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A Proofs of Lemmas, Propositions, and Numerical Re-

sults

Note on the notation: equations with arabic numerals refer to the equations in the paper.

A.1 Inequality in Equation 33

In order to derive the inequality in equation (33), consider the price of land after a deviation,

Q̃
(
f, f̃ ′; f ∗

)
, given by equation (20). Replace the future price of land Q(f̃ ′; f ∗) into this

equation:

Q̃
(
f, f̃ ′; f ∗

)
= (ψ + β)w − wg − f̃ ′bg

R
− bg (1− f) + (A.1)

+
κ

R

[
(ψ + β)w − wg − bg − f ∗bg

R
+ bgf̃ ′ +

κ

R
Q (f ∗; f ∗)

]
,

where Q (f ∗; f ∗) is given by:

Q (f ∗; f ∗) =
(ψ + β)w − wg − bg

1− κ
R

+ bgf ∗
1− 1

R

1− κ
R

.

Replace Q (f ∗; f ∗) into (A.1) and collect terms to obtain:

Q̃
(
f, f̃ ′; f ∗

)
= [(ψ + β)w − wg − bg] R

R− κ
− b

g

R
f̃ ′ (1− κ) + bgf − bgf ∗ κ

R

(
1− κ
R− κ

)
. (A.2)

Impose the condition that the downpayment constraint binds for all values of f̃ ′ and f

(equation 24), taking into account the equilibrium downpayment in equation (25):

Q̃
(
f, f̃ ′; f ∗

)
>

βR

1− κ
w. (A.3)

Notice that

Q̃
(
f, f̃ ′; f ∗

)
≥ Q̃ (fmin, 1; f ∗) ,
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so it is necessary and sufficient for (A.3) to hold that:

Q̃ (fmin, 1; f ∗) >
βR

1− κ
w.

Replace Q̃ (fmin, 1; f ∗) from equation (A.2) in the inequality above and simplify to obtain

equation (33). Q.E.D.

A.2 Parameters in the Example of Section II.C.

We have already set R = 1.22, κ = 0.80, and bg/R = $24, 000. According to the U.S. Census,

median household income in Chicago in 2010-2014 was $47, 831.1 Nationally, mean income

is about 1.3 times median income, so we assume that average household income in Chicago

is w = $47, 831× 1.3 = $62, 180.2 It follows that:

bg

w
=

$24, 000

$62, 180
×R = 0.39×R.

To compute wg/w, we make the conservative assumption that public sector employees

are paid the same as private ones and that in Chicago they account for about 12 percent of

aggregate non-farm employment.3 Hence we set wg/w = 0.12. In the inequality (33) we also

consider the case f ∗ = 1 which requires a higher cut-off value for ψ. We also notice that,

according to the model (see equation (21)), a young household spends a fraction

ψ + β =
lt ((1 + τt) qt − κqt+1/R)

w

of its income as a downpayment on housing. The average value of a house in Chicago is

about $260,000 (Davis and Palumbo, 2007) and property taxes are about 2 percent. If a

1This figure is obtained from the U.S. Census’ Quick Facts.
2The ratio 1.3 is from the Federal Reserve Bank of St Louis’ FRED Blog, May 28, 2015.
3This figure is taken from the Bureau of Labor Statistics, Chicago Area Summary (2016).
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household is able to borrow 80 percent of the value of the house, the downpayment is

downpayment = $260, 000 (1.02) (0.2)

= $53, 040.

As a fraction of household income, the downpayment is:

ψ + β =
$53, 040

$62, 180
= 0.85.

Replacing these numbers in the inequality (33), we conclude that it is satisfied as long as

the parameter ψ satisfies the condition ψ > 0.764.

A.3 Proof of Proposition 3

Assume that preferences take the form:

U (cyt, lyt, lot+1, cot+1) = (1− ψ − β (1 + θ)) ln cyt + ψ ln lyt + β (ln cot+1 + θ ln lot+1) .

A.3.1 Frictionless Asset Market

In this case the budget constraint takes the form:

w = cyt +
cot+1

R
+
(

(1 + τt) qt −
qt+1

R
− rt

)
lt + rtlyt +

rt+1lot+1

R
.

The optimal choices of the agent are:

cyt = (1− ψ − β (1 + θ))w, (A.4)

lyt =
ψw

rt
, (A.5)

cot+1 = βRw, (A.6)

lot+1 =
βRθw

rt+1

, (A.7)
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and the optimal choice of lt must imply that in equilibrium:

(1 + τt) qt −
qt+1

R
= rt. (A.8)

Use equations (A.5) and (A.7) into the rental land market clearing condition lyt + lot = 1

to obtain:
ψw

rt
+
βRθw

rt
= 1,

which pins down rt = r for all t. This implies that the indirect utility of a young agent is

a constant. Replace r into (A.8) to get the equilibrium user cost of land. This is a version

of equation (55) and the analysis that follows that equation in the main text applies. In

particular, the price of land qt is independent of a locality’s pension funding policy.

