
1

PEER EFFECTS IN THE WORKPLACE

Thomas Cornelissen, Christian Dustmann, Uta Schönberg

ONLINE APPENDIX

Table of Contents

Appendix A: Model Details 2

A.1 Assumptions on m 2

A.2 The Worker’s Maximization Problem 3

A.3 The Firm’s Optimization Problem 5

A.4 Productivity versus wage spillover effects 6

Appendix B: Variation used in the within-peer group estimator 7

Appendix C: Estimation method 8

Appendix D: Bias from wrong peer group definitions 10

Appendix E: Imputation of censored wage observations 12

Appendix F: Additional Results 13

F.1: Short T Bias – Monte Carlo Simulations 13

F.2: Sample Selection: Munich vs West Germany 16

F.3: List of Occupations in Sub-Samples 18

F.4: Results by Peer Group and Firm Size 19

F.5: IV Estimates 20



2

Appendix A: Model Details

A.1 Assumptions on m

We impose two bounds on m in the peer pressure function P(.), which can be thought

of as the “pain” from working in a high pressure environment.

First, like Barron and Gjerde (1997), we assume that ݉ is large enough so that the

total cost from peer pressure is increasing in peer quality on average in the peer group.

This assumption captures workers’ dislike of working in a high-pressure environment and

is a sufficient, albeit not necessary, condition to ensure that peer effects in productivity

lead to peer effects in wages. Inspection of ܾ∗ in equation (A.6) reveals that ܾ∗ ≤ 1if

ଵ

ே
∑

డ(,௬ത~)

డ௬ത~
ቚ

optimal

డ̅~
∗

డ ≥ 0, ⇔
ଵ

ே
∑ ݉)ߣ − ݁

∗)
డ̅~

∗

డ ≥ 0. Expressed verbally, the

derivative of the cost of peer pressure should be non-decreasing in peer quality on

average when the average is weighted by
డ̅~

∗

డ
. If this condition does not hold, then the

firm can lower its wage cost by increasing ܾ∗ higher than one, because then workers on

average will like the additional peer pressure created by their peers’ higher effort and be

willing to forgo wages to enjoy it. Our assumption rules this case out. The lower bound

for m is thus implicitly defined by

1

ܰ
 ݉)ߣ ௪− ݁

∗)
߲ ҧ݁~

∗

߲ܾ


= 0.

Second, we require an upper bound for m to ensure that the combined disutility from

the direct cost of effort )ܥ ݁) and peer pressure ܲ൫݁ , ݂̅~൯ increases on average in the

effort of individual workers in the peer group, i.e.,
ଵ

ே
∑

డ[()ା(,௬ത~)]

డ
 =

ଵ

ே
∑ [2݇ ݁

∗ −

[ത~ݕߣ > 0 or equivalently, (2݇− (ߣ ҧ݁∗ − ߣ തܽ> 0. Substituting ҧ݁∗ =
ଵ

ே
∑ ݁

∗
 =

∗ା∗ఒ಼തାఒು ത

ଶିఒು
, obtained from the optimal effort levels ݁

∗ derived in Section A.2 below,

gives

ܾ∗ + ߣ∗ܾ തܽ+ ߣ തܽ− ߣ തܽ> 0

ܾ∗ + ߣ∗ܾ തܽ> 0

ܾ∗ > 0,
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implying that only values of m that lead to a positive ܾ∗ can satisfy this condition. Using

ܾ∗ derived in equation (A.6) below, the upper bound for m is implicitly defined by

∑
߲ ݁

∗

߲ܾ
(1 + ߣ തܽ~) − ∑ ݉)ߣ ௨− ݁

∗)
߲ ҧ݁~

∗

߲ܾ

∑
߲ ݁

∗

߲ܾ
(1 + ߣ തܽ~)

= 0.

A.2 The Worker’s Maximization Problem

We model the wage contract as =ݓ +ߙ ܾ ݂, where the individual-specific intercept

allows the wage contract to match heterogeneous outside options of different workers.

Because of risk neutrality, workers maximize their expected wage minus the combined

cost of effort:1

=ܷܧ ܧ −ݓൣ )ܥ ݁) − ܲ൫݁ , ݂̅~൯൧= [ݓ]ܧ − )ܥ ݁) − ܲ( ݁,ݕത~)

= +ߙ [ܾ ܽ+ ݁(1 + ߣ തܽ~)] − ݇ ݁
ଶ− ݉)ߣ − ݁)ݕത~.

(A.1)

This maximization problem leads to a linear system of N reaction functions in which each

worker in the peer group equates the expected marginal benefit of exerting effort,

(ܾ1 + ߣ തܽ~), with its expected marginal cost
డ()

డ
+

డ(,௬ത~)

డ
, resulting in the

following first order condition:

(ܾ1 + ߣ തܽ~) −
డ[()ା(,௬ത~)]

డ
= 0 ݎ݂ ݅= 1, … ,ܰ , or

(ܾ1 + ߣ തܽ~) − (2݇ ݁− ߣ ҧ݁~− ߣ തܽ~) = 0 ݎ݂ ݅= 1, … ,ܰ , or

݁=
ߣ

2݇
݁̅~+

ܾ

2݇
+
ߣ + ߣܾ

2݇
തܽ~ ݎ݂ ݅= 1, … ,ܰ (A.2)

We assume ݇> ,ߣ which ensures that the firm’s maximization problem has an interior

solution (see Section A.3). This implies 2݇> ߣ from which it follows that there exists a

unique solution to the reaction function system. Note that ҧ݁~=
 തୣି 

ேିଵ
, meaning that

equation (A.2) can be rewritten as

݁=
ߣ

2݇

1

ܰ − 1
[Neത− ݁] +

ܾ

2݇
+
ߣ + ߣܾ

2݇
തܽ~

1 Here, we use the fact that ܲൣܧ ൫݁ , ݂̅~൯൧= ܲ( ݁,ݕത~) because P(.) is linear in ݂̅~, ݂̅~ is linear in ,ҧ~ߝ

and [ҧ~ߝ]ܧ = 0. In the subsequent discussion, we simplify the notation by using ܲ( ݁,ݕത~) in place of

