
Online Appendix for “How Do You Say Your Name?

Difficult-To-Pronounce Names and Labor Market

Outcomes”

Qi Ge∗ Stephen Wu†

Abstract: This online appendix contains additional empirical analyses complementing
the results and discussions presented in the main text. In Appendix A, we perform ro-
bustness checks on our baseline findings using observational data from the academic labor
market. In Appendix B, we explore the possibility that the uniqueness or commonality of
names may affect job outcomes. In Appendix C, we test for heterogeneous effects by gender
using experimental data from Bertrand and Mullainathan (2004) and Oreopoulos (2011). In
Appendix D, we investigate labor market effects of name fluency using data from Nunley
et al. (2015). Lastly, in Appendix E, we include the full instructions for our name fluency
surveys.

∗Department of Economics, Vassar College, Poughkeepsie, NY 12604, qige@vassar.edu.
†Department of Economics, Hamilton College, Clinton, NY 13323, swu@hamilton.edu.

Appendix A. Robustness Checks

In this section, we present a number of robustness checks on our baseline findings using

observational data from the academic labor market. We first consider an alternative place-

ment quality measure based on the raw RePEc ranking that excludes private sector and

non-tenure track academic placements. Tobit estimates based on this alternative RePEc

measure are reported in Table A2 in the Online Appendix and are similar in direction and

statistical significance to the full sample results with imputed RePEc values as shown in

Tables 2 and 3. Relative to the original imputed RePEc rankings, the relevant coefficients

on name fluency measures are smaller in magnitude for the timing measure (51 vs. 83) and

the subjective rating (28 vs. 82) but larger for the algorithmic rating (79 vs. 67).

Next, to assess the robustness of our specifications on placement quality, we estimate

multinomial logit regressions for different types of placements and present the estimates in

Table A3 in the Online Appendix. We observe that relative to the reference group placement

type of government or think tank jobs, the coefficient on name difficulty is significantly

negative for being placed into academia, and this result is consistent across different name

fluency measures.1 On the other hand, in separate specifications reported in Table A4 in

the Online Appendix, when we further decompose academic job types and set the baseline

category as visiting/postdoc, the coefficient on name difficulty for the tenure track category

is not significant relative to the baseline. Taken together, this suggests that name fluency

impacts the likelihood of being placed into academia relative to industry or government

jobs, but does not affect the probability of obtaining a tenure track job, conditional on being

placed in academia.

As an additional check on the robustness of the results on placement quality, we estimate

an ordered probit model using categories of the imputed RePEc ranking of job placements

as the outcome of interest. Given the ordinal nature of RePEc rankings, we categorize

1The difference between the coefficients for academic and industry positions is statistically significant at
the 10%, 1%, and 1% levels for name fluency measures based on algorithmic ratings, pronunciation time,
and subjective ratings, respectively.

1

the ranking of imputed RePEc productivity index into the following five categories for the

ordered probit model: 1) RePEc ≤ 50; 2) 50 < RePEc ≤ 200; 3) 200 < RePEc ≤ 400; 4)

400 < RePEc ≤ 800; and 5) RePEc = 1, 000. The estimates on name fluency measures, as

presented in Table A5 in the Online Appendix, are qualitatively similar to our main findings

and again suggest that candidates with harder-to-pronounce names tend to be placed in

institutions with lower research productivity.

A concern discussed in the main text is that name changes may be endogenous. For

example, students who have advisors and committee members from the same country might

be less likely to feel the need to Americanize/Anglicize their (first) names. Ge et al. (2021)

document a beneficial impact of student-graduate committee matching, in the form of coun-

try of origin and native language, on students’ initial placement outcomes in the economics

PhD job market, which could lead to a downward bias in the estimate of the magnitude of

the name fluency effect. To account for this possibility, we re-estimate our baseline specifica-

tions and add controls for student-graduate committee matching based on country (U.S. vs.

non-U.S.) or native language (English vs. other),2 and the resulting estimates, as reported

in Table A6, remain identical to those in Tables 2 and 3. The decision of whether or not to

change one’s last name after marriage may also be endogenous, though separate analysis by

gender does not reveal any differences in the effects of name fluency. As shown in Table A7,

we find similarly sized effects for the sample of male job market candidates (where changing

last names is much less common than for females). Furthermore, as seen in Table A8, our

results continue to hold when we exclude all candidates with ethnically Chinese names, a

group for which individuals are particularly likely to adopt Americanized first names.

Another potential concern is that difficult-to-pronounce names are concentrated in a

few countries, and the lack of success that individuals from these countries have in finding

prestigious academic jobs is not necessarily linked to their names but from more general

2Following Ge et al. (2021), we code “country match” as being equal to one when at least one of the
student’s committee members went to an undergraduate institution in the same country as the student’s
undergraduate institution. Similarly, we code “language match” as being equal to one when a student’s
country of origin has the same official language as that of at least one of the committee members.

2

discrimination due to national origin. All regressions shown in our tables have controlled for

the region of one’s undergraduate school, but we have also estimated specifications which

include a full set of individual country effects, and the results, as presented in Table A9 in the

Online Appendix, are largely the same. In addition, we have also run separate regressions

for different regions, though the statistical power is reduced in regions with few observations.

In general, we observe that the effects of name fluency on placement types and quality are

not driven by a particular region of undergraduate degree, as the magnitudes of the effects

are large and significant for several different regions.