A.3.2 Binding Downpayment Constraint

In this case, the budget constraints are:

w = cyt + rtlyt + (dt − rt) lt,

cot+1 + rt+1lot+1 = qt+1lt,

where we have already incorporated the restriction that κ = 0. Replace consumption when

young and old in the objective function:

U (cyt, lyt, lot+1, cot+1) = (1− ψ − β (1 + θ)) ln (w − rtlyt − (dt − rt) lt) + ψ ln lyt

+β (ln (qt+1lt − rt+1lot+1) + θ ln lot+1) .

The first-order condition for land consumption when young is:

lyt :
(1− ψ − β − βθ) rt
w − rtlyt − (dt − rt) lt

=
ψ

lyt
⇒

rtlyt =
ψ

1− β − βθ
(w − (dt − rt) lt) . (A.9)
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Similarly, land consumption when old satisfies:

lot+1 : rt+1lot+1 =
θ

1 + θ
qt+1lt. (A.10)

The demand for land as an asset is such that:

lt :
(1− ψ − β − βθ) (dt − rt)
w − rtlyt − (dt − rt) lt

=
βqt+1

qt+1lt − rt+1lot+1

.

Replacing the first-order conditions (A.9) and (A.10), and simplifying we obtain:

lt =
β (1 + θ)w

dt − rt
.

Replace into the budget constraint when young and old to obtain:

cyt = w − rtlyt − (dt − rt) lt = w (1− ψ − β (1 + θ)) ,

cot+1 =
1

1 + θ
qt+1lt.

Equilibrium in the market for land ownership (lt = 1) pins down dt − rt :

β (1 + θ)w

dt − rt
= 1→ dt − rt = β (1 + θ)w. (A.11)

Equilibrium in the market for land consumption (lyt + lot = 1) together with the above

expression implies:
ψw

rt
+

θ

1 + θ

qt
rt

= 1

so we can solve for rt as function of qt (equation (45)):

rt = ψw +
θ

1 + θ
qt. (A.12)

Combine (A.11), (A.12), and the definition of dt to derive the dynamic equation for land
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prices:

(1 + τt) qt = ψw +
θ

1 + θ
qt + β (1 + θ)w.

Replace in it the government’s budget constraint (8):

qt

(
1− θ

1 + θ

)
= ψw + β (1 + θ)w − wg − ft+1b

g

R
− bg (1− ft) .

Simplify to obtain equation (44) in the main text:

qt = (1 + θ)

{
(ψ + β (1 + θ))w − wg − ft+1b

g

R
− bg (1− ft)

}
.

Using this equation, it is straightforward to show that a policy deviation that increases

pension funding leads to a smaller land price today and a higher land price in the following

period. Replacing the optimal choices into the utility function, we derive the utilities of old

and young agents in period t (up to some irrelevant constants):

V old
t ≈ (1 + θ) ln qt − θ ln rt,

V young
t ≈ −ψ ln rt + βV old

t+1.

We now show that the utility of the old is strictly increasing in qt. Use equation (A.12)

to replace rt into V old
t :

V old
t = (1 + θ) ln qt − θ ln rt

= (1 + θ) ln qt − θ ln

(
wψ +

θ

1 + θ
qt

)
.

Now, take its derivative with respect to qt:

∂V old
t

∂qt
=

1 + θ

qt
− θ

wψ + θ
1+θ

qt

θ

1 + θ
.

6



This is strictly positive if and only if the following condition holds:

(1 + θ)

qt
>

θ

wψ + θ
1+θ

qt

θ

1 + θ
,

which can be re-written as:

(1 + θ)2wψ + (1 + θ) θqt > θ2qt.

The latter always holds. Using the same argument, it is straightforward to show that the

young’s utility is strictly increasing in the future price of land and strictly decreasing in its

current price.

A.4 Proof of Proposition 4

Assume that there is no borrowing, so κ = 0.

A.4.1 Notation

To save on notation, define:

δ ≡ (ψ + β)
w

bg
− wg

bg
− 1,

and re-write equations (28) and (29) as:

Q (f ;F ) = δbg − F (f) bg

R
+ bgf, (A.13)

Q̃
(
f, f̃ ′;F

)
= δbg − f̃ ′bg

R
+ bgf. (A.14)

A.4.2 Equilibrium Given Policy Rule

Guess that the policy rule takes the affine form:

F (f) = λ+ φf,
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for some parameters (λ, φ) , which will have to be determined in equilibrium. Similarly, guess

that the equilibrium land pricing function takes the form:

Q (f ;F ) = πbg + ωbgf, (A.15)

for some constants (π, ω) to be determined. To solve for the latter, replace (A.15) into

(A.13):

Q (f ;F ) = δbg − (λ+ φf) bg

R
+ bgf.

Collect the constant terms and those in f :

Q (f ;F ) =

(
δ − λ

R

)
bg + bg

(
1− φ

R

)
f.