ܲൣܧ ൫݁ , ݂̅~൯൧.
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Solving for ݁ then gives

݁ቆͳ 
ߣ

ʹ݇

1

ܰ െ ͳ
ቇ ൌ

ߣ

ʹ݇

N

ܰ െ ͳ
�ത

ܾ

ʹ݇
+
ߣ  ߣܾ

ʹ݇
ത̱ܽ 

݁ቆ
ʹ݇ (ܰ െ ͳ)  ߣ

ʹ݇ (ܰ െ ͳ)
ቇൌ

ߣ

ʹ݇

N

ܰ െ ͳ
�ത

ܾ

ʹ݇
+
ߣ  ߣܾ

ʹ݇
ത̱ܽ 

݁=
Nߣ

2 (݇ܰ − 1) + ߣ
eത+

(ܰ − 1)ܾ

2 (݇ܰ − 1) + ߣ
+

ߣ) + ܰ)(ߣܾ − 1)

2݇(ܰ − 1) + ߣ
തܽ~ (A.3)

Taking averages on both sides of this equation yields

�തൌ
Nߣ

ʹ݇ (ܰ െ ͳ)  ߣ
�ത

(ܰ െ ͳ)ܾ

ʹ݇ (ܰ െ ͳ)  ߣ
+

ߣ)  ܰ)(ߣߚ െ ͳ)

ʹ݇ (ܰ െ ͳ)  ߣ
തܽ

after which solving for �തgives

�തቆ
(ʹ݇ െ ܰ)(ߣ െ ͳ)

ʹ݇ (ܰ െ ͳ)  ߣ
ቇൌ

(ܰ െ ͳ)ܾ

ʹ݇ (ܰ െ ͳ)  ߣ
+

ߣ)  ܰ)(ߣߚ െ ͳ)

ʹ݇ (ܰ െ ͳ)  ߣ
തܽ

�തൌ
ܾ

(ʹ݇ െ (ߣ
+

ߣ)  (ߣܾ

(ʹ݇ െ (ߣ
തܽ

�തൌ
ܾ

(ʹ݇ െ (ߣ
+

( ߣܾ  ܰ)(ߣ െ ͳ)

(ʹ݇ െ ܰ(ߣ
ത̱ܽ +

ߣܾ)  (ߣ

(ʹ݇ െ ܰ(ߣ ܽ

Substituting this expression into (A.3) yields

݁
∗ =

Nߣ

ʹ݇ (ܰ െ ͳ)  ߣ
ቈ

ܾ

(ʹ݇ െ (ߣ
+

ߣܾ)  ܰ)(ߣ െ ͳ)

(ʹ݇ െ ܰ(ߣ
ത̱ܽ +

ߣܾ)  (ߣ

(ʹ݇ െ ܰ(ߣ ܽ

+
(ܰ െ ͳ)ܾ

ʹ݇ (ܰ െ ͳ)  ߣ
+

ߣ)  ܰ)(ߣܾ െ ͳ)

ʹ݇ (ܰ െ ͳ)  ߣ
ത̱ܽ 

=
[ܾʹ݇ (ܰ െ ͳ)  [ߣ

[ʹ݇ (ܰ െ ͳ)  ݇ʹ)[ߣ െ (ߣ
+

)ߣ ߣܾ  ܰ)(ߣ െ ͳ)

[ʹ݇ (ܰ െ ͳ)  ݇ʹ)[ߣ െ (ߣ
ത̱ܽ 

+
)ߣ ߣܾ  (ߣ

[ʹ݇ (ܰ െ ͳ)  ݇ʹ)[ߣ െ (ߣ ܽ+
ߣ)  ܰ)(ߣܾ െ ͳ)

ʹ݇ (ܰ െ ͳ)  ߣ
ത̱ܽ ,



5

or

݁
∗ =

[ܾ2 (݇ܰ − 1) + [ߣ + )ߣ ߣܾ + (ߣ ܽ+ 2 ߣܾ݇) + ܰ)(ߣ − 1) തܽ~

[2(ܰ − 1)݇+ −](2݇ߣ (ߣ (A.4)

A.3 The Firm’s Optimization Problem

Substituting equation (A.1) evaluated at optimal effort levels into the participation

constraint ൌܷܧ ሺܽݒ ) gives െݓܧ )ܥ ݁
∗) െ ܲ( ݁

∗ǡݕത̱ ) ൌ ሺܽݒ ). Solving this expression

for yieldsݓܧ equation (2) in Section 1.3 of the main text (i.e., ൌݓܧ ሺܽݒ� ሻ )ܥ ݁
∗) +

ܲ( ݁
∗ǡݕത̱ )). Substituting this into the profit function ܲܧ ൌ ∑ ሾ݂െܧ ]ݓ produces the

following optimization problem for the firm’s choice of b:

max


ܲܧ =  [ ܽ+ ݁
∗(1 + ߣ തܽ~) − )ݒ ܽ) − )ܥ ݁

∗)



− ܲ( ݁
∗, തܽ~+ ݁̅~

∗ )]

with first order condition


߲ ݁

∗

߲ܾ
(1 + ߣ തܽ~)



−  ൬
ܥ߲
߲ ݁

+
߲ ܲ

߲ ݁
൰
߲ ݁

∗

߲ܾ


− 
߲ ܲ

߲݁̅~
∗

߲݁̅~
∗

߲ܾ


= 0. (A.5)

Note that because of the workers’ first order condition of maximizing marginal cost and

marginal benefit, we have
డ

డ
+

డ

డ
ൌ (ܾͳ  ߣ ത̱ܽ ) and hence we can rewrite (A.5) as


߲ ݁

∗

߲ܾ
(ͳ  ߣ ത̱ܽ )



െ ܾ
߲ ݁

∗

߲ܾ
(ͳ  ߣ ത̱ܽ )



െ 
߲ ܲ

߲ ҧ̱݁ 
∗

߲ ҧ̱݁ 
∗

߲ܾ


= 0.