Appendix B. Common Names

We also explore the possibility that the uniqueness or commonality of names may affect job

outcomes. It is likely that those with very common names could be at a disadvantage because

they do not stand out from other candidates. Because pronunciation difficulty is likely

negatively correlated with commonality of names, our estimates of the name fluency effect

might be underestimated. To alleviate this concern, we augment our baseline specifications

by controlling for having a common first name or common last name. Due to data constraints,

we focus on common names in the U.S. Specifically, we code someone as having a very

common name if their first name is among the 50 most common female first names or the

50 most common male first names according to the 1990 U.S. Census, and having a very

common last name if their last name is among the 50 most common surnames according to

the 2010 U.S. Census.3

We present the resulting estimates in Table A10 in the Online Appendix. As shown in

columns 1-3 that focus on the full sample of job market candidates, none of the variables

for name commonality (i.e., indicator for common first name, indicator for common last

name, and their interaction) is statistically significant, and their inclusion does not impact

3The 1990 and 2010 U.S. Census data respectively represent the most recent data sources for tabulations
on common first and last names.

3

the magnitude or significance of the name difficulty coefficient in any of our regressions. In

addition, since the data sources for our common name analysis are based on the U.S. Census,

we also conduct a separate analysis for the sample of job market candidates who are from

U.S. and Canada. As shown in columns 4-6, the results on placement types and quality as

well as the coefficients on common name indicators are qualitatively similar, though larger

in magnitude.

Appendix C. Heterogeneous Effects by Gender in Audit

Study Data

In this section, we explore potential gender differences in the name fluency effect in the ex-

perimental data from Bertrand and Mullainathan (2004) and Oreopoulos (2011). For each of

these data sources, we divide the sample by gender and re-estimate our main probit regres-

sions that relate callback rates to algorithmic ratings of name difficulty. All specifications

include controls for name length, race/ethnicity, and resume characteristics and use standard

errors that are clustered at the job advertisement level.

Table A15 in the Online Appendix reports our estimates for the name fluency effect by

gender, with the top and bottom panels focusing on data from Bertrand and Mullainathan

(2004) and Oreopoulos (2011), respectively. Columns 1-2 and 5-6 are based on the full sample

of each data set, while columns 3-4 and 7-8 focus on the sample of Black job candidates and

immigrants from India, Pakistan, and China, respectively. Although the point estimates on

the name difficulty measure are somewhat larger and more statistically significant for female

applicants across both data sets, the magnitudes of the impacts are not statistically different

between the two groups.

In addition, we also compare the algorithmic ratings of names between male and female

job applicants and find that there is no consistent and systematic relationship between

fluency of names and gender across the two audit study data sources. Specifically, we find

4

that female applicants, on average, have significantly more difficult (first) names than their

male counterparts in Bertrand and Mullainathan (2004), while the opposite pattern holds

for Oreopoulos (2011).

Overall, we do not find support for significant gender differences in the effect of name

fluency based on prior audit study data. Our findings here also support the results in Table

A7 in the Online Appendix that document indistinguishable name fluency effects between

male and female economics PhD job market candidates.

Appendix D. Experimental Data from Nunley et al.

(2015)

As an additional test, we also investigate labor market effects of name fluency using data from

Nunley et al. (2015), who perform an audit study to examine racial discrimination in the labor

market for recent college graduates. Specifically, Nunley et al. (2015) create fictitious and

identical resumes for college-educated entry level job applicants who are randomly assigned

one of the eight distinctively White-sounding or African American-sounding names. Similar

to Bertrand and Mullainathan (2004) and Oreopoulos (2011), Nunley et al. (2015) also focus

on callback rates as their main outcome variable of interest.

Analogous to our analysis of the other two audit studies, we first estimate a probit model

of callback rates on implied race of the applicants and report the results in column 1 of Table

A17 in the Online Appendix. Consistent with Nunley et al. (2015), we find that the callback

rates for job applicants with African American-sounding names are 2.8 percentage points

lower compared to those with White-sounding names. When applying our name fluency

algorithm to the fictitious first and last names employed in Nunley et al. (2015), we observe

in column 2 that the standardized algorithmic name rating is negatively and significantly

correlated with callback rates.

In column 3, we include both race and name difficulty measures and find that the mag-

5

nitude of the coefficient on being a Black applicant is reduced to −0.024 (p-value < 0.01),

representing an approximately 15 percent decrease in the racial penalty estimated in column

1. Similar to our findings discussed in Section III.B, this implies that racial discrimination

based on one’s name partly works through the difficulty of pronouncing (and potentially

processing and remembering) that name.

When controlling for name length, gender, as well as additional resume characteristics

used in Nunley et al. (2015),4 we show in column 4 that name difficulty is an important

and significant factor in explaining the callback rates, with the coefficient now marginally

significant at the 10 percent level, and the indicator variable for Black names remains negative

and significant.

It is worth noting that the data from Nunley et al. (2015) uses only eight unique names

(two for each gender-race combination), which are far fewer than the number used by

Bertrand and Mullainathan (36) or Oreopoulos (44). Despite this important drawback and

the resulting limited statistical power, our analysis of this additional experimental data con-

firms that name complexity is negatively related to the probability of receiving a callback

and that an important channel for explaining name-based racial discrimination is through

the fluency of one’s name. These results are thus consistent with our main findings discussed

in Section III.

Appendix E. Instructions for Name Fluency Surveys

Thank you for agreeing to assist with research projects related to the pronunciation of names.

