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This Online Appendix provides supplemental material for the pa-
per “Either or Both Competition: A “Two-sided” Theory of Ad-
vertising with Overlapping Viewerships”. Specifically, it presents
an analysis of a two-stage game in which outlets simultaneously
make offers and afterwards all agents simultaneously make their
choices, and provides the conditions for outcome-equivalence to
the four-stage game considered in the paper. It also demonstrates
that the effects identified in the paper are also at work in a game
with two incumbent outlets and one entrant. Finally, the Online
Appendix presents an analysis of heterogeneous advertisers and re-
lates it to the analysis of homogeneous advertisers presented in the
paper.

I. Two-stage game

Consider the following two-stage game: In stage 1, outlets simultaneously offer
menus of contracts to advertisers of the form (ti,mi) ∈ R2

+. After observing these
contracts, viewers and advertisers simultaneously choose which outlet(s) to join
and which contract(s) to accept, respectively.

In addition, consider the following assumptions:
A1 Outlets are symmetric.

A2 For any α ∈ [0, 1], the following inequality holds

(1) t?i (1− α) > α
{
di(αñi)φ

S
i (ñi)− di((1− α)n?i )φ

S
i (n?i )

}
,

where di(·) := Di(·) + D12(·), ñi = arg maxni di(αni)φ
S
i (ni), n

?
i is implicitly

defined by equation (3) of the paper and t?i is given by Di(n
?
i , n

?
j )φ

S
i (n?i ) +

∗ Department of Economics, Duke University, Durham, NC 27708. E-Mail: aa231@duke.edu
† Center for Studies in Economics and Finance, University of Naples Federico II. E-Mail:

emilio.calvano@gmail.com
‡ Department of Economics, Frankfurt School of Finance & Management, Sonnemannstr. 9-11, 60314

Frankfurt am Main, Germany. E-Mail: m.reisinger@fs.de

1



2 AMERICAN ECONOMIC JOURNAL MONTH YEAR

D12(n
?
i , n

?
j )
(
φ12(n

?
i , n

?
j )− φMj (n?j )

)
.

We provide a discussion of these assumptions after the proof of the following
proposition. There we explain that A1 can be weakened while A2 is a relatively
natural assumption in our framework.

Proposition Suppose that A1 and A2 hold. Then, there is an equilibrium in
the two-stage game game with posted contracts, that is outcome-equivalent to the
equilibrium of the game defined in Section 3 of the paper.
Proof:
Suppose that in the two-stage game with posted contracts each outlet offers a

contract with ni = n?i , where n?i is implicitly defined by equation (3) of the paper,
and a transfer

t?i = Di(n
?
i , n

?
j )φ

S
i (n?i ) +D12(n

?
i , n

?
j )
(
φ12(n

?
i , n

?
j )− φMj (n?j )

)
.

By the same argument as we used for the original model, these contracts will
be accepted by all advertisers. As this is anticipated by viewers, viewerships
are Di(n

?
i , n

?
j ) and D12(n

?
i , n

?
j ). Since advertising levels are the same as in the

equilibrium of the original model, viewerships are also the same. Therefore, this
candidate equilibrium is outcome-equivalent to the equilibrium of the original
model.

Let us now consider if there exists a profitable deviation from this candidate
equilibrium. We first show that there can be no profitable deviation contract of
outlet i that still induces full advertiser participation on outlet j but a smaller
participation on outlet i. Let xi denote the fraction of advertisers who accept the
offer of outlet i.

Consider a candidate contract (ni, ti). Suppose that outlet i’s equilibrium
profit from this contract is tixi. Now consider the following alternative con-
tract: (xini, xiti). Note that total advertising on outlet i is still equal to xini.
So outlet i is at least as attractive as with the candidate equilibrium contract.
Note moreover that because φSi and φ12 are strictly concave in ni, the incremen-
tal value of accepting offer (xini, xiti) must exceed xiti for all levels of advertiser
participation. So all advertisers would accept (xini, xiti) regardless. It follows
that outlet i can marginally increase xiti while still getting full participation.
Therefore, profits would strictly increase. It follows that no offer inducing a level
of participation xi < 1 can be part of a best reply.