Impose consistency with the guess (A.15). First the slope:

ω = 1− φ

R
. (A.16)

Then, the intercept:

π = δ − λ

R
. (A.17)

A.4.3 Politico-Economic Equilibrium

Now solve for the equilibrium policy rule parameters (λ, φ). The policymaker maximizes the

weighted average of the old and young utilities:

α ln Q̃
(
f, f̃ ′;F

)
+ (1− α) β lnQ

(
f̃ ′;F

)
, (A.18)

where:

Q̃
(
f, f̃ ′;F

)
= δbg − f̃ ′bg

R
+ bgf, (A.19)

and

Q
(
f̃ ′;F

)
= πbg + ωbgf̃ ′. (A.20)
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The interior first-order condition is:

− α

Q̃
(
f, f̃ ′;F

) 1

R
+

(1− α) βω

Q
(
f̃ ′;F

) = 0.

Simplify this equation to:

αQ
(
f̃ ′;F

)
= (1− α) βRωQ̃

(
f, f̃ ′;F

)
.

Replace Q
(
f̃ ′;F

)
and Q̃

(
f, f̃ ′;F

)
from equations (A.20) and (A.19):

α
(
π + ωf̃ ′

)
= (1− α) βRω

(
δ + f − f̃ ′

R

)
.

Solve for f̃ ′ :

απ + αωf̃ ′ = (1− α) βRωδ + (1− α) βRωf − (1− α) βRω
f̃ ′

R

or

f̃ ′ω (α + (1− α) β) = (1− α) βRωδ − απ + (1− α) βRωf

or

f̃ ′ =
(1− α) βRωδ − απ
ω (α + (1− α) β)

+
(1− α) βR

α + (1− α) β
f.

A.4.4 Impose Consistency

Now, impose consistency to obtain (λ, φ):

λ =
(1− α) βRωδ − απ
ω (α + (1− α) β)

, (A.21)

φ =
(1− α) βR

α + (1− α) β
. (A.22)
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Solve equation (A.21) after replacing (A.16) and (A.17):

λ =
(1− α) βR

(
1− φ

R

)
δ − α

(
δ − λ

R

)(
1− φ

R

)
(α + (1− α) β)

.

Simplify:

λ

(
1− φ

R

)
(α + (1− α) β) = (1− α) βR

(
1− φ

R

)
δ − αδ +

α

R
λ

or

λ

[(
1− φ

R

)
(α + (1− α) β)− α

R

]
= (1− α) βR

(
1− φ

R

)
δ − αδ,

thus:

λ =
((1− α) β (R− φ)− α) δ(
1− φ

R

)
(α + (1− α) β)− α

R

.

Replace φ :

λ =

(
(1− α) β

(
R− (1−α)βR

α+(1−α)β

)
− α

)
δ(

1− (1−α)β
α+(1−α)β

)
(α + (1− α) β)− α

R

and simplify again:

λ =

(
Rβ(1−α)
α+(1−α)β

− 1
)
δ

(1− 1/R)

or

λ =
Rδ

R− 1

(
Rβ (1− α)

α + (1− α) β
− 1

)
.

More succinctly, using (A.22), it can be written as:

λ =
Rδ

R− 1
(φ− 1) .
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A.4.5 Equilibrium Policy Rule

The equilibrium policy rule is therefore as follows:

f ′ =
Rδ

R− 1
(φ− 1) + φf,

where φ is defined in equation (A.22).

A.5 Proof of Lemma 1

Apply the implicit function theorem to equation (53) to get:

g′ (qt+1) = (1− κ)
v′ (qt+1 (1− κ)) + v′′ (qt+1 (1− κ)) qt+1 (1− κ)

u1 (w − dt, 1)− dtu11 (w − dt, 1) + u21 (w − dt, 1)
. (A.23)

Notice that:

g′ (qt+1) < (1− κ)
v′ (qt+1 (1− κ))

u1 (w − dt, 1)− dtu11 (w − dt, 1) + u21 (w − dt, 1)
< (1− κ)

v′ (qt+1 (1− κ))

u1 (w − dt, 1)
,

where the first inequality follows from the facts that v′′ (qt+1 (1− κ)) < 0 and the denomi-

nator of equation (A.23) is positive, while the second inequality follows from the fact that

−u11 (w − dt, 1) ≥ 0 and u21 (w − dt, 1) ≥ 0. Q.E.D.

A.6 Proof of Proposition 5

Take the derivative of the indirect utility function in equation (56) with respect to qt+1 :

∂U (w − g (qt+1) , 1, (1− κ) qt+1)

∂qt+1

= −u1 (w − g (qt+1) , 1) g′ (qt+1) + (1− κ) v′ ((1− κ) qt+1) .

Notice that this is strictly positive due to Lemma 1. Q.E.D.
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A.7 Proof of Proposition 7

It follows directly from the analysis in the text. Q.E.D.

B Additional Results for the Case of a General Utility

Function

B.1 Irrelevance of Pension Funding Policy Under Perfect Capital

Markets

Formally, the basic statement is:

Proposition 1 Without a downpayment constraint (or when the latter never binds), both

the price of land and the indirect utility offered by a municipality are independent of the

one-period deviation f̃ ′ from f ∗. As a result, both young and old agents are indifferent about

alternative pension funding policies.