I have designed a set of Qualtrics surveys which have a series of names for you to pronounce.

1. Before you start a particular survey, start an audio recording of yourself. Then, you will

see a series of names for you to pronounce, with one name per screen. Read through

4The set of resume characteristics includes college attended, academic major, grade point average, honor’s
distinction, employment status, socioeconomic status of the applicant’s address, and dummies for month and
city.

6

the name, and then click the arrow to advance to the next screen to see the next name.

Continue to repeat this until you have finished the survey. You may then stop the

recording and save it. You will repeat this process for all of the different groups of

names, though you may wish to do break up your work across several different times

in the day or the week to complete the work.

2. Please complete a particular group in one sitting without taking any breaks in between.

Once you complete that group, then feel free to take as long of a break as you need

until you start the next survey, but again, please do not take breaks once you have

started a new survey until you complete that one. Names will be separated in groups

of approximately 50 (with some groups listed as first names and some groups listed as

last names), so perhaps you may want to do a bunch at one time, with short breaks

in between each of the individual surveys. Then, you can come back and do another

chunk of them at another day/time when you are free.

3. If you are unsure of how to pronounce a particular name, simply do your best to make

a guess or sound it out before you click the arrow to advance to the next screen. You

should not search the internet to hear a recording of the name, but simply make an

attempt at pronouncing it.

4. It is possible that you may see some names that are duplicates or are very similar to

other names in one of the surveys, but please pronounce each of the names you see on

the screen even if you think you have seen that name before.

5. Please complete each survey only one time. To make sure that you do every survey

only once, take careful notes about which ones you have completed and which ones

you still need to complete. The most logical way would be to complete the surveys in

numerical order (perhaps starting with the first names and then the last names).

7

References

Bertrand, M., and Mullainathan, S. (2004). “Are Emily and Greg more employable than Lak-
isha and Jamal? A field experiment on labor market discrimination.” American Economic
Review, 94 (4), 991–1013.

Ge, Q., Wu, S., and Zhou, C. (2021). “Sharing common roots: Student-graduate committee
matching and job market outcomes.” Southern Economic Journal, 88 (2), 828–856.

Nunley, J. M., Pugh, A., Romero, N., and Seals, R. A. (2015). “Racial discrimination in
the labor market for recent college graduates: Evidence from a field experiment.” B.E.
Journal of Economic Analysis & Policy, 15 (3), 1093–1125.

Oreopoulos, P. (2011). “Why do skilled immigrants struggle in the labor market? A field
experiment with thirteen thousand resumes.” American Economic Journal: Economic
Policy, 3 (4), 148–71.

8

Table A1: Name Fluency and Placement Outcomes: Alternative Algorithm Rating

(1) (2) (3) (4) (5) (6)
Academia Academia TT TT RePEc Imputed RePEc Imputed

Alternative Algorithm Rating: Full Name -0.040 -0.019 82.771
(0.016) (0.017) (31.479)

Alternative Algorithm Rating: First Name -0.037 -0.018 56.701
(0.017) (0.018) (32.596)

Alternative Algorithm Rating: Last Name -0.020 -0.009 68.384
(0.019) (0.019) (36.238)

Observations 1,469 1,469 1,499 1,499 1,510 1,510
Control for Name Length Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes
Subfield/Program FE Yes Yes Yes Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes Yes Yes Yes

Notes: The coefficients in columns 1-4 are marginal effects of probit regressions. The dependent variable in columns 1-2 (3-4) is a dichotomous
variable for being placed in an academic (tenure track) position. Columns 5-6 are estimated using a tobit model, with the dependent variable
being the imputed RePEc ranking of the institution of initial job placement, where private sector jobs are given an imputed ranking of 1, 000,
the highest (worst) ranking. All tobit regressions are censored with an upper limit of 1, 000. The alternative algorithm rating for name
pronunciation difficulty is based on an arithmetic average of the letter-based and phoneme-based sub-rating schemes. Robust standard errors
are in parentheses.

9

Table A2: Name Fluency and Placement Quality: Tobit Estimates – Raw RePEc Ranking

(1) (2) (3)
RePEc RePEc RePEc

Algorithm Rating: Full Name 79.298
(24.802)

Pronunciation Time: Full Name 51.069
(26.546)

Subjectively Difficult: Full Name 28.278
(49.645)

Observations 910 910 910
Control for Name Length Yes Yes Yes
Other Controls Yes Yes Yes
Subfield/Program FE Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes

Notes: The dependent variable across all specifications is the RePEc rank-
ing of the institution of initial job placement, where individuals obtaining
private sector jobs are excluded from the sample. All specifications are es-
timated using a tobit model censored with an upper limit of 1, 000. The
algorithm rating for name pronunciation difficulty is based on a weighted
average of the letter-based and phoneme-based sub-rating schemes, where
the weights are derived from neural network learning. The pronunciation
time rating is a survey-based measure that records the median time it takes
individuals to pronounce a name. The subjective difficulty rating is based
on individuals’ independent subjective assessments. Robust standard errors
are in parentheses.