Rearranging these elements gives

ܾ∗ =

∑
߲ ݁

∗

߲ܾ
(ͳ  ߣ ത̱ܽ ) −∑

߲ ܲ

߲ ҧ̱݁ 
∗
߲ ҧ̱݁ 

∗

߲ܾ

∑
߲ ݁

∗

߲ܾ
(ͳ  ߣ ത̱ܽ )

=
∑
߲ ݁

∗

߲ܾ
(1 + ߣ തܽ~) − ∑ ݉)ߣ − ݁

∗)
߲݁̅~

∗

߲ܾ

∑
߲ ݁

∗

߲ܾ
(1 + ߣ തܽ~)

. (A.6)

Since peer pressure causes no extra utility to workers on average (because of our

assumptions on m, see Section A.1 above), we have
ଵ

ே
∑ ሺ݉ߣ െ ݁

∗)
డ̱̅ 

∗

డ ≥ 0.
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Additionally, from both the expression for optimal effort given in Equation (A.4) and

ҧ݁~
∗ =

 ଶൣ(ேିଵ)ାఒು൧ାଶ൫ఒ಼ାఒು൯ା൫ఒ
಼ାఒು൯ൣଶ(ேିଶ)ାఒು൧ത~

[ଶ(ேିଵ)ାఒು](ଶିఒು)
, it follows that

డ
∗

డ
> 0 and

డ̅~
∗

డ
> 0. As a result, ܾ∗ ≤ 1 for positive values of :ߣ Interestingly, in the presence of

peer pressure, ܾ∗ is hence smaller than 1, and peer pressure constitutes a further reason

for the firm to reduce incentives in addition to the well-known trade-off between risk and

insurance, which is often emphasized in the principal agent model as important for risk-

averse workers.2 As ݉ reaches its upper bound (very high pain from peer pressure), we

even get ܾ∗ = 0, see Section A.1 above. In the absence of peer pressure (i.e., =ߣ 0), we

obtain the standard result of an optimal incentive parameter for risk neutral workers that

is equal to 1.

In the general case, there is no analytical closed-form solution for ܾ∗, but for simplifying

cases we can calculate a closed-form solution. Consider the case in which all workers

have equal ability ܽ= തܽ and hence exert equal optimal effort ݁
∗ = ҧ݁∗ =

ାఒ಼തାఒು ത

ଶିఒು
.

The first order condition (A.5) simplifies to ∑
డ̅∗

డ
(1 + ߣ തܽ) − ܾ∑

డ̅∗

డ
(1 + ߣ തܽ) −

∑ ݉)ߣ − ҧ݁∗)
డ̅∗

డ = 0 ⇔ (1 + ߣ തܽ) − (ܾ1 + ߣ തܽ) − ݉)ߣ − ҧ݁∗) = 0, yielding the

solution ܾ=
൫ఒು൯

మ
തା൫ଶିఒು൯ఒ಼തି ൫ఒು ିଵ൯൫ଶିఒು൯

ଶ(ିఒು)(ଵାఒ಼ത)
, which under the second order condition

−(1 + ߣ തܽ) +
ఒು

ଶିఒು
(1 + ߣ തܽ) < 0 ⇔ ݇> ߣ maximizes firm profits.

A.4 Productivity versus wage spillover effects

How does the spillover effect in wages, given by equation (3), compare with that in

productivity, given by
ଵ

ே
∑

ௗா

ௗത~
 ? The latter consists of two parts, the marginal effect of

peer ability on productivity holding effort constant,
ଵ

ே
∑ ߣ ݁

∗
 , plus an additional effect

arising from the endogenous response of effort,
ଵ

ே
∑

డ

డ

ௗ
∗

ௗത~
 . There are two opposing

2 This outcome results from an externality: the failure of individual workers to internalize in their
effort choices the fact that peer pressure causes their peers additional “pain” for which the firm must
compensate. The firm mitigates this externality by setting ܾ∗ < 1.
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effects. On the one hand, the first term in equation (3) (i.e.,
ଵ

ே
∑ ∗ߚ

డ

డ

ௗ
∗

ௗത~
 ) is smaller

than the productivity spillover effect, for two reasons. First, firms do not compensate

workers for an increase in productivity that is not induced by an increase in effort (i.e.,

ଵ

ே
∑ ߣ ݁

∗
 is missing from the peer effect in wages—an effect that arises only under

knowledge spillover); and second, increases in productivity induced by an increase in

effort (i.e.,
ଵ

ே
∑

డ

డ

ௗ
∗

ௗത~
 ) translate into wages at a rate of smaller than 1, given by ܾ∗.

(Note that this effect arises only under peer pressure; if ߣ = 0,ܾ∗ = 1.) On the other

hand, the wage spillover effect includes an additional term that is absent from the

productivity spillover effect (term 2 in equation (3)—an effect that arises once again only

under peer pressure. This term captures that workers dislike working in high pressure

environments, forcing firms to compensate workers for this extra disutility. The effect in

equation (3) contains both direct and indirect (social multiplier) effects of തܽ~ on the

wage. For example,
ௗ

∗

ௗത~
not only contains the direct effect of തܽ~ on ݁, i.e.,

ఒುାఒ಼

ଶ
in

equation (1), but also additional multiplier effects as own effort and peer effort reinforce

each other (see A.2).

References:

Barron, John M., and Kathy Paulson Gjerde. “Peer pressure in an agency relationship.”
Journal of Labor Economics (1997): 234-254.