Now suppose outlet i deviates from the candidate equilibrium in such a way
that it induces a fraction α of the advertisers to single-home on its outlet while
the remaining fraction 1−α single-homes on outlet j. Using the definition di(·) :=
Di(·) +D12(·), the largest possible transfer that outlet i can ask is then bounded
above by

tdi = di(αñi)φ
S
i (ñi)− ushj ,

where ñi denotes the optimal deviation advertising level and ushj denotes the
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payoff of an advertiser who chooses to reject the contract of outlet i and instead
single-homes on outlet j. To determine ushj we determine the advertiser’s payoff
when accepting only outlet j’s contract, which is the outlet’s equilibrium contract
after outlet i has deviated to induce a fraction α of advertisers to single-home on
outlet i. We obtain

ushj = dj((1− α)n?j , αñi)φ
S
j (n?j )− t?j =

dj((1−α)n?j , αñi)φ
S
j (n?j )−Dj(n

?
j , n

?
i )φ

S
j (n?j )−D12(n

?
i , n

?
j )
(
φ12(n

?
i , n

?
j )− φMi (n?i )

)
.

Outlet i’s profit is then αt̃i. Hence, deviating is not profitable if

α
{
di(αñi)φ

S
i (ñi)−dj((1−α)n?j )φ

S
j (n?j )+Dj(n

?
j , n

?
i )φj(n

?
j )+D12(n

?
i , n

?
j )
(
φ12(n

?
i , n

?
j )− φMi (n?i )

)}
< Di(n

?
i , n

?
j )φ

S
i (n?i ) +D12(n

?
i , n

?
j )
(
φ12(n

?
i , n

?
j )− φMj (n?j )

)
.

Now suppose that the two outlets are symmetric. Then the above condition
reduces to

α
{
di(αñ)φS(ñ)−di((1−α)n?)φ(n?)

}
−(1−α)

(
Di(n

?, n?)φ(n?) +D12(n
?, n?)

(
φ12(n

?, n?)φM (n?)
))
< 0,

where n?i = n?j = n?, ñi = ñd, φMi (·) = φMj (·) = φM (·), and φSi (·) = φSj (·) = φS(·).
This can be rewritten as

t?i (1− α) > α
{
di(αñi)φ

S(ñi)− di((1− α)n?i )φ
S(n?i )

}
.

which is fulfilled by A2. As a consequence, a deviation is not profitable. �

We now shortly explain why the assumptions A1 and A2 are not very restrictive
in our framework. First, consider A1. Since the game is continuous, A1 can be
relaxed to some extent without affecting the result, implying that the proposition
still holds if outlets are not too asymmetric. Now consider A2. It is evident from
(1), that the assumption is fulfilled for α low enough. In this case the right-hand
side is close to 0, while the left-hand side is strictly positive. Now consider the
opposite case, i.e., α → 1. In that case the left-hand side goes to zero, while
the right-hand side goes to di(ñi)φ

S(ñi)− di(0)φS(n?i ). Evidently, di(0) > di(ñi).
Hence, the right-hand side is negative if φS(ñi) is not much larger than φS(n?i ).
In general, n?i can be larger or smaller than ñi, implying that the difference can
be either positive or negative. However, even in case ñi > n?i , if the slope of the
advertising functions φSi and φ12 is relatively small, the difference between n?i and
ñi will be small, implying that the right-hand side is negative. Finally, consider
intermediate values of α. Again, if the difference between n?i and ñi is relatively
small, the term in the bracket on the right-hand side of (1) is close to zero. Since
the left-hand side is strictly positive, A2 is then fulfilled as well.
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II. Entry in case of two incumbent outlets