Consider an arbitrary utility function U (cyt, lt, cot+1) with the standard properties. An

agent’s lifetime budget constraint is

cyt + lt (qt (1 + τt)− qt+1/R) + cot+1/R = w.

Optimal choices, including land L (ut), depend on the user cost of land:

ut ≡ (qt (1 + τt)− qt+1/R) .

Land market equilibrium requires that L (ut) = 1, pinning down ut = u∗ uniquely because

L (ut) is strictly decreasing in ut. It follows that an agent’s lifetime utility, which depends

only on ut, is also a constant independent of pension funding. To verify that the current
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price of land is also independent of a locality’s pension funding policy, write the user cost in

recursive form and solve for the current land price:

Q̃
(
f, f̃ ′; f ∗

)
= u∗ − wg − f̃ ′bg/R− bg (1− f) +Q

(
f̃ ′; f ∗

)
/R. (B.1)

It is straightforward to verify that the price of land tomorrow is such that:

Q
(
f̃ ′; f ∗

)
= u∗ − wg − f ∗bg/R− bg

(
1− f̃ ′

)
+Q (f ∗; f ∗) /R

Replace Q
(
f̃ ′; f ∗

)
into equation (B.1) and simplify we obtain:

Q̃
(
f, f̃ ′; f ∗

)
= u∗ − wg − bg (1− f) + (u∗ − wg − bg − f ∗bg/R +Q (f ∗; f ∗)) /R.

This is independent of the policy deviation f̃ ′. Hence, the utility of the old generation is

independent of the locality’s pension funding policy. Q.E.D.

B.2 General Utility Function: Properties of the Demand for Land

and the Indirect Utility Function

After replacing the budget constraints (2)-(3) into the utility function, the optimization

problem of an agent is:

max
lt,bt+1

U

(
w − (1 + τt) qtlt −

bt+1

R
, lt, qt+1lt + bt+1

)
, (B.2)

subject to the downpayment constraint (4). If the downpayment constraint binds (bt+1 =

−κqt+1lt), the optimization problem takes the form in equation (51). Formally, the land

demand function L (dt, qt+1) and the associated indirect utility function V (dt, qt+1) have the

properties summarized in the following proposition.
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Proposition 2 (Properties of the demand for land and of the indirect utility function)

(a) There exists a unique land demand function L (dt, qt+1) that solves problem (51).

(b) If the Inada conditions u1 (cy, l) → +∞ as cy → 0 and u2 (cy, l) → +∞ as l → 0 hold,

then the land demand function L (dt, qt+1) satisfies the first-order condition for l:

− dtu1 (w − dtl, l) + u2 (w − dtl, l) + v′ (qt+1 (1− κ) l) qt+1 (1− κ) = 0. (B.3)

(c) Under the assumptions in part (b), the downpayment constraint binds if and only if the

Euler equation for consumption holds as an inequality:

u1 (w − dtL (dt, qt+1) , L (dt, qt+1)) > v′ (qt+1 (1− κ)L (dt, qt+1))R. (B.4)

(d) Under the assumptions in part (b), the land demand function L (dt, qt+1) is strictly de-

creasing in dt. The effect of qt+1 on the demand for land is ambiguous.4

(e) Under the assumptions in part (b), the indirect utility function V (dt, qt+1) , defined in

(52), is strictly decreasing in dt and strictly increasing in qt+1.

(a) The function U (w − dtl, l, qt+1 (1− κ) l) is continuous in l on the interval [0, dt/w] .

Therefore it achieves a maximum in this interval.

(b) The Inada conditions on the derivatives at l = dt/w and l = 0 rule out corner solutions

in which the optimal demand for land is either d/w or zero. Therefore, the solution must be

interior and satisfy the first-order condition (B.3):

− dtu1 (w − dtlt, lt) + u2 (w − dtlt, lt) + v′ (qt+1l (1− κ)) qt+1 (1− κ) = 0. (B.5)

This equation admits a solution because of the Assumptions in part (b) of Proposition 2.

Notice that the objective function U (w − dtl, l, qt+1 (1− κ) l) is strictly concave in lt because

4Specifically, it is strictly decreasing in qt+1 if and only if the absolute value of the elasticity of v′ (co)
with respect to co is strictly larger than one.
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its second derivative with respect to lt is negative:

∆ ≡ d2
tu11 (w − dtlt, lt)−2dtu12 (w − dtlt, lt)+u22 (w − dtlt, lt)+v′′ (qt+1l (1− κ)) [qt+1 (1− κ)]2 < 0.

(B.6)

This is true because, by Assumption 1:

u11 (w − dtlt, lt) ≤ 0,

u22 (w − dtlt, lt) ≤ 0,

u12 (w − dtlt, lt) ≥ 0,

v′′ (qt+1l (1− κ)) ≤ 0,

and at least one of the own-second derivatives is strictly negative. Thus, the solution to the

first-order condition is unique.

