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The following counterexample shows that sincere bidding by all bidders is not

always an ex post perfect equilibrium under all rationing rules that satisfy the

monotonicity property.

Example 3

Consider a case where there are two bidders, A and B, and three quantities of an

object. Let uA, uB be the marginal value functions of the two bidders such that

uA(q) = uB(q) =

5 if q ∈ [0, 1)

1 if q ∈ [1, 3].

Consider the history h4 = (xt
A, xt

B)t=0,1,2,3 =
(
(3, 3), (3, 3), (3, 3), (3, 3)

)
. After h4,

sincere bidding of each bidder is 1.

The result under sincere bidding x4
A = 1

If the bidders report x4
A = x4

B = 1 after h4, then the auction ends at z5 =

(h4, (1, 1)), yielding an assignment (x∗
A, x∗

B) such that

1 ≤ x∗
A ≤ 3,

1 ≤ x∗
B ≤ 3,

x∗
A + x∗

B = 3.

Without loss of generality, suppose that x∗
A ≥ 3

2
. Since bidder A did not clinch

at t ≤ 3, A’s payment is y∗
A = 4x∗

A. Therefore, A’s utility is UA(x∗
A) − 4x∗

A at z5.
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The result under misreporting x̂4
A = 0

If bidder A reports x̂4
A = 0, and bidder B reports x4

B = 1 after h4, then

the auction ends at ẑ5 = (h4, (0, 1)), yielding an assignment (x̂A, x̂B). Since

0 = x̂4
A < x4

A = 1 and any other condition of ẑ5 is the same as z5, by the

monotonicity property, x̂A must be strictly less than x∗
A. Similarly to case with

sincere bidding, A’s utility at ẑ5 is UA(x̂A) − 4x̂A.

We calculate the difference between A’s utilities at z5 and ẑ5,(
UA(x∗

A) − 4x∗
A

)
−

(
UA(x̂A) − 4x̂A

)
=

(∫ x∗
A

0

uA(q)dq − 4x∗
A

)
−

(∫ x̂A

0

uA(q)dq − 4x̂A

)
=

(∫ x∗
A

0

uA(q)dq −
∫ x̂A

0

uA(q)dq

)
− 4 ·

(
x∗

A − x̂A

)
=

∫ x∗
A

x̂A

uA(q)dq − 4 ·
(

x∗
A − x̂A

)
. (1)

Case 1: x̂A ≥ 1. We calculate (1) such that

x∗
A − x̂A − 4 ·

(
x∗

A − x̂A

)
= −3 ·

(
x∗

A − x̂A

)
< 0.

Case 2: x̂A < 1. We calculate (1) such that(
x∗

A − 1

)
+ 5 ·

(
1 − x̂A

)
− 4 ·

(
x∗

A − x̂A

)
= −3x∗

A − x̂A + 4 < 0 (∵ x∗
A ≥ 3

2
).

Thus, A’s utility at ẑ5 is strictly greater than that at z5, and bidder A has an

incentive to misreport after h4. Therefore, sincere bidding by all bidder is not an

ex post perfect equilibrium.

2



Proof of Lemma 1

Since ui is a weakly decreasing integer-valued function, there is a partition {a0, . . . , am} ⊂
Xi with 0 = a0 < · · · < am = λi and values {b1, . . . , bm} ⊂ {0, 1, . . . , u} with

b1 > b2 > · · · > bm such that for each k with 1 ≤ k ≤ m,

ui(xi) = bk if ak−1 < xi < ak.

Note that m ≤ T . Consider any x′
i ∈ Xi. Let

k = arg min
`

{a` : x′
i ≤ a`}.

By the definition of Riemann Integral,

Ui(x
′
i) =

∫ x′
i

0

ui(q)dq =
k−1∑
`=1

b`(a` − a`−1) + bk(x
′
i − ak−1). (2)

Take any p ∈ {1, . . . , T}. Define b0 = T + 1. Let

r = arg min
`

{b` : p − 1 < b`},

r′ = arg min
`

{b` : p ≤ b`}.

By equation (2), we can verify that

ar = min{arg max
xi∈Xi

Ui(xi) − (p − 1)xi},

ar′ = max{arg max
xi∈Xi

Ui(xi) − pxi}.

Because b` ∈ Z for each `,

{b` : p − 1 < b`} = {b` : p ≤ b`}.

