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1 Appendix Tables

Predicted # of schools
Count Actual Poisson NB Semi-P

0 1,311 975 1,311 1,309
1 357 608 355 362
2 135 267 140 139
3 64 94 67 65
4 39 29 36 35
5 18 8 22 21
6 15 2 14 13
7 17 0 9 9
8 10 0 7 6
9 4 0 5 5
10 2 0 4 4
11 3 0 3 3
12 3 0 2 2
13 1 0 2 2
14 0 0 1 1
15 0 0 1 1
16 0 0 1 1
17 0 0 1 1
18 1 0 1 1
19 1 0 1 1

20+ 3 0 4 4
log-likelihood -2,063.6 -1,899.1 -1,893.6

�

2 841.5E+08 15.5 16.5
p-value 0.000 0.745 0.688

Table 5—: Actual vs. predicted distribution of counts of high-scorers across
schools
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2 Proofs

Proof of Proposition 1
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Proof of Proposition 2
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Proof of Proposition 3

Suppose the Y

it

are generated as described. Then using Proposition 2 and
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iterated expectations over t we have
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To simplify we use two well-known identities: the monomial formula for Laguerre
polynomials,
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This completes the proof. ⇤

The conditions given in the text for the u to be a valid density, for E(u) = 1,
and the expression for the Var(u) can be derived by applying the formula
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3 Bootstrap Procedure

We obtained standard errors for our semiparametric estimates and confidence
bands for the distribution of unobserved heterogeneity using both parametric
and nonparametric bootstrapping procedures. In each iteration j of the boot-
strap, we generate a simulated dataset {ỹ

ij

, z̃ij}1,984
i=1 , then estimate the parame-
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ters ↵̃

j

, g̃

j1, ..., g̃jN , �̃
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using the semiparametric estimation procedure described
in Section IV. Standard errors are calculated as the standard deviation of each
estimated parameter across 1, 000 simulations. For example, the standard error
of ↵̂ is calculated as
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1000
.

Another functional of interest is a 95% confidence band on the estimated den-
sity and CDF of unobserved heterogeneity. For each u 2 (0, 1) and for each
simulation j of the bootstrap, we calculate the density f̃
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as those
generated by the parameter vector ↵̃
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⌘
. The confidence band for F̂ is calculated similarly. Confidence

bands for u 2 (0, 3) and u 2 (3, 10) are shown in Section IV for the production of
AMC high-scorers and in Section V for the production of SAT high-scorers.

In each simulation of the parametric bootstrap, we use the parameter estimates
obtained using our semiparametric procedure to generate simulated outcomes.
First, we draw a random sample z̃

j

of size 1,984 (with replacement) from the set
of covariates z listed in Table 3. We also draw a random sample ũ

j

of size 1,984
from the CDF F̂ , which we estimated using the procedure in Section IV on the

true dataset. For each i = 1, ..., 1, 984, we then generate �
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ỹ

P

ji

from a Poisson distribution with rate parameter �

ji

. Finally, we estimate

↵̃

P

j

, g̃

P

j1, ..., g̃
P

jN

, �̃P

j

on the simulated dataset (ỹP
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The nonparametric bootstrap proceeds similarly, except that we use the em-
pirical distribution of y rather than the estimated theoretical distribution of y.
That is, for each simulation, we draw a random sample (ỹNP

j

, z̃
j

) of size 1, 984
(with replacement) from the set of outcomes y and covariates z, then estimate
↵̃

NP

j

, g̃
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on the simulated dataset (ỹNP

j

, z̃
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). As in the semipara-
metric estimation on our full sample, the results of each bootstrap estimation may
depend on the starting values chosen; in our results, we present those estimates
for which the likelihood is highest after trying numerous starting values.57 We
begin each bootstrap by running a trial bootstrap of 20 simulations for several
candidate starting values: those resulting in the highest likelihood in the full
sample estimation and the center of each range of starting values for which the
resulting likelihood is close to that of the best starting values. We then use the

57In practice, we used � starting values from either a Poisson or negative binomial regression, along
with one of two potential sets of starting values for our parameters ↵, g1, ..., g

N

. The first set of parameters
we tried was the best-fit parameters of the candidate distributions described in Appendix A.2, so that
the optimization would be allowed to converge to a number of di↵erently-shaped distributions. We also
tried setting each g

i

= 0 and varying ↵ between -0.9 and 2. The latter approach often yielded the highest
likelihood.
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values that provide the highest average log-likelihood in the trial bootstrap as the
starting values in the full bootstrap.

