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A Markov-switching VAR

In this appendix, we describe the MS-VAR used in Section I.

A.1 Model setup

The variables of interest are assumed to evolve according to a Markov-switching VAR with two

lags:

Zt = cξΦ
t

+ AξΦ
t ,1
Zt−1 + AξΦ

t ,2
Zt−2 + Σ

1/2

ξΣ
t
ωt (1)

ΦξΦ
t

=
[
cξΦ

t
, AξΦ

t ,1
, AξΦ

t ,2

]
, ωt ∼ N(0, I) (2)

where Zt is a (n × 1) vector of data. The unobserved states ξΣ
t and ξ

Φ
t can take on a finite

number of values, jΦ = 1, . . . ,mΦ and jΣ = 1, . . . ,mΣ, and follow two independent Markov

chains. This represents a convenient way to model heteroskedasticity and to allow for the

possibility of changes in the dynamics of the state variables. The probability of moving from

one state to another is given by P [ξΦ
t = i|ξΦ

t−1 = j] = hΦ
ij and P [ξΣ

t = i|ξΣ
t−1 = j] = hΣ

ij.

Given HΦ = [hΦ
ij] and H

Σ = [hΣ
ij] and a prior distribution for the initial state, we can compute

the likelihood of the parameters of the model, conditional on the initial observation Z0. We

impose flat priors on all parameters of the models, implying that the posterior coincides with

the likelihood.
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A.2 Likelihood and regime probabilities

Define the combined regime ξt ≡
(
ξΦ
t , ξ

Σ
t

)
, the associated transition matrix H ≡ HΦ ⊗ HΣ,

and vector θξt ≡
(

ΦξΦ
t
,ΣξΣ

t

)
with the corresponding set of parameters. For each draw of

the parameters θξt and H, we can then compute the filtered probabilities πt|t, or smoothed

probabilities πt|T , of the regimes conditional on the model parameters. The filtered probabilities

reflect the probability of a regime conditional on the data up to time t, πt|t = p(ξt|Y t;H, θξt), for

t = 1, ..., T , and are part of the output obtained computing the likelihood function associated

with the parameter draw H, θξt . The filtered probabilities can be obtained using the following

recursive algorithm:

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

) (3)

πt+1|t = Hπt|t (4)

p(Zt|Zt−1) = 1′
(
πt|t−1 � ηt

)
(5)

where ηt is a vector whose jth element contains the conditional density p(Zt|ξt = i, Zt−1;H, θξt),

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. To initialize the recursive calculation, we need an assumption on the distribution

of ξ0. We assume that the nine regimes have equal probabilities p(ξ0 = i) = 1/9 for i = 1...m.

The likelihood for the entire data sequence ZT is obtained multiplying the one-step-ahead

conditional likelihoods p(Zt|Zt−1):

p
(
ZT |θ

)
=
∏T

t=1 p
(
Zt|Zt−1

)
The smoothed probabilities reflect all the information that can be extracted from the whole

data sample, πt|T = p(ξt|ZT ;H, θξt). The final term πT |T is returned with the final step of

the filtering algorithm. Then a recursive algorithm can be implemented to derive the other

probabilities:

πt|T = πt|t �
[
H ′
(
πt+1|T (÷)πt+1|t

)]
where (÷) denotes element by element division.

Finally, it is possible to obtain the filtered and smoothed probabilities for each of the two

independent chains by integrating out the other chain. For example, if we are interested in

πΦ
t|t = p(ξΦ

t |Y t;H, θξt) we have:

πΦ,i
t|t = p(ξΦ

t = i|Y t;H, θξt) =
∑m

j=1 p(ξt = {i, j}|Y t;H, θξt)
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Similarly, the smoothed probabilities are obtained as:

πΦ,i
t|T = p(ξΦ

t = i|Y T ;H, θξt) =
∑m

j=1 p(ξt = {i, j}|Y T ;H, θξt).

A.3 Posterior Mode and Gibbs sampling algorithm

We first find the posterior mode by using a minimization algorithm on the negative of the

posterior. Given that we have flat priors, our point estimates coincide with the maximum

likelihood estimates. Once we have found the posterior mode, we compute the most likely

regime sequence and then proceed to characterize uncertainty around the parameter values

conditional on this regime sequence by using a Gibbs sampling algorithm. Alternatively, we

could have imposed some identifying restrictions based on the properties of the regimes at

the posterior mode, but we preferred to take this more agnostic approach. This makes the

interpretation of the results more immediate because the properties of the regimes can be

immediately associated with the periods during which they were in place.