Therefore ar = a′
r, that is,

min{arg max
xi∈Xi

Ui(xi) − (p − 1)xi} = max{arg max
xi∈Xi

Ui(xi) − pxi}.
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To prove Lemma 2 and Proposition 1, we explain some notation and a property

of the Ausubel auction.

Notation

• With full bid information, a strategy σi is a function that maps each non-

terminal history h ∈ H \Z to a quantity xi ∈ Xi, that is, σi : H \Z → Xi.

• For each non-terminal history h ∈ H \Z, the set of histories in the subgame

that follows h is given by

H|h = {h′ ∈ H : h′ = (h, h′′) for some sequence h′′},

and the set of terminal histories in the subgame is given by

Z|h = Z ∩ H|h.

• For each non-terminal history h ∈ H \ Z and each strategy σi, we denote

σi|h : H|h \ Z|h → Xi the induced strategy in the subgame that follows h.

For each h′ ∈ Hh \ Zh, σi(h
′) = σi|h(h′).

• Let πi(·) be the utility of bidder i at an n-tuple of strategies.

Property 1

For each t ≥ 1, if there exists a bidder i ∈ N such that xt
i = Ct−1

i and Ct−1
i > 0,

then the auction ends at t, i.e., t = L. Therefore, if the auction does not end at

t, then for each bidder i ∈ N , xt
i 6= Ct−1

i or Ct−1
i = 0.

Proof. Suppose that xt
i = Ct−1

i and Ct−1
i > 0. Then, xt

i = M −
∑

j 6=i x
t−1
j . By

bidding constraint for each j ∈ N , xt
j ≤ xt−1

j . Therefore
∑

j∈N xt
j ≤ M .

Note that this property holds under all rationing rules. We use the property

in proofs of Lemma 2 and Proposition 1.
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Proof of Lemma 2

Consider any t ∈ {0, 1, . . . , T},

ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H t \ Zt,

and (uj)j∈N . For each j ∈ N , let σ∗
j be sincere bidding which is corresponding to

uj, and σ∗
j |ht be induced sincere bidding in the subgame that follows ht.

Take any i ∈ N and σi ∈ Σi|ht . Suppose that xt−1
i ≤ Qi(p

t−1). We shall show

that

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

Let

zL+1 = (xs
1, x

s
2, . . . , x

s
n)s≤L

be the terminal history which is reached by (σ∗
j |ht)j∈N , and

wL′+1 = (x̂s
1, x̂

s
2, . . . , x̂

s
n)s≤L′

be the terminal history which is reached by (σi, (σ
∗
j |ht)j 6=i). Denote {(Ct

j)j∈N}L
t=0

the cumulative clinches of zL+1, and {(Ĉt
j)j∈N}L′

t=0 the cumulative clinches of

wL′+1.

Step 1. xL−1
i ≤ Qi(p

L−1).

If L− 1 = t− 1, xL−1
i = xt−1

i ≤ Qi(p
t−1) = Qi(p

L−1). Then, let L− 1 ≥ t. By

the definition of sincere bidding,

xL−1
i = σ∗

i |ht

(
(x`

1, . . . , x
`
n)`≤L−2

)
= min{xL−2

i , max{CL−2
i , Qi(p

L−1)}}.

By Property 1, xL−1
i 6= CL−2

i or CL−2
i = 0. Then, xL−1

i = min{xL−2
i , Qi(p

L−1)}.
Therefore, xL−1

i ≤ Qi(p
L−1).

Step 2. For each j 6= i and s ≤ min{L − 1, L′ − 1}, xs
j = x̂s

j . This implies that

for each s ≤ min{L − 1, L′ − 1},

Cs
i = M −

∑
j 6=i

xs
j = M −

∑
j 6=i

x̂s
j = Ĉs

i .
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For each s ≤ t − 1, obviously xs
j = x̂s

j .

For the cases with t ≤ s ≤ min{L − 1, L′ − 1}, we shall show by induction.

Let s = t. Because xt
j = σ∗

j |ht(ht) and x̂t
j = σ∗

j |ht(ht), xt
j = x̂t

j.

Let s = k with t + 1 ≤ k ≤ min{L − 1, L′ − 1}). Suppose that x`
j = x̂`

j for all `

with t + 1 ≤ ` ≤ k − 1. By the definition of sincere bidding,

xk
j = σ∗

j |ht

(
(x`

1, . . . , x
`
n)`≤k−1

)
= min{xk−1

j , max{Ck−1
j , Qj(p

k)}},
x̂k

j = σ∗
j |ht

(
(x̂`

1, . . . , x̂
`
n)`≤k−1

)
= min{x̂k−1

j , max{Ĉk−1
j , Qj(p

k)}}.

