A Model of Competing Narratives: Correction of the Proof of Claim 2*

Kfir Eliaz and Ran Spiegler

June 9, 2022

This note corrects and improves the proof of Claim 2 in Section 5 of our paper "A model of competing narratives" ($A E R 2020$). The last part of the original proof contained a few errors.

To simplify exposition, we consider the $\varepsilon \rightarrow 0$ limit and thus effectively set $\varepsilon=0$ throughout the proof. (In principle, it would have been more rigorous to carry ε through the steps and take the $\varepsilon \rightarrow 0$ limit after the relevant expressions are derived. This would lead to the same result.)

Let σ be an equilibrium, and use the shorthand notation $\alpha_{\theta}=\alpha_{\theta}(\sigma)$. Let us calculate $p_{G}(y=1 \mid a, \theta)$ for each of the four available narratives:

$$
\begin{aligned}
p_{G^{R E}}(y & =1 \mid a, \theta)=p(y=1 \mid a, \theta)=\frac{1}{2}(a+\theta) \\
p_{G^{n}}(y & =1 \mid a, \theta)=p(y=1)=\frac{1}{2}\left[\delta\left(1+\alpha_{1}\right)+(1-\delta) \alpha_{0}\right] \\
p_{G^{d}}(y & =1 \mid a, \theta)=p(y=1 \mid \theta)=\frac{1}{2}\left(\alpha_{\theta}+\theta\right) \\
p_{G^{e}}(y & =1 \mid a, \theta)=p(y=1 \mid a)=\frac{1}{2}[a+p(\theta=1 \mid a)]
\end{aligned}
$$

where

$$
\begin{aligned}
& p(\theta=1 \mid a=1)=\frac{\delta \alpha_{1}}{\delta \alpha_{1}+(1-\delta) \alpha_{0}} \\
& p(\theta=1 \mid a=0)=\frac{\delta\left(1-\alpha_{1}\right)}{\delta\left(1-\alpha_{1}\right)+(1-\delta)\left(1-\alpha_{0}\right)}
\end{aligned}
$$

[^0]It follows that the net anticipatory utility induced by a policy d coupled with any of the four narratives is:

$$
\begin{array}{rlrl}
U\left(G^{R E}, d\right. & & \theta) & =\frac{1}{2} \theta+\frac{1}{2} d-C(d) \\
U\left(G^{n}, d\right. & & \theta) & =\frac{1}{2}\left[\delta\left(1+\alpha_{1}\right)+(1-\delta) \alpha_{0}\right]-C(d) \\
U\left(G^{d}, d\right. & \theta) & =\frac{1}{2}\left(\alpha_{\theta}+\theta\right)-C(d) \\
U\left(G^{e}, d\right. & & \theta) & =\frac{1}{2} d-C(d)+\frac{1}{2}\left[\frac{\delta \alpha_{1} d}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\delta\left(1-\alpha_{1}\right)(1-d)}{\delta\left(1-\alpha_{1}\right)+(1-\delta)\left(1-\alpha_{0}\right)}\right]
\end{array}
$$

Let us begin with a few preliminary observations regarding the policies that must accompany each of the four possible narratives in any equilibrium. First, the policy that maximizes net anticipatory utility under G^{d} or G^{n} is $d^{*}=0$. Therefore, if any of these narratives prevails in some state, it must be coupled with $d=0$. Second, the policy that maximizes net anticipatory utility under $G^{R E}$ is by definition $d^{R E}$. Therefore, if this narrative prevails in some state, it must be coupled with $d^{R E}$. Finally, as to the narrative G^{e}, note that the term

$$
\begin{equation*}
\frac{\delta \alpha_{1} d}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\delta\left(1-\alpha_{1}\right)(1-d)}{\delta\left(1-\alpha_{1}\right)+(1-\delta)\left(1-\alpha_{0}\right)} \tag{1}
\end{equation*}
$$

is strictly increasing (decreasing) in d whenever $\alpha_{1}>\alpha_{0}\left(\alpha_{1}<\alpha_{0}\right)$. It follows that the policy d^{e} that maximizes net anticipatory utility under G^{e} satisfies $d^{e}>d^{R E}\left(d^{e}<d^{R E}\right)$ whenever $\alpha_{1}>\alpha_{0}\left(\alpha_{1}<\alpha_{0}\right)$. Since $C^{\prime}(1)>1, d^{R E}$ and d^{e} are both strictly below 1 . Therefore, $\alpha_{\theta}<1$ for all θ.