Both the VAR coeffi cients and the covariance matrix can switch and the regimes are assumed

to be independent. Draws for the parameters of the model can be made following the following

Gibbs sampling algorithm:

1. Sampling ΣξΣ
t
given ΦξΦ

t
, ξΦ
t , ξ

Σ
t : Given ΦξΦ

t
and ξΦ,T , we can compute the residuals of

the MS-VAR at each point in time. Then, given ξΣ
t , we can group all the residuals that

pertain to a particular regime. Therefore, ΣξΣ
t
can be drawn from an inverse Wishart

distribution for ξΣ
t = 1...mΣ.

2. Sampling ΦξΦ
t
given ΣξΣ

t
, ξΦ
t , ξ

Σ
t : When drawing the VAR coeffi cients, we need to take into

account the heteroskedasticity implied by the switches in ΣξΣ
t
. This can be done following

the following steps for each i = 1...mΦ:

(a) Based on ξΦ,T , collect all the observation such that ξΦ
t = i.

(b) Divide the data that refer to ξΣ
t = j based on ξΣ,T .We now have a series of subsam-

ples for which VAR coeffi cients and covariance matrices are fixed:
(
ξΦ
t = i, ξΣ

t = 1
)
,

...,
(
ξΦ
t = i, ξΣ

t = mΣ
)
. Denote these subsamples with

(
yi,ξΣ

t
, xi,ξΣ

t

)
, where the yi,ξΣ

t

and xi,ξΣ
t
denote left-hand-side and right-hand-side variables in the MS-VAR. Notice

that some of these subsamples might be empty.

(c) Apply recursively the formulas for the posterior of VAR coeffi cients conditional on a

known covariance matrix. Therefore, for j = 1...mΣ the following formulas need to
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be applied recursively:

P−1
T = P−1

L + Σ−1
ξΣ
t
⊗ (x′

i,ξΣ
t
xi,ξΣ

t
)

BT = BL + (Σ−1
ξΣ
t
⊗ x′

i,ξΣ
t
)vec(yi,ξΣ

t
)

P−1
L = P−1

T , BL = BT

where the algorithm is initialized using the priors for the VAR coeffi cients BL = B0

and P−1
L = P−1

0 =
(
S0 ⊗N−1

0

)−1
. Notice that this implies that if there are not any

observations for a particular regime, then the posterior will coincide with the priors.

With proper priors, this is not a problem.

(d) Make a draw for the VAR coeffi cients vec
(

ΦξΦ
t

)
∼ N (PTBT , PT ) with ξΦ

t = i.

3. SamplingHΦ andHΣ: Given the draws for the state variables ξΦ,T and ξΣ,T , the transition

probabilities are independent of Yt and the other parameters of the model and have a

Dirichlet distribution. For each column of HΦ and HΣ, the posterior distribution is given

by:

Hs(:, i) ∼ D(asii + ηsii, a
s
ij + ηsij), s = Φ,Σ

where ηΦ
ij and η

Σ
ij denote respectively the numbers of transitions from state i

Φ to state jΦ

and from state iΣ to state jΣ.

A.4 Data

We use four observables to estimate the Markov-switching VAR: (i) inflation; (ii) real GDP

growth; (iii) federal funds rate; (iv) deficit-to-debt ratio. Inflation and real output growth are

defined as year-to-year first differences of the logarithm of the GDP price deflator and real

GDP, respectively. Inflation, real GDP, and the federal funds rate are taken from the FRED II

database of the Federal Reserve Bank of St. Louis. The primary deficit is constructed from the

NIPA tables (Table 3.2. Federal Government Current Receipts and Expenditures) as detailed

in Appendix C. As a measure of the fiscal stance, we consider the variable deficits over debt.

The government debt series is the market value of the US government debt available on the

Dallas Fed website. The sample period ranges from 1954:Q4-2014:Q1.

A.5 Volatility regimes

Table 1 reports the estimates of the covariance matrix across different volatility regimes.
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ξΣ
t = 1 uER uTY uPE uV S

uER 1.2377
(1.1183,1.3693)

uTY −0.2235
(−0.3623,−0.0824)

0.7015
(0.6319,0.7784)

uPE 0.0378
(−0.1003,0.1817)

−0.1778
(−0.3119,−0.0366)

0.2516
(0.2278,0.2788)

uV S −0.4275
(−0.5414,−0.3041)

0.1983
(0.0452,0.3362)

0.2672
(0.1323,0.3996)

0.2688
(0.2425,0.2981)

ξΣ
t = 2 uER uTY uPE uV S

uER 3.7397
(3.2247,4.3585,)

uTY −0.2054
(−0.4038,0.0044)

1.3657
(1.1625,1.6117)

uPE −0.2112
(−0.4120,0.0055)

−0.1114
(−0.3284,0.1069)

0.0369
(0.2753,0.3726)

uV S −0.2157
(−0.4057,−0.0112)

0.1558
(−0.0649,0.3668)

