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1 Physician decision tree & value of a negative CT scan

The flowchart depicted in Appendix Figure 1 below shows a typical clinical pathway for a patient who

may receive a chest CT to test for PE. The most common symptom that leads to the consideration

of PE as a diagnosis is chest pain; this is a nonspecific symptom that could also indicate a cardiac

problem, pneumonia, or a number of other conditions. Blood oxygen tests and an EKG are likely

to be performed immediately at the bedside, and if they suggest a cardiac problem, the patient will

receive a more complete cardiac workup.

If cardiac conditions are ruled out, the doctor may then be considering pneumonia, pleural

effusion, and pulmonary embolism as possible diagnoses. A chest x-ray and D-dimer blood test

would be the typical next steps. A chest x-ray is a low cost test with low levels of radiation

exposure and little medical risk; it is highly effective at diagnosing pneumonia and pleural effusion,

which are more common than PE. If the x-ray is negative, then the physician may become more

concerned about the risk of PE, since other more common conditions causing chest pain have been

ruled out. A chest x-ray is a commonplace and recommended antecedent to a CT scan; the popular

Geneva risk scoring system for evaluating whether patient’s PE risk necessitates a CT scan includes

chest X-ray findings among the seven risk factors used to calculate the score.

At this point, the physician may consider ordering a D-dimer, an inexpensive blood test that

provides further information about a patient’s risk of PE. A low-risk result on the D-dimer suggests

the patient does not have a PE and the physician may forego a CT scan. A positive D-dimer result

is not diagnostic of PE, but suggests an elevated probability of this condition. At this point, the

physician would consider ordering a CT scan. Over our study period, the popularity of the D-dimer

as an additional screening tool for PE was on the rise. Although we cannot observe the use of

the D-dimer in our data, variation in D-dimer utilization is one mechanism by which physician CT

ordering behavior may vary.

The physician will typically order a chest CT after ruling out these common causes of chest

pain. A chest CT with contrast is useful for diagnosing pulmonary embolism, but otherwise adds

little new information that may aid diagnosis of other possible acute conditions.1 A positive test

will typically lead to a hospital admission and treatment with blood thinners. Imaging is required

1In Appendix 2, we provide a detailed discussion of other conditions that can be diagnosed by chest CT and how
we empirically address these possibilities.
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for diagnosing PE; even high risk patients have a relatively low probability of PE and PE treatment

is medically risky, so it is not a condition that would be treated presumptively without imaging.

A negative CT scan will leave the physician with a broad field of possible alternative diagnoses,

including a more subtle cardiac condition, sleep apnea, infection, or a false alarm, and the CT scan

result will not be helpful in distinguishing between these possibilities. Ruling out a chest CT has

only a modest impact on the posterior probabilities of the other conditions that may be causing

a patient’s symptoms, since the ex ante probability of PE is relatively low—even for higher risk

patients. For these reasons, the informational value of a negative test is low.

Figure 1: Clinical Assessment of Patient with Potential Pulmonary Embolism
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2 Testing for Multiple Conditions

An important caveat to our above analysis is that claims data is only sufficient to identify CPT

codes for “chest CT with contrast”; we cannot isolate CT scans that follow the PE testing protocol

specifically. Although tests for PE are the primary indication for chest CTs in the emergency

room setting, there are other possibilities. Because of this limitation, some of the tests we have

labeled as “negative” since the patient is not diagnosed with pulmonary embolism may be tests

performed for a different indication. There are five main alternative indications for CT scans in

an emergency department setting: trauma, lung or chest cancers, aortic dissection, pleural effusion,

and pneumonia. We discuss our approach to each of these alternative diagnoses in turn.

We exclude from the estimation sample patients with diagnosis codes related to trauma (such as

fractures, injury, motor vehicle accidents), when these codes are associated with bills on the same day

as the patient’s emergency department evaluation. Chest CTs for these patients are likely aiming

to assess damage from a trauma rather than a pulmonary embolism. In a detailed sample of patient

records from chest CT scans performed in the emergency room of a large hospital, diagnosis codes

associated with the radiology bills readily distinguished traumas from other scanning indications.

Similarly, we exclude patients with a history of aortic aneurysm, aortic dissection, or other

arterial dissection, in order to eliminate patients for whom chest CTs may be intended to evaluate

for aortic dissection. Aortic dissections are extremely rare, with only approximately 9000 cases per

year in the United States, making it over 30 times less common than pulmonary embolism (Meszaros

et al., 2000).

It is unusual for a cancer diagnosis to be made for the first time in the ED, but patients with

worsening symptoms as a result of tumor growth or metastasis and occasional new diagnoses may

be seen. CT scanning is routinely used to diagnose and stage cancers. In our sample of detailed ED

chest CT records from the academic medical center, fewer than 1 percent of the scans were used

to diagnose or stage cancers. In the Medicare data, we exclude those patients with chest cancer

indicated on their visit to the emergency room or associated inpatient visit from our preferred

estimation sample.

Chest CTs can be used to guide a procedure to treat patients with pleural effusion, which is

typically first diagnosed with a chest X-ray. Because a chest CT is not commonly a diagnostic test

for pleural effusion but rather an input into the treatment of the disease, we can exclude patients

from the sample with diagnoses of pleural effusion. Since some patients are diagnosed with both

pleural effusion and pulmonary embolism, and in these patients the chest CT was likely serving a

diagnostic role, we do not exclude pleural effusion patients with a diagnosis of pulmonary embolism.

These sample restrictions will tend to overstate the rate of positive testing and bias us away from

finding evidence of over testing, since we may be excluding some pleural effusion patients who are

being tested for pulmonary embolism but have a negative test result. Together, these exclusions for

patients with trauma, cancer, or pleural effusion remove 32 percent of patients receiving chest CTs

from our sample.

Finally, chest CTs can be used to diagnose pneumonia. Pneumonia can also be reliably diagnosed

with cheaper and lower radiation technologies (David et al., 2012); the added value of a chest CT
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with contrast in an ED setting for diagnosing these alternative conditions is very modest (Venkatesh

et al., 2013). Technically, the value of a chest CT scan for diagnosing a condition that could otherwise

be detected with an X-ray is bounded by the costs of the X-ray, which is about $30 in our sample.

Accounting for a $30 additional net benefit from diagnosing pneumonia when indicated does not

substantively change our results about the welfare costs of over testing.

3 Validating our approach to coding test results in claims data

We identify positive tests on the basis of Medicare Part A hospital claims that include a diagnosis

code for PE among any of the diagnoses associated with the hospital stay; we assume all other

CT scans failed to detect PE. We have validated our approach to identifying positive tests by using

cross-referenced patient chart and hospital billing data from two large academic medical centers. The

evidence from these centers suggest that we are unlikely to understate physicians’ testing thresholds

due to undercounting of positive test results. In particular, we may undercount positive tests in the

Medicare claims data for two reasons: if patients with PE are not admitted to the hospital; or if

patients with PE are admitted but their inpatient bill does not include a diagnosis of pulmonary

embolism.

At the two academic medical centers, we found that 90 percent of patients who test positive

for PE in the emergency department were admitted within 1 day. Patients with very small PEs

may occasionally be discharged after brief observation and treated with blood thinning agents as

outpatients if the PE appeared small on the scan and the patient has no other complicating health

conditions; this likely accounts for most of the cases where a test is coded as positive on the basis

of patient chart data but no inpatient admission is recorded. Note that this suggests that we are

undercounting positive tests precisely for the patient group for whom the benefits of treatment are

the lowest.

Among patients with positive PE CT scans recorded in chart data who are subsequently admitted

to the hospital, 87 percent have a diagnosis of pulmonary embolism recorded on the bill for their

inpatient hospital stay. PE may not be recorded on the bill for two main reasons: the patient may

have other medical conditions that are treated during the hospital stay and are reimbursed at a

higher rate, such that there is no billing incentive to include PE among the inpatient diagnoses; or,

the bill may simply be incorrectly coded. In total, 21 percent of patients diagnosed with PE in the

emergency department (ED) do not have an inpatient claim with a PE diagnosis.

Of patients with a negative PE CT scan recorded in their emergency department chart, 1.5

percent have a diagnosis of pulmonary embolism recorded on the bill for an ensuing hospital stay.

In the claims data, we would mistakenly attribute this diagnosis to the ED workup. This error could

occur if the patient develops a PE later in his hospital course and receives a subsequent positive CT

test, a plausible mechanism given that the immobilization frequently associated with hospital stays

is a risk factor for PEs; alternatively, these PE diagnosis codes could indicate billing errors.

Taken together, these data suggest that of the 6 percent of CT tests that we code as positive

in the Medicare data, 20 percent of the patients had negative findings on their initial ED PE CT.