Consider the case of two incumbents and entry of a third outlet. After entry,
the profit of outlet i is

Πi(n1, n2, n3) = Di(n1, n2, n3)φ
S
i (ni) +Dij(n1, n2, n3)

(
φij(ni, nj)− φMj (nj)

)
+Dik(n1, n2, n3)

(
φik(ni, nk)− φMk (nk)

)
+D123(n1, n2, n3) (φijk(ni, nj , nk)− φjk(nj , nk))

As in the case of entry of a second outlet, we can rewrite this profit function as
the profit without entry plus a negative correction term. This leads to (dropping
arguments)

Π = (Di +Dik)φi + (Dij +Dijk)(φij − φMj )

−Dik(φ
S
i + φMk − φik)−Dijk

(
φij − φMj − (φijk − φjk)

)
.

The first two terms are the profit in duopoly. Note that without entry Dik did
not exist since there was no outlet k and so outlet i could get φi for these viewers
due to the fact that they were single-homing on outlet i. Similarly, Dijk did not
exist and these viewers were multi-homing in outlets i and j. The last two terms
are the negative correction terms.

Taking the derivative with respect to ni yields

∂Π

∂ni
=
∂Πd

∂ni
+Dik(φ

S
i + φMk − φik)

[
EDik

− EφSi +φMk −φik
]

+Dijk

(
φij − φMj − (φijk − φjk)

) [
EDijk

− Eφij−φMj −(φijk−φjk)
]

= 0,

where ∂Πd/∂ni is the derivative with respect to ni of an outlet’s profit in case of
duopolistic competition. So we obtain that for EDik

> EφSi +φMk −φik
and EDijk

>

Eφij−φMj −(φijk−φjk)
, the business-sharing effect dominates the duplication effect.

The formula now consists of two additional terms since entry of a third outlet leads
to changes in two viewer groups, namely, the exclusive ones and the overlapping
ones before entry. Each term is multiplied by the absolute profits of the respective
viewer group. In a similar vain, the analysis can be extended to any number of
incumbent outlets.

III. Heterogeneous Advertisers

We discuss how the trade-off characterized in Proposition 1 extends to advertis-
ers with heterogeneous product values, as in Anderson and Coate (2005). As we
will show, the key insights obtained in the analysis with homogeneous advertisers
carries through to heterogeneous advertisers. In particular, outlet competition is
also characterized by the tension between the duplication and business-sharing
effect. This holds although the analysis is more involved compared to homoge-
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neous advertisers, as we need to characterize an entire contract schedule (i.e., the
optimal screening contracts) offered by outlets, instead of only a single transfer-
quantity pair.1

Consider the following extension of our baseline model. The value of informing
a viewer, ω, is distributed according to a smooth c.d.f. F with support [ω, ω],
0 < ω ≤ ω, that satisfies the monotone hazard rate property. The value ω is
private information to each advertiser. The timing of the game is the same as
before. In the first stage, each outlet i announces its total advertising level ni.
Afterwards, consumers decide which outlet to join. Given these decisions, each
outlet offers a menu of contracts consisting of a transfer schedule ti := [0,m]→ R
defined over a compact set of advertising levels. ti(m) is the transfer an advertiser
has to pay to get an advertising intensity m from outlet i. In the final stage,
as before, advertisers decide which outlet to join. In what follows, we define
n = (n1, n2).

Let us start with the monopoly case. With an abuse of notation we still use
ωu(mi, ni) to denote the surplus of advertiser type ω from advertising intensity
mi. The overall utility of an advertiser depends on the transfer schedule in ad-
dition to the surplus. If mi(ω) denotes the optimal intensity chosen by type ω,
then outlets i’s problem in case of monopoly is

(2) Π = max
ti(·)

∫ ω

ω
ti(mi(ω))dF (ω).