If our model is specified correctly, then the parametric bootstrap is more e�-
cient; if the model is misspecified, then the nonparametric bootstrap will be more
appropriate. See Efron and Tibshirani (1993) for a discussion. In our applica-
tion, neither procedure provides smaller or larger standard errors or confidence
bands across all parameters or outcomes, but parametric standard errors are often
slightly smaller, and parametric bands are often slightly narrower and smoother.
In the body of the paper, we present the results of the parametric bootstrap, but
our interpretation of the results is una↵ected by the choice of bootstrap procedure.

4 Simulations

The simulations implemented our estimation procedure on datasets created
by drawing each zi from a uniform distribution with support [0, 1]; drawing
each u

i

from the desired error distribution; forming �

i

= e

zi�
u

i

, where � =
[�4.27, 1, 1, 1, 0.1, 0.1, 0.2]; and drawing y

i

from a Poisson distribution with rate
parameter �

i

. Each simulated variable included 2, 500 observations. The dis-
tributions of the simulated covariates and the values for � were chosen so that
the mean and variance of the simulated e

zi� would roughly match the mean and
variance of the fitted values in a negative binomial regression of the count of
AMC 12 high-scorers on school-level covariates. The u

i

were chosen from one
of three distributions depending on the simulation: an exponential distribution
with mean and standard deviation 1, a lognormal distribution with mean 1 and
variance 1

3 , and a uniform distribution on [0, 2]. The motivation for these choices
was to demonstrate the performance of our procedure for a diverse set of underly-
ing distributions: the exponential distribution is within the class of models being
estimated even if N = 0, the lognormal distribution cannot be fit perfectly with
a finite N and has a thicker upper tail, and the uniform distribution is a more
challenging distribution to reproduce with a series expansion. We estimated the
model using N = 0, 2, 4, 6, and 8 terms.58

The estimated coe�cients �̂ on the observed characteristics are fairly precise
and show almost no bias. Table 6 presents some summary statistics on the es-
timates for simulations with N = 8 Laguerre polynomials.59 The first column
lists the true values for the coe�cients on each simulated covariate. The next
three columns list the mean and standard deviation (in parentheses) of the esti-
mates across the 1000 simulated datasets for each simulated distribution. There
are no notable di↵erences across heterogeneity distributions in the consistency or
precision of estimated �̂’s.

58For these estimations we did not restrict g1 to be ↵/�(↵+2) and instead ensured that the estimated
distributions have mean 1 by rescaling the preliminary estimates by dividing by the mean.

59Summary statistics for estimates of �̂ using N = 0, 2, 4, 6 are similar.
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True Mean and SD of estimated coe�cients
Variable Coe↵s. Exponential u Lognormal u Uniform u

Constant -4.270 -4.2690 -4.2651 -4.2777
(0.1536) (0.1571) (0.1109)

z1 1.000 0.9971 0.9977 0.9984
(0.1055) (0.0593) (0.0760)

z2 1.000 1.0010 1.0010 1.0026
(0.0537) (0.0424) (0.0401)

z3 1.000 0.9995 0.9991 1.0019
(0.0371) (0.0377) (0.0269)

z4 0.100 0.0994 0.0993 0.0998
(0.0271) (0.0154) (0.0190)

z5 0.100 0.0997 0.0996 0.1011
(0.0216) (0.0127) (0.0151)

z6 0.200 0.1996 0.1994 0.2003
(0.0184) (0.0125) (0.0132)

Notes: True and estimated coe�cients from semi-parametric
model estimation using simulated data, varying the distribution
of underlying heterogeneity. Results displayed for the exponential
(1) distribution, the lognormal (1,

1
3) distribution, and the uniform

[0, 2] distribution with 2,500 simulated observations. Mean esti-
mates across 1,000 simulated datasets shown; standard deviations
in parentheses.