Appendix B: Variation used in the within-peer group estimator

Denoting peer group size by ܰ௧, since
ଵ

ேೕ
∑ തܽ~,௧ =

ଵ

ேೕ
∑ ܽ = തܽ௧, the

within-peer group transformation of equation (6) that eliminates the peer group fixed

effect is

ln൫ݓ௧൯− ln(ݓ)തതതതതതത
௧ = ൫ݔ௧

் − ҧ௧ݔ
் ൯ߚ+ ൫ܽ − തܽ௧൯+ −൫ܽത~,௧ߛ തܽ௧൯+

൫ߝ௧− ,ҧ௧൯ߝ
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which can in turn be transformed into3

ln൫ݓ௧൯− ln(ݓ)തതതതതതത
௧

= ൫ݔ௧
் − ҧ௧ݔ

் ൯ߚ+ ൫ܽ − തܽ௧൯+ ߛ
−1

൫ܰ ௧− 1൯
൫ܽ − തܽ௧൯

+ ൫ߝ௧− ҧ௧൯ߝ

This calculation shows a close association in the within-peer group transformed model

between individual ability and average peer ability: for a one-unit change in individual

ability relative to the average peer ability ܽ− തܽ௧, peer quality relative to the average

തܽ~,௧− തܽ௧ =
ିଵ

൫ேೕି ଵ൯
൫ܽ − തܽ௧൯ changes by a factor of

ିଵ

൫ேೕି ଵ൯
. This outcome not

only reflects the fact that better individuals within a peer group have worse peers but also

shows that the magnitude of the drop in peer quality for each additional unit of individual

ability declines with peer group size. Thus, in the within-peer group transformed model,

individual ability ܽ− തܽ௧ and peer quality തܽ~,௧− തܽ௧ only vary independently if

there is heterogeneity in the peer group size ܰ௧. The parameter ߛ is thus identified by an

interaction of a term involving ܰ௧ and within-transformed individual ability ൫ܽ −

തܽ௧൯.

Appendix C: Estimation method

The solution to estimating equation (4) by nonlinear least squares minimizes the

following objective function:

min
ఉ,ఊ,,ఠ,ఋೕ

ܯ =   lൣn൫ݓ௧൯− −ߚ௧ݔ ܽ− −ത~,௧ߛܽ ߱௧− −௧ߜ ൧ߠ

௧

ଶ

(A.7)

The algorithm proposed by Arcidiacono et al. (2012) first fixes ܽ at starting values and

then iterates the following steps:

3Here, we use തܽ~,௧− തܽ௧ =
ேೕതೕି 

൫ேೕି ଵ൯
−

൫ேೕି ଵ൯തೕ

൫ேೕି ଵ൯
=

ିଵ

൫ேೕି ଵ൯
൫ܽ − തܽ௧൯.
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1. Hold ܽ and തܽ~,௧ at the values from the previous step and obtain the least square

estimates of the now linear model.

2. Update the ܽs based on the nonlinear least squares objective function ܯ given in

(A.7), where all other coefficients are set to their estimated values from Step 2.

Solving
డெ

డ
= 0 for ܽ yields functions ܽ= (݂ ଵܽ, … , ܽି ଵ, ܽାଵ, … , ேܽ ), which are

applied to all ܽ repeatedly until convergence, which is ensured under the condition

that feedback effects are not too strong (i.e., >ߛ 0.4).

3. With the newly updated ܽgo back to Step 2 until the parameter estimates converge.

Because the linear model to be solved in Step 2 still includes the high dimensional fixed

effects ,௧ߜ ߱௧, and ,ߠ we employ a variant of the preconditioned conjugate gradient

algorithm to solve this step (see Abowd, Kramarz and Margolis, 1999; Abowd, Creecy,

and Kramarz, 2002, for details) that is efficient for very large data matrices.4

Because the algorithm does not deliver standard errors and the data matrix is too large to

be inverted without hitting computer memory restrictions, we compute the standard errors

by implementing a wild bootstrapping with clustering on firms (Cameron, Gelbach, and

Miller, 2008).5 For the baseline model, we verify that when using 100 bootstraps,

standard errors are very stable after the 30th bootstrap. Because the estimation is time

consuming, therefore, we generally use 30 bootstraps for each model.

References:

Abowd, John M., Francis Kramarz, and David N. Margolis. “High wage workers and
high wage firms.” Econometrica 67, no. 2 (1999): 251-333.

Abowd, John M., Robert H. Creecy, and Francis Kramarz. “Computing person and firm
effects using linked longitudinal employer-employee data.” Technical Paper No. TP-
2002-06, U.S. Census Bureau, 2002.

Arcidiacono, Peter, Gigi Foster, Natalie Goodpaster, and Josh Kinsler. “Estimating
spillovers using panel data, with an application to the classroom.” Quantitative
Economics 3, no. 3 (2012): 421-470.

4 We implement the estimation in Matlab based on sparse matrix algebra for efficient data
manipulation of the large dummy variable matrices.

5 Rather than using different observations across bootstraps, this method draws a new residual vector
at each iteration, which has the advantage of leaving the structure of worker mobility between firms
unchanged across the bootstraps, thereby allowing identification of the same set of worker and firm fixed
effects in each bootstrap. Another advantage is that this bootstrap is applicable to clusters of different sizes.
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Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. “Bootstrap-based
improvements for inference with clustered errors.” Review of Economics and Statistics
90, no. 3 (2008): 414-427.

Appendix D: Bias from wrong peer group definitions

Defining the peer group at the firm-occupation level leads to two possible error types:

excluding relevant peers from outside the occupational group or including irrelevant

peers inside the occupational group. In this section, we discuss the possible bias resulting

from a wrong peer group definition. This demonstration assumes that the individual and

average peer abilities are known. If (as in practice) they need to be estimated, an

additional bias may arise from a false definition of peer group.

We denote the average quality of individual i’s true and observed peer group by

തܽ~,௧
true and തܽ~,௧

obs and suppose that the true model of peer effects is

lnݓ௧ = +௧ߤ ത~,௧ߛܽ
true + ,௧ݑ

where ௧ߤ summarizes the control variables and multiple fixed effects included in the

baseline or the within-peer group specification. Because the worker’s true peer group is

unobserved, we instead run the regression

lnݓ௧ = +௧ߤ ത~,௧ߛܽ
obs + ݁௧

with ݁௧ = ത~,௧ߛܽ
true − തܽ~,௧ߛ

obs + .௧ݑ The coefficient on തܽ~,௧
obs then identifies [ොߛ]ܧ =

ߩߛ with ߩ equal to the coefficient from a regression of true average peer quality on

observed average peer quality തܽ~,௧
true = +௧ݎ തܽ~,௧ߩ

obs + ,௧ߝ where ௧ݎ includes the

same control variables as .௧ߤ
6 The factor ߩ that characterizes the bias is thus

determined by the extent to which observed peer quality shifts true peer quality.