By choosing the optimal menu of contracts, the monopolist determines which ad-
vertiser types to exclude, that is, mi(ω) = 0 for these types, and which advertiser
types will buy a positive intensity. We denote the marginal advertiser by ωm0 .
Problem (2) can be expressed as a standard screening problem:

Π = max
ωm
0 ,mi(ω)

∫ ω

ωm
0

ti(mi(ω))dF (ω)

subject to mi(ω) = arg maxmi v
m
i (mi, ω, ni)− ti(mi),

vmi (mi(ω), ω, ni)− ti(mi(ω)) ≥ 0 for all ω ≥ ωm0 ,∫ ω
ωm
0
mi(ω)dF (ω) ≤ ni,

where vmi (mi, ω, ni) := ωdi(ni)φ
S
i (mi) denotes the net value of advertising inten-

sity mi to type ω in the monopoly case. The first constraint is the incentive-
compatibility constraint and the second one the participation constraint. The
third one is the capacity constraint specifying that the aggregate advertising level
cannot exceed the one specified by the outlet in the first stage. Provided that the
function vmi (mi, ω, ni) satisfies the standard regularity conditions in the screening

1Our results also hold when outlets can perfectly discriminate between advertisers. In that case, the
results for each type are the same as the ones in case of homogeneous advertisers.
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literature, we can apply the canonical screening methodology Our assumptions on
the viewer demand di(ni) and on the advertising technology φSi (mi) ensure that
vmi is continuous and increasing in ω. It also has strictly increasing differences in
(m,ω).

Evidently, the capacity constraint will be binding at the optimal solution since
it can never be optimal for the monopolist to announce a strictly larger advertising
level than the one it uses. Applying the above-mentioned methodology, we can
transform the maximization problem to get

Π = max
ωm
0 ,mi(ω)

∫ ω

ωm
0

(
ω − 1− F (ω)

f(ω)

)
di(ni)φ

S
i (mi(ω))dF (ω)

subject to ni =
∫ ω
ωm
0
mi(ω)dF (ω).

We show at the end of this section that the optimal advertising level ni can be
characterized by the following equation:

(3)

∫ ω

ωm
0

(
ω − 1− F (ω)

f(ω)

)(
d̃i
∂φSi
∂mi

+
∂di
∂ni

φSi

)
dF (ω) = 0,

with d̃i := (1 − F (ωm0 ))di. We can compare this characterization with the one
for homogeneous advertisers given by equation (4) of the paper. Due to the
information rent that is required for incentive compatibility, the outlet can no
longer extract the full rent from advertisers but only a fraction of it. This is
expressed by the first bracket in the integral. Inspecting the second bracket, the
expression is analogous to the one with homogeneous advertisers. Note that in
the latter case mi = ni implies that the derivative was taken with respect to ni in
both terms. The above expression instead accounts for the fact that the optimal
allocation mi(ω) is heterogeneous across types. A second difference comes from
the first term in the second bracket where we have d̃i instead of di. When changing
mi, only those advertisers who participate are affected. This is only a mass of
1− F (ωm0 ). By contrast, with homogeneous advertisers all of them are active in
equilibrium.

Therefore, with heterogeneous advertisers the equation characterizing ni trades
off the cost and benefits of increasing ni over the whole mass of participating
advertisers, implying that the average costs and benefits are important. However,
the basic trade-off for homogeneous advertisers and heterogeneous advertisers is
the same. In particular, the first term in the second bracket represents the average
marginal profit from increased reach on infra-marginal consumers, whereas the
second term represents the average loss from marginal consumers who switch off.