10

Table A3: Name Fluency and Placement Types: Multinomial Logit Estimates

(1) (2)
Academia Industry

Algorithm Rating: Full Name -0.217 -0.161
(0.101) (0.120)

Observations 1,510 1,510
Control for Name Length Yes Yes
Other Controls Yes Yes
Subfield/Program FE Yes Yes
Region/JM Cycle FE Yes Yes

(3) (4)
Academia Industry

Pronunciation Time: Full Name -0.273 0.113
(0.102) (0.120)

Observations 1,510 1,510
Control for Name Length Yes Yes
Other Controls Yes Yes
Subfield/Program FE Yes Yes
Region/JM Cycle FE Yes Yes

(5) (6)
Academia Industry

Subjectively Difficult: Full Name -0.411 0.195
(0.190) (0.229)

Observations 1,510 1,510
Control for Name Length Yes Yes
Other Controls Yes Yes
Subfield/Program FE Yes Yes
Region/JM Cycle FE Yes Yes

Notes: Each panel is estimated using a separate multinomial logit
model with the dependent variable being a categorical variable
capturing placement types, including academia, government/think
tank, and industry (private sector). Government/think tank po-
sitions are the baseline category across all specifications. The re-
ported coefficients are in log-odds. The algorithm rating for name
pronunciation difficulty is based on a weighted average of the letter-
based and phoneme-based sub-rating schemes, where the weights
are derived from neural network learning. The pronunciation time
rating is a survey-based measure that records the median time it
takes individuals to pronounce a name. The subjective difficulty
rating is based on individuals’ independent subjective assessments.
Standard errors are in parentheses.

11

Table A4: Name Fluency and Placement Types: Multinomial Logit Estimates – Alternative
Placement Categories

(1) (2) (3)
TT Govt/Think Tank Industry

Algorithm Rating: Full Name 0.100 0.284 0.119
(0.099) (0.125) (0.117)

Observations 1,510 1,510 1,510
Control for Name Length Yes Yes Yes
Other Controls Yes Yes Yes
Subfield/Program FE Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes

(4) (5) (6)
TT Govt/Think Tank Industry

Pronunciation Time: Full Name 0.062 0.312 0.429
(0.105) (0.128) (0.124)

Observations 1,510 1,510 1,510
Control for Name Length Yes Yes Yes
Other Controls Yes Yes Yes
Subfield/Program FE Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes

(7) (8) (9)
TT Govt/Think Tank Industry

Subjectively Difficult: Full Name 0.301 0.640 0.838
(0.203) (0.247) (0.236)

Observations 1,510 1,510 1,510
Control for Name Length Yes Yes Yes
Other Controls Yes Yes Yes
Subfield/Program FE Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes

Notes: Each panel is estimated using a separate multinomial logit model with the
dependent variable being a categorical variable capturing placement types, including
tenure track, visiting/postdoc, government/think tank, and industry (private sector).
Visiting/postdoc positions are the baseline category across all specifications. The
reported coefficients are in log-odds. The algorithm rating for name pronunciation
difficulty is based on a weighted average of the letter-based and phoneme-based sub-
rating schemes, where the weights are derived from neural network learning. The
pronunciation time rating is a survey-based measure that records the median time it
takes individuals to pronounce a name. The subjective difficulty rating is based on
individuals’ independent subjective assessments. Standard errors are in parentheses.

12

Table A5: Name Fluency and Placement Quality: Ordered Probit Estimates

(1) (2) (3)
RePEc Imputed RePEc Imputed RePEc Imputed

Algorithm Rating: Full Name 0.076
(0.046)

Pronunciation Time: Full Name 0.100
(0.048)

Subjectively Difficult: Full Name 0.106
(0.087)

Observations 1,510 1,510 1,510
Control for Name Length Yes Yes Yes
Other Controls Yes Yes Yes
Subfield/Program FE Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes

Notes: All specifications are estimated using an ordered probit model, where the dependent variable
is based on the following ordered categories of the imputed RePEc research productivity index: 1)
RePEc ≤ 50; 2) 50 < RePEc ≤ 200; 3) 200 < RePEc ≤ 400; 4) 400 < RePEc ≤ 800; and 5) RePEc
= 1, 000. The algorithm rating for name pronunciation difficulty is based on a weighted average of the
letter-based and phoneme-based sub-rating schemes, where the weights are derived from neural network
learning. The pronunciation time rating is a survey-based measure that records the median time it takes
individuals to pronounce a name. The subjective difficulty rating is based on individuals’ independent
subjective assessments. Robust standard errors are in parentheses.

13

Table A6: Name Fluency and Placement Outcomes: Controlling for Advisor Match

(1) (2) (3) (4) (5) (6)
Academia Academia TT TT RePEc Imputed RePEc Imputed

Algorithm Rating: Full Name -0.031 -0.030 -0.005 -0.005 66.572 65.118
(0.016) (0.016) (0.017) (0.017) (31.722) (31.664)

(7) (8) (9) (10) (11) (12)
Academia Academia TT TT RePEc Imputed RePEc Imputed

Pronunciation Time: Full Name -0.074 -0.074 -0.047 -0.046 80.610 80.334
(0.018) (0.018) (0.018) (0.018) (33.735) (33.952)

(13) (14) (15) (16) (17) (18)
Academia Academia TT TT RePEc Imputed RePEc Imputed

Subjectively Difficult: Full Name -0.117 -0.116 -0.060 -0.057 82.380 83.393
(0.033) (0.033) (0.033) (0.033) (61.258) (60.958)

Observations 1,469 1,469 1,499 1,499 1,510 1,510
Control for Country Match Yes No Yes No Yes No
Control for Language Match No Yes No Yes No Yes
Control for Name Length Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes
Subfield/Program FE Yes Yes Yes Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes Yes Yes Yes