We now characterize the equilibrium distribution in each state. First, consider the realization $\theta=1$. Then,

$$
U\left(G^{R E}, d^{R E} \mid \theta=1\right)=\frac{1}{2}\left(1+d^{R E}\right)-C\left(d^{R E}\right)=\frac{1}{2}+\max _{d}\left[\frac{1}{2} d-C(d)\right]>\frac{1}{2}
$$

For any $\alpha_{0}, \alpha_{1} \in[0,1]$ and $d \in[0,1)$,

$$
\begin{equation*}
\frac{\delta \alpha_{1} d}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\delta\left(1-\alpha_{1}\right)(1-d)}{\delta\left(1-\alpha_{1}\right)+(1-\delta)\left(1-\alpha_{0}\right)}<1 \tag{2}
\end{equation*}
$$

Therefore,

$$
U\left(G^{e}, d \mid \theta=1\right)<U\left(G^{R E}, d \mid \theta=1\right)
$$

for any $d \in[0,1)$, and hence, G^{e} cannot be a prevailing narrative in $\theta=1$. In addition, a simple calculation establishes that

$$
U\left(G^{d}, 0 \mid \theta=1\right)>U\left(G^{n}, 0 \mid \theta=1\right)
$$

Therefore, G^{n} cannot be a prevailing narrative in $\theta=1$. It follows that the only candidates for prevailing narratives in $\theta=1$ are $G^{R E}$ and G^{d}.

Suppose $\operatorname{Supp}\left(\sigma_{1}\right)=\left\{\left(G^{d}, 0\right)\right\}$. Then, $\alpha_{1}=0$, which implies

$$
U\left(G^{d}, 0 \mid \theta=1\right)=\frac{1}{2}<U\left(G^{R E}, d^{R E} \mid \theta=1\right)
$$

a contradiction. Now suppose $\operatorname{Supp}\left(\sigma_{1}\right)=\left\{\left(G^{R E}, d^{R E}\right)\right\}$. Then, $\alpha_{1}=d^{R E}$, in which case

$$
U\left(G^{d}, 0 \mid \theta=1\right)=\frac{1}{2}\left(d^{R E}+1\right)>U\left(G^{R E}, d^{R E} \mid \theta=1\right)
$$

a contradiction. The only remaining case is that $\operatorname{Supp}\left(\sigma_{1}\right)=\left\{\left(G^{d}, 0\right),\left(G^{R E}, d^{R E}\right)\right\}$.
Then,

$$
U\left(G^{R E}, d^{R E} \mid \theta=1\right)=U\left(G^{d}, 0 \mid \theta=1\right)
$$

which implies

$$
\begin{equation*}
\alpha_{1}=d^{R E}-2 C\left(d^{R E}\right) \tag{3}
\end{equation*}
$$

This completes the characterization of σ_{1}. Note that it is independent of σ_{0}.
Next, consider the realization $\theta=0$. For any d,

$$
U\left(G^{e}, d \mid \theta=0\right)-U\left(G^{R E}, d \mid \theta=0\right)=\frac{1}{2}\left[\frac{\delta \alpha_{1} d}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\delta\left(1-\alpha_{1}\right)(1-d)}{\delta\left(1-\alpha_{1}\right)+(1-\delta)\left(1-\alpha_{0}\right)}\right]
$$

which is strictly positive since $\alpha_{1} \in(0,1)$. Therefore, $G^{R E}$ cannot be a prevailing narrative in $\theta=0$. Likewise,

$$
U\left(G^{n}, 0 \mid \theta=0\right)>U\left(G^{d}, 0 \mid \theta=0\right)
$$

and hence, G^{d} cannot be a prevailing narrative in $\theta=0$. It follows that the only candidates for prevailing narratives in $\theta=1$ are G^{e} and G^{n}.

Let us guess an equilibrium in which $\alpha_{0}=\alpha_{1}$. Then,

$$
U\left(G^{e}, d \mid \theta=0\right)=\frac{1}{2} d-C(d)+\frac{1}{2} \delta
$$

and the policy that maximizes it is $d^{e}=d^{R E}$. Thus, plugging (3), we obtain

$$
\left.\begin{array}{rl}
U\left(G^{e}, d^{e}\right. & \mid
\end{array} \quad \theta=0\right)=\frac{1}{2} d^{R E}-C\left(d^{R E}\right)+\frac{1}{2} \delta=\frac{1}{2} \alpha_{1}+\frac{1}{2} \delta, ~\left(G^{n}, 0 \quad \mid \quad \theta=0\right)=\frac{1}{2}\left[\delta\left(1+\alpha_{1}\right)+(1-\delta) \alpha_{1}\right]=\frac{1}{2} \alpha_{1}+\frac{1}{2} \delta .
$$

which is consistent with $\alpha_{0} \in(0,1)$.
Our final task is to show that there exists no equilibrium with $\alpha_{0} \neq \alpha_{1}$. Suppose first that $\alpha_{1}>\alpha_{0}$. We saw above that in this case, $d^{e}>d^{R E}$, hence $d^{e}>\alpha_{1}$. If $\left(G^{n}, 0\right) \notin \operatorname{Supp}\left(\sigma_{0}\right)$, then $\alpha_{0}=d^{e}>\alpha_{1}$, a contradiction. If $\left(G^{n}, 0\right) \in \operatorname{Supp}\left(\sigma_{0}\right)$, then

$$
\begin{equation*}
U\left(G^{e}, d^{e} \mid \theta=0\right)=U\left(G^{n}, 0 \mid \theta=0\right)=\frac{1}{2}\left[\delta\left(1+\alpha_{1}\right)+(1-\delta) \alpha_{0}\right]<\frac{1}{2}\left(\alpha_{1}+\delta\right) \tag{4}
\end{equation*}
$$