Let us now turn to the optimal advertising levels in duopoly. The goal is to
characterize the best-reply tariff ti(mi) given outlet j’s choice tj(mj). As in the
monopoly case, it is possible to rewrite this problem as a standard screening prob-
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lem. To this end, denote by ωu(m1,m2, n) the surplus of type ω from advertising
intensities (m1,m2). If mi(ω) denotes the optimal quantity chosen by type ω,
then outlets i’s optimization problem is

(4) Π = max
ωi
0,mi(ω)

∫ ω

ωi
0

ti(mi(ω))dF (ω)

subject to mi(ω) = arg maxmi v
d
i (mi, ω, n)− ti(mi),

vdi (mi(ω), ω, n)− ti(mi(ω)) ≥ 0 for all ω ≥ ωi0,∫ ω
ωi
0
mi(ω)dF (ω) ≤ ni,

where vdi (mi, ω, n) := maxy ωu(mi, y, n)−tj(y)−maxy′(ωu(0, y′, n)−tj(y′)), with
u(mi, y, n) := Di(n1, n2)φ

S
i (mi) +Dj(n1, n2)φ

S
j (y) +D12(n1, n2)φ12(mi, y).

Note that the sole difference with respect to the monopoly case is that each
advertiser’s outside option accounts for the possibility of accepting the rival’s
offer. Hence, vdi (mi, ω, n) is larger than vmi (mi, ω, ni). Again, our assumptions
about the viewer demands Di(n1, n2) and D12(n1, n2) and about the advertising
technology φSi (mi) and φ12(m1,m2) ensure that vdi is continuous and increasing
in ω. It also has strict increasing differences in (m,ω).

In the derivation at the end of this section, we show by following the methodol-
ogy of Martimort and Stole (2009) that it is possible to characterize the best-reply
allocation as the solution to
(5)∫ ω

ωi
0

(
ω− 1− F (ω)

f(ω)

)(
d̃i
∂φSi
∂mi

+
∂di
∂ni

φSi +D̃12

∂(φ12 − φSi − φMj )

∂mi
+
∂D12

∂ni
(φ12−φSi −φMj )

)
dF (ω)+κ=0,

with d̃i := (1−F (ωio))di, D̃12 := (1−F (ωio))D12, and κ defined in the derivation at
the end of the section. Ignoring κ for the moment, it is evident that this optimal
duopoly solution (5) is the analog of condition (5) of the paper accounting for the
business sharing and duplication effect with heterogeneous advertisers.

Let us finally turn to κ. When changing the advertising intensity of type ω,
outlet i has to take into account that such a different intensity also affects the
advertisers’ demand from the rival outlet, mj , given the posted schedule tj(·).
Intuitively, the higher the number of advertising messages on outlet i, the lower
the utility from one additional ad on outlet j. This channel brings in new com-
petitive forces that are absent with homogeneous advertisers. These forces are
specific to the contracting environment considered and in addition to the ones
discussed so far. To stress this, we note that if the rival outlet were to offer a
single quantity-transfer pair (or, in other words, were to implement an incentive
compatible allocation flat across all active types) then κ = 0.

Derivation of (3) and (5)



8 AMERICAN ECONOMIC JOURNAL MONTH YEAR

We first determine the solution to the more complicated duopoly problem.
(Solving the monopoly problem proceeds along very similar lines and we will
describe it very briefly towards the end.) The problem of a duopolist i is to

maximize its profits
∫ ω
ω ti(mi(ω))dF (ω) with respect to the transfer schedule,

given its rival’s choice tj(mj). From the main text, this problem can be rewritten
as in (4). Denote bym?

j (m,ω) the advertising intensity that type ω optimally buys
from outlet j when buying intensity m from outlet i. Then, the net contracting
surplus for type ω is

vdi (m,ω, n) = max
y

[ωu(m, y, n)− tj(y)]− (max
y′

[
ωu(0, y′, n)− tj(y′)

]
)

= ωu(m,m?
j (m,ω), n)− tj(m?

j (m,ω))− ωu(0,m?
j (0, ω), n) + tj(m

?
j (0, ω))

Incentive compatibility requires mi(ω) = arg maxm v
d
i (m,ω, n) − ti(m), which

implies

vdi (mi(ω), ω, n)−ti(mi(ω)) = max
y,y′,m

{
ωu(m, y, n)− tj(y)− (ωu(0, y′, n)− tj(y′))− ti(m)