Of the 94 percent of tests we code as negative, 1.1 percent of the patients had positive ED PE
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CTs. The overall rate of positive tests is almost exactly equal to what it would be if no such coding

mistakes were made, since these two types of coding errors offset each other. This suggests that the

limitations of this coding algorithm should not contribute to overstatements of the degree of over

testing in our Medicare sample.

4 Derivation and estimation of structural model

In this section, we describe the derivation and estimation of our structural model in more detail.

This section is meant to complement the discussion in Section 3, by filling in additional algebraic

steps needed to complete the estimation. We begin by outlining our parametric assumptions and

describe the testing equation. Second, we derive the test outcome equation which is used to estimate

the distribution of τd, the degree of misweighting, and a scaling factor which relates the testing and

test outcome equations.

Recall our assumption that doctor d’s ex ante belief about the probability of a positive test for

patient i is given by q′id = xidβ
′ + αd + ηid (noting, as in Section 3, that assuming the perceived

α′d equals the true αd is without loss of generality). Although our baseline model assumes that

ηid is independently and identically distributed across doctors and patients, in Appendix 7.2 we

extend the model to allow for physician-specific heteroskedasticity. The motivation and results of

this extension are discussed in more detail in that section. Because the heteroskedastic estimation

procedure is a straightforward generalization of our baseline model, we use notation below that allows

for heteroskedasticity and thus covers both the baseline model and its heteroskedastic extension.

We assume that the distribution of ηid follows a particular functional form, which is a mixture of

a Uniform and a Bernoulli distribution; in particular, ηid ∼ U(−ηd, ηd) with probability 1− pd and

ηid ∼ U [v−ηd, v+ηd] with probability pd. The baseline model in the text assumes homoskedasticity,

so that pd = p and ηd = η and we note below how this affects the estimation procedure.

Assume that doctors test a patient if and only if the patient’s perceived probability of a positive

test exceeds a physician-specific threshold, i.e. q′id > τd. Let I ′id ≡ xidβ
′ + θ′d where θ′d = αd − τd.

Also as in the text, qid = xidβ + αd + ηid gives the actual ex ante likelihood of a positive test. Let

Iid ≡ xidβ+ θd denote the unprimed version of the propensity to test (i.e. the testing propensity we

would observe if physicians correctly weighted observable comorbidities to maximize test yields).

Pr(Testid = 1) = Pr(q′id > τd)

= Pr(I ′id + ηid > 0)

= 1− Pr(ηid < −I ′id) (1)

Assume the distribution of ηid is such that I ′id + v < ηd for all I ′id and ηd so there is no testing

propensity I ′id at which patients are always tested regardless of the value of ηid. Assume further that

patients are never tested if the v shock is not realized. For example, the v shock could represent

symptoms that would lead the physician to suspect PE, such as chest pain and shortness of breath.

Then, given our distributional assumptions: Pr(ηid < −I ′id) = 1 − pd + pd · min
{

1,
ηd−(I′id+v)

2ηd

}
.
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Thus:

Pr(Testid = 1) = p

[
1−min

{
1,

1

2
−
I ′id + v

2ηd

}]
= max

{
0,
pd
2

+
pd(I

′
id + v)

2ηd

}
(2)

We estimate this equation by non-linear least squares. In the heteroskedastic model, we recover:

β′ (up to a scaling normalization), η̂d = C pd
2ηd

(where the value of the constant C depends on

the normalization of β), and θ̂′d = pd
2 +

pdθ
′
d+v

2ηd
. Intuitively, heteroskedasticity in ηd is identified

by the fact that observables are less predictive of testing behavior for doctors with more private

information. In the homoskedastic model where pd = p and ηd = η, this simplifies so that we are

estimating β̂′ = pβ′

2η and θ̂′d = p
2 +

p(θ′d+v)
2η .

In either the homoskedastic or heteroskedastic case, we can use the predicted values from estima-

tion of equation 2 to construct an estimate of Ĩ ′id = pd
2 +

pd(I′id+v)
2ηd

. Estimating the heteroskedastic

model requires an additional sample restriction at this stage. In theory, ηd is identified for all

doctors. In practice, for a very small number of doctors, the estimated ηd would diverge to ∞
because patients with larger xidβ

′ are less likely to be tested, due to random variation in a limited

per-doctor sample. These doctors are excluded from the final sample for estimation when we turn

to the heteroskedastic model.

Returning to the testing outcomes equation, our distributional assumptions imply that: E(ηid|ηid >
−I ′id) =

ηd−(I′id−v)
2 . Thus:

E(qid|Testid = 1) = τd + Iid + E(ηid|ηid > −I ′id)

= τd + Iid +
ηd − (I ′id − v)

2

= τd + (Iid − I ′id) +
ηd + I ′id + v

2

= τd +
ηd + I ′id + v

2
+ xid(β − β′)

= τd +
ηd + I ′id + v

2
+ xid(β − β′) (3)

From our definition of Ĩ ′id above, it follows that
ηd+I′id+v

2 = ηdĨ′id
pd

and so:

E(Zid|Testid = 1) = E(qid|Tid = 1)

= τd +
ηdĨ ′id
pd

+ xid(β − β′) (4)

where Ĩ ′id is the propensity estimated from the testing equation, and Zid is the realized testing

outcome (1 for a positive test, 0 for a negative test).

We can estimate this model by non-linear least squares but we need an additional exclusion

restriction so that the coefficient on Ĩ ′id is identified by more than just functional form. As discussed
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in Section 3.3, this restriction is that we effectively know τd for high volume doctors who test

marginal patients—i.e. patients who are very unlikely to be tested based on observables but are

nonetheless tested—because we observe test outcomes among those patients. In practice, we also

need to be careful about the misweighting term. If we average observed test outcomes Zid among

tested marginal patients (i.e. patients with Ĩ ′id = 0) for doctors who have such patients, then for

each of those doctors we obtain an estimate of:

QQd = τd + Em,d(xid|Testid = 1)(β − β′) (5)

where Em,d(xid|Testid = 1) gives the mean of xid among only tested marginal patients for a given

doctor. For doctors with marginal patients, we have:

E(Zid|Testid = 1)−QQd =
ηdĨ ′id
pd

+ (xid − Em,d(xid))(β − β′) (6)

Because we observe only a small number of marginal patients for each doctor, we can construct:

Q̂Qd = QQd + ed, a noisy estimate of QQd. Thus, let Yid = Zid for doctors with no marginal

tested patients and Yid = Zid − Q̂Qd for doctors with marginal tested patients. Further, let Xid =

(xid − Em,d(xid)) for doctors with marginal tested patients and Xid = xid for doctors with no

marginal tested patients. Finally, let Md denote an indicator for whether a doctor has marginal

tested patients. This gives the estimating equation:

Yid = (1−Md)τd +
ηdĨ ′id
pd

+Xid(β − β′) + εid (7)

where εid = Mded + uid includes both the noise in the estimation of QQd and the prediction error

in Zid = E(qid|Testid = 1) + uid. This model can be estimated by least squares.

In the homoskedastic case, ηd
pd

is a constant which we recover from least squares estimation of

equation 7. In the heteroskedastic model, we estimated η̂d = C pd
2ηd

in the testing equation, so the

2nd term in equation 7 is replaced by Ĩ′id
η̂d

and the recovered coefficient tells us C
2 , which is sufficient

given η̂d to recover pd
ηd

.

Following this procedure, we estimate the model and analyze the results described in Section 4.

This model is also the basis of the welfare exercises reported in Section 5.

5 “Empirical Bayes” Estimates of τd

In this section, we describe how we compute the distribution of the underlying τd from the observed

distribution of τ̂d which includes both the underlying true variation and sampling error. We call this

an “empirical Bayes” estimate because of the intuition that we are recovering the true underlying

distribution of τd from noisy estimates, but our specific model does not recover a posterior mean

estimate of the parameter for each doctor. Results of this procedure are reported in Appendix

Table 5. (Note that the welfare results reported in Section 5 require more restrictive assumptions

of the empirical Bayes procedure and do recover a posterior estimate of τd for each doctor. These

additional restrictions are described below and in Section 5.2.)
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In order to form our estimate of the true distribution of τd, we will proceed as follows:

1. Estimate the mean and variance of this distribution for doctors with no marginal tested pa-

tients.

2. Estimate the mean and variance of this distribution for doctors who do have marginal tested

patients.

3. Apply the law of total variance to compute the mean and variance of the mixture distribution

which combines the distributions for doctors with and without marginal tested patients.

4. Make a parametric assumption so that the mean and variance uniquely pin down the posterior

distribution. (Required only for welfare simulations reported in Sections 4.3 and 5.2.)

We start with our estimating equation from Appendix 4, equation 7, reproduced below.