Since k ≤ min{L−1, L′−1}, by Property 1, xk
j 6= Ck−1

j or Ck−1
j = 0. Thus, xk

j =

min{xk−1
j , Qj(k)}. Similarly, we have x̂k

j = min{x̂k−1
j , Qj(k)}. Since xk−1

j = x̂k−1
j ,

xk
j = x̂k

j .

Step 3. πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

We consider three cases; L = L′, L > L′ and L < L′.

Case 1. L = L′.

By step 2, for all s ≤ L − 1 = L′ − 1, Cs
i = Ĉs

i . We calculate CL
i and ĈL

i for

two cases with xL
i ≥ Qi(p

L) and xL
i < Qi(p

L).

Case 1-1. xL
i ≥ Qi(p

L).

By step 1, xL−1
i ≤ QL−1

i . Thus,

Qi(p
L) ≤ xL

i ≤ CL
i ≤ xL−1

i ≤ Qi(p
L−1).

Therefore, by lemma 1,

min{arg max
xi∈Xi

(Ui(xi) − pLxi)} ≤ CL
i ≤ max{arg max

xi∈Xi

(Ui(xi) − pLxi)}.

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

Case 1-2. Let xL
i < Qi(p

L).

We shall show that xL
i = xt−1

i . By the definition of sincere bidding,

xL
i = σ∗

i |ht((xs
1, . . . , x

s
n)s≤L−1) = min{xL−1

i , max{CL−1
i , Qi(p

L)}}.
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Since xL
i < Qi(p

L), xL
i = xL−1

i . If L − 1 = t − 1, xL−1
i = xt−1

i . Then, we assume

t − 1 6= L − 1. By the definition of sincere bidding,

xL−1
i = σ∗

i |ht((xs
1, . . . , x

s
n)s≤L−2) = min{xL−2

i , max{CL−2
i , Qi(p

L−1)}}.

Since Qi(p
L) ≤ Qi(p

L−1), xL−1
i = xL

i < Qi(p
L−1). Hence, we have xL−1

i = xL−2
i .

By repeating this procedure, xL
i = xL−1

i = · · · = xt−1
i . Thus, CL

i = xt−1
i .

Since bidder i cannot bid more quantity than xt−1
i after ht, ĈL

i ≤ xt−1
i . Then,

ĈL
i ≤ CL

i < Qi(p
L).

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

Case 2. L > L′.

By step 2, for each s ≤ L′ − 1, Cs
i = Ĉs

i . Then, we calculate {Cs
i }L

s=L′ and

ĈL′
i . Since the auction does not end at L′ in the history zL+1, by Property 1 for

each j 6= i, xL′
j 6= CL′−1

j or CL′−1
j = 0. Then, by the definition of sincere bidding,

for each j 6= i,

xL′

j = min{xL′−1
j , Qj(p

L′
)}.

On the other hand,

x̂L′

j = min{x̂L′−1
j , max{ĈL′−1

j , Qj(p
L′

)}}.

Since xL′−1
j = x̂L′−1

j , xL′
j ≤ x̂L′

j . Thus,

ĈL′

i ≤ M −
∑
j 6=i

x̂L′

j ≤ M −
∑
j 6=i

xL′

j = CL′

i .

By the definition of cumulative clinches, for each s ∈ {L′, . . . , L − 1}, Cs
i ≤ xs

i

and xL
i ≤ CL

i ≤ xL−1
i . For each s ∈ {L′, . . . , L − 1}, because s ≥ t, xs

i is sincere

bidding. That is,

xs
i = min{xs−1

i , max{Cs−1
i , Qi(p

s)}}.
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Since the auction does not end at s ≤ L − 1 in the history zL+1, by Property 1,

xs
i = min{xs−1

i , Qi(p
s)}.

Therefore, for each s ∈ {L′, . . . , L − 1}, xs
i ≤ Qi(p

s). Thus,

Cs
i ≤ Qi(p

s) ∀s ∈ {L′, . . . , L − 1},
ĈL′

i ≤ CL′

i ≤ Qi(p
L′

),

CL
i ≤ xL−1

i ≤ Qi(p
L−1) = max{arg max

xi∈Xi

(Ui(xi) − pLxi)}.