}

By the envelope theorem the derivative of the above with respect to ω is

u(m,m?
j (ni(ω), ω), n)− u(0,m?

j (0, ω), n)

Since this pins down the growth rate of the advertiser’s payoff, we find that

maxωi
0,mi(·)

∫ ω
ωi
0
ti(mi(ω)) subject to the first two constraints of (2) equals

max
ωi
0,mi(·)

∫ ω

ω0

{
ωu(mi(ω),m?

j (mi(ω), ω), n)− ωu(0,m?
j (0, ω), n)− tj(m?

j (mi(ω), ω)) + tj(m
?
j (0, ω))

−
∫ ω

ωi
0

[
ωu(m,m?

j (mi(z), z), n)− ωu(0,m?
j (0, z), n)

]
dz
}
dF (ω)

= max
ωi
0,mi(·)

∫ ω

ωi
0

{
vdi (mi, ω, n)−

∫ ω

ωi
0

[
ωu(m,m?

j (mi(z), z), n)− ωu(0,m?
j (0, z), n)

]
dz︸ ︷︷ ︸

information rent

}
dF (ω),

Integrating the double integral by parts gives

max
mi(·),ωi

0

∫ ω

ωi
0

ωu(mi(ω),m?
j (mi(ω), ω), n)− ωu(0,m?

j (0, ω), n)− tj(m?
j (mi(ω), ω)) + tj(m

?
j (0, ω))+

− 1− F (ω)

f(ω)
(u(m,m?

j (mi(ω), ω), n)− u(0,m?
j (0, ω), n)) dF (ω)
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The duopolist’s best-reply allocation of advertising intensities md
i (ω) then solves

max
mi(·),ωi

0

∫ ω

ωi
0

(
ω − 1− F (ω)

f(ω)

)
(u(mi(ω),m?

j (mi(ω), ω), n)− u(0,m?
j (0, ω), n))

−
(
tj(m

?
j (mi(ω), ω))− tj(m?

j (0, ω))
)
dF (ω),

subject to

∫ ω

ωi
0

mi(ω
′)dF (ω′) ≤ ni.

From now on we will denote the integrand function by Λd(mi(ω), ω, n). Recall that
solving a canonical screening problem usually involves maximizing the integral
over all served types, where the integrand is the utility of type ω minus his
information rent, expressed as a function of the allocation. The utility here is
the incremental value u(mi(ω),m?

j (mi(ω), ω), n) − u(0,m?
j (0, ω), n), minus the

difference in transfers.

The maximization problem in the first stage with respect to ni can be written
as

(6) max
ni

(
max
mi(·),ω0

∫ ω

ωi
0

Λd(mi(ω), ω, n)dF (ω) s.t. ni =

∫ ω

ωi
0

mi(ω)dF (ω)

)
.

Let us first determine u(mi(ω),m?
j (mi(ω), ω), n)−u(0,m?

j (0, ω), n). Abbreviating

m?
j (mi(ω), ω) by m?

j and m?
j (0, ω) by (m′j)

? we can write

u(mi(ω),m?
j , n)− u(0, (m′j)

?), n)

= Di(n1, n2)φ
S
i (mi(ω)) +Dj(n1, n2)φ

S
j (m?

j ) +D12(n1, n2)φ12(mi(ω),m?
j )

−Dj(n1, n2)φ
S
j ((m′j)

?)−D12(n1, n2)φ
S
j ((m′j)

?)

= di(ni)φ
S
i (mi(ω))+D12(n1, n2)

(
φ12(mi(ω),m?

j )−φSi (mi(ω))−φMj ((m′j)
?)
)

+Dj(n1, n2)
(
φSj (m?

j )−φMj ((m′j)
?)
)
,

where φ12(mi(ω),m?
j ) = φMi (mi(ω)) + φMj (m?

j )− φMi (mi(ω))φMj ((m′j)
?).

