...,Π) satisfying

Π ≥ (1− δ) ((N + 1)Π−∆cD(p∗(Π))) + δΠ(δ;N), i ∈ I

there is a unique profile (Π∗, ...,Π∗) simultaneously maximizing both firms’ payoffs, where Π∗

is the unique solution to

Π = (1− δ)((N + 1)Π−∆cND(p∗(Π))) + δΠ(δ;N).

Further, Π∗ > ΠC iff Π(δ;N) < ΠC , and Π∗ is strictly increasing in δ whenever Π(·;N) is

non-increasing in δ.

Proof. Any symmetric stationary equilibrium payoff profile satisfying the IC constraints is
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subject to the single IC constraint

Π ≥ (1− δ)((N + 1)Π−∆cND(p∗(Π))) + δΠ(δ;N).

As δ < δM(N) < 1− 1/(N + 1), raising Π increases the rhs more quickly than the lhs. And

at ΠC the rhs is at most ΠC given Π(δ; 1) ≤ ΠC , while at ΠM the rhs is at least

(1− δ)((N + 1)ΠM −∆cND(p∗H)) = (1− δ)(ΠM +NΠ̃M) > ΠM

given δ < δM(N). Hence, given continuity of the rhs, there exists a unique Π ∈ [ΠC ,ΠM ]

for which the IC constraint just binds. This is the largest possible payoff satisfying the IC

constraint.

Finally, note that

(N + 1)Π−∆cND(p∗(Π)) ≥ (N + 1)ΠC −∆cND(p∗(ΠC)) = ΠC ,

with equality when Π = ΠC . Thus Π∗ > ΠC iff Π(δ;N) < ΠC . And since raising δ lowers the

rhs of the IC constraint whenever Π > ΠC and Π(δ;N) is decreasing in δ, we conclude that

Π∗ is increasing in δ whenever the latter condition holds.

Proposition C.15. Suppose that

δ ≥

(
1 +

1

N
+

ΠM − Π̃M

c

)−1

.

Then for each firm m there exists an SPNE supporting lifetime profits of 0 for firm m, so

that Π(δ;N) = 0.

Proof. We explicitly construct such an equilibrium strategy profile. Wlog let m = 1. The

equilibrium consists of two phases: “punishment” and “cooperation.” In the punishment

phase, firm 1 enters his home market and prices at some pPW ≤ p
H

, while in market 2

he enters and mixes with any distribution assigning measure 1 to (pPW , p
H

]. Firm 2 plays

symmetrically in the two markets. All other firms stay out of markets 1 and 2, and in all

remaining markets all firms play the stage-game NE. In the cooperative phase firms play an

SPNE yielding profits (Π∗, ...,Π∗) characterized in Proposition C.14. Players transit from

the punishment to the cooperative phase after a single stage, and stay in the cooperative

phase forever. All deviations result in a reversion to the punishment phase.
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We choose pPW so that lifetime profits for firms 1 and 2 are zero, implying

(1− δ)(D(pPW )(pPW − cH)− 2c) + δΠ∗ = 0.

In order that pPW ≤ p
H

(crucial to preventing a profitable deviation yielding positive lifteime

profits to firms 1 or 2), we therefore require

Π∗ ≥ 1− δ
δ

c.

Now, Π∗ is characterized by

Π∗ = (1− δ)((N + 1)Π∗ −∆cND(p∗(Π∗)))

whenever the strategy profile outlined is indeed an equilibrium. Re-arranging yields

Π∗ = (1− δ)((N + 1)Π∗ −∆cND(p∗(Π∗))).

Combining this expression with the lower bound on Π∗ derived earlier yields the bound

δ ≥
(

1 +
1

N
+

∆cD(p∗(Π∗))

c

)−1

.

Our strategy profile satisfies pPW ≤ p
H

iff this inequality holds. Now, note that ∆cD(p∗(Π∗)) ≥
∆cD(p∗H) = ΠM − Π̃M , so the inequality in the problem statement implies this one.

We complete the proof by checking that no firm has any profitable deviations. By con-

struction no such deviations exist in the cooperation phase. As for the punishment phase,

no firm has any profitable deviation in markets 3 through N + 1 because the stage-game NE

is played there. As for markets 1 and 2, firms 3 through N+1 could never win the market at

a profitable price by entering, so they have no incentive to enter. As for firms 1 and 2, given

pPW ≤ p
H

their most profitable deviation is to exit both markets at once, yielding 0 in the

current stage and a punishment continuation of 0. This is precisely the same as their lifetime

payoffs from playing their equilibrium strategies, so they have no profitable deviations.

We conclude that our proposed strategy profile is indeed an equilibrium whenever pPW ≤
p
H
, and in particular whenever the inequality in the proposition statement holds.

Proposition C.16. Suppose N ≥ 1 +

√
ΠM−Π̃M

c
. Then δ(N) > δ(N).
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Proof. As δ(N) > 1− 1/N, a sufficient condition for δ(N) > δ(N) is

1− 1

N
≥

(
1 +

1

N
+

ΠM − Π̃M

c

)−1

.

Some rearrangement yields the equivalent inequality

N(N − 1) ≥ ΠM − Π̃M

c
,

which is in turn implied by

(N − 1)2 ≥ ΠM − Π̃M

c
.

Solving for N yields the inequality in the proposition statement.

For the following pair of propositions, let Π† be defined as the unique solution in [ΠC ,ΠM ]

to

Π† = (1− δ)(NΠ† − (N − 1)∆cD(p∗(Π†))) + δΠ(δ;N)

whenever δ < δM(N), with Π† = ΠM whenever δ ≥ δM(N). (See the proof of Proposition

C.14 for existence and uniqueness of this Π†.)

Proposition C.17. Fix δ ∈ (0, 1). If δ < N/(N + 1), then Π† → 0 as cA ↓ cH . If δ ≥
N/(N + 1), then Π† = ΠM for all cA > cH .

Proof. Fix N, δ, c, and cH . If there exists cA > cH such that assumptions (A1) through (A3)

hold, then these assumptions continue to hold for all smaller cA. We will assume that cA is

sufficiently close to cH that these assumptions hold everywhere.

Note that δM(N) < N/(N + 1). Hence if δ ≥ N/(N + 1), δ > δM(N) and so Π† = Π∗. So

assume δ < N/(N + 1). As δM(N) → N/(N + 1) as cA ↓ cH , for cA sufficiently close to cH

we have δ < δM(N). Also observe that ΠM is independent of cA, while ΠC = ∆cD(p∗A)→ 0

as cA ↓ cH given D(p) ∈ [0, 1]. Then as cA ↓ cH , ∆cD(p∗(Π∗)) → 0 and Π(δ;N) → 0, the

latter because Π(δ;N) ∈ [0,ΠC ]. Hence Π∗ → 0 as well.

In the following proposition, we define p∗∗ to be the limiting value of the price floor p∗(Π†)

as fixed costs fall to zero.

Proposition C.18. Fix δ ∈ (0, 1). Let (FH(·), FA(·), πA) be the home and away firms’ price

distributions and the away firm’s entry probability, respectively, for the equilibrium charac-

terized in Proposition C.13 with Πi = Π† for all i. As c → 0, FH(·) converges uniformly to
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1{p ≤ p∗∗} while πAFA(p∗∗) → 0. The probability of business stealing therefore falls to zero

as c vanishes, and in the limit the home firm wins the market at price p∗∗ with probability 1.

Proof. Follows from reasoning closely analogous to the proof of Proposition 9 in the main

text.
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