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

Case 3. L < L′.

We first show that Qi(p
L) ≤ xL

i . Suppose that Qi(p
L) > xL

i . Similarly to

case 1-2, we have xL
i = xt−1

i . By bidding constraint, x̂L
i ≤ xt−1

i . Then, x̂L
i ≤ xL

i .

Since L < L′, the auction does not end at L in the history wL′+1. Therefore,

by Property 1, for each j 6= i, x̂L
i 6= ĈL

i or ĈL
i = 0. By the definition of sincere

bidding

xL
j = min{xL−1

j , max{CL−1
j , Qj(p

L)}},
x̂L

j = min{x̂L−1
j , max{ĈL−1

j , Qj(p
L)}} = min{x̂L−1

j , Qj(p
L)}.

For each j 6= i, since by step 2, xL−1
j = x̂L−1

j , we have xL
j ≥ x̂L

j . Hence for each

j ∈ N , xL
j ≥ x̂L

j . Since the auction ends at L in the history zL+1,
∑

j∈N xL
j ≤ M .

Therefore,
∑

j∈N x̂L
j ≤ M . This implies the auction ends at L in the history

wL′+1. This contradicts to L < L′. Thus, Qi(p
L) ≤ xL

i .

By step 2, for each s ≤ L−1, Cs
i = Ĉs

i . Similarly to case 2, we have CL
i ≤ ĈL

i .

Because xL
i ≤ CL

i , Qi(p
L) ≤ CL

i ≤ ĈL
i . Moreover, for each s ≥ L, ĈL

i ≤ Ĉs
i and

Qi(p
s) ≤ Qi(p

L). Thus, for each s ≥ L, Qi(p
s) ≤ Ĉs

i . Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).
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Proof of Proposition 1

Consider any t ∈ {0, 1, . . . , T},

ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H t \ Zt,

and (uj)j∈N . For each j ∈ N , let σ∗
j be sincere bidding which is corresponding to

uj, and σ∗
j |ht be induced sincere bidding in the subgame that follows ht.

Take any i ∈ N and σi ∈ Σi|ht . We shall show that

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

If xt−1
i ≤ Qi(p

t−1), we can show by Lemma 2. Suppose that xt−1
i > Qi(p

t−1).

Let

zL+1 = (xs
1, x

s
2, . . . , x

s
n)s≤L

be the terminal history which is reached by (σ∗
j |ht)j∈N , and

wL′+1 = (x̂s
1, x̂

s
2, . . . , x̂

s
n)s≤L′

be the terminal history which is reached by (σi, (σ
∗
j |ht)j 6=i). Denote {(Ct

j)j∈N}L
t=0

the cumulative clinches of zL+1, and {(Ĉt
j)j∈N}L′

t=0 the cumulative clinches of

wL′+1.

We consider three cases; L > t, L′ > L = t and L′ = L = t.

Case 1. L > t.

Since L − 1 ≥ t, by the definition of sincere bidding,

xL−1
i = σ∗

i |ht

(
(x`

1, . . . , x
`
n)`≤L−2

)
= min{xL−2

i , max{CL−2
i , Qi(p

L−1)}}.

By Property 1, xL−1
i 6= CL−2

i or CL−2
i = 0. Then, xL−1

i = min{xL−2
i , Qi(p

L−1)}.
Therefore, xL−1

i ≤ Qi(p
L−1), which is the same argument as step 1 of Lemma 2.

Note that we only use the assumption xt−1
i ≤ Qi(p

t−1) in step 1 of Lemma 2.

Thus, we can prove this case similarly to Lemma 2.

Case 2. L′ > L = t.

For each j ∈ N and each s ≤ t − 1, obviously xs
j = x̂s

j . Therefore, for each

9



s ≤ t − 1 = L − 1, Cs
i = Ĉs

i . We will calculate CL
i and {Ĉs

i }L′
s=L.

We first show that Qi(p
L) ≤ CL

i . By the definition of sincere bidding,

xL
i = min{xL−1

i , max{CL−1
i , Qi(p

L)}}.

Since xL−1
i ≥ CL−1

i and xL−1
i > Qi(p

L−1) ≥ Qi(p
L),

xL
i = max{CL−1

i , Qi(p
L)}.