Consider the following special case. The observed peer group is defined at a given

level of aggregation indexed by ݈(say, at the level of the firm), തܽ~,௧
obs = ]ܧ ܽ| ]݈, while

the true peer group is defined at a lower level of aggregation indexed by ݇ (say, three

digit occupations within firms). If ݇ is nested within ,݈ then the mean of true average peer

6 This can be seen by noting that ݁௧ includes two omitted variables, തܽ~,௧
true and തܽ~,௧

obs . The omitted

variable bias due to these two terms is equal to their respective effect on lnݓ௧ (which is ߛ for തܽ~,௧
true and

ߛ− for തܽ~,௧
obs ) multiplied by how much each of them is shifted by the included regressor തܽ~,௧

obs (which is ߩ

for തܽ~,௧
true and 1 for തܽ~,௧

obs ). Thus, the bias is −ߩߛ ,ߛ and thus [ොߛ]ܧ = +ߛ −ߩߛ =ߛ .ߩߛ
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quality at level ݇ can be decomposed into its mean at the wider level l and its deviation

from that mean, i.e., തܽ~,௧
true = ]ܧ ܽ| ]݇ = ]ܧ ܽ| ]݈ + ]ܧ) ܽ| ]݇ − ]ܧ ܽ| ]݈) = തܽ~,௧

obs +

]ܧ) ܽ| ]݇ − ]ܧ ܽ| ]݈). Note that the second part of this expression, ]ܧ ܽ| ]݇ − ]ܧ ܽ| ]݈ (the

deviation from the mean), is not correlated with തܽ~,௧
obs (the mean itself), thus

Cov൫ܽത~,௧
true , തܽ~,௧

obs ൯= Var൫ܽത~,௧
obs ൯. Therefore, in the case of no further control variables

(i.e., ௧ߤ = ߤ and ௧ݎ = ,(ݎ =ߩ
Covቀത~,ೕ

true ,ത~,ೕ
obs ቁ

Varቀത~,ೕ
obs ቁ

= 1. Thus, in this special case of

nested peer groups and no control variables, there is no bias =ߩ) 1) from defining the

peer group as too large.

The opposite case of defining the peer group as too small can be considered by

simply switching true and observed peer group, i.e., the true peer group is now at the

wider level of aggregation ,݈ തܽ~,௧
true = ]ܧ ܽ| ]݈, while the observed peer group is now at

the narrower level ݇ which can again be decomposed into the mean at level ݈and its

deviation from the mean, leading to തܽ~,௧
obs = തܽ~,௧

true + ]ܧ) ܽ| ]݇ − ]ܧ ܽ| ]݈). This then

leads to =ߩ
Covቀത~,ೕ

true ,ത~,ೕ
obs ቁ

Varቀത~,ೕ
obs ቁ

=
Varቀത~,ೕ

true ቁ

Var൬ത~,ೕ
true ା൫ாൣܽ ห݇ ൧ି ாൣܽ ห݈൧൯൰

< 1. In this configuration

there is excess variance or noise in the observed average peer ability which leads to

attenuation bias similar to classical measurement error.

Thus, in the simple case of different levels of aggregation with nested peer group

definitions and without control variables, defining the peer group as too large leads to no

bias, whereas defining the peer group as too small leads to attenuation bias.

The result of no bias when the peer group is defined as too large does, however, not

in general hold when adding control variables. Suppose =ߩ 1 holds in a bivariate

regression of തܽ~,௧
true on തܽ~,௧

obs . When augmenting this regression by additional control

variables that are positively (or negatively) related to both തܽ~,௧
true and തܽ~,௧

obs , ߩ will be

reduced and become smaller than one. Obvious examples in our context are worker and

firm fixed effects, which are both positively correlated with peer quality measured at

different levels of aggregation within the firm. We thus expect >ߩ 1 (attenuation bias)

both when defining the peer group as too large or defining it as too small.

Some evidence consistent with attenuation bias is provided in row (x) of Table 7,

which shows a substantial drop in the peer effect when defining the peer group at a
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smaller than the 3-digit occupational level. Our results from Panel A of Table 6 further

show that peers outside the own 3-digit occupation in the same firm do not seem to affect

wages. This leads us to believe that the 3-digit occupational level within the firm is the

most appropriate peer group definition in our context.

Appendix E: Imputation of censored wage observations

To impute the top-coded wages, we first define age-education cells based on five age

groups (with 10-year intervals) and three education groups (no post-secondary education,

vocational degree, college or university degree). Within each of these cells, following

Dustmann et al. (2009) and Card et al. (2013), we estimate Tobit wage equations

separately by year while controlling for age; firm size (quadratic, and a dummy for firm

size greater than 10); occupation dummies; the focal worker’s mean wage and mean

censoring indicator (each computed over time but excluding observations from the

current time period); and the firm’s mean wage, mean censoring indicator, mean years of

schooling, and mean university degree indicator (each computed at the current time

period by excluding the focal worker observations). For workers observed in only one

time period, the mean wage and mean censoring indicator are set to sample means, and a

dummy variable is included. A wage observation censored at value c is then imputed by

the value +መߚܺ +݇]ොΦିଵߪ 1)ݑ − )݇], where Φ is the standard normal CDF, u is drawn from a

uniform distribution, ݇ = Φ[(ܿ− ,[ොߪ/(ොߚܺ and መandߚ ොareߪ estimates for the coefficients and

standard deviation of the error term from the tobit regression.

References:

Card, David, Jörg Heining, and Patrick Kline. “Workplace heterogeneity and the rise of
West German wage inequality.” Quarterly Journal of Economics 128, no. 3 (2013): 967-
1015.

Dustmann, Christian, Johannes Ludsteck, and Uta Schönberg. “Revisiting the German
Wage Structure.” Quarterly Journal of Economics 124, no. 2 (2009): 843–881.
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Appendix F: Additional Results

F.1: Short T Bias – Monte Carlo Simulations

The peer effects estimator we use is consistent for large N and fixed T under the

assumption that error terms are uncorrelated across observations (Theorem 1 in

Arcidiacono et al., 2012). Correlated random shocks in the error terms of peers in the

same peer group would violate this assumption. Positively correlated shocks would partly

be absorbed in the peers’ estimated fixed effects, causing an upward bias due to a

spurious positive correlation between estimated peer quality and wages. This bias is

likely to disappear as T gets large.