Note that

$$
\begin{aligned}
U\left(G^{e}, d^{e} \quad\right. & \mid \quad \theta=0) \geq U\left(G^{e}, d^{R E} \mid \theta=0\right) \\
= & \frac{1}{2} d^{R E}-C\left(d^{R E}\right)+\frac{1}{2} \delta\left[\frac{\alpha_{1} d^{R E}}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\left(1-\alpha_{1}\right)\left(1-d^{R E}\right)}{1-\delta \alpha_{1}-(1-\delta) \alpha_{0}}\right]
\end{aligned}
$$

By (3), this expression is equal to

$$
\begin{equation*}
\frac{1}{2} \alpha_{1}+\frac{1}{2} \delta\left[\frac{\alpha_{1} d^{R E}}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\left(1-\alpha_{1}\right)\left(1-d^{R E}\right)}{1-\delta \alpha_{1}-(1-\delta) \alpha_{0}}\right] \tag{5}
\end{equation*}
$$

Recall that by (3), $\alpha_{1}<d^{R E}$. Replacing $d^{R E}$ with α_{1} in (5) and using the observation that (1) is strictly increasing in d when $\alpha_{1}>\alpha_{0}$, (5) is strictly above

$$
\frac{1}{2} \alpha_{1}+\frac{1}{2} \delta\left[\frac{\alpha_{1}^{2}}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\left(1-\alpha_{1}\right)^{2}}{1-\delta \alpha_{1}-(1-\delta) \alpha_{0}}\right]
$$

A little algebra establishes that since $\alpha_{1}>\alpha_{0}$,

$$
\frac{\alpha_{1}^{2}}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\left(1-\alpha_{1}\right)^{2}}{1-\delta \alpha_{1}-(1-\delta) \alpha_{0}}>1
$$

we obtain

$$
U\left(G^{e}, d^{e} \mid \theta=0\right)>\frac{1}{2}\left(\alpha_{1}+\delta\right)
$$

contradicting (4).
The remaining possibility is that $\alpha_{0}>\alpha_{1}$. We saw that in this case,
$d^{R E}>d^{e}$. Furthermore, since $d^{n}=0, d^{e} \geq \alpha_{0}$. Therefore, $d^{R E}>\alpha_{0}>\alpha_{1}$. If $\left(G^{e}, d^{e}\right) \notin \operatorname{Supp}\left(\sigma_{0}\right)$, then $\alpha_{0}=d^{n}=0$, a contradiction. It follows that $\left(G^{e}, d^{e}\right) \in \operatorname{Supp}\left(\sigma_{0}\right)$, which means that

$$
\begin{equation*}
U\left(G^{e}, d^{e} \mid \theta=0\right) \geq U\left(G^{n}, 0 \mid \theta=0\right)>\frac{1}{2}\left(\alpha_{1}+\delta\right) \tag{6}
\end{equation*}
$$

where the right-hand inequality follows from $\alpha_{0}>\alpha_{1}$. Now turn to the expression
$U\left(G^{e}, d^{e} \mid \theta=0\right)=\frac{1}{2} d^{e}-C\left(d^{e}\right)+\frac{1}{2} \delta\left[\frac{\alpha_{1} d^{e}}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\left(1-\alpha_{1}\right)\left(1-d^{e}\right)}{1-\delta \alpha_{1}-(1-\delta) \alpha_{0}}\right]$
By the definition of $d^{R E}$ and (3),

$$
\frac{1}{2} d^{e}-C\left(d^{e}\right)<\frac{1}{2} d^{R E}-C\left(d^{R E}\right)=\frac{1}{2} \alpha_{1}
$$

A little algebra establishes that

$$
\frac{\alpha_{1} d^{e}}{\delta \alpha_{1}+(1-\delta) \alpha_{0}}+\frac{\left(1-\alpha_{1}\right)\left(1-d^{e}\right)}{1-\delta \alpha_{1}-(1-\delta) \alpha_{0}} \leq 1
$$

since

$$
d^{e} \geq \alpha_{0}>\delta \alpha_{1}+(1-\delta) \alpha_{0}
$$

It follows that

$$
U\left(G^{e}, d^{e} \mid \theta=0\right)<\frac{1}{2}\left(\alpha_{1}+\delta\right)
$$

contradicting (6).

[^0]: ${ }^{*}$ We thank Toby Yu for spotting an error in the original proof. We also thank Tuval Danenberg for helpful comments on this new proof.