0.1837
(−0.0400,0.3989)

0.0279
(0.6139,0.8324)

ξΣ
t = 3 uER uTY uPE uV S

uER 4.4369
(3.1092,6.3281)

uTY −0.4984
(−0.8002,−0.0732)

1.9303
(1.3216,2.7927)

uPE −0.3404
(−0.7160,0.1282)

0.2079
(−0.3043,0.6676)

0.6111
(0.3993,0.9047)

uV S −0.9854
(−0.9966,−0.9646)

0.5879
(0.216,0.8439)

0.241
(−0.2430,0.6507)

3.4718
(2.4454,4.9064)

Table 1: Parameter estimates for the covariance matrix. The three sets of tables contain means
and 90% error bands for the posterior distribution of the parameters of the covariance matrices.
The standard deviations of the shocks are on the main diagonal, whereas the correlations of
the shocks are below the main diagonal.

B Benchmark Model

In what follows, we provide the details for the solution and estimation of the model.

B.1 System of equations

1. Linearized Euler equation:

(
1 + ΦM−1

a

)
ŷt = −

(
1− ΦM−1

a

) [
R̂t − Etπ̃t+1 − (1− ρd) dt − dξdt + Eξdt dξdt+1

]
−
(
ΦM−1

a − ρa
)
at + Etŷt+1 +

(
1− ρg +M−1

a Φ
)
g̃t

+M−1
a Φ (ŷt−1 − g̃t−1)

whereMa = exp (γ) and dξdt follows a Markov-switching process governed by the transition

matrix Hd. Please refer to the next subsection for details about how to handle the discrete

shock.

5



2. New Keynesian Phillips curve:

π̃t = κ

 [
1

1−ΦM−1
A

+ α
1−α

]
ŷt − 1

1−ΦM−1
A

g̃t

− ΦM−1
A

1−ΦM−1
A

(ŷt−1 − g̃t−1 − at)


+βEt [π̃t+1] + µ̃t

where we have used the rescaled markup µ̃t = κ
(

υ
1−υ
)
υ̃t

3. No arbitrage condition

R̃t = Et

[
R̃m
t,t+1

]
4. Return long term bond

R̃m
t−1,t = R−1ρP̃m

t − P̃m
t−1

5. Government budget constraint:

b̃mt = β−1b̃mt−1 + bmβ−1
(
R̂m
t−1,t − ŷt + ŷt−1 − at − π̃t

)
−τ̃ t + t̃rt + g−1g̃t + t̃pt

6. Monetary policy rule

R̃t =
[
1− Zξdt

] [
ρR,ξpt R̃t−1 + (1− ρR)

(
ψπ,ξpt π̃t + ψy,ξpt [ŷt − ŷ∗t ]

)
+ σRεR,t

]
+Zξdt

[
ρR,ZR̃t−1 −

(
1− ρR,Z

)
ψZ log (R) + σZεR,t

]
7. Fiscal rule

τ̃ t = ρτ ,ξpt τ̃ t−1 +
(

1− ρτ ,ξpt
) [
δb,ξpt b̃

m
t−1 + δe

(
t̃r
∗
t + g−1g̃t

)
+ δy (ŷt − ŷ∗t )

]
+ στ ετ ,t

8. Transfers(
t̃rt − t̃r

∗
t

)
= ρtr

(
t̃rt−1 − t̃r

∗
t

)
+ (1− ρtr)φy (ŷt − ŷ∗t ) + σtrεtr,t, εtr,t ∼ N (0, 1)

9. Long term component of transfers

t̃r
∗
t = ρtr∗ t̃r

∗
t−1 + σtr∗εtr∗,t, εtr∗,t ∼ N (0, 1)
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10. Government purchases (g̃t = ln(gt/g)):

g̃t = ρgg̃t−1 + σgεg,t, εg,t ∼ N (0, 1) .

11. TFP growth

at = ρaat−1 + σaεa,t

12. Term premium

tpt = ρtptpt−1 + σtpεtp,t

13. The rescaled markup µt = κ log (ℵt/ℵ) , where ℵt = 1/ (1− υt) , follows an autoregressive
process,

µt = ρµµt−1 + σµεµ,t

14. Output target[
1

1− ΦM−1
a

+
α

1− α

]
ŷ∗t =

1

1− ΦM−1
a

g̃t +
ΦM−1

a

1− ΦM−1
a

(
ŷ∗t−1 − g̃t−1 − at

)
B.2 Model solution

As explained in the main text, the Markov-switching process for the discrete preference shock

dξdt is defined in a way that its steady state is equal to zero. In order to solve the model we

implement the following steps:

1. Introduce a dummy variable eξdt controlling the regime that is in place for the discrete

preference shock. Augment the DSGE state vector with this dummy variable.