Yid = (1−Md)τd +
ηdĨ ′id
pd

+Xid(β − β′) + εid (8)

We can rewrite this equation in matrix form as:

Y = Dτnm +Xβ + ε (9)

where D includes the doctor fixed effects for all doctors who lack marginal tested patients (as indi-

cated by the nm subscript) and Xβ includes the constant terms, the Ĩ ′id terms and the misweighting

terms.

Our goal econometrically will be to relate the observed across doctor variance of τnm (which

includes estimation error) with the underlying true variance of τnm.

Let Mx = In −X(X ′X)−1X ′ where In is the identity matrix. Partialing out gives:

MxY = MxDτnm +Mxε (10)

Let S = MxD. Then our estimator of τ is given by:

τ̂nm = τnm + (S′S)−1S′Mxε (11)

For a vector x, define var(x) = E(xx′)−E(x)E(x′). Define vard(x) = E(x′x)−Ed(x)2, i.e. the

scalar generated by taking the variance across the observations in the vector. Taking the “outer

product” variance of both sides of equation 11 gives:

var(τ̂nm) = var(τnm) + (S′S)−1S′Mxvar(ε)MxS(S′S)−1

= var(τnm) + (S′S)−1S′var(ε)S(S′S)−1 (12)

where the second line uses the fact that MxMx = Mx. Let S(i)′ denote the ith row of S. Assuming

var(ε) is a diagonal matrix, S0 = 1
N

∑N
i=1 e

2
iS

(i)S(i)′ →p
1
N

∑N
i=1 ε

2
iS

(i)S(i)′ = 1
N S
′var(ε)S. This is
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asymptotically equivalent to:

var(τnm) = var(τ̂nm)− (S′S)−1

(
N∑
i=1

e2
iS

(i)S(i)′

)
(S′S)−1 (13)

where ei are the residuals from equation 9. Finally, using the fact that vard(τnm) = 1
Ndoc

tr(var(τnm))

where Ndoc is the number of doctors with no marginal tested patients (i.e. the docs for whom we

are currently estimating τd), we have:

vard(τnm) = vard(τ̂nm)− 1

Ndoc
tr

(
(S′S)−1

(
N∑
i=1

e2
iS

(i)S(i)′

)
(S′S)−1

)
(14)

This equation allows us to recover vard(τ), the variance of τd for doctors who lack marginal

tested patients. In order to recover τd for doctors who do have marginal tested patients, we use the

fact from equation 4 that:

E(Zid|Testid = 1)− xid(β − β′) = τd (15)

if we restrict to marginal tested patients of those doctors (meaning that Ĩ ′id = 0). This equation can

be written as a special case of equation 9, with Yid = Zid−xid(β−β′). Note that D now denotes the

matrix of doctor fixed effects for doctors with marginal tested patients, Nmarg denotes the number

of doctors with marginal tested patients, and X = 0. This simplification means that S = D and we

have:

vard(τmarg) = vard(τ̂marg)−
1

Nmarg
tr

(
(D′D)−1

(
N∑
i=1

e2
iD

(i)D(i)′

)
(D′D)−1

)
(16)

where in this case the residuals are computed from estimation of equation 15 by OLS on the sample

of physicians with marginal tested patients and only those marginal tested patients included in the

estimation.

To combine these distributions into a single distribution of τd, we note that τd is a random

variable whose mean and variance are µm = E(τmarg) and σ2
m = V ard(τmarg) with probability

Pm (the fraction of doctors who have some marginal tested patients) and µnm = E(τnm) and

σ2
nm = V ard(τnm) respectively with probability 1− Pm. This implies:

E(τ) = Pmµm + (1− Pm)µnm

vard(τ) = Pmσ
2
m + (1− Pm)σ2

nm + Pmµ
2
m + (1− Pm)µ2

nm − (Pmµm + (1− Pm)µnm)2 (17)

where the second equation follows from the law of total variance.

For simulations and welfare analyses, we further assume that τd +M is log-normally distributed

with mean E(τ), variance vard(τ) and minimum possible value M = fp. fp is the value we would

estimate for patients in equation 7 if there were no PE incidence so that the only positive tests were

false positives (implying E(Zid|Testid = 1) = fp, the rate of false positives). In order to recover an

estimate of τd for each doctor, we redraw values of τ from the simulated distribution, order them
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from least to greatest, and assign each doctor a τ from the simulated distribution which matches

that doctor’s rank among estimated τd.

6 Simulations of testing behavior and test yields

This section describes how we apply our structural model to simulate the relationships plotted in

Figure 3 and discussed in section 4.3. The first exercise illustrates the hypothetical relationship

between average physician testing propensities and positive test rates, if all doctors were to have

the same testing threshold. We simulate testing decisions and test outcomes under a counterfactual

where τd is held constant across doctors, at the estimated average value E(τd) = 0.056.

To calculate the new values of the testing propensities under this counterfactual where τd = E(τd)

for all doctors, we start by considering the estimated testing propensity: Ĩ ′id = p
2 +

p(xidβ
′+θ′d+v)
2η . To

simulate the testing propensity under the counterfactual where testing thresholds are held constant

at their mean, Ĩ
′τd=E(τd)
id , we need to add our estimate of (τ̂d−E(τd))

p
2η back to our original estimate

of Ĩ ′id.

Because the estimated τ̂d are noisy and overstate the true variance in the distribution, we calcu-

late a posterior, shrunk estimate of each τd before proceeding with this counterfactual exercise. At

this stage, we need to make a distributional assumption about physician testing thresholds τd. We

assume they follow a log-normal distribution with mean and variance determined by the empirical

Bayes estimates described above, and the same relative rank as in the raw estimated distribution

(i.e. the doctor with the 20th largest estimated τ̂d will also have the 20th largest posterior τd).

Plugging in our new, simulated estimates of Ĩ
′τd=E(τd)
id and setting τd = E(τd), we calculate

E(Zid|Testid = 1) for each patient following equation 10 from section 3.4 and use these estimates

to simulate average test yields. Results of this simulation exercise are reported in Section 4.3 and

pictured in Figure 3.

The second simulation exercise considers the role of misweighting in determining the relationship

between testing propensities and test yield. We simulate the counterfactual relationship between

physicians’ average testing propensities and test yields that would be observed if there were no

heterogeneity in testing thresholds and no misweighting of observable risk factors. Eliminating

misweighting should increase the test yield for all values of the testing propensity by improving the

targeting of PE CT tests to the highest risk patients.

We simulate how testing propensities Ĩ
′τd=E(τd)
id would change if there were also no misweighting

of patient risk factors. In particular, we add a correction factor x β−β′
2(η/p) to Ĩ

′τd=E(τd)
id to calculate new

simulated testing propensities Ĩsimid under the counterfactual with no misweighting. Based on these

new values of Ĩsimid , we calculate the expected test yield according to the formula E(Zsimid |Testid =

1) = E(τd) + η
p Ĩ

sim
id (from section 3.4 equation 12). Results of this simulation exercise are reported

in Section 4.3 and pictured in Figure 3.
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7 Robustness checks

7.1 Stability of results to inclusion of alternate patient controls

In the spirit of Altonji et al. (2008), we explore the sensitivity of our results to the set of included

variables to assess potential bias from unobservable risk factors. The rationale for this exercise is

that omitting the variables xomitid from the baseline specification could generate heteroskedasticity,

if the resulting error term η′id = ηid + xomitid β is not independently and identically distributed across

doctors and patients. If this heteroskedasticity substantially changes our estimates of the distribution

of τd or the degree of misweighting for the remaining variables, this might suggest that including

additional unobserved variables would change our estimates further.

Recall that we rely on comorbidities to identify the patients the doctor is just indifferent between

testing and not testing, and then calculate test outcomes among that group to identify thresholds for

physicians with marginal patients. In addition to testing robustness to heteroskedasticity in the error

term, varying the set of included variables will also change the set of patients identified as marginal

(i.e. just barely worth testing given their physician’s threshold). As we remove comorbidities from

the analysis, we are less able to isolate the marginal patients and may include more inframarginal

patients in the group used to identify doctor’s testing thresholds. To show exactly how varying

the definition of marginal patients impacts the analysis separately from heteroskedasticity, we also

consider explicitly varying our threshold quantile for which patients count as marginal.

The baseline model reported above included four main classes of patient level risk factors: PE

specific risk factors, chronic condition warehouse comorbidities, Elixhauser comorbidities, and pa-

tient demographic variables. Because some variation in comorbidities is required to appropriately

identify this model, we retain the PE specific risk factors and the chronic condition warehouse

comoribidities throughout, and test the stability of our findings to excluding the Elixhauser co-

morbidity set and the vector of demographic variables. Results from this exercise are reported in

Appendix Table 5; the empirical Bayes correction has been applied before reporting the mean and

standard deviation of physician’s testing thresholds.

The mean estimated value of physician’s testing thresholds ranges between 5.6 percent and 6.6

percent, and shows evidence of substantial dispersion in all models. The standard deviation of τd

ranges between 3.9 percent and 5.4 percent, depending on the set of included patient risk factors.