Notes: The coefficients in columns 1-4, 7-10, and 13-16 are marginal effects of probit regressions. The dependent variable in
columns 1-2, 7-8, and 13-14 (3-4, 9-10 and 15-16) is a dichotomous variable for being placed in an academic (tenure track)
position. Columns 5-6, 11-12, and 17-18 are estimated using a tobit model, with the dependent variable being the imputed RePEc
ranking of the institution of initial job placement, where private sector jobs are given an imputed ranking of 1,000, the highest
(worst) ranking. All tobit regressions are censored with an upper limit of 1, 000. The algorithm rating for name pronunciation
difficulty is based on a weighted average of the letter-based and phoneme-based sub-rating schemes, where the weights are derived
from neural network learning. The pronunciation time rating is a survey-based measure that records the median time it takes
individuals to pronounce a name. The subjective difficulty rating is based on individuals’ independent subjective assessments.
The country/language match variables are indicator variables based on matching with at least one of the committee members.
Robust standard errors are in parentheses.

14

Table A7: Name Fluency and Placement Outcomes by Gender

Male Candidates Female Candidates

(1) (2) (3) (4) (5) (6)
Academia TT RePEc Imputed Academia TT RePEc Imputed

Algorithm Rating: Full Name -0.045 0.009 64.460 -0.036 -0.065 21.069
(0.022) (0.022) (37.267) (0.033) (0.034) (64.742)

Observations 970 1,016 1,053 392 413 457
Control for Name Length Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes
Subfield/Program FE Yes Yes Yes Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes Yes Yes Yes

Notes: The coefficients in columns 1-2 and 3-4 are marginal effects of probit regressions. The dependent variable in columns
1 and 4 (2 and 5) is a dichotomous variable for being placed in an academic (tenure track) position. Columns 3 and 6 are
estimated using a tobit model, with the dependent variable being the imputed RePEc ranking of the institution of initial job
placement, where private sector jobs are given an imputed ranking of 1,000, the highest (worst) ranking. All tobit regressions
are censored with an upper limit of 1, 000. The algorithm rating for name pronunciation difficulty is based on a weighted
average of the letter-based and phoneme-based sub-rating schemes, where the weights are derived from neural network learning.
Robust standard errors are in parentheses.

Table A8: Name Fluency and Placement Outcomes: Excluding Candidates With Ethnically
Chinese Names

(1) (2) (3)
Academia TT RePEc Imputed

Algorithm Rating: Full Name -0.037 -0.018 69.262
(0.019) (0.020) (37.206)

Observations 1,094 1,093 1,131
Control for Name Length Yes Yes Yes
Other Controls Yes Yes Yes
Subfield/Program FE Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes

Notes: The sample excludes all job market candidates with ethnically Chinese
names, regardless of their undergraduate locations. The coefficients in columns 1
and 2 are marginal effects of probit regressions. The dependent variable in column
1 (2) is a dichotomous variable for being placed in an academic (tenure track)
position. Column 3 is estimated using a tobit model, with the dependent variable
being the imputed RePEc ranking of the institution of initial job placement, where
private sector jobs are given an imputed ranking of 1,000, the highest (worst)
ranking. All tobit regressions are censored with an upper limit of 1, 000. The
algorithm rating for name pronunciation difficulty is based on a weighted average
of the letter-based and phoneme-based sub-rating schemes, where the weights are
derived from neural network learning. Robust standard errors are in parentheses.

15

Table A9: Name Fluency and Placement Outcomes: Country Fixed Effects

(1) (2) (3)
Academia TT RePEc Imputed

Algorithm Rating: Full Name -0.033 -0.002 76.923
(0.017) (0.018) (31.260)

Observations 1,416 1,463 1,510
Control for Name Length Yes Yes Yes
Other Controls Yes Yes Yes
Subfield/Program FE Yes Yes Yes
Country/JM Cycle FE Yes Yes Yes

Notes: The coefficients in columns 1 and 2 are marginal effects of probit regres-
sions. The dependent variable in column 1 (2) is a dichotomous variable for being
placed in an academic (tenure track) position. Column 3 is estimated using a to-
bit model, with the dependent variable being the imputed RePEc ranking of the
institution of initial job placement, where private sector jobs are given an imputed
ranking of 1,000, the highest (worst) ranking. All tobit regressions are censored
with an upper limit of 1, 000. The algorithm rating for name pronunciation dif-
ficulty is based on a weighted average of the letter-based and phoneme-based
sub-rating schemes, where the weights are derived from neural network learning.
Robust standard errors are in parentheses.

16

Table A10: Name Fluency and Placement Outcomes: Accounting for Common Names

All Candidates Candidates from U.S. and Canada

(1) (2) (3) (4) (5) (6)
Academia TT RePEc Imputed Academia TT RePEc Imputed

Common First Name -0.006 -0.041 -44.623 -0.020 -0.040 20.921
(0.043) (0.045) (89.256) (0.058) (0.054) (115.622)

Common Last Name 0.006 -0.076 65.057 0.041 -0.044 101.178
(0.069) (0.069) (124.601) (0.106) (0.098) (172.005)

Common First Name × -0.232 -0.179 374.023 -0.119 -0.161 313.511
Common Last Name (0.168) (0.138) (307.825) (0.211) (0.156) (351.275)
Algorithm Rating: Full Name -0.033 -0.014 69.557 -0.071 -0.048 130.065

