ONLINE APPENDIX FOR "CORE DETERMINING CLASS AND INEQUALITY SELECTION"

By Ye Luo and Hai Wang ${ }^{1}$

In this supplement additional material for the artical "Core Determining Class and Inequality Selection" is presented. It contains figures and tables mentioned in the main text.

Fig 1. Correspondence map with size 15×25

[^0]| Number of experiments (M) | 100 | |
| :--- | :---: | ---: |
| Number of events \times number of outcomes $\left(d_{1} \times d_{2}\right)$ | 15×25 | |
| Number of inequalities in true model | 471 | |
| Conservative bound of acceptance rate $(1-\alpha)$ | 0.95 | |
| Sample size (n) | 500 | 2000 |
| Average λ | 0.0710 | 0.0355 |
| Frequency of Coverage $(\eta=0)$ | 97% | 99% |
| Avg. number of inequalities selected $(\eta=0)$ | 184.66 | 187.42 |
| Max. number of inequalities selected $(\eta=0)$ | 241 | 234 |
| Min. number of inequalities selected $(\eta=0)$ | 145 | 92 |
| Frequency of Coverage $(\eta=0.1)$ | 99% | 100% |
| Avg. number of inequalities selected $(\eta=0.1)$ | 32.59 | 86.02 |
| Max. number of inequalities selected $(\eta=0.1)$ | 43 | 145 |
| Min. number of inequalities selected $(\eta=0.1)$ | 27 | 27 |
| Frequency of Coverage $(\eta=0.2)$ | 99% | 100% |
| Avg. number of inequalities selected $(\eta=0.2)$ | 26.73 | 56.69 |
| Max. number of inequalities selected $(\eta=0.2)$ | 28 | 108 |
| Min. number of inequalities selected $(\eta=0.2)$ | 24 | 27 |
| Running time $($ sec/instance $)$ | 87 | 146 |

Table 1
Results of Monte-Carlo Experiments on Main Example

Number of inequalities selected in L^{0}	79
Number of inequalities selected in L^{1}	211
Number of inequalities that L^{0} model selected in $L^{1}, \eta=0$	79
Number of inequalities that L^{0} model selected in $L^{1}, \eta=0.05$	78
Number of inequalities that L^{0} model selected in $L^{1}, \eta=0.10$	78
Number of inequalities that L^{0} model selected in $L^{1}, \eta=0.15$	77
Number of inequalities that L^{0} model selected in $L^{1}, \eta=0.20$	72
Running time of L^{0} model (min)	2195
Running time of L^{1} model (\min)	1.45

TABLE 2

[^0]: ${ }^{1}$ Luo: University of Florida, kurtluo@gmail.com. Wang: Singapore Management University, wanghaimit@gmail.com. We thank the discussant Adam Rosen at the session Machine Learning in Econometrics at the AEA annual meeting 2017 in Chicago for invaluable comments.