In Table F.1 below we report results from a Monte Carlo study to explore this type of

bias. We show that adding a peer-group level random shock to the error term indeed

induces an upward bias in our baseline estimator, and that this bias increases with the size

of the shock (as measured by its share in the total error variance), and decreases with

higher T. We also show that this bias is absent in the within-peer group estimator, as this

estimator absorbs common peer group level shocks. Finally, we show that serial

correlation of a plausible magnitude in the individual error term does not seem to bias our

estimates in any important way.

The dependent variable is simulated in the following way. We first predict the log

wage in our original estimation sample, setting coefficients of control variables and fixed

effects to their estimates from the baseline model. For the simulations of peer-group

specific shocks, we then add a normally distributed error term with a variance equal to

the estimated error variance from the baseline model, composed of two components, an

idiosyncratic shock and a peer-group-by-time-level shock. For the simulations of serial

correlation, on the other hand, we add a normally distributed error term with variance

equal to the estimated error variance from the baseline model, and with first-order serial

correlation at individual level. Across the rows of the table, we vary the true coefficient

on the average peer fixed effect in repetitive occupations, using values 0, 0.03 and 0.045.

Across columns of Panels A through C of the table, we vary the variance of the group-

level shock as a share of the error total variance using the values 0, 0.03 and 0.06. A

share of 0.06 is equal to the R-squared from a regression of the predicted error of our
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baseline model onto peer-group-by-time fixed effect and therefore seems to be an

appropriate choice as an upper bound. In Panel D, we vary the first-order autocorrelation

coefficient, using values 0, 0.1, and 0.2. The value of 0.2 is equal to the autocorrelation

that we detect empirically when regressing the residual from our baseline specification on

its lagged values, and we thus choose this as an upper bound for the simulations. In

column (4) of the respective panels, we report the difference between the simulation

result with an error share of 0.06 and an error share of 0 (in Panels A-C) and between an

autocorrelation coefficient of 0.2 and 0 (in Panel D). We interpret these differences as

upper bounds for the bias.

In Panel A, we estimate the model using our baseline estimator and exploiting the full

number of time periods. In this case, our estimate for the upper bound of the bias in

column (4) does not exceed 0.03. Thus, it is unlikely that our baseline peer effect estimate

of 0.064 is purely a result of statistical bias.

To assess the importance of the number of time periods T, we omit in Panel B every

second time period of our sample, reducing the maximum number of time periods from

17 years to 9 years. This increases the upward bias to about 0.045, confirming that the

bias can indeed be thought of as a short T bias.

In Panel C, we use the within-peer group estimator outlined in Section 2.3. This

estimator conditions on the full set of time-variant peer group fixed effects ௧ and thus

on shocks to the peer group. The results reveal essentially no upward bias for statistical

reasons for the within-peer group estimator. Hence, this estimator does not only eliminate

a possible bias in the peer effect due to economic reasons, but also due to statistical

reasons and the similarity of results from our baseline specification and the within peer

group specification suggests that any possible upward bias due to peer-group level shocks

because of either economic or statistical reasons is small.

The results in Panel D further suggest that serial correlation of a plausible magnitude

does not seem to bias our estimates in any important way.

References:

Arcidiacono, Peter, Gigi Foster, Natalie Goodpaster, and Josh Kinsler. “Estimating
spillovers using panel data, with an application to the classroom.” Quantitative
Economics 3, no. 3 (2012): 421-470.
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Table F.1: Monte Carclo Study to assess bias from correlated shocks

Panel A: Baseline specification, maximum number of time periods Tmax = 17

(1) (2) (3) (4)

Share of group level error in total error 0 0.03 0.06 diff. (3)-(1)

True coefficient = 0 0.003 0.013 0.03 0.027

True coefficient = 0.03 0.028 0.043 0.058 0.030

True coefficient = 0.045 0.044 0.061 0.073 0.029

Panel B: Baseline specification, maximum number time periods reduced to Tmax = 9

(1) (2) (3) (4)

Share of group level error in total error 0 0.03 0.06 diff. (3)-(1)

True coefficient = 0 0.001 0.022 0.045 0.044

True coefficient = 0.03 0.028 0.054 0.075 0.047

True coefficient = 0.045 0.048 0.075 0.094 0.046

Panel C: Within-peer group estimator, maximum number of time periods Tmax = 17

(1) (2) (3) (4)
Share of group level error in total error 0 0.03 0.06 diff. (3)-(1)

True coefficient = 0 0.003 0.001 0.002 -0.001

True coefficient = 0.03 0.033 0.031 0.028 -0.005

True coefficient = 0.045 0.046 0.048 0.041 -0.005

Panel D: Baseline specification, maximum number of time periods Tmax = 17, serial correlation

(1) (2) (3) (4)

Serial correlation coefficient 0 0.1 0.2 diff. (3)-(1)

True coefficient = 0.045 0.045 0.044 0.045 -0.0001

Note: The table assesses the bias from correlated wage shocks when the number of time periods T is short using a
Monte Carlo Study. Throughout the table, the dependent variable is simulated in the following way. We first predict
the log wage in our original estimation sample, setting coefficients of control variables and fixed effects to their
estimates from the baseline model. We then add a normally distributed error term with a variance equal to the
estimated error variance from the baseline model, composed of two components, an idiosyncratic shock and a
peer-group-by-time-level shock. Across the rows of the table we vary the true coefficient on the average peer fixed
effect in repetitive occupations, using values 0, 0.03 and 0.045. Across columns of the table, we vary the variance of
the group-level shock as a share of the error total variance using the values 0, 0.03 and 0.06. A share of 0.06 is equal
to the R-squared from a regression of the predicted error of our baseline model onto peer-group-by-time fixed
effect and therefore seems to be an appropriate choice as an upper bound. In column (4), we report the difference
between the simulation result with an error share of 0.06 and an error share of 0, which we interpret as an upper
bound for the bias.
In Panel A, we estimate the model using our baseline estimator and exploiting the full number of time periods. In
Panel B, we drop every second year of our sample reducing the maximum number of time periods from 17 years to
9 years. In Panel C, we use the within-peer group estimator. In Panel D, we model serial correlation in the individual
error term instead of a common peer-group level shock, and estimate the model by our baseline estimator. Each
simulation is based on 10 repetitions for the baseline estimator and 15 repetitions for the within-peer group
estimator. N=12,832,842 in Panels A and C, N=6,787,474 in Panel B.