Adapting results from Martimort and Stole (2009), we know that at the optimal
solution mi(ω) = 0 for all ω < ω0 and that mi(ω) = arg maxm Λd(mi(ω), ω, n).
By our assumptions about the demand and advertising function, the optimal
solution involves a schedule mi(ω) that is non-decreasing.

From (6), we can write the maximization problem with respect to the optimal
allocation of advertising intensities, given ni, as

max
mi(·),λ

∫ ω

ωi
0

Λd(mi(ω), ω, n)dF (ω) + λ

(
ni −

∫ ω

ωi
0

mi(ω)dF (ω)

)
.
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Pointwise maximization with respect to mi(·) yields

(
ω − 1− F (ω)

f(ω)

)[
di(ni)

∂φSi
∂mi

+D12(n1, n2)

∂
(
φ12((mi,m

?
j ))− φSi (mi)

)
∂mi



(7) + [Dj(n1, n2)−D12(n1, n2)]
∂φSj
∂m?

j

∂m?
j

∂mi

]
− ∂tj
∂m?

j

∂m?
j

∂mi
= λ.

Denoting the left-hand side of (7) by ψ, and integrating both sides from ωi0 to ω,
we obtain ∫ ω

ωi
0
ψdF (ω)

1− F (ωi0)
= λ.

The maximization problem of the first stage with respect to ni is

max
mi(·),λ

∫ ω

ωi
0

Λdi (ω,mi(ω)?, ni)dF (ω) + λ

(
ni −

∫ ω

ωi
0

mi(ω)?dF (ω)

)
.

Differentiating with respect to ni and using the Envelope Theorem yields∫ ω

ωi
0

(
ω − 1− F (ω)

f(ω)

)[
∂di
∂ni

φSi +
∂D12

∂ni

(
φ12((mi,m

?
j ))− φSi (mi)− φMj ((m′j)

?)
)

(8)

+D12

[
∂φ12
∂m?

j

∂m?
j

∂ni
−

∂φMj
∂(m′j)

?

∂(m′j)

∂ni

]]
+Dj

[
∂φSj
∂m?

j

∂m?
j

∂ni
−

∂φMj
∂(m′j)

?

∂(m′j)

∂ni

]]
dF (ω)

− ∂tj
∂m?

j

∂m?
j

∂ni
+

∂tj
∂(m′j)

?

∂(m′j)
?

∂ni
= −λ.

Combining (7) and (8) to get rid of λ yields expression (5) of the main text, where
κ is defined as

κ ≡
∫ ω

ω0

(
ω − 1− F (ω)

f(ω)

){
1

1− F (ω)
(Dj−D12)

∂φSj
∂m?

j

∂m?
j

∂mi
+D12

[
∂φ12
∂m?

j

∂m?
j

∂ni
−

∂φMj
∂(m′j)

?

∂(m′j)
?

∂ni

]

+Dj

[
∂φSj
∂m?

j

∂m?
j

∂ni
−

∂φSj
∂(m′j)

?

∂(m′j)
?

∂ni

]
+
∂Dj

∂ni

(
φSj (m?

j )− φSj ((m′j)
?)
)
− ∂tj
∂m?

j

∂m?
j

∂ni

}
dF (ω)
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− ∂tj
∂m?

j

∂m?
j

∂ni
+

∂tj
∂(m′j)

?

∂(m′j)
?

∂ni
.

It is evident that if outlet j offers a single transfer-intensity pair, then m?
j equals

(m′j)
? and both are invariant to changes in mi(·) and ni. This implies that κ = 0.

Proceeding in the same way for the monopoly outlet, we obtain that its profit
function is given by

max
ni

(
max

mi(·),ωm
0

∫ ω

ωm
0

(
ω − 1− F (ω)

f(ω)

)
di(ni)φ

S
i (mi(ω))dF (ω) s.t. ni =

∫ ω

ωm
0

mi(ω)dF (ω)

)
.

The solution is then characterized by (3).
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