2. Use the aforementioned dummy variable to rewrite all the equations linked to the discrete

preference shock. These are the linearized Euler equation and the linearized Taylor rule.

3. Solve the model using Farmer, Waggoner and Zha (2009). This returns a MS-VAR:

S̃t = T̃ (ξt, H, θ) S̃t−1 + R̃ (ξt, H, θ)Qεt

in the augmented state vector S̃t.

4. Extract the column corresponding to the dummy variable eξdt from the matrix T̃ and

redefine the matrices and the DSGE state vector accordingly. This will return a MS-VAR

with a MS constant:

St = c (ξt, H, θ) + T (ξt, H, θ)St−1 +R (ξt, H, θ)Qεt
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where Q is a diagonal matrix that contains the standard deviations of the structural

shocks and St is a vector with all variables of the model.

Unlike other papers that have used the technique described here, our model allows for non-

orthogonality between policymakers’behavior and a discrete shock. This allows us to solve a

model in which agents take into account that a large preference shock leads to an immediate

change in policy, the zero lower bound, and, potentially, to further changes. This proposed

method is general and can be applied to other cases in which a shock induces a change in the

structural parameters.

B.3 Matrices used in the counterfactual simulations

We here describe the matrices used in the simulations reported in the paper.

B.3.1 Textbook New Keynesian model: Always monetary-led

In the first counterfactual simulation, policymakers always follow the monetary-led regime when

out of the zero lower bound. Furthermore, there is only one zero-lower-bound regime from which

agents expect to return to the monetary-led regime. Therefore, the transition matrix used to

solve this counterfactual economy is given by:

Hp = 1, Hd =

[
phh 1− pll

1− phh pll

]
, H = Hd.

where phh and pll are the estimated parameter values.

B.3.2 Announcements

In the counterfactual economy with announcements, at the zero lower bound we distinguish

two cases, based on the exit strategy:

1. Policymakers announce that they will move to the monetary-led regime once the economy

out of the zero lower bound.

2. Policymakers announce that they will immediately move to the fiscally-led regime.

We assume that the probability of the first scenario is equal to the estimated probability of

switching to the monetary-led regime in the benchmark model. In other words, the first scenario

is more likely than the second scenario and it has a probability equal to pZM . Furthermore,

their probabilities do not depend on the regime that was in place when the negative preference
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shock occurred. We then have a total of four regimes ξt = {[M,h], [F, h], [Z, l], [F, l]} and the
corresponding transition matrix is given by:

H =

[
phhH

p (1− pll)Ho

(1− phh)H i pllH
z

]

Hp =

[
pMM 1− pFF

1− pMM pFF

]
, Ho =

[
1

1

]
,

H i =

[
pZM pZM

1− pZM 1− pZM

]
, Hz =

[
1

1

]
,

Hd =

[
phh 1− pll

1− phh pll

]
.

C Estimation of the DSGE model

This appendix describes the dataset and provides details for the benchmark model.

C.1 Dataset

Real GDP, the GDP deflator, and the series for fiscal variables are obtained from the Bureau

of Economic Analysis. The fiscal series are built using NIPA Table 3.2. (Federal Government

Current Receipts and Expenditures). Government purchases (G) are computed as the sum

of consumption expenditure (L24), gross government investment (L44), net purchases of non-

produced assets (L46), minus consumption of fixed capital (L47). Transfers are given by the

sum of net current transfer payments (L25-L18), subsidies (L35), and net capital transfers

(L45-L41). Tax revenues are given by the difference between current receipts (L40) and current

transfer receipts (L18). All variables are then expressed as a fraction of GDP. Government

purchases are transformed in a way to obtain the variable gt defined in the model. The series

for the federal funds rate is obtained averaging monthly figures downloaded from the St. Louis

Fed web-site.

C.2 MCMC algorithm and convergence

Draws from the posterior are obtained using a standard Metropolis-Hastings algorithm initial-

ized around the posterior mode. When working with models whose posterior distribution is

very complicated in shape it is very important to find the posterior mode. In a MS-DSGE

model, this search can turn out to be an extremely time-consuming task, but it is a necessary
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Parameter PSRF Parameter PSRF Parameter PSRF Parameter PSRF
ψπ,M 1.01 ψZ 1 ρd 1 100σR 1
ψy,M 1.05 κ 1.15 ρtp 1 100σg 1
ρR,M 1.01 δb,M 1 ρµ 1.01 100σa 1
ρτ ,M 1 ρtr 1.01 100π 1 100στ 1
ψπ,F 1.06 δy 1.03 100γ 1 100σd 1.04
ψy,F 1.05 Φ 1.04 bm 1.01 100σtr 1
ρR,F 1 δe 1.07 g 1 100σtp 1
ρτ ,F 1.02 ρg 1 τ 1.02 100σµ 1
dl 1.01 ρa 1.01 φy 1.01 pFF 1.02
phh 1.09 pll 1.02 pMM 1.01 pZM 1.01