Dropping covariates does appear to increase the value of the estimated mean τd although the range of

values across specifications is only one quarter of the estimated across-doctor standard deviation. If

including additional covariates would cause estimates of τd to decrease, this suggests that our results

may be conservative with respect to the amount of over testing. Controlling for the full set of risk

factors also appears to increase the variance in estimated testing thresholds, providing suggestive

evidence that the observed variation in thresholds is not driven by the exclusion of unobserved risk

factors from the model. In all of these cases, variation in testing thresholds is sufficient to imply

large differences in testing probabilities for identical patients depending on which doctor they visit.

It is not surprising that the mean τd increases when we exclude covariates. When we exclude

comorbidities from the sample, we make it more difficult to identify accurately the marginal tested

patients, and may end up including more non-marginal patients in this calculation. These non-
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marginal tested patients will have higher average test yields, and so will push up our estimated

test thresholds. To examine more directly the sensitivity of our results to the definition of marginal

patients, we explicitly vary this definition in Appendix Table 4. We include all the baseline covariates

but vary the quantile of the testing propensity cutoff below which patients are defined as marginal.

Less stringent definitions of marginal patients than in our baseline results recover a larger average

value of the physician threshold as predicted and more stringent definitions recover a lower value,

suggesting our results are conservative with respect to the degree of over testing to the extent that

with more data (or more covariates) we could better identify those patients who were truly marginal.

All specifications also predict substantial misweighting of included risk factors. The average

absolute value of misweighting in physicians’ assessment of PE risk ranges from 0.020 to 0.023

percentage points. Perhaps unsurprisingly, the full model which includes all available risk factors

as candidate sources of misweighting recovers the largest predicted amount of misweighting. In all

cases, misweighting is sufficiently large that it has the potential to change testing decisions for many

marginal patients. Appendix Table 4 reports that varying the definition of marginal patients also

does not change the estimated misperception of PE risk.

In results reported in Appendix Table 6 we find that the specific misweighted factors identified in

Table 2 and discussed in section 4.2 continue to show evidence of misweighting of similar direction

and magnitude, even as we vary the set of other included comorbidities. For example, the PE

risk associated with recent hospital admissions and history of PE or deep vein thrombosis appears

significantly underweighted in all specifications; black patients also show evidence of being under-

tested in both specifications that include demographic variables. Similarly, a consistent set of

conditions shows evidence of overweighting across specifications, including ischemic heart disease,

chronic obstructive pulmonary disease and atrial fibrillation. These findings are not sensitive to the

choice of other included covariates.

7.2 Estimation with physician-specific heteroskedasticity

Even if our results are not sensitive to dropping some covariates, we might worry that PE risk

factors we cannot observe from insurance claims vary systematically across doctors. Differences

across doctors in the variance of ηid could arise for at least three reasons. First, doctors may differ

in their skill at assessing risk factors unobservable to the econometrician. A doctor with more

diagnostic skill may have a higher variance in ηid across his patients, since he is more discerning in

his judgement of which patients should be tested on the basis of clinical presentation and symptoms.

Second, doctors may differ in the variance of latent PE risk present in their patient population. A

doctor with a more heterogeneous patient population may have a higher variance in ηid across his

patients. Finally, doctors may simply make “errors” that lead them to deviate from typical practice

patterns; a doctor who frequently deviates from his peers’ practice patterns in assessing PE risk

may have have a higher variance in ηid. The model we develop in this section allows us to isolate

differences in physician testing thresholds that are unrelated to possible differences in the variance

of ηid across physicians.

Recall the assumption we made in Section 3 that ηid followed a mixture of a Bernoulli and

uniform distribution. We maintain the basic shape of the distribution but now allow both the
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Bernoulli probability and the variance of the uniform distribution to vary across doctors, so that

ηid ∼ U(−ηd, ηd) with probability 1− pd and ηid ∼ U [v − ηd, v + ηd] with probability pd.

Following the derivation in Appendix 5, the more flexible distributional assumption implies the

testing equation takes this form:

Pr(Testid = 1) = max

{
0,
pd
2

+
pd(I

′
id + v)

2ηd

}
(18)

From the testing equation above, we can see that heteroskedasticity in ηid is identified by the fact

that observables are less predictive of testing behavior for doctors with a high variance in ηid, i.e.

a smaller value of pd
ηd

. As described in the appendix, the testing equation can be used to estimate

C pd
2ηd

, where C is an unknown scaling constant. For computational tractability given the demands of

this more flexible estimation strategy, we randomly exclude half of the physicians from our sample

to reduce sample size, and drop the Elixhauser comorbidities and demographic risk factors from our

list of included covariates.

With the introduction of heteroskedasticity, the conditional probability of a positive test is given

by:

E(qid|Testid = 1) = τd +
C

2

Ĩ ′id
η̂d

+ (xid − Ed(xid))(β − β′) (19)

where η̂d = C pd
2ηd

are the variances estimated in the testing equation. Further details of the estima-

tion strategy are provided in Appendix 5.

Appendix Table 5 reports the results of this analysis in panel 4, which can be compared to

results from the baseline model with the same excluded comorbidity set, as reported in panel 3. The

mean value of physicians’ test thresholds τd is slightly higher at 7.0 percent in the model allowing for

heteroskedasticity compared to 6.6 percent in the baseline model with the same covariates. Estimates

of the standard deviation of τd are are also higher at 5.1 percentage points in the heteroskedastic

model compared to 3.9 percentage points in the homoskedastic model. Thus, the cross-physician

variation in testing behavior is not explained by differences in the variance of ηid across doctors.

This provides reassuring evidence that the assumption of homoskedasticity in the baseline model

was not leading us to overstate differences across physicians in testing thresholds. Finally, the degree

of misweighting remains very similar to the original estimates, with the average absolute value of

misweighting estimated at 0.021 in the heteroskedastic model compared to 0.020 in the baseline

model.

The role of physician diagnostic judgment in driving testing behavior and outcomes was previ-

ously explored by Doyle et al. (2010). In a natural experiment, they find that physicians from more

prestigious residency programs achieve similar patient outcomes at 10-25 percent lower cost com-

pared to their less skilled peers. One potential explanation for this phenomenon is that physicians

from less prestigious schools prefer to administer more low-value care and could achieve the same

outcomes at lower cost if they cut back some services. In the language of our model, these less

skilled physicians might have lower testing thresholds, i.e. smaller τd. A second explanation is that

these less skilled physicians just need to use more medical resources to achieve the same quality of
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care, because they are less accurate in their assessments of ex ante patient risk. In the language

of our model, this decreased diagnostic accuracy would correspond to a lower variance of ηid, since

these less skilled physicians would be failing to incorporate clinical information about patient risk to

improve test targeting. Our results suggest that the heterogeneity in measured τd across physicians

persists even after allowing for heterogeneous variance of ηid acoss doctors. This finding raises the

possibility that cost variance across physicians is driven in part by lower marginal value services

provided by doctors with lower expected benefit thresholds.

7.3 Estimation of a semiparametric selection model

Next we test whether our results are sensitive to the shape of the distribution assumed for the unob-

served component of patient PE risk, ηid. We previously imposed a strict distributional assumption,

requiring ηid to be distributed according to a mixture of Bernoulli and Uniform distributions. Now,

we relax this assumption by estimating equation 10 from section 3.4 as a semiparametric binary

choice model, using the Klein and Spady (1993) binary choice estimator. This robustness exercise

will ensure that differences in testing thresholds observed in the previous sections are not driven

solely by the strong distributional assumptions which restricted the functional form of the testing

equation and the shape of the selection correction function λ(·). To implement the semiparametric

model, we return to our original, strong version of the ignorability assumption that ηid is i.i.d. across

physicians and patients.

Estimation of the semiparametric model proceeds as follows. Let g denote the probability that

patient i is tested given index I ′id = xidβ
′ + θ′d. The log likelihood is given by:

L(β, g) =
∑
i

[Testid ln g(xidβ
′ + θ′d) + (1− Testid)(1− ln g(xidβ

′ + θ′d))] (20)

The idea of the Klein-Spady estimator is to approximate g using a “leave-one-out” estimator

which predicts the probability of testing for a particular patient, giving more weight to patients with

nearby indices I ′id. Specifically, we substitute for g using the following function:

ĝ−i,d =

∑
j 6=i k

(
I′jd−I

′
id

h

)
Testj∑

j 6=i k
(
I′jd−I

′
id

h

) (21)

We use a 4th-order Gaussian Kernel, k(·), and empirically select for the smallest bandwidth h such

that ĝ is a monotonic function of the index I ′id.