(c) Consider the agent’s optimization problem (B.2), without imposing that the downpay-

ment constraint binds. Let µ denote the Lagrange multiplier associated with the constraint

bt+1 + κqt+1lt ≥ 0. The interior first-order conditions of the problem are:

lt : − (1 + τt) qtU1t + U2t + U3tqt+1 + µκqt+1 = 0, (B.7)

bt+1 : −U1t/R + U3t + µ = 0. (B.8)

The downpayment constraint binds if and only if µ > 0. Thus, according to equation (B.8),

the Euler equation holds as an inequality (equation (B.4)) if and only if the downpayment

constraint binds.

(d) The properties of the demand function can be proved using the implicit function

theorem as applied to equation (B.5). First:

∂L (dt, qt+1)

∂d
=
u1 (w − dtlt, lt)− dtltu11 (w − dtlt, lt) + u12 (w − dtlt, lt) lt

∆
< 0
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because the numerator of this expression is positive and ∆ < 0. The other derivative is:

dL (dt, qt+1)

∂q
=
v′ (qt+1l (1− κ)) + v′′ (qt+1l (1− κ)) qt+1l (1− κ)

−∆
(1− κ)

which can be expressed as:

∂L (dt, qt+1)

∂q
=
v′ (qt+1l (1− κ)) [1− ε (qt+1l (1− κ))]

−∆
(1− κ) , (B.9)

where

ε (qt+1l (1− κ)) ≡ −v
′′ (qt+1l (1− κ)) qt+1l (1− κ)

v′ (qt+1l (1− κ))
> 0

is the (positive) elasticity of v′(cot+1) with respect to cot+1. It follows that the derivative

(B.9) is negative if and only if ε (qt+1l (1− κ)) > 1. In terms of κ, we can write:

∂L (dt, qt+1)

∂κ
=
∂L (dt, qt+1)

∂dt

∂dt
∂κ

+
v′ (qt+1l (1− κ)) + v′′ (qt+1l (1− κ)) qt+1l (1− κ)

∆
qt+1.

Replacing ∂L (dt, qt+1) /∂dt from above and noticing that ∂dt/∂κ = −qt+1/R, leads to

∂L (dt, qt+1)

∂κ

=
qt+1

R (−∆)

 u1 (w − dtlt, lt)− dtltu11 (w − dtlt, lt) + u12 (w − dtlt, lt) lt −Rv′ (qt+1l (1− κ))

−Rv′′ (qt+1l (1− κ)) qt+1l (1− κ)

 ,

where (−∆) > 0. The term in brackets is also positive because the agent is constrained and

so u1 (w − dtlt, lt) > Rv′ (qt+1l (1− κ)) .

(e) By the envelope theorem:

∂V (dt, qt+1)

∂dt
= −u1 (w − dtL (dt, qt+1) , L (dt, qt+1))L (dt, qt+1) < 0,

∂V (dt, qt+1)

∂qt+1

= v′ (qt+1L (dt, qt+1) (1− κ))L (dt, qt+1) (1− κ) > 0.

Q.E.D.
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B.3 Binding Downpayment Constraint

The analysis of Section III proceeds under the assumption that the downpayment constraint

in equation (5) is always binding both in equilibrium and following a deviation. As we had

mentioned at the beginning of the section, outside of special cases, such as the logarithmic

example of Section II, there are no simple conditions on the model’s parameters that guaran-

tee that this is indeed the case. It is, however, feasible to provide sufficient conditions that

can be verified given specific utility functions and parameter values, such that the downpay-

ment constraint is guaranteed to always be binding. These are contained in the following

proposition.

Proposition 3 (Sufficient conditions for binding downpayment constraint) Consider

a politico-economic equilibrium characterized by the constant funding rule f ∗ = F (f) . Then,

sufficient conditions for the downpayment constraint to be always binding, both in equilibrium

and following a deviation from it, are:

(a) If the function g(qt+1) is weakly increasing in qt+1:

u1 (w − g (Q (fmin; f ∗)) , 1) > Rv′ (Q (fmin; f ∗) (1− κ)) .

(b) If the function g(qt+1) is weakly decreasing in qt+1:

u1 (w − g (Q (1; f ∗)) , 1) > Rv′ (Q (fmin; f ∗) (1− κ)) .

As proved in Proposition 2, part (c), the downpayment constraint is binding when

u1 (w − dt, 1) > v′ (qt+1 (1− κ))R,

where we are considering the local economy in a situation in which the land market is in

equilibrium (lt = 1). Replace dt from equation (54) and re-write this equation using the
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recursive notation:

u1

(
w − g

(
Q
(
f̃ ′; f ∗

))
, 1
)
> Rv′

(
Q
(
f̃ ′; f ∗

)
(1− κ)

)
.

For the downpayment constraint to always be binding we need the inequality above to hold

for all f̃ ′ ∈ [fmin, 1] , which includes the politico-economic equilibrium case f̃ ′ = f ∗. Notice

that, since Q
(
f̃ ′; f ∗

)
is strictly increasing in f̃ ′ and v′′ ≤ 0, we can write:

v′ (Q (fmin; f ∗) (1− κ)) ≥ v′
(
Q
(
f̃ ′; f ∗

)
(1− κ)

)
.