Table 2: The table reports the Gelman-Rubin Potential Scale Reduction Factor (PSRF) for
eight chains of 540,000 draws each (1 every 200 is stored). Values below 1.2 are regarded as
indicative of convergence.

step to reduce the risk of the algorithm getting stuck in a local peak. Here are the key steps of

the Metropolis-Hastings algorithm:

• Step 1: Draw a new set of parameters from the proposal distribution: ϑ ∼ N
(
θn−1, cΣ

)
• Step 2: Compute α (θm;ϑ) = min

{
p (ϑ) /p

(
θm−1

)
, 1
}
where p (θ) is the posterior evalu-

ated at θ.

• Step 3: Accept the new parameter and set θm = ϑ if u < α (θm;ϑ) where u ∼ U ([0, 1]),

otherwise set θm = θm−1

• Step 4: If m ≤ nsim, stop. Otherwise, go back to step 1

The matrix Σ corresponds to the inverse of the Hessian computed at the posterior mode

θ. The parameter c is set to obtain an acceptance rate of around 35-percent. Table 2 reports

results based on the Brooks-Gelman-Rubin potential reduction scale factor using within and

between variances based on the five multiple chains used in the paper. The eight chains consist

of 2, 100, 000 draws each (1 every 3000 draws is saved). The numbers are well below the 1.2

benchmark value used as an upper bound for convergence.

C.3 Determining the time of the ZLB Regime

For tractability, we fix the sequence of Markov-switching regimes to estimate the model. To

select the date at which the ZLB regime has started, we compute the posterior modes associated

with a number of candidate dates. As shown in Table 3, the fourth quarter of 2008 (2008:Q4)

attains the highest posterior mode and hence is selected as the date at which the ZLB regime
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Starting date of ZLB Regime Likelihood Posterior
2008:Q1 6,428.5 6,374.2
2008:Q2 6,370.0 6,376.0
2008:Q3 6,407.4 6,415.1
2008:Q4 6,522.4 6,521.1
2009:Q1 6,496.5 6,497.7
2009:Q2 6,490.0 6,487.9
2009:Q3 6,475.8 6,476.6

Table 3: The table shows the value of the posterior and the likelihood at the posterior mode as
the starting date of the ZLB regime changes. The results associated with the highest posterior
mode are in bold.

has started (recall that all models only differ in terms of the starting date for the ZLB regime,

so they present the same number of parameters).

D A Prototypical New Keynesian Model with a Fiscal

Block

The objective of this appendix is to show that the results of Section III.B are robust when

one considers models that has less bells and whistles and are more agnostic about the nature

of shocks than the model we estimated in the paper. Let us a consider a prototypical New

Keynesian DSGE model of the type studied in Eggertsson and Woodford (2003). This modeling

framework is purposely very stylized and follows Eggertsson andWoodford (2003) in considering

unanticipated shocks to the natural rate of interest as the cause of ZLB episodes.

The loglinearized equations of the model are as follows. All the variables henceforth are

expressed in log-deviations from their steady-state values with the only exception of the debt-

to-output ratio bt, which is defined in deviation from its steady-state value. The IS equation

reads:

xt = Etxt+1 − σ−1 (Rt − Etπt+1 − rnt ) (6)

where xt denotes the gap between the actual output and its flexible-price level (henceforth,

the output gap), πt denotes inflation, Rt denotes the nominal interest rate, and rnt stands for

the natural rate of interest, which is the real interest rate that would be realized if prices were

perfectly flexible.

The New Keynesian Phillips curve is

πt = κxt + βEtπt+1 (7)
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The monetary policy reaction function is:

Rt =
[
1− Zξdt

] [
ρRRt−1 + (1− ρR)

(
ψπ,ξptπt + ψxxt

)]
− Zξdt ln (R) (8)

where R is the steady-state value of the nominal interest rate Rt. Note that the monetary

authority follows the Taylor rule when Zξdt = 0 or set its (net) nominal rate equal to its zero

lower bound when Zξdt = 1. It should be noted that Zξdt is a dummy variable assuming value 0

and 1 depending on the realization of an exogenous discrete Markov-switching process ξdt . As we

shall discuss below, this process determines the natural rate of interest rnt , implying that ZLB

episodes are caused by unanticipated and recurrent, exogenously-driven falls in the natural

rate of interest. Furthermore, when the economy is out of the ZLB, the value of the policy

parameter ψπ,ξpt , which controls how strongly the central bank adjusts the nominal interest rate

to inflation, are affected by the exogenous discrete Markov-switching process ξpt .