Given the propensity to test index I ′id from estimating equation 10 from section 3.4 by the Klein-

Spady procedure, the next step is to estimate the testing outcome equation. Echoing the derivation

in Section 3.2, the probability of a positive test among tested patients is given by:

E(Zid|Testid = 1) = τd + xid(β − β′) + λ(I ′id) (22)

where λ(I ′id) = I ′id +h(I ′id). Because we no longer assume a particular distribution of ηid, we now fit

the function λ(·) flexibly, reporting results with λ(·) as a linear function and as a cubic polynomial,

and estimate the net benefit equation by OLS.
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Note that the Klein-Spady estimator only recovers I ′id up to a location and scale normalization.

The scale normalization is embedded in the function λ(·). We impose the appropriate location

normalization so that at the smallest value of I ′id among tested patients, I, we have λ(I) = 0 as

shown in Section 3.3.2

Estimation of the semiparametric model is quite computationally intensive, and as a result, we

maintain the restricted sample size and covariate set also used in the estimation of the heteroskedastic

model in the previous section. Each time we construct the likelihood function, we need to construct

a jackknife estimate for each observation which is a weighted average across all other observations

given our kernel and bandwidth. This is nested within an optimization problem in which we estimate

the parameters of our model for a given bandwidth. We then iterate the entire procedure, searching

over for the smallest bandwidth that gives a monotonic result.

Results of the semiparametric estimation are reported in Appendix Table 5, panels 5 and 6. This

semiparametric estimation approach estimates the mean value of τd at 6.7 percent (linear) or 6.6

percent (cubic), similar to the parametric model estimate of 6.6 percent in the sample with identical

comorbidities. We continue to find a large amount of cross-doctor dispersion in estimated testing

thresholds. The standard deviation of τd is 5.4 percent across doctors, compared to 3.9 percent in

the parametric model with the same covariates (but interestingly nearly identical to the parametric

model with the full set of covariates included). Our assessment of misweighting continues to be

highly consistent across models, with an average absolute value of the error due to misweighting at

2.1 percent in the semiparametric model, compared to 2.0 percent in the parametric model.

Taken together, these robustness checks, including varying the set of included covariates, allowing

for physician-specific heteroskedasticity, and estimating a semiparametric selection model, all suggest

that our findings on the dispersion in testing thresholds and amount of misweighting are very stable

across alternative modeling assumptions. We find substantial variance in testing thresholds of similar

magnitude in all specifications, suggesting that much of the observed variation in testing behavior

may be driven by differences in practice styles. Further, doctors are misassessing patient PE risk

by similar amounts in percentage point terms across all models.

8 Computing the welfare costs of over testing and misweighting

In order to calculate the welfare costs of over testing and misweighting, we must first understand

how false positive and false negative test results will affect the costs and benefits of testing, and the

calibrated optimal physician testing threshold. Let fp denote the likelihood of a false positive, s

the sensitivity of the test (one minus the probability of a false negative), MB the medical benefits

of treating a PE, MC the medical costs and CT the financial costs of treatment. In this section, we

show that allowing for false positives and false negatives results in a model which is isomorphic to

the one above with NU replaced by N̂U = s
s−fpMB−MC−CT and c replaced by ĉ = c+ s·fp

s−fpMB.

We begin by calculating the net utility of treatment, given that there are both false positive and

2This normalization can be implemented by omitting the constant term from the polynomial λ(·) and subtracting
a constant I from Î ′id; thus the resulting polynomial λ(I ′id − I) will equal 0 for I ′id = I. To avoid sensitivity to
outliers, we normalize I ′id so that λ(I) = 0 for I ′id in the 10th percentile amongst tested patients, which agrees with
our definition of marginal patients in Section 3.3.
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false negative test results. Let PEid denote the event that patient i truly has a PE. As before, Zid

is an indicator which is 1 if a test is positive. MB denotes the medical benefits of treatment if the

patient has a PE, MC denotes the medical costs of treatment and CT denotes the financial cost of

treatment. Then the net utility of a positive test is given by:

NUid = Pr(PEid|Zid = 1)MB −MC − CT (23)

The medical benefits of treatment accrue only if the positive test result is a “true positive,” i.e. the

patient actually has a PE. If there are more false positives, the medical benefits of any observed

positive test will be smaller. In contrast, the medical risks and financial costs of treatment are

incurred for any treated patient regardless of whether he actually has a PE.

Let s denote the sensitivity of the test (one minus the probability of a false negative) and fp

denote the probability of a false positive. Applying Bayes’ Rule and the law of total probability, we

can rewrite net utility as:

NUid =
s(qid − fp)
qid(s− fp)

MB −MC − CT (24)

Given the net utility associated with treating a patient with a positive test, the net benefits

of testing also depend on the probability of a positive test, qid and the costs of testing c. We can

therefore write the net benefits of testing as:

Bid = qidNUid − c

=
s(qid − fp)

(s− fp)
MB − qidMC − qidCT − c (25)

Let N̂U = s
s−fpMB−MC −CT and ĉ = c+ s·fp

s−fpMB. Then we can rewrite the net benefits of

testing as:

Bid = qidN̂U − ĉ (26)

The optimal testing threshold τ∗ will be the threshold at which the expected net benefits of testing

are zero, or τ∗N̂U = ĉ.

Once we have recovered the optimal testing threshold, we can apply the structural model de-

scribed in Section 3 and Appendix 4, to compute the welfare cost of over testing as follows. Let

t̂id(τd,∆β) denote the probability that consumer i is tested by doctor d as a function of τd and the

vector of weighting errors physicians make in assessing PE risk. The vector of misweighting errors

is labeled as ∆β = β − β′. Let Ẑid(τd,∆β) denote the probability of a positive test conditional on

testing.

To compute testing behavior under the counterfactual where all doctors utilize the optimal

testing threshold τ∗, we estimate t̂id(τ
∗,∆β) using the fact that I(τ∗,∆β) = I(τd,∆β) + (τd − τ∗)

which implies Ĩ ′(τ∗,∆β) = Ĩ ′(τd,∆β) + p(τd−τ∗)
2η . Having adjusted the testing propensities, we can

now calculate the expected probability of a positive test Ẑid(τ
∗,∆β) = ηĨ′id(τ∗,∆β)

p + xid(β − β′).
Welfare simulations to evaluate the costs of misweighting parallel the derivation above. In

particular, to compute the propensity to test with no misweighting, t̂id(τd, 0), we use the fact that

16



I(τd, 0) = I(τd,∆β) +xid∆β which implies Ĩ ′(τd, 0) = Ĩ ′(τd,∆β) + pxid∆β
2η . Given this adjustment to

the testing propensities, we can calculate expected test outcomes according to the following formula:

Ẑid(τd, 0) = τd + ηĨ′id(τd,0)
p .

To complete the welfare calculations, we must apply assumptions about the expected medical

benefits, medical costs and financial costs associated with treatment of positive tests. Following the

notation above, we have:

MB(τd,∆β) =
∑
i

Pr(Testi = 1) · Pr(PEid|Testi = 1)MBid (27)

=
∑
i

t̂id(τd,∆β)
s(Ẑid(τd,∆β)− fp)

(s− fp)
MBid

MC(τd,∆β) =
∑
i

Pr(Testi = 1)Pr(Zid = 1|Testi = 1)MCid (28)

=
∑
i

t̂id(τd,∆β)Ẑid(τd,∆β)MCid

FC(τd,∆β) =
∑
i

Pr(Testi = 1)(c+ P (Zid = 1|Testi = 1)CTid) (29)

=
∑
i

t̂id(τd,∆β)(c+ Ẑid(τd,∆β)CTid)

NB(τd,∆β) = MB(τd,∆β)−MC(τd,∆β)− FC(τd,∆β) (30)

where MB denote the medical benefits of testing, MC denotes the medical costs of testing, FC

denotes the financial costs of testing and NB denotes the net benefits of testing as a function of

these objects. The test sensitivity is given by s, and fp is the false positive rate. We define the

welfare cost of over testing as NB(τ∗,∆β)−NB(τ̂d,∆β) and the welfare cost from misweighting as

NB(τ̂d, 0)−NB(τ̂d,∆β) where τ̂d is drawn from the estimated underlying distribution of τd which

we recover using the methods outlined in Appendix 5 above.
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10 Appendix Tables

Appendix Table 1: Summary statistics

A. Untested 
patients

B. Patients with 
negative tests

C. Patients with 
positive tests

Patient characteristics
Age 77.6 76.8 76.9
Female 0.586 0.602 0.600
Black 0.082 0.066 0.083
History of PE 0.003 0.006 0.017

Doctor, hospital and region characteristics
Doctor experience 16.5 16.4 16.8

(8.3) (8.4) (8.5)
Top 50 research med. school 0.28 0.29 0.30
Top 50 primary med. school 0.26 0.27 0.28
Academic hospital 0.33 0.34 0.356
For profit hospital 0.12 0.13 0.120
HRR avg spending (in $) 8,198 8,173 8,089