Data Source: Social Security Data, One Large Local Labor Market, 1989-2005.
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F.2: Sample Selection: Munich vs West Germany

Our baseline estimation sample covers the metropolitan area of Munich, while in the robustness

checks section we extend this by including surrounding rural areas (“upper Bavaria”). The geographical

location is indicated on the map in Figure F.1 below. In Table F.2 below we compare the Munich and

the Upper Bavaria samples with other metropolitan areas (a joint sample of Hamburg, Frankfurt and

Cologne) and with the whole of Germany in terms of socio-economic and labor market characteristics.

The table entries show that – in terms of observable characteristics – our main sample is very similar to

other metropolitan areas, with perhaps a slightly higher share of college degree holders. The sample of

Upper Bavaria is similar to that of Germany overall, with a higher share of foreign nationals.

Table F.2: Comparison of estimation sample with other metropolitan areas and Germany as a whole
(1997)

Munich Upper Bavaria Other
Metropolitan

areas

Germany

Log wage 4.49 4.43 4.43 4.29

Job tenure 5.83 5.97 6.10 5.60

College degree 0.20 0.16 0.15 0.12

Vocational and/or school degree 0.71 0.74 0.74 0.78

Years of schooling 13.95 13.75 13.68 13.52

Female 0.37 0.36 0.34 0.35

Age <= 35 0.44 0.45 0.43 0.43

Age 39.01 38.64 39.25 38.97

Foreign 0.16 0.14 0.11 0.08

Occupations with >=10% college graduates 0.51 0.45 0.45 0.38

Occupations with <=2.5 repetitiveness index 0.15 0.18 0.19 0.23

Firm size 1873.04 1836.27 1236.13 992.99

Censoring indicator 0.18 0.15 0.13 0.08

No. of observations 814,179 1,123,570 3,021,463 20,706,154

Note: The table presents mean values of socio-economic and labor market indicators to compare our
estimation samples of Munich and Upper Bavaria (which extends the metropolitan area of Munich mainly
by adding rural surrounding districts) with other metropolitan areas (Hamburg, Cologne and Frankfurt) and
with West Germany as a whole. Entries refer to 1997, the middle of our estimation period.

Data Source: Social Security Data, West Germany, 1997.
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Figure F.1: Map of metropolitan area of Munich (dark grey) and the additional districts of Upper Bavaria

(light grey)

Note: The map shows the districts of the metropolitan area of Munich (our baseline sample) and the
additional districts of the region Upper Bavaria (the sample used in robustness check (vi) in Table 7).

Munich area

Upper Bavaria
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F.3: List of Occupations in Sub-Samples

Table F.3 below lists the occupations used in the different sub-samples of Table 4 in the main text.

Table F.3: List of Occupations in Sub-Samples

5% most repetitive occupations Share Hand-picked occupations with low Share 10% most skilled occupations Share

in % learning content in % in %
Unskil led laborer, helper (no further specification) 15.12 Salespersons 24.0 Electrical engineers 24.3

Packagers, goods receivers, despatchers 11.58 Motor vehicle drivers 19.4 Mechanical, motor engineers 13.1

Metal workers (no further specification) 10.66 Store and warehouse workers 10.9 Management consultants, organisors 10.3

Postal deliverers 7.58 Household cleaners 8.9 Other engineers 7.6

Assemblers (no further specification) 5.47 Waiters, stewards 8.0 Architects, civil engineers 7.3

Street cleaners, refuse disposers 4.70 Unskil led laborer, helper 5.9 Physicians 5.2

Assemblers of electrical parts or appliances 4.68 Packagers, goods receivers, despatchers 4.5 Economic and social scientists, statisticians 4.7

Cashiers 4.00 Gardeners, garden workers 3.7 Scientists 3.8

Railway controllers and conductors 3.96 Goods examiners, sorters, n.e.c. 3.3 Ministers of religion 3.2

Laundry workers, pressers 3.69 Street cleaners, refuse disposers 1.8 Other manufacturing engineers 2.9

Machinery or container cleaners and related occupations 2.87 Cashiers 1.6 Senior government officials 2.9

Railway engine drivers 2.80 Glass, buildings cleaners 1.5 Physicists, physics engineers, mathematicians 2.5

Milk and fat processing operatives 2.62 Laundry workers, pressers 1.4 Technical, vocational, factory instructors 2.0

Vehicle cleaners, servicers 2.57 Transportation equipment drivers 1.4 Legal representatives, advisors 1.9

Clothing sewers 2.02 Vehicle cleaners, servicers 1.0 Primary, secondary (basic), special school teachers 1.7

Wood preparers 1.96 Earthmoving plant drivers 0.8 Chemists, chemical engineers 1.5

Metal grinders 1.92 Construction machine attendants 0.7 University teachers, lecturers 1.3

Ceramics workers 1.20 Crane drivers 0.4 Gymnasium teachers 1.3

Brick or concrete block makers 1.06 Stowers, furniture packers 0.3 Pharmacists 0.8

Tobacco goods makers 0.97 Agricutlural helpers 0.3 Academics / Researchers in the Humanities 0.8

Sheet metal pressers, drawers, stampers 0.86 Garden architects, garden managers 0.4