The natural rate of interest is linked to the (exogenous) dynamics of the natural output

though the IS equation under flexible prices:

rnt = σ
(
Et∆y

n
t+1

)
(9)

where ∆ynt stands for the growth rate of natural output, whose value at any time is assumed

to depend on the realization of a discrete Markov-switching process ξdt .

The fiscal rule that determines the primary surplus τ t

τ t = δb,ξpt bt−1 + δxxt (10)

where bt stands for the government debt-to-output ratio. Note that the response of the primary

surplus to the last period’s debt-to-output ratio is given by δb,ξpt whose value depends on the

realization of the Markov-switching process ξpt that also determines the central bank’s response

to inflation in the Taylor rule. Hence, the process ξpt captures the monetary-fiscal policy mix

out of the zero lower bound

The government’s budget constraint is driven by

bt = β−1bt−1 + bβ−1 (Rt−1 − πt −∆xt −∆ynt )− τ t (11)

There are two exogenous Markov-switching processes: ξpt and ξdt . The former captures

monetary and fiscal authority’s response to their targets out of the zero lower bound. More

specifically we assume that there are two monetary and fiscal policy mix: a monetary-led

regime (ξpt = M) and a Fiscally-led regime (ξpt = F ). Under the monetary-led regime the

monetary authority responds strongly to inflation ψπ,ξpt > 1 and the fiscal authority promptly
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adjusts the primary surplus to changes in the debt-to-output ratio δb,ξpt >
(
β−1 − 1

)
.1 Under

the fiscally-led policy regime the monetary authority adjusts the nominal interest rate Rt less

vigorously to inflation ψπ,ξpt ≤ 1 and the fiscal authority pays less attention to the dynamics of

its debt-to-output ratio δb,ξpt ≤
(
β−1 − 1

)
. The transition matrix driving the policy regime out

of the zero lower bound ξpt is given by the following matrix

Hp =

[
pMM 1− pFF

1− pMM pFF

]

The non-Gaussian process ξdt determines the growth rate of natural output and hence

the natural interest rate through equation (9). The growth rate of natural output ∆ynt ∈
{∆ynH ,∆ynL} , where ∆ynH > ∆ynL, and these two states evolve according to the transition ma-

trix:

Hd =

[
phh 1− pll

1− phh pll

]
When the growth rate of natural output is low, the natural rate is low, and the policymakers

are assumed to engage in the ZLB policy regime, which is characterized by a nominal interest

rate set to zero and no adjustment of primary surplus to changes in the debt-to-output ratio.

In summary, the joint evolution of policymakers’behavior and the shock to the natural rate

is captured by the regime obtained combining the two chains ξt =
[
ξpt , ξ

d
t

]
. The combined chain

can assume three values: ξt = {[M,h] , [F, h] , Z, l}. The corresponding transition matrix H is

obtained by combining the transition matrixHd, which describes the evolution of the preference

shock; the transition matrix Hp, which describes policymakers’behavior out of the zero lower

bound, and the parameter pZM that controls the probability of moving to the monetary-led

regime once the negative preference shock is reabsorbed:

H =

 phhH
p (1− pll)

[
pZM

1− pZM

]
(1− phh) · [1, 1] pll


Table 4 reports the parameter values we will use to study the property of this stylized

model. The parameters π, and b denote the steady-state inflation and the steady-state value of

the government debt-to-output ratio.

The exogenous drop in the growth rate of natural output is chosen so that to induce an

annualized natural rate of −20-percent during the ZLB periods. In the benchmark calibration,

we set the probability of moving to the monetary-led policy mix after the ZLB episode equal to

1See Leeper (1991) for the derivation of this cut-offvalues for the policy parameters defining the monetary-led
and the fiscally-led policy regimes.
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Parameters Values Parameters Values
ψπ,M 2.00 phh 0.98
δb,M 0.03 pll 0.95
ψπ,F 0.80 pMM 0.99
δb,F 0.00 pFF 0.99
δb,Z 0.00 pZM 0.50
κ 0.03 100π 0.5
σ 1.00 b 0.30
ψx 0.10 β 0.995

ρi 0.85 ∆ynt
(
ξdt = h

)
5.30

δx 0.5 ∆ynt
(
ξdt = l

)
−21.33

Table 4: Parameters used for the prototypical New Keynesian model.
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Figure 1: Prototypical New Keynesian model. The figure reports the impulse responses
to a discrete shock to the natural interest rate. In the Benchmark model there is high policy
uncertainty, while in the counterfactual economy agents think that they are more likely to move
to the Monetary led regime.

pZM = 50 percent so as to capture a situation of sizable uncertainty about the policymakers’

behaviors when the economy will exit the ZLB.