(959) (972) (936)
Average income in region 22,771 23,005 23,039

(5521) (5490) (5710)
Joint and several liability 0.69 0.70 0.692
Malpractice damage caps 0.70 0.76 0.747

Number of observations 1,819,015 66,677 4,968

Notes: Table reports means and standard deviations (in parentheses). Data is from the Medicare claims
2000-2009, the American Hospital Association annual survey, the American Medical Association Masterfile,
the Dartmouth Atlas, and the Avraham Database of State Tort Law Reform. Results reported separately
for patients who do not receive a CT scan (column A), patients who receive a negative test (column B), and
patients with a positive test (column C). We observe the testing behavior of over 6600 physicians, with an
average of 284 ED patients per physician.
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Appendix Table 2: Regressions of testing threshold on physician characteristics and practice envi-
ronment

OLS FGLS OLS FGLS
Independent variables: (1) (2) (3) (4)

Doctor experience 0.0007 0.0007 0.0007 0.0008
(0.0001) (0.0001) (0.0002) (0.0001)

Top 50 research medical school 0.0047 0.0050 0.0053 0.0032
(0.0038) (0.0031) (0.0047) (0.0037)

Top 50 primary care medical school -0.0062 -0.0042 -0.0077 -0.0030
(0.0039) (0.0032) (0.0048) (0.0037)

Academic hospital 0.0006 0.0007
(0.0026) (0.0022)

For profit hospital -0.0004 -0.0018
(0.0041) (0.0032)

Log(HRR avg Medicare spending) -0.0391 -0.0474
(0.0109) (0.0093)

Average income in region (in $10k) 0.0000 0.0000
(0.0025) (0.0019)

Joint and several liability 0.0001 0.0003
(0.0027) (0.0023)

Malpractice damage caps -0.0029 -0.0053
(0.0028) (0.0023)

Hospital Fixed Effects No No Yes Yes

Dependent variable: Physician testing threshold  

Notes: Each column reports results from a regression of estimated physician testing thresholds τd on charac-
teristics of the physician’s training and practice environment. Even numbered columns report FGLS estimates
which account for estimation error in τd. Columns 3 and 4 include hospital fixed effects. An observation is
an individual doctor; there are 6636 observations.
Source: Data are from the Medicare claims 2000-2009, the American Hospital Association annual survey, the
Avraham database of state tort law reforms, the Dartmouth Atlas, and US News and World Report.
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Appendix Table 3: Comorbidities with no significant misweighting:
Impact of comorbidity on testing decisions and estimated misassessment of PE risk (continued)

Marginal effect 
from testing eqn

Misassessment 
of PE risk

Std. error of 
misassessment

T statistic of 
misassessment

(1) (2) (3) (4)
Other comorbidities

History of hip fracture (CCW) -0.0035 0.0192 0.0116 1.6552
Alzheimer's related dementias (CCW) -0.0060 0.0077 0.0047 1.6383
Anemia (CCW) -0.0023 0.0038 0.0024 1.5833
Depression (CCW) -0.0008 0.0042 0.0031 1.3548
Hypertension (CCW) 0.0008 0.0033 0.0025 1.3200
Solid tumor w/o metastisis (Elixhauser) -0.0066 0.0145 0.0112 1.2946
Benign prostatic hyperplasia (CCW) -0.0014 0.0046 0.0038 1.2105
Hypothyroidism (Elixhauser) -0.0009 0.0068 0.0060 1.1333
Liver disease (Elixhauser) -0.0066 0.0219 0.0195 1.1231
Prior surgery within 1 year 0.0136 0.0239 0.0215 1.1116
Blood loss anemia (Elixhauser) -0.0044 0.0126 0.0118 1.0678
Breast cancer (CCW) 0.0066 0.0046 0.0049 0.9388
Stroke / Transient ischemic attack (CCW) -0.0099 0.0035 0.0046 0.7609
Chronic kidney disease (CCW) -0.0091 0.0024 0.0042 0.5714
Psychoses (Elixhauser) -0.0057 0.0046 0.0126 0.3651
Congestive heart failure (Elixhauser) -0.0022 0.0018 0.0056 0.3214
Congestive heart failure (CCW) -0.0006 0.0008 0.0028 0.2857
Drug abuse (Elixhauser) 0.0059 0.0060 0.0304 0.1974
Alcohol abuse (Elixhauser) 0.0008 0.0020 0.0149 0.1342
Pulmonary circulation disease (Elixhauser) -0.0035 0.0009 0.0107 0.0841
Acute myocardial infarction (CCW) -0.0058 0.0002 0.0090 0.0222
Lymphoma (Elixhauser) -0.0174 -0.0005 0.0220 -0.0227
Coagulation deficiency (Elixhauser) -0.0001 -0.0006 0.0109 -0.0550
Weight loss (Elixhauser) -0.0054 -0.0021 0.0119 -0.1765
Prior surgery within 30 days 0.0151 -0.0047 0.0191 -0.2461
Arthritis (Elixhauser) 0.0044 -0.0032 0.0096 -0.3333
Fluid & electrolyte disorders (Elixhasuer) -0.0013 -0.0022 0.0047 -0.4681
Acquired hypothyroidism (CCW) 0.0022 -0.0020 0.0035 -0.5714
Hyperlipidemia (CCW) 0.0054 -0.0017 0.0024 -0.7083
Hypertension (CCW) 0.0012 -0.0051 0.0040 -1.2750
Diabetes w/chronic complications (Elixhauser) -0.0080 -0.0176 0.0115 -1.5304
Glaucoma (CCW) -0.0003 -0.0047 0.0029 -1.6207
Diabetes w/o chronic complications (Elixhauser) -0.0023 -0.0085 0.0051 -1.6667
Lung cancer (CCW) -0.0142 -0.0198 0.0113 -1.7522
Cataracts (CCW) -0.0010 -0.0037 0.0021 -1.7619
Valvular disease (Elixhauser) -0.0031 -0.0116 0.0060 -1.9333

Notes: Results continued from Table 2; this table includes only covariates without significant evidence of
misweighting. Column 1 reports marginal effects from coefficient estimates of the testing equation (i.e.
equation 2); for example, patients with hip fracture history are 0.35 percentage points less likely to be tested,
after controlling for included PE risk factors and physicians’ testing thresholds. Column 2 reports estimates
of physicians’ misweighting of these PE risk factors estimated from equation 14; for example, physicians’
observed testing patterns suggest they are overestimating the PE risk associated with hip fracture history
by 1.92 percentage points. Column 3 reports standard errors for coefficients in column 3. Column 4 reports
t-statistics. Variables are sorted by statistical significance.
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Appendix Table 4: Distribution of test thresholds and misweighting:
Robustness to varying definition of marginal tested patient

Strict definition Baseline definition Lax definition
(1) (2) (3)

Fraction of tested patients defined as marginal 5% 10% 15%
Mean of τd 0.0492 0.0563 0.0620
Standard deviation of τd 0.0497 0.0540 0.0582
Average absolute value of PE misassessment 0.0228 0.0226 0.0227
Standard deviation of PE misassessment 0.0344 0.0347 0.0353
Number of observations 1,890,660 1,890,660 1,890,660

Notes: Recall that the test yield among each doctor’s marginal tested patients (those just barely worth testing)
is used to estimate the doctor’s test thresholds and form exclusion restrictions that identify the model. Each
column of this table reports estimation results under an alternative definition of the marginal tested patient.
The baseline results, reported in column 2 for easy comparison, define a patient as marginal if they are in
the bottom 10 percent of tested patients on the basis of their estimated testing propensity index. Column 1
employs a stricter definition, allowing only the bottom 5 percent of tested patients to be counted as marginal;
column 3 employs a weaker definition, allowing the bottom 15 percent of testd patients to be counted as
marginal. Each column reports the estimated posterior mean and standard deviation of physician testing
thresholds τd from the model, after applying the Bayesian shrinkage described in Appendix 5. Recall that τd
is the threshold probability of a positive test at which a physician determines it is worthwhile to test a patient.
The average absolute value of PE risk misassessment calculates the absolute value of the difference between
physicians’ assessment of the patient’s PE probability and the estimated risk associated with the patient’s
comorbidities, and then averages this value across all patients. The standard deviation of PE misassessment
describes how the total amount of misweighting varies across patients.
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Appendix Table 5: Distribution of testing thresholds and misweighting under alternative estimation
strategies

Baseline parametric 
model, all 

comorbidities

Parametric model, 
Elixhauser 

comorbidities excluded

Parametric model, 
Elixhauser 

comorbidities & 
demographics excluded

(1) (2) (3)
Mean of τd 0.0563 0.0623 0.0662
Standard deviation of τd 0.0540 0.0396 0.0394
Average absolute value of PE misassessment 0.0226 0.0214 0.0200
Standard deviation of PE misassessment 0.0347 0.0336 0.0329
Number of observations 1,890,660 1,890,660 1,890,660