Solderers 0.86 Survey engineers 0.3

Agricutlural helpers 0.75 Veterinary surgeons 0.1

Model or form carpenters 0.68 Mining, metallurgy, foundry engineers 0.1

Sewers 0.66 Dentists 0.1

Meat and sausage makers 0.61

Stoneware and earthenware makers 0.49

Enamellers, zinc platers and other metal surface finishers 0.42

Leather clothing makers and other leather processing operatives0.33 10% most innovative Share Hand-picked occupations with high Share

Metal moulders (non-cutting deformation) 0.27 occupations in % learning content in %
Rubber makers and processors 0.27 Data processing specialists 38.7 Electrical engineers 20.6

Other wood and sports equipment makers 0.24 Electrical engineers 24.7 Entrepreneurs, managing directors, divisional managers18.1

Earth, gravel, sand quarriers 0.22 Mechanical, motor engineers 13.3 Mechanical, motor engineers 11.1

Machined goods makers 0.20 Architects, civil engineers 7.5 Management consultants, organisors 8.7

Moulders, coremakers 0.19 Scientists 3.8 Other engineers 6.5

Vulcanisers 0.18 Other manufacturing engineers 2.9 Architects, civil engineers 6.2

Textile finishers 0.16 Physicists, physics engineers, mathematicians 2.5 Chartered accountants, tax advisers 5.5

Footwear makers 0.15 Chemists, chemical engineers 1.5 Physicians 4.4

Other textile processing operatives 0.15 University teachers, lecturers 1.3 Economic and social scientists, statisticians 4.0

Ready-meal, fruit and vegetable preservers and preparers 0.13 Musicians 0.9 Scientists 3.2

Weavers 0.13 Interior, exhibition designers, window dressers 0.8 Other manufacturing engineers 2.5

Spinners, fibre preparers 0.12 Packaging makers 0.5 Senior government officials 2.4

Textile dyers 0.09 Garden architects, garden managers 0.4 Physicists, physics engineers, mathematicians 2.1

Planers 0.07 Brokers, property managers 0.3 Legal representatives, advisors 1.6

Spoolers, twisters, ropemakers 0.05 Survey engineers 0.3 Chemists, chemical engineers 1.3

Post masters 0.05 Scenery, sign painters 0.2 Humanities specialists 0.7

Radio operators 0.04 Veterinary surgeons 0.2 Association leaders, officials 0.6

Hat and cap makers 0.04 Mining, metallurgy, foundry engineers 0.1 Survey engineers 0.3

Ship deckhand 0.04 Forestry managers, foresters, hunters 0.1 Veterinary surgeons 0.1

Cartwrights, wheelwrights, coopers 0.03 Coachmen 0.0 Mining, metallurgy, foundry engineers 0.1

Rollers 0.03 Dentists 0.1

Wood moulders and related occupations 0.02

Fine leather goods makers 0.02

Fish processing operatives 0.01

Metal drawers 0.01

Jewel preparers 0.01

(1) (2)

(4)

Note: The table presents the lists of occupations in for the different sub-samples of occupations used in table 4.

Data Source: German Social Security Data, One Large Local Labor Market, 1989-2005. N=12,832,842.

(3)

(5)
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F.4: Results by Peer Group and Firm Size

Table F.4 below reports the peer effect by peer group size and firm size categories for the samples of

repetitive and skilled occupations. The estimates are all very similar across the different categories of peer group

and firm sizes for both most repetitive and high skilled occupations, and similar to the average estimates.

Table F.4: Additional heterogeneity by peer group size and firm size

5% most repetitive
occupations

10% most skilled
occupations

Panel A: Peer effect by peer group size

Group size 2-10 0.068 0.014
(0.0020) (0.0013)

Group size 11-20 0.079 0.016
(0.0037) (0.0026)

Group size 21-50 0.078 0.016
(0.0034) (0.0029)

Group size 51-100 0.081 0.014
(0.0049) (0.0029)

Group size >100 0.081 0.014
(0.0042) (0.0027)

Panel B: Peer effect by firm size

Firm size 2-20 0.072 0.015
(0.0022) (0.0015)

Firm size 21-50 0.073 0.015
(0.0023) (0.0015)

Firm size 51-100 0.072 0.015
(0.0023) (0.0016)

Firm size 100-500 0.072 0.015
(0.0023) (0.0016)

Firm size >500 0.073 0.014
(0.0024) (0.0017)

Note: The table reports estimates for peer effects in the 5% most repetitive occupations (N=681,391) and
the 10% most skilled occupations (N=1,309,070) separately by peer group size and firm size. Estimates are
based on pre-estimated fixed effects from our baseline specification, and include the same set of controls
and fixed effects as our baseline specification in equation (4).

Data Source: Social Security Data, One Large Local Labor Market, 1989-2005.
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F.5: IV Estimates

In Table F.5 we present IV estimates from regressions for peer group stayers of the wage change on the

change in peer quality based on pre-estimated fixed effects from the baseline model. We instrument the change

in peer quality by the average quality of leavers from the peer group who in t-1 were close to retirement age; the

rationale being that leaving into retirement may be more exogenous than other reasons for the turnover of peers.

Specifically, the instrument is the average wage fixed effect of peer group leavers who were close to retirement

age (aged 63 or above), multiplied by the share of these leavers relative to the peer group size. This gives us a

strong first stage (F-value 151.1) with expected negative sign: a higher quality of the peers leaving into

retirement reduces the change in peer quality. The IV peer effect coefficient is 0.041, not too far off our baseline

estimate of 0.064, although imprecisely estimated and not statistically significant.

Table F.5: Instrumental variables (IV) estimates of the peer effect (5% most repetitive occupations,
based on pre-estimated fixed effects)

IV: Average wage fixed effect of leavers close to retirement

IV estimate of peer effect 0.0409

(0.0679)

First stage effect -0.3487

(0.0284)

First stage F statistic 151.1

N 79,316

Note: The table presents IV estimates of regressions for stayers of the wage change on the change in
peer quality based on pre-estimated fixed effects from the baseline model. The instrument is the
average wage fixed effect of peer group leavers (workers who were in the peer group in t-1 but not in
t) who were close to retirement age (aged 63 or above), multiplied by the share of these leavers
relative to the peer group size.

Data Source: German Social Security Data, One Large Local Labor Market, 1989-2005.