(a) Since u11 ≤ 0, if the function g (.) is increasing in its argument, we know that:

u1

(
w − g

(
Q
(
f̃ ′;F

))
, 1
)
≥ u1 (w − g (Q (fmin; f ∗)) , 1)

for all f̃ ′ ∈ [fmin, 1] . Therefore, if the function g (.) is increasing, we can write:

u1

(
w − g

(
Q
(
f̃ ′;F

))
, 1
)
≥ u1 (w − g (Q (fmin; f ∗)) , 1) > Rv′ (Q (fmin; f ∗) (1− κ))

≥ Rv′
(
Q
(
f̃ ′; f ∗

)
(1− κ)

)
.

Thus, as long as the middle inequality holds, the agent is constrained.

(b) Conversely, if the function g (.) is decreasing in its argument, we know that:

u1

(
w − g

(
Q
(
f̃ ′;F

))
, 1
)
≥ u1 (w − g (Q (1; f ∗)) , 1)

and the same argument applies with:

u1

(
w − g

(
Q
(
f̃ ′;F

))
, 1
)
≥ u1 (w − g (Q (1; f ∗)) , 1) > Rv′ (Q (fmin; f ∗) (1− κ))

≥ Rv′
(
Q
(
f̃ ′; f ∗

)
(1− κ)

)
.

Q.E.D.
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For example, if the utility function takes the quasi-linear form:

U = cyt + φ (lt) + βcot+1, (B.10)

with φ′ (l) > 0 and φ′′ (l) < 0, the marginal utility of consumption when young is a constant

equal to 1, while the marginal utility of consumption when old is simply β. Thus, the

downpayment constraint is always binding if βR < 1.5

C Additional Extensions and Results

In this appendix we consider two extensions of the model. In the first one we consider

alternative forms for the downpayment constraint. In the second we consider a version of

the model with geographic mobility.

C.1 Alternative Forms of the Downpayment Constraint

In this section we consider and analyze two alternative formalizations of the downpayment

constraint considered in the main text. The first one makes the constraint a function of the

current price of land, instead of its future price. In the second one, agents face a higher

interest rate when borrowing than when lending. In the former case, we are able to solve

for equilibrium under a binding constraint only if utility is logarithmic. In the latter case we

are able to solve for equilibrium for a general utility function. In this case, differently from

the benchmark model, young agents’ utility is always independent of the locality’s funding

policy. Old agents always prefer to maximize current land prices by setting pension funding

at its lower possible level.

5For this quasi-linear case the function g (qt+1) = φ′ (1) +β (1− κ) qt+1. Notice that, in this example, the
condition βR < 1 is also necessary for the downpayment constraint to bind.
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C.1.1 Downpayment Constraint with Current Land Price (Log Utility Case)

The downpayment constraint is now:

bt+1 ≥ −κqtlt.

For the case of log utility, the analysis in the main text goes through after redefining

dt = (1 + τt − κ/R) qt. (C.1)

Land market clearing (lt = 1) then pins down dt = d∗, which can be used to solve for qt:

qt =
d∗

1− κ/R
− τtqt

1− κ/R
.

Replacing the government’s budget constraint (8) for τtqt we obtain:

qt =
d∗

1− κ/R
− wg

1− κ/R
− 1

1− κ/R
ft+1b

g

R
− 1

1− κ/R
bg (1− ft) .

The analysis of the politico-economic equilibrium is then straightforward and confirms

our results. Specifically, the current price of land decreases in pension funding (ft+1), while

the future price increases.

The lifetime utility of a young agent can be written as:

V young
t = (1− ψ − β) ln (1− ψ − β)w + β ln (qt+1 − κqt) .

It follows that young agents prefer the maximum funding policy in order to maximize qt+1

and minimize qt.
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C.1.2 Higher Borrowing Rate (General Utility Case)

Suppose that preferences take the form:

U (cyt, lt, cot+1) = u (cyt, lt) + v (cot+1) .

Agents face an interest rate R/κ when borrowing and R when lending (with κ < 1).

Consider, for the sake of the argument, that a young agent would like to borrow, in which

case the budget constraint is:

w = cyt + dtlt +
cot+1

κ−1R
,

where the dt is defined as in the main text:

dt = (1 + τt) qt −
qt+1

κ−1R
.

Replace the budget constraints into the utility function:

U (cyt, lt, cot+1) = u
(
w − dtlt −

cot+1

κ−1R
, lt

)
+ v (cot+1) .

The first-order condition for land and consumption when old are:

lt : −dtu1

(
w − dtlt −

cot+1

κ−1R
, lt

)
+ u2

(
w − dtlt −

cot+1

κ−1R
, lt

)
+ v′ (cot+1) = 0,

cot+1 : −u1

(
w − dtlt −

cot+1

κ−1R
, lt

) 1

κ−1R
+ v′ (cot+1) = 0.