Heteroskedastic 
parametric model

Semiparametric model, 
linear polynomial

Semiparametric model, 
cubic polynomial

(4) (5) (6)
Mean of τd 0.0703 0.0672 0.0661
Standard Deviation of τd 0.0514 0.0539 0.0541
Average absolute value of PE misassessment 0.0212 0.0207 0.0208
Standard deviation of PE misassessment 0.0361 0.0357 0.0364
Number of observations 861,707 861,707 861,707

Notes: Panel 1 reports the estimated posterior mean and standard deviation of physician testing thresholds
τd from our baseline parametric model, after applying the Bayesian shrinkage described in Appendix 6. Recall
that τd is the threshold probability of a positive test at which a physician determines it is worthwhile to test
a patient. The average absolute value of misweighting calculates the absolute value of the difference between
physicians’ assessment of the patient’s PE probability and the estimated risk associated with the patient’s co-
morbidities, and then averages this value across all patients. The standard deviation of misweighting describes
how the amount of misweighting varies across patients. Panel 2 reports results from the parametric model
that excludes all Elixhauser comorbidities. Panel 3 reports results from the parametric model that excludes
both Elixhauser comorbidities and demographic variables. Panel 4 reports results from the heteroskedastic
model described in Appendix 7.2, which allows the variance of ηid to differ across physicians. Panels 5 and 6
report results from the semiparametric model described in Appendix 7.3, where Panel 5 fits the function λ(·)
with a linear function and Panel 6 applies a cubic polynomial. Models estimated in Panels 4, 5, and 6 exclude
Elixhauser comorbidities and demographic variables and are estimated on a random subsample of half of the
physicians for computational tractability.
Source: Data are from the Medicare claims 2000-2009.
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Appendix Table 6: Part 1: Assessment of misweighting with varying included covariates

Misassessment 
of PE risk

Standard 
error

Misassessment 
of PE risk

Standard 
error

Misassessment 
of PE risk

Standard 
error

(1) (2) (3) (4) (5) (6)
Underweighted risk factors

Prior hospital visit w/in 30 days 0.1070 0.0121 0.1025 0.0125 0.1045 0.0125
Prior hospital visit w/in 7 days 0.1128 0.0130 0.1091 0.0133 0.1105 0.0133
Prostate cancer (CCW) 0.0298 0.0048 0.0311 0.0048 0.0318 0.0046
Cancer metastisis (Elixhauser) 0.0726 0.0128 0.0843 0.0134 0.0892 0.0134
History of deep vein thrombosis 0.0571 0.0114 0.0560 0.0113 0.0570 0.0113
History of pulmonary embolism 0.0666 0.0145 0.0800 0.0142 0.0827 0.0141
Rhumatoid arthritis, osteoarthritis (CCW) 0.0091 0.0024 0.0097 0.0025 0.0108 0.0024
Endometrial cancer (CCW) 0.0547 0.0153 0.0438 0.0154 0.0405 0.0153
Obesity (Elixhauser) 0.0218 0.0076
Paralysis (Elixhauser) 0.0331 0.0117
Other neurological conditions (Elixhauser) 0.0194 0.0075
Any prior admission history 0.0102 0.0041 0.0033 0.0029 0.0028 0.0029
Alzheimer's disease (CCW) 0.0152 0.0064 0.0158 0.0065 -0.0036 0.0092
Colorectal cancer (CCW) 0.0136 0.0067 0.0166 0.0067 0.0163 0.0067

Overweighted risk factors
Ischemic heart disease (CCW) -0.0226 0.0023 -0.0233 0.0023 -0.0226 0.0023
Chronic obstructive pulmonary disease (CCW) -0.0182 0.0036 -0.0158 0.0037 -0.0159 0.0037
Atrial fibrillation (CCW) -0.0156 0.0036 -0.0172 0.0036 -0.0175 0.0036
Depression (Elixhauser) -0.0208 0.0069
Peripheral vascular disease (Elixhauser) -0.0214 0.0071
Diabetes (CCW) -0.0087 0.0029 -0.0115 0.0028 -0.0105 0.0028
Osteoperosis (CCW) -0.0087 0.0033 -0.0079 0.0033 -0.0075 0.0032
Deficiency anemias (Elixhauser) -0.0142 0.0056
Asthma (CCW) -0.0088 0.0040 -0.0086 0.0040 -0.0072 0.0040
Chronic pulmonary disease (Elixhauser) -0.0094 0.0048

Demographic factors
Black 0.0257 0.0044 0.0189 0.0045
Asian -0.0386 0.0118 -0.0392 0.0118
Hispanic -0.0168 0.0097 -0.0142 0.0100
Female 0.0000 0.0024 0.0000 0.0024
Age 65-69 0.0119 0.0037 0.0103 0.0037
Age 70-74 0.0129 0.0052 0.0092 0.0053
Age 75-79 0.0140 0.0038 0.0122 0.0038
Age 80-84 0.0166 0.0039 0.0133 0.0039
Age 85-89 0.0208 0.0042 0.0181 0.0042
Age 90-94 0.0132 0.0078 0.0075 0.0081

All comorbidities
Excluding Elixhauser 

comorbidities

Excluding Elixhauser 
comorbidities and 

demographics

Notes: Table continued on next page. Column 1 reports estimates of physicians’ misweighting of these PE
risk factors estimated from equation 14 under the baseline specification with full set of included covariates.
Column 2 reports standard errors on these misweighting terms. (Columns 1 and 2 replicate results reported
in Table 2 for purposes of comparison.) Columns 3 and 4 also report misweighting terms and standard errors,
now from the model that excludes the Elixhauser comorbidity set. Columns 5 and 6 report results from the
model that excludes both Elixhauser comoribidites and demographic factors.
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Appendix Table 6 Part 2: Assessment of misweighting with varying included covariates

Misassessment 
of PE risk

Standard 
error

Misassessment 
of PE risk

Standard 
error

Misassessment 
of PE risk

Standard 
error

Other comorbidities (1) (2) (3) (4) (5) (6)
History of hip fracture (CCW) 0.0192 0.0116 0.0025 0.0118 0.0042 0.0117
Alzheimer's related dementias (CCW) 0.0077 0.0047 0.0070 0.0048 0.0070 0.0049
Anemia (CCW) 0.0038 0.0024 0.0014 0.0024 0.0024 0.0024
Depression (CCW) 0.0042 0.0031 -0.0006 0.0029 -0.0010 0.0029
Hypertension (CCW) 0.0033 0.0025 0.0042 0.0024 0.0052 0.0024
Solid tumor w/o metastisis (Elixhauser) 0.0145 0.0112
Benign prostatic hyperplasia (CCW) 0.0046 0.0038 0.0062 0.0038 0.0070 0.0035
Hypothyroidism (Elixhauser) 0.0068 0.0060
Liver disease (Elixhauser) 0.0219 0.0195
Prior surgery within 1 year 0.0239 0.0215 0.0352 0.0217 0.0293 0.0218
Blood loss anemia (Elixhauser) 0.0126 0.0118
Breast cancer (CCW) 0.0046 0.0049 0.0089 0.0049 0.0095 0.0049
Stroke / Transient ischemic attack (CCW) 0.0035 0.0046 0.0027 0.0047 0.0050 0.0047
Chronic kidney disease (CCW) 0.0024 0.0042 0.0031 0.0044 0.0014 0.0044
Psychoses (Elixhauser) 0.0046 0.0126
Congestive heart failure (Elixhauser) 0.0018 0.0056 -0.0053 0.0056 -0.0055 0.0056
Congestive heart failure (CCW) 0.0008 0.0028 0.0007 0.0028 0.0020 0.0028
Drug abuse (Elixhauser) 0.0060 0.0304
Alcohol abuse (Elixhauser) 0.0020 0.0149
Pulmonary circulation disease (Elixhauser) 0.0009 0.0107
Acute myocardial infarction (CCW) 0.0002 0.0090 -0.0026 0.0092 0.0153 0.0066
Lymphoma (Elixhauser) -0.0005 0.0220
Coagulation deficiency (Elixhauser) -0.0006 0.0109
Weight loss (Elixhauser) -0.0021 0.0119
Prior surgery within 30 days -0.0047 0.0191 -0.0066 0.0192 -0.0031 0.0192
Arthritis (Elixhauser) -0.0032 0.0096
Fluid & electrolyte disorders (Elixhasuer) -0.0022 0.0047
Acquired hypothyroidism (CCW) -0.0020 0.0035 0.0007 0.0030 0.0013 0.0030
Hyperlipidemia (CCW) -0.0017 0.0024 -0.0005 0.0025 -0.0013 0.0025
Hypertension (CCW) -0.0051 0.0040
Diabetes w/complications (Elixhauser) -0.0176 0.0115
Glaucoma (CCW) -0.0047 0.0029 -0.0043 0.0029 -0.0023 0.0029
Diabetes w/o complications (Elixhauser) -0.0085 0.0051
Lung cancer (CCW) -0.0198 0.0113 -0.0219 0.0117 -0.0266 0.0116
Cataracts (CCW) -0.0037 0.0021 -0.0029 0.0021 -0.0017 0.0020
Valvular disease (Elixhauser) -0.0116 0.0060