Table 6—: Estimated coe�cients on observed characteristics in simulations
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Table 7 provides some statistics on how well the model was able to estimate
the distribution of unobserved heterogeneity. The rows correspond to the distri-
bution from which the u’s were drawn. The columns correspond to the number
N of Laguerre polynomials used in the estimations. The metric used to measure
performance is integrated squared error (ISE) – if the estimated density func-
tion from simulation run i is f̂

i

(x), where the true data generation process has
unobserved heterogeneity from distribution f(x), the ISE of that estimated den-
sity is

R1
0 (f̂

i

(x) � f(x))2dx. The values in Table 7 are median ISE across 1,000
simulation runs.

Median ISE for various models
True distribution of u N = 0 N = 2 N = 4 N = 6 N = 8
Exponential 0.0010 0.0045 0.0140 0.0201 0.0243
Lognormal 0.0133 0.0115 0.0191 0.0148 0.0167
Uniform [0, 2] 0.1055 0.1449 0.0833 0.0795 0.1009
Notes: Median integrated squared error of estimated distributions
from semi-parametric model estimation using simulated data,
varying the distribution of underlying heterogeneity. Results dis-
played for the exponential (1) distribution, the lognormal (1,

1
3)

distribution, and the uniform [0, 2] distribution with 2,500 simu-
lated observations. Median ISE across 1,000 simulated datasets
shown, varying the number of Laguerre polynomials.

Table 7—: Goodness of fit of estimated distributions of unobserved heterogeneity
in simulations: median MISE for various models and true distributions

The exponential model fits fairly well for all N . As one would expect, the
N = 0 fit is best: the true model is in the N = 0 class and estimating additional
unnecessary parameters just increases the scope for overfitting. The fit worsens
gradually as N increases, but never becomes terrible; at N = 8, the worst fit, the
median ISE is 0.024. To get a feel for the magnitudes, the MISE would be 0.02 if
the density of an exponential distribution were over- or under- estimated by 10%
at every value of u. Note also that the exponential distribution with mean 1 is the
gamma distribution involved in the Poisson-gamma justification for the negative
binomial when ↵ = 1. Hence, the estimates of this model can provide a sense for
how well our semiparametric model will estimate the distribution of underlying
heterogeneity in a case where the negative binomial is correctly specified.

The lognormal distribution does not fit as well when N = 0. This should
be expected: the lognormal is not a member of the parametric family we are
estimating and indeed no matter what ↵ is estimated the ISE cannot possibly
be below 0.0107. Larger N make it theoretically possible to fit the distribution
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much better (the parameter vectors that give distributions closest to the true
lognormal have ISEs of 0.00756, 0.00210, 0.00014, and 0.00002 for N = 2, 4, 6,

and 8 respectively), but again there is the o↵setting e↵ect that there is more scope
for overfitting. The tradeo↵ between the two e↵ects results in fairly similar fits
across the range of N . The median ISE is smallest for the N = 2 model.

The fits to the uniform distribution are much worse. Here, there is no param-
eter combination that produces a very good fit when N is small, and overfitting
becomes a concern when N is large.60 The best fit is obtained for N = 6, where
the median ISE is 45% lower than the median ISE for the worst fit of N = 2.

Figure 5 provides a graphical illustration of the performance of our method.
In each of the three panels we present the true distribution in bold and three
estimated distributions corresponding to the simulations (using N = 4) that were
at the 25th percentile, the 50th percentile, and the 75th percentile in the MISE
measure of goodness of fit. In the exponential and log-normal cases the estimated
distributions seem to fit reasonably well for values of around the mean (u = 1)
and to fit quite well for higher values of u. The estimated distributions are
farther from the truth at low values of u. This should be expected – once we are
considering a population of schools in which all schools will in practice have zero
or one high-scoring student per year, a single year’s data will not allow one to say
whether all schools are identical or whether there is heterogeneity.

Also as expected, our method performs somewhat poorly for the uniform dis-
tribution with its bounded support. However, we are encouraged to note that,
even for this di�cult case, the estimated distribution does mostly spread out the
mass over the correct [0, 2] interval.

60Theoretical lower bounds coming from the parameter vectors that make the estimated distributions
as close as possible to the true distribution are ISE’s of 0.0877, 0.0456, 0.0397, 0.0273, 0.0269 for N =
0, 2, 4, 6, 8.
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Figure 5. : Actual vs. Estimated Distributions: 25th, 50th, and 75th percentile
fits in simulations