Figure 1 shows the dynamics of the output gap, inflation, and debt-to-GDP ratio in the

aftermath of a discrete shock to the natural rate. We consider the benchmark case with pa-

rameter values reported in Table 4 and a counterfactual case in which agents are much more

certain that the policy mix out of the ZLB will be monetary-led (pZM = 85 percent). Both

economies are hit by a negative shock to the natural rate at time 6.2

It should be observed that larger policy uncertainty causes absence of deflation in presence

2Both economies are assumed to be at their respective out-of-ZLB steady-state equilibrium. However, the
starting level of the debt-to-GDP ratio in the counterfactual economy is set to be equal to that in the benchmark
so as to ease the comparison.
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of a negative output gap as the economy hits the ZLB. Furthermore, policy uncertainty about

policymakers’future behavior largely mitigates the output gap. These results are qualitatively

in line with the ones obtained from our estimated model in Section III.B. The exercise made in

this section makes it clear that the results analyzed in the paper are not driven by the type of

shock we chose to trigger the ZLB episode or by the more articulated nature of the model used

for estimation.

E Model without the fiscal block

In what follows, we provide the details for the model that removes the fiscal block. As explained

in the main text, this model is nested in the benchmark model and it does not feature any

uncertainty about the way debt will be financed. For this reason, debt and non-distortionary

taxation become irrelevant for macroeconomic dynamics.

E.1 System of equations

1. Linearized Euler equation:

(
1 + ΦM−1

a

)
ŷt = −

(
1− ΦM−1

a

) [
R̂t − Etπ̃t+1 − (1− ρd) dt − dξdt + Eξdt dξdt+1

]
−
(
ΦM−1

a − ρa
)
at + Etŷt+1 +

(
1− ρg +M−1

a Φ
)
g̃t +M−1

a Φ (ŷt−1 − g̃t−1)

whereMa = exp (γ) and dξdt follows a Markov-switching process governed by the transition

matrix Hd. Please refer to the next subsection for details about how to handle the discrete

shock.

2. New Keynesian Phillips curve:

π̃t = κ

([
1

1− ΦM−1
A

+
α

1− α

]
ŷt −

1

1− ΦM−1
A

g̃t −
ΦM−1

A

1− ΦM−1
A

(ŷt−1 − g̃t−1 − at)
)

+βEt [π̃t+1] + µ̃t

where we have used the rescaled markup µ̃t = κ
(

υ
1−υ
)
υ̃t

3. No arbitrage condition

R̃t = Et

[
R̃m
t,t+1

]
4. Return long term bond

R̃m
t−1,t = R−1ρP̃m

t − P̃m
t−1
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5. Monetary policy rule

R̃t =
[
1− Zξdt

] [
ρR,ξpt R̃t−1 + (1− ρR)

(
ψπ,ξpt π̃t + ψy,ξpt [ŷt − ŷ∗t ]

)
+ σRεR,t

]
+Zξdt

[
ρR,ZR̃t−1 −

(
1− ρR,Z

)
ψZ log (R) + σZεR,t

]
6. Government purchases (g̃t = ln(gt/g)):

g̃t = ρgg̃t−1 + σgεg,t, εg,t ∼ N (0, 1) .

7. TFP growth

at = ρaat−1 + σaεa,t

8. The rescaled markup µt = κ log (ℵt/ℵ) , where ℵt = 1/ (1− υt) , follows an autoregressive
process,

µt = ρµµt−1 + σµεµ,t

9. Output target[
1

1− ΦM−1
a

+
α

1− α

]
ŷ∗t =

1

1− ΦM−1
a

g̃t +
ΦM−1

a

1− ΦM−1
a

(
ŷ∗t−1 − g̃t−1 − at

)

E.2 Parameter estimates

Table 5 reports the parameter estimates for the model that excludes the fiscal block. As

observables, we use four of the seven series used to estimate the benchmark model: GDP

growth, inflation, federal funds rate, and government expenditure. Note that including the

remaining fiscal series would be irrelevant for the dynamics of the macroeconomy because

Ricardian equivalence applies when imposing that fiscal policy is always passive.