All comorbidities
Excluding Elixhauser 

comorbidities

Excluding Elixhauser 
comorbidities and 

demographics

Notes: Table continued from previous page. Column 1 reports estimates of physicians’ misweighting of these
PE risk factors estimated from equation 14 under the baseline specification with full set of included covariates.
Column 2 reports standard errors on these misweighting terms. (Columns 1 and 2 replicate results reported
in Table 2 for purposes of comparison.) Columns 3 and 4 also report misweighting terms and standard errors,
now from the model that excludes the Elixhauser comorbidity set. Columns 5 and 6 report results from the
model that excludes both Elixhauser comorbidities and demographic factors.
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Appendix Table 7: Part 1: Assessing the costs of misweighting by variable

Net Benefits Change in net benefits
Original 13.279
Age 65-69 12.323 -0.956
Age 70-74 12.078 -0.245
Age 75-79 11.580 -0.498
Age 80-84 11.988 0.408
Age 85-89 13.560 1.572
Age 90-94 13.695 0.135
Black 15.486 1.791
Asian 15.707 0.221
Hispanic 15.802 0.095
Acute myocardial infarction (CCW) 15.802 0.000
Alzheimer's disease (CCW) 16.712 0.910
Chronic obstructive pulmonary disease (CCW) 18.879 2.167
Congestive heart failure (CCW) 18.815 -0.064
History of hip fracture (CCW) 18.980 0.165
Anemia (CCW) 19.164 0.184
Asthma (CCW) 19.343 0.179
Hyperlipidemia (CCW) 19.516 0.173
Benign prostatic hyperplasia (CCW) 19.591 0.075
Hypertension (CCW) 19.432 -0.159
Acquired hypothyroidism (CCW) 19.426 -0.006
Alzheimer's related dementias (CCW) 19.644 0.218
Atrial fibrillation (CCW) 20.498 0.854
Cataracts (CCW) 20.625 0.127
Chronic kidney disease (CCW) 20.611 -0.014
Diabetes (CCW) 21.392 0.781
Glaucoma (CCW) 21.484 0.092
Ischemic heart disease (CCW) 23.516 2.032
Depression (CCW) 23.616 0.100
Osteoperosis (CCW) 23.677 0.061
Rhumatoid arthritis, osteoarthritis (CCW) 24.503 0.826
Stroke / Transient ischemic attack (CCW) 24.603 0.100
Breast cancer (CCW) 24.664 0.061
Colorectal cancer (CCW) 25.079 0.415
Prostate cancer (CCW) 26.588 1.509
Lung cancer (CCW) 26.541 -0.047
Endometrial cancer (CCW) 27.117 0.576

Notes: This table is continued on the next page. This table reports results of a series of simulation exercises
where we test the welfare impact of correcting for physician misweighting of observed risk factors, one variable
at a time. This exercise allows us to assess which specific risk factors are the biggest contributors to the welfare
costs associated with misweighting. We proceed in the order listed in the table and show how the total net
benefits of testing (in $ millions) change from their observed value of 13.279 to the final value 49.132 in
the absence of any misweighting, by correcting one additional variable in each row. Note that because we
continue to allow physician thresholds to vary and do not correct for all risk factors at once, correcting a
single additional risk factor occasionally leads to a small decline in net benefits. The results of this exercise
may be sensitive to the order in which risk factors are corrected.

26



Appendix Table 7 Part 2: Assessing the costs of misweighting by variable

Net Benefits Change in net benefits

Prior surgery within 30 days 26.311 -0.806
Prior surgery within 1 year 30.794 4.483
Any prior admission history 32.632 1.838
Valvular disease (Elixhauser) 32.534 -0.098
Pulmonary circulation disease (Elixhauser) 32.546 0.012
Peripheral vascular disease (Elixhauser) 32.496 -0.050
Paralysis (Elixhauser) 32.927 0.431
Other neurological conditions (Elixhauser) 33.271 0.344
Diabetes w/o chronic complications (Elixhauser) 33.100 -0.171
Diabetes w/chronic complications (Elixhauser) 33.058 -0.042
Hypothyroidism (Elixhauser) 33.195 0.137
Liver disease (Elixhauser) 33.287 0.092
Lymphoma (Elixhauser) 33.286 -0.001
Solid tumor w/o metastisis (Elixhauser) 33.518 0.232
Arthritis (Elixhauser) 33.509 -0.009
Coagulation deficiency (Elixhauser) 33.504 -0.005
Obesity (Elixhauser) 33.840 0.336
Weight loss (Elixhauser) 33.825 -0.015
Fluid & electrolyte disorders (Elixhasuer) 33.770 -0.055
Blood loss anemia (Elixhauser) 33.866 0.096
Deficiency anemias (Elixhauser) 33.668 -0.198
Alcohol abuse (Elixhauser) 33.673 0.005
Drug abuse (Elixhauser) 33.675 0.002
Psychoses (Elixhauser) 33.687 0.012
Depression (Elixhauser) 33.706 0.019
Hypertension (Elixhauser) 33.176 -0.530
History of deep vein thrombosis 34.174 0.998
History of pulmonary embolism 35.186 1.012
Prior hospital visit w/in 30 days 43.135 7.949
Prior hospital visit w/in 7 days 47.871 4.736
Female 47.871 0.000
Chronic pulmonary disease (Elixhauser) 47.903 0.032
Congestive heart failure (Elixhauser) 47.914 0.011
Cancer metastisis (Elixhauser) 49.132 1.218

Notes: This table is continued from the previous page. This table reports results of a series of simulation
exercises where we test the welfare impact of correcting for physician misweighting of observed risk factors,
one variable at a time. This exercise allows us to assess which specific risk factors are the biggest contributors
to the welfare costs associated with misweighting. We proceed in the order listed in the table and show how
the total net benefits of testing (in $ millions) change from their observed value of 13.279 to the final value
49.132 in the absence of any misweighting. Note that because we continue to allow physician thresholds to
vary and do not correct for all risk factors at once, correcting a single additional risk factor occasionally leads
to a small decline in net benefits. The results of this exercise may also be sensitive to the order in which risk
factors are corrected.
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Appendix Table 8: Sensitivity of welfare simulations to calibration parameters

Percent tested Test yield Change in net 
benefits

False positive rate
0.00 0.037 0.071 0.093
0.03 0.026 0.083 3.802
0.04 0.019 0.090 8.144

Value of a statistical life
$500,000 0.005 0.137 15.748
$1,000,000 0.019 0.090 8.144
$1,500,000 0.025 0.081 5.249

Test sensitivity
0.75 0.019 0.090 8.080
0.83 0.019 0.090 8.144
0.90 0.018 0.090 8.191

Financial cost of testing
$0 0.033 0.075 0.725
$300 0.019 0.090 8.144
$500 0.012 0.104 16.872

Percent tested Test yield Change in net 
benefits

False positive rate
0.00 0.043 0.090 44.134
0.03 0.043 0.090 38.094
0.04 0.043 0.090 35.853

Value of a statistical life
$500,000 0.043 0.090 13.184
$1,000,000 0.043 0.090 35.853
$1,500,000 0.043 0.090 58.522

Test sensitivity
0.75 0.043 0.090 36.120
0.83 0.043 0.090 35.853
0.90 0.043 0.090 35.660

Financial cost of testing
$0 0.043 0.090 38.882
$300 0.043 0.090 35.853
$500 0.043 0.090 33.834

A. Counterfactual with no overtesting

B. Counterfactual with no misweighting

Notes: This table supplements Tables 4 and 5 and displays the simulated welfare benefits of changing physician
practice patterns under a range of calibration parameters. Each row represents a separate simulation exercise;
bold rows indicate the baseline parameter values used for our main welfare analysis. The changes in net
benefits (column 3) are reported in millions of dollars, compared to welfare under observed testing thresholds
and misweighting. In any given row, all parameters aside from the one in question are kept constant at
the values listed in Table 3. Panel A displays testing behavior and the improvement in social welfare under
simulations assuming all physicians with thresholds below the calibrated optimum are reassigned to the
optimal testing threshold of τd = τ∗ (but maintaining the observed degree of misweighting). Panel B displays
testing behavior and the improvement in social welfare under simulations assuming that physicians target
testing to patients with the highest expected probability of a positive test based on observable demographics
and comorbidities (but maintaining the observed degree of over testing).
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