(0.017) (0.017) (32.978) (0.029) (0.028) (55.243)

Observations 1,469 1,499 1,510 586 600 648
Control for Name Length Yes Yes Yes Yes Yes Yes
Other Controls Yes Yes Yes Yes Yes Yes
Subfield/Program FE Yes Yes Yes Yes Yes Yes
Region/JM Cycle FE Yes Yes Yes Yes Yes Yes

Notes: The coefficients in columns 1-2 and 4-5 are marginal effects of probit regressions. The dependent variable in columns
1 and 3 (2 and 5) is a dichotomous variable for being placed in an academic (tenure track) position. Columns 3 and 6 are
estimated using a tobit model, with the dependent variable being the imputed RePEc ranking of the institution of initial job
placement, where private sector jobs are given an imputed ranking of 1,000, the highest (worst) ranking. All tobit regressions
are censored with an upper limit of 1, 000. The algorithm rating for name pronunciation difficulty is based on a weighted
average of the letter-based and phoneme-based sub-rating schemes, where the weights are derived from neural network learning.
Common first and last names are derived from the 1990 and 2010 U.S. Census, respectively. Robust standard errors are in
parentheses.

17

Table A11: Black/Ethnic Immigrant Names and Callback Rates in Bertrand and Mul-
lainathan (2004) and Oreopoulos (2011)

Bertrand and Mullainathan (2004) Oreopoulos (2011)

Name Difficulty Percent Callback Name Difficulty Percent Callback

Black Indian
Ebony -0.973 9.62 Tara Singh -0.603 10.29
Kenya -0.973 8.67 Maya Kumar -0.538 8.66
Leroy -0.523 9.38 Shreya Sharma 0.348 9.54
Tyrone -0.361 5.33 Arjun Kumar 0.742 7.82
Jermaine 0.004 9.62 Samir Sharma 0.985 8.59
Jamal 0.153 6.56 Panav Singh 1.264 8.25
Tremayne 0.200 4.35 Rahul Kaur 1.913 8.14
Tamika 0.297 5.47 Priyanka Kaur 2.557 7.61
Darnell 0.675 4.76
Rasheed 0.770 2.99 Average: 0.834 8.61
Latonya 0.826 9.13 Correlation: -0.755 [0.030]

Hakim 0.970 5.45
Kareem 1.038 4.69 Pakistani
Aisha 1.148 2.22 Hassan Khan -0.304 6.30
Keisha 1.547 3.83 Fatima Sheikh 0.245 8.11
Latoya 1.549 8.41 Sana Khan 0.392 8.82
Tanisha 1.839 5.80 Ali Saeed 0.705 8.33
Lakisha 2.161 5.50 Chaudhry Mohammad 1.102 6.12

Asif Sheikh 1.296 3.85
Average 0.575 6.21 Hina Chaudhry 1.348 7.80
Correlation: -0.488 [0.040] Rabab Saeed 3.142 4.26

Average: 0.991 6.70
Correlation: -0.588 [0.125]

Chinese
Na Li -0.802 7.65
Min Liu -0.671 11.34
Lei Li -0.644 9.32
Tao Wang -0.557 10.98
Dong Liu -0.534 7.88
Fang Wang -0.283 12.57
Yong Zhang -0.279 8.60
Xiuying Zhang 1.511 7.42

Average: -0.283 9.47
Correlation: -0.338 [0.412]

Indian/Pakistani/Chinese

Average: 0.514 8.26
Correlation: -0.594 [0.002]

Notes: The table contains all Black and ethnic immigrant names taken from publicly available replication data for Bertrand and Mullainathan
(2004) and Oreopoulos (2011), respectively. The reported correlations are between name difficulty ratings and callback rates. P-values for
correlations are in brackets.

18

Table A12: Name Fluency and Callback Rates: Experimental Data from Bertrand and
Mullainathan (2004)

All Applicants Black Applicants

(1) (2) (3) (4) (5) (6)
Callback Callback Callback Callback Callback Callback

Black -0.032 -0.018 -0.015
(0.006) (0.006) (0.006)

Female 0.005 0.012
(0.006) (0.006)

College Educated 0.007 0.012
(0.008) (0.007)

Number of Jobs on Resume -0.002 0.002
(0.003) (0.003)

Years of Experience 0.008 0.003
(0.001) (0.001)

Years of Experience2 -0.000 -0.000
(0.000) (0.000)

Honors 0.054 0.040
(0.017) (0.011)

Volunteering Experience -0.002 0.008
(0.008) (0.010)

Military Experience 0.003 -0.013
(0.015) (0.008)

Working in School -0.001 -0.006
(0.003) (0.004)

Listing Email 0.011 -0.003
(0.008) (0.008)

Computer Skills -0.024 -0.009
(0.011) (0.009)

Special Skills 0.063 0.049
(0.008) (0.006)

First Name Length 0.003 0.006
(0.003) (0.003)

Algorithm Rating: First Name -0.017 -0.011 -0.012 -0.011 -0.014
(0.004) (0.005) (0.005) (0.003) (0.003)

Observations 4,870 4,870 4,870 4,870 2,435 2,435

Notes: The sample is derived from publicly available replication data for Bertrand and Mullainathan (2004).
Columns 1-4 include all job applicants, while columns 5-6 focus on Black applicants. The reported coefficients
are marginal effects of probit regressions, where the dependent variable is a dichotomous variable for receiving
a callback. The algorithm rating for name pronunciation difficulty is based on a weighted average of the letter-
based and phoneme-based sub-rating schemes, where the weights are derived from neural network learning.
Clustered standard errors at the job advertisement level are in parentheses.