Imposing land market clearing lt = 1, we obtain:

lt : −dtu1

(
w − dt −

cot+1

κ−1R
, 1
)

+ u2

(
w − dt −

cot+1

κ−1R
, 1
)

+ v′ (cot+1) = 0,

cot+1 : −u1

(
w − dt −

cot+1

κ−1R
, 1
) 1

κ−1R
+ v′ (cot+1) = 0.
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One can solve for cot+1 from the second equation as a function of dt :

cot+1 = C (dt)

and replace the resulting function in the first equation:

−dtu1

(
w − dt −

C (dt)

κ−1R
, 1

)
+ u2

(
w − dt −

C (dt)

κ−1R
, 1

)
+ v′ (C (dt)) = 0.

This equation pins down the equilibrium downpayment:

dt = d∗.

Thus, in equilibrium:

(1 + τt) qt −
qt+1

κ−1R
= d∗,

and the analysis follows in the same way as in the main text. Specifically, the current land

price increases as pension funding declines and an old policymaker would want to set pension

funding to the minimum allowed level. Differently from the main text, however, the lifetime

utility of a young agent is:

V young (d∗) = u

(
w − d∗ − C (d∗)

κ−1R
, 1

)
+ v (C (d∗)) ,

so it is not affected by the locality’s funding policy.

C.2 Geographic Mobility

Intuitively, geographic mobility should act as a force that dampens the effect of reducing

pension funding on young agents’ utility and, consequently, on the price of land. This

intuition is correct within the context of our model. In particular, with perfect mobility,

lower pension funding leads to a smaller increase in land prices in a locality than with a

geographically fixed population. In addition, young agents are insulated from the effect of
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reduced pension funding by a locality on utility. However, young agents are not insulated

if all localities follow the same policy, as they do in the symmetric general equilibrium of

the model. In such case, a policy intervention by a higher authority that dictates minimum

funding levels produces the same effect as in Section 4.2.2, i.e. it increases the welfare of the

young at the expense of the utility of the old generation.

We consider the case in which young agents’ labor mobility is perfect, in the sense that

a locality would not be able to attract any young agents if it offered less than some life-

time utility V ∗. We start by considering one locality in isolation taking V ∗ as given, but

later endogenize V ∗ by imposing an economy-wide market clearing condition for the young

population. The timing of events is as follows. A location funding policy is chosen first,

then young agents choose where to reside, and how much land and consumption to demand.

Finally, the market for land clears. Thus, the policymaker fully anticipates the effect of

her choices on the measure of young agents that choose to reside in the locality. Given

that young agents are fully mobile and always attain lifetime utility V ∗, they are indifferent

about the pension funding policy of any locality they are considering as potential place of

residence. Thus, we only focus on the case in which the policymaker is an old agent.

Relative to the case of exogenous population, with endogenous young population the land

market equilibrium condition becomes:

ntL (dt, qt+1) = 1, (C.2)

where nt denotes the endogenous measure of young agents who are attracted to the location.

In equilibrium, the young have to be indifferent between living in the locality or living

elsewhere and obtaining lifetime utility V ∗ :

V (dt, qt+1) = V ∗, (C.3)

where the indirect utility function is defined in equation (52). Since the indirect utility

function is strictly decreasing in dt (Proposition 2, part (e)), equation (C.3) can be written
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as:

dt = h (qt+1) . (C.4)

The function h(.) plays the same role as the function g(.) introduced in Section 4 for the

case of fixed population. Apply the implicit function theorem to equation (C.3) to compute

the derivative of h(.):

h′ (qt+1) = (1− κ)
v′ ((1− κ) qt+1L (dt, qt+1))

u1 (w − dtL (dt, qt+1) , L (dt, qt+1))
. (C.5)

Follow the same steps as in Section 4, to obtain the derivative of land prices with respect

to pension funding f̃ ′ for the case of endogenous young population:6

∂Q̃
(
f, f̃ ′; f ∗

)
∂f̃ ′

= −b
g

R︸︷︷︸
current taxes

+
κbg

R︸︷︷︸
borrowing

+ h′
(
Q
(
f̃ ′;F

))
bg︸ ︷︷ ︸

effect of resale value of land

, (C.6)

with h′(.) replacing g′ (.). Since the derivative in equation (C.5) is strictly larger than g′ (qt+1)

(Lemma 1), reducing pension funding leads to a smaller increase in current land prices when

young agents are mobile than when they are not so. The intuition is that, following a

reduction in the future price of land brought about by a decline in f̃ ′, the location becomes

less attractive to prospective young residents. The loss of young population contributes to

reduce current land prices. This additional mechanism reduces, but does not fully offset,

the extent of the increase in current land prices following a reduction in pension funding.

In order to compute the overall effect on land prices, replace equation (C.5) into (C.6), and

rearrange:

∂Q̃
(
f, f̃ ′; f ∗

)
∂f̃ ′

= −b
g (1− κ)

R
(1−R×MRSct ) < 0, (C.7)

where the negative sign is due to the fact that R × MRSct < 1, since young agents are

constrained. The only difference with respect to the case of a fixed population is that, with

a mobile population, the derivative on the left-hand side of equation (C.7) is equal to - rather

6See the analog equation (4.13) for the case of fixed population.
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than strictly less than - the term on the right-hand side.