Therefore, Qi(p
L) ≤ xL

i . Because xL
i ≤ CL

i ≤ xL−1
i , Qi(p

L) ≤ CL
i .

Next we show that CL
i ≤ ĈL

i . For each j 6= i, because t = L, xL
j = σ∗

j |ht(ht)

and x̂L
j = σ∗

j |ht(ht). Therefore, for each j 6= i, xL
j = x̂L

j . Since the auction does

not end at L in the history wL′+1,

ĈL
i = M −

∑
j 6=i

x̂L
j = M −

∑
j 6=i

xL
j .

On the other hand, since the auction ends at L in the history zL+1,

CL
i ≤ M −

∑
j 6=i

xL
j .

Therefore, CL
i ≤ ĈL

i .

Hence, Qi(p
L) ≤ CL

i ≤ ĈL
i . Furthermore, for all s ≥ L + 1, Qi(p

s) ≤ Ĉs
i ,

because Qi(p
s) ≤ Qi(p

L) and ĈL
i ≤ Ĉs

i . Thus,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

Case 3. L′ = L = t.

For each j ∈ N and each s ≤ t − 1, obviously xs
j = x̂s

j . Furthermore, for each

j 6= i, xL
j = σ∗

j |ht(ht) = x̂L
j . Since for each s ≤ L − 1, Cs

i = Ĉs
i , we calculate CL

i

and ĈL
i .

Case 3-1. CL
i = xL

i .

By the definition of sincere bidding,

xL
i = min{xL−1

i , max{CL−1
i , Qi(p

L)}}.
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Since xL−1
i ≥ CL−1

i and xL−1
i > Qi(p

L−1) ≥ Qi(p
L),

xL
i = max{CL−1

i , Qi(p
L)}.

If xL
i = Qi(p

L), then CL
i = Qi(p

L) and we have

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

Suppose that xL
i = CL−1

i . Then, CL−1
i ≥ Qi(p

L) and CL
i = CL−1

i . Since ĈL
i ≥

ĈL−1
i and CL−1

i = ĈL−1
i , ĈL

i ≥ CL
i . Therefore, ĈL

i ≥ CL
i ≥ Qi(p

L). Hence

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).

Case 3-2. CL
i > xL

i .

First, we show that for each j ∈ {1, . . . , i − 1}, CL
j = xL−1

j . Suppose that

there exists j ∈ {1, . . . , i − 1} such that CL
j 6= xL−1

j . By the definition of our

rationing rule,

CL
j = min{xL−1

j , xL
j + M −

n∑
k=j

xL
k −

j−1∑
k=1

CL
k }

= xL
j + M −

n∑
k=j

xL
k −

j−1∑
k=1

CL
k .

Therefore,

M =
n∑

k=j+1

xL
k −

j∑
k=1

CL
k .

Since for each k ∈ N , xL
k ≤ CL

k , and
∑

k∈N CL
k = M ,

M =
n∑

k=j+1

xL
k −

j∑
k=1

CL
k ≤

∑
k∈N

CL
k = M.

Therefore, for each k ≥ j + 1, xL
k = CL

k . Because i ≥ j + 1, this contradicts to

CL
i > xL

i .
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Next, we show that CL
i ≤ ĈL

i . By the definition of our rationing rule,

CL
i = min{xL−1

i , xL
i + M −

n∑
j=i

xL
j −

i−1∑
j=1

CL
j } = min{xL−1

i , M −
n∑

j=i+1

xL
j −

i−1∑
j=1

CL
j },

ĈL
i = min{xL−1

i , x̂L
i + M − x̂L

j −
n∑

j=i+1

xL
j −

i−1∑
j=1

ĈL
j } = min{xL−1

i , M −
n∑

j=i+1

xL
j −

i−1∑
j=1

ĈL
j }.

For each j ≤ i − 1, since xL−1
j = CL

j and xL−1
j ≥ ĈL

j ,

CL
j ≥ ĈL

j .

Therefore,

min{xL−1
i ,M −

n∑
j=i+1

xL
j −

i−1∑
j=1

CL
j } ≤ min{xL−1

i ,M −
n∑

j=i+1

xL
j −

i−1∑
j=1

ĈL
j }.

Hence, CL
i ≤ ĈL

i .

Similarly to case 2, we can show that Qi(p
L) ≤ CL

i . Therefore, Qi(p
L) ≤

CL
i ≤ ĈL

i . Thus,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j 6=i).
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