19

Table A13: Name Fluency and Callback Rates: Experimental Data from Oreopoulos (2011)

All Applicants Ind/Pak/Chn Applicants

(1) (2) (3) (4) (5) (6) (7)
Callback Callback Callback Callback Callback Callback Callback

Female 0.018 0.019 0.006
(0.005) (0.005) (0.007)

Top 200 World Ranking University -0.003 -0.003 0.006
(0.005) (0.005) (0.007)

Listing Extracurricular Activities -0.002 -0.002 0.011
(0.005) (0.005) (0.006)

Fluent in French & Other Languages 0.019 0.019 0.021
(0.007) (0.007) (0.009)

Master’s Degree 0.006 0.006 0.007
(0.007) (0.007) (0.010)

High Quality Work Experience 0.009 0.009 0.014
(0.005) (0.005) (0.007)

Additional Required Credentials 0.041 0.041 0.024
(0.014) (0.014) (0.015)

Listing Canadian References -0.029 -0.028 -0.022
(0.015) (0.015) (0.015)

Accreditation of Foreign Education -0.012 -0.012 -0.006
(0.013) (0.013) (0.013)

Permanent Resident -0.007 -0.007 -0.007
(0.014) (0.014) (0.013)

Indian -0.046 -0.036 -0.035 -0.033 0.002
(0.005) (0.007) (0.009) (0.009) (0.008)

Pakistani -0.057 -0.049 -0.049 -0.050 -0.015
(0.007) (0.008) (0.009) (0.009) (0.012)

Chinese -0.041 -0.038 -0.035 -0.029
(0.005) (0.006) (0.009) (0.011)

Chinese Canadian -0.053 -0.053 -0.050 -0.045
(0.006) (0.006) (0.007) (0.008)

Greek -0.031 -0.018 -0.018 -0.035
(0.012) (0.015) (0.016) (0.018)

British -0.024 -0.024 -0.023 -0.023
(0.008) (0.008) (0.008) (0.008)

Full Name Length 0.000 -0.000
(0.002) (0.002)

Algorithm Rating: Full Name -0.014 -0.008 -0.007 -0.008 -0.007
(0.003) (0.004) (0.004) (0.003) (0.004)

First Name Length -0.001
(0.002)

Last Name Length 0.003
(0.003)

Algorithm Rating: First Name -0.006
(0.004)

Algorithm Rating: Last Name -0.001
(0.004)

Observations 12,910 12,910 12,910 12,910 12,910 7,158 7,158

Notes: The sample is derived from publicly available replication data for Oreopoulos (2011). Columns 1-5 include all job applicants,
while columns 6-7 focus on applicants with ethnically Indian, Pakistani, and Chinese names. The reported coefficients are marginal effects
of probit regressions, where the dependent variable is a dichotomous variable for receiving a callback. The algorithm rating for name
pronunciation difficulty is based on a weighted average of the letter-based and phoneme-based sub-rating schemes, where the weights are
derived from neural network learning. Clustered standard errors at the job advertisement level are in parentheses.20

Table A14: Name Fluency and Callback Rates: Experimental Data from Oreopoulos (2011)
– Sample of Ethnic Immigrant Applicants

Indian Pakistani Chinese
(1) (2) (3)

Callback Callback Callback

Algorithm Rating: Full Name -0.006 -0.012 -0.031
(0.006) (0.009) (0.019)

Observations 3,312 957 2,848
Control for Name Length Yes Yes Yes
Control for Gender Yes Yes Yes
Control for Resume Characteristics Yes Yes Yes

Notes: The sample is derived from publicly available replication data for Ore-
opoulos (2011). All specifications in this table focus on job applicants with
ethnically Indian, Pakistani, and Chinese names. The reported coefficients are
marginal effects of probit regressions, where the dependent variable is a dichoto-
mous variable for receiving a callback. The algorithm rating for name pronunci-
ation difficulty is based on a weighted average of the letter-based and phoneme-
based sub-rating schemes, where the weights are derived from neural network
learning. Clustered standard errors at the job advertisement level are in paren-
theses.

21

Table A15: Name Fluency and Callback Rates by Gender: Experimental Data from Bertrand
and Mullainathan (2004) and Oreopoulos (2011)

Bertrand and Mullainathan (2004)

All Applicants Black Applicants
Male Female Male Female
(1) (2) (3) (4)

Callback Callback Callback Callback

Algorithm Rating: First Name -0.006 -0.016 -0.019 -0.020
(0.033) (0.002) (0.016) (0.004)

Observations 1,124 3,746 549 1,886
Control for Name Length Yes Yes Yes Yes
Control for Race Yes Yes No No
Control for Resume Characteristics Yes Yes Yes Yes

Oreopoulos (2011)

All Applicants Ind/Pak/Chn
Male Female Male Female
(5) (6) (7) (8)

Callback Callback Callback Callback

Algorithm Rating: Full Name -0.002 -0.014 -0.003 -0.013
(0.011) (0.006) (0.011) (0.006)

Observations 6,343 6,567 3,543 3,615
Control for Name Length Yes Yes Yes Yes
Control for Ethnicity Yes Yes Yes Yes
Control for Resume Characteristics Yes Yes Yes Yes

Notes: The samples are derived from publicly available replication data for Bertrand and Mul-
lainathan (2004) and Oreopoulos (2011). Columns 1-2 and 5-6 are based on the full sample of each
data set, while columns 3-4 and 7-8 focus on the sample of Black job applicants and applicants with
ethnically Indian, Pakistani, and Chinese names, respectively. The reported coefficients are marginal
effects of probit regressions, where the dependent variable is a dichotomous variable for receiving a
callback. The algorithm rating for name pronunciation difficulty is based on a weighted average of
the letter-based and phoneme-based sub-rating schemes, where the weights are derived from neural
network learning. Clustered standard errors at the job advertisement level are in parentheses.