Thus, as in the case of fixed population, the current land price declines in response to

an increase in pension funding f̃ ′. The optimal policy deviation for an old policymaker

is therefore to set f̃ ′ = fmin. This is the same result obtained when population is fixed

(Proposition 7).

In general equilibrium, the measure of young agents born in each period needs to settle

somewhere in the economy. Therefore, if all locations are homogeneous, each of them absorbs

a measure one of young agents:

nt = 1.

This condition pins down the equilibrium utility level V ∗. That is, geographic mobility does

not insulate young agents from the effects of reduced pension funding if all localities pursue

the same funding policy. Specifically, since in general equilibrium nt = 1, land market

clearing requires that:

L (dt, qt+1) = 1.

Thus, the analysis of Section 4 applies and the lifetime utility achieved by a young agent

must equal to

V ∗ = V (g (qt+1) , qt+1) ,

with V (g (qt+1) , qt+1) defined in equation (4.6). That is, the lifetime utility achieved by a

young agent in this economy is increasing in the future price of land qt+1 (Proposition 5).

In turn, the future price of land Q∗, defined in equation (4.10), is increasing in f ∗. Recall

that when the policymaker is old, f ∗ = fmin. It follows that the equilibrium utility level V ∗

achieved by a young agent is lowest when old agents are in charge of setting pension funding

policy. This is the same result as in the benchmark model with fixed population.
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D Empirical Results: Robustness Analysis

In Table D.1 we report regression results corresponding to using as independent variable of

interest the homeownership rate of households under 55 in 1990 instead of 2012.

Table D.1: Robustness: Lagged Measures of Age and Ownership

UAAL/population UAAL/income

% owners under 55 (1990) -79.0∗∗ -38.0∗∗ -0.37∗∗ -0.23∗∗

(13.1) (12.7) (0.06) (0.06)

controlsa NO YES NO YES

R2 0.18 0.31 0.21 0.34

UAAL/revenues UAAL/house values

% owners under 55 (1990) -2.30∗∗ -1.66∗∗ -0.25∗∗ -0.22∗∗

(0.66) (0.78) (0.04) (0.05)

controlsa NO YES NO YES

R2 0.06 0.16 0.20 0.36

Number of cities 160 160 160 160

Robust standard errors in parenthesis. ∗∗ p-value<0.05
aControls include population density, liabilities per capita, the ratio of median income and median house

values, log city population, percentage population change between 2000 and 2012, and regional dummies.

In Table D.2 we report regression results corresponding to alternative definitions of the

explanatory variable of interest. In particular, we vary the age cutoff between young and

old, and we also consider the role of home ownership. Each estimate represents a different

regression with UAAL/population as the dependent variable but with different explanatory

variables. All controls are included in each regression. The first column shows the sensitivity
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of the baseline results to age cutoffs. The second column performs the same exercise, but

considers the age distribution for all households instead of only homeowners. The third

column reports the results of regressing the UAAL/population measure on the percent of

households that are renters.

Table D.2: Robustness: Effect of age cutoffs and ownership on baseline estimates.

Home owners All households Renters
% Under 35 -78.03∗ -14.42 -6.72

(45.85) (18.35) (18.85)

% Under 45 -58.81∗∗ -26.40 -3.08
(23.23) (20.52) (18.22)

% Under 55 -39.63∗∗ -44.10∗ 2.35
(14.00) (25.55) (16.46)

% Under 65 -30.32∗∗ -52.64 10.47
(11.93) (33.90) (13.80)

This table shows the robustness of baseline parameter estimates to age cutoffs and home ownership. Each

point estimate represents a separate regression using UAAL/population as the dependent variable and dif-

ferent dummy variables as proxies for the young population. Each regression includes controls include

population density, liabilities per capita, the ratio of median income and median house values, log city popu-

lation, percentage population change between 2000 and 2012, and regional dummies. Robust standard errors

in parenthesis. ∗∗ p-value < 0.05 , ∗ p-value<0.1

In Table D.3 we report regression results corresponding to dropping from the sample the

10 cities with the lowest homeownership rates. These are: Boston, Hartford, Jersey City,

Miami, New Haven, New York City, Newark, Providence, Los Angeles, and San Francisco.
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Table D.3: Robustness: Remove Low-Ownership Cities

UAAL/population UAAL/income

% owners under 55 -51.2∗∗ -32.4∗∗ -0.26∗∗ -0.22∗∗

(15.1) (13.2) (0.06) (0.06)

controlsa NO YES NO YES

R2 0.06 0.12 0.09 0.18

UAAL/revenues UAAL/house values

% owners under 55 -0.78 -0.31 -0.18∗∗ -0.21∗∗

(0.62) (0.71) (0.04) (0.05)

controlsa NO YES NO YES

R2 0.00 0.08 0.09 0.29

Number of cities 158 155 158 155

The ten cities with the lowest overall ownership rates were removed. Robust standard errors in parenthesis.
∗∗ p-value<0.05
aControls include population density, liabilities per capita, the ratio of median income and median house

values, log city population, percentage population change between 2000 and 2012, and regional dummies.
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