E.3 Dynamics at the zero lower bound

Figure 2 shows that the model without the fiscal block needs to use a combination of shocks in

order to explain the absence of deflation during the zero lower bound. The figure reports the

dynamics of inflation and output starting from 2008:Q4 in response to two shocks. The discrete

preference shock and a large negative TFP shock. To ease the comparison with the results

reported in Section IV, we also report the 90-percent error bands for the impulse response to

the discrete preference shock only. While the discrete preference shock accounts for the bulk of

the decline of inflation, the fall in output growth is mostly explained by the negative preference
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Mean 5% 95% Type Mean Std

ψπ,1 2.2157 1.7523 2.6568 N 2.5 0.3
ψy,1 0.3334 0.1542 0.5421 G 0.4 0.2
ρR,1 0.8641 0.8170 0.9118 B 0.5 0.2
ψπ,2 1.1032 0.8242 1.3961 G 0.8 0.3
ψy,2 0.2678 0.1388 0.4414 G 0.15 0.1
ρR,2 0.8361 0.7811 0.8874 B 0.5 0.2

dl −0.2592 −0.4124 −0.1272 N −0.3 0.1
phh 0.9610 0.9204 0.9886 D 0.96 0.03
pll 0.8958 0.7792 0.9711 D 0.83 0.10
pMM 0.9613 0.9072 0.9923 D 0.96 0.03
pFF 0.9595 0.9075 0.9914 D 0.96 0.03
pZM 0.5009 0.1478 0.8451 D 0.50 0.22
ψZ 0.9698 0.9608 0.9781 B 0.95 0.02
κ 0.0707 0.0467 0.1025 G 0.3 0.15
Φ 0.8601 0.8147 0.8996 B 0.5 0.2
ρg 0.9919 0.9847 0.9971 B 0.5 0.2
ρa 0.1608 0.0583 0.2786 B 0.5 0.2
ρd 0.9358 0.9083 0.9599 B 0.5 0.2
ρµ 0.3291 0.1082 0.6432 B 0.5 0.2

100σR 0.2118 0.1958 0.2295 IG 0.5 0.5
100σg 0.2775 0.2568 0.2997 IG 1.00 1.00
100σa 1.4785 1.3037 1.6729 IG 1.00 1.00
100σd 13.8890 9.8559 19.2040 IG 10.00 2.00
100σµ 0.2274 0.1965 0.2715 IG 1.00 1.00
100π 0.5678 0.4800 0.6607 G 0.5 0.05
100γ 0.4100 0.3352 0.4912 G 0.4 0.05
g 1.0758 1.0604 1.0942 N 1.06 0.04

Table 5: Posterior means, 90% posterior error bands and priors of thel parameters for the model
that exludes the fiscal block. For the structural parameters, the suffi x denotes the regime. The
letters in the column "Type" indicate the prior density function: N, G, B, D, and IG stand for
Normal, Gamma, Beta, Dirichlet, and Inverse Gamma, respectively.

shock. As explained in the paper, the result shows that fiscal uncertainty plays a key role

in explaining the joint dynamics of inflation and output. Once the fiscal block in removed, a

combination of shocks is necessary to explain the joint dynamics of output and inflation.

Figure 3 examines the properties of the traditional New Keynesian model to match the

joint behavior of output growth and inflation from a different angle. This exercise is based on

the estimates for the benchmark model, but removing the fiscally-led regime. We chose the

estimated benchmark model as a starting point because the size of the discrete shock is in fact

able to generate a realistic contraction in real activity. We then ask what slope of the Phillips

curve can deliver a behavior of inflation and output growth in line with what observed in the

data. The solid blue line corresponds to the case in which the slope of the Phillips curve is

divided by two, implying that in average the slope is around .0036. Clearly in this case the

model can generate a sizeable recession, but a the cost of generating deflation. Dividing the

estimates slope by four, things slightly improve, but inflation is still too low. Finally, with a
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Figure 2: Macroeconomic dynamics at the zero lower bound without fiscal block:
The role of TFP shocks. Response of GDP growth and inflation to a discrete negative
preference shock and a contemporaneous negative TFP shock based on a model that excludes
the fiscal block. The red dashed line reports actual data, while the shaded areas report the
90% error bands when only the discrete prefence shock occurs.
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Figure 3: Macroeconomic dynamics at the zero lower bound without fiscal block:
The role of nominal rigidities. Response of GDP growth and inflation to a large discrete
negative preference shock for different values of the slope of the Phillips curve, κ.

mean of the slope around .0009 and ranging from .0006 to .0024 we can obtain a behavior of

inflation more in line of the data, at the cost of a smaller recession.

Summarizing, we can highlight three conclusions based on the analysis of a model that

excludes the fiscal block. First, in order to rationalize the joint dynamics of inflation and

output, a very large level of nominal rigidities are necessary. Second, when using both data

before and at the zero lower bound, this high level of nominal rigidities is rejected by the

estimates. Instead, the model explains the zero lower bound dynamics as a result of two

combined shocks: A discrete preference shock and contemporaneous negative TFP shock. This

is because we do not ask the model to simply match the zero lower bound events, but also what

happened before this event. Finally, the standard New Keynesian model cannot generate the

drop followed by the slight upward of inflation observed in the data. In the model this is caused

by the fact that as more time is spent at the zero lower bound, the fiscal burden increases,

generating inflationary pressure.
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