22

Table A16: Name Fluency and Callback Rates: Experimental Data from Bertrand and Mullainathan (2004) and Oreopoulos
(2011) – Sample of Low Quality Resumes

Bertrand and Mullainathan (2004) Oreopoulos (2011) Pooled Data
Low Quality Resume No Master’s Low Quality Resume/No Master’s

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Callback Callback Callback Callback Callback Callback Callback Callback Callback

Black -0.023 0.001 0.007
(0.007) (0.005) (0.005)

Algorithm Rating: First Name -0.018 -0.021
(0.003) (0.003)

Indian -0.047 -0.036 -0.035
(0.006) (0.008) (0.010)

Pakistani -0.058 -0.050 -0.050
(0.007) (0.009) (0.009)

Chinese -0.041 -0.038 -0.034
(0.006) (0.006) (0.010)

Chinese Canadian -0.058 -0.058 -0.055
(0.006) (0.006) (0.007)

Greek -0.020 -0.005 -0.006
(0.015) (0.019) (0.019)

British -0.025 -0.025 -0.024
(0.009) (0.009) (0.009)

Algorithm Rating: Full Name -0.009 -0.008
(0.004) (0.005)

Black/Immigrant (Ind/Pak/Chn) -0.029 -0.015 -0.017
(0.005) (0.006) (0.007)

Algorithm Rating: First Name -0.012 -0.010
(0.003) (0.004)

Observations 2,424 2,424 2,424 10,717 10,717 10,717 13,141 13,141 13,141
Control for Name Length No No Yes No No Yes No No Yes
Control for Gender No No Yes No No Yes No No Yes
Control for Resume Characteristics No No Yes No No Yes No No Yes

Notes: The samples are derived from publicly available replication data for Bertrand and Mullainathan (2004) and Oreopoulos (2011). All specifications in this table
focus on the subsample of job applicants with low quality resumes, where resume quality is determined based on a subjective measure in Bertrand and Mullainathan
(2004) and whether one holds a Master’s degree in Bertrand and Mullainathan (2004). The reported coefficients are marginal effects of probit regressions, where the
dependent variable is a dichotomous variable for receiving a callback. The algorithm rating for name pronunciation difficulty is based on a weighted average of the
letter-based and phoneme-based sub-rating schemes, where the weights are derived from neural network learning. Clustered standard errors at the job advertisement
level are in parentheses.

23

Table A17: Name Fluency and Callback Rates: Experimental Data from Nunley et al. (2015)

(1) (2) (3) (4)
Callback Callback Callback Callback

Black -0.028 -0.024 -0.034
(0.007) (0.007) (0.009)

Algorithm Rating: Full Name -0.009 -0.005 -0.009
(0.003) (0.004) (0.005)

Observations 9,396 9,396 9,396 9,396
Control for Name Length No No No Yes
Control for Gender No No No Yes
Control for Resume Characteristics No No No Yes

Notes: The sample is derived from replication data for Nunley et al. (2015). The reported
coefficients are marginal effects of probit regressions, where the dependent variable is a
dichotomous variable for receiving a callback. The algorithm rating for name pronunciation
difficulty is based on a weighted average of the letter-based and phoneme-based sub-rating
schemes, where the weights are derived from neural network learning. Clustered standard
errors at the job advertisement level are in parentheses.

24

Technical Appendix for “How Do You Say Your Name?

Difficult-To-Pronounce Names and Labor Market

Outcomes”

Qi Ge∗ Stephen Wu†

Abstract: In this technical appendix, we provide annotated code for the algorithm used
to measure pronunciation difficulty for various words/names. This program was developed
by James Kaffenbarger, Griffin Perry, Kenneth Talarico, Gwendolyn Urbanczyk, and Adam
Valencia (December 2021).

∗Department of Economics, Vassar College, Poughkeepsie, NY 12604, qige@vassar.edu.
†Department of Economics, Hamilton College, Clinton, NY 13323, swu@hamilton.edu.

Pronunciation Algorithm

To execute and load the interface that allows you to run the algorithm to measure word

complexity, download the folder and then execute/open the file titled run.bat. The interface

will look like:

Here is the python code for the main program:

1 from nameui import *

2 from to_ipa import to_ipa

3 import csv

4 from NNModel import convertToModelFormat, get_parent_languge,

get_combined_output↪→

5 import tensorflow as tf

6 from tensorflow import keras

7 from tensorflow.keras import layers

8 import math

9 from random import choice

10 from ngrams import NgramManager, Ngrams

11 import os

12 import time

13

14

15 class MainModel:

16 """ Class for the superclass that controls all of the main

functionality and↪→

17 contains all of the other models as instance variables. """

18

1

19 def __init__(self,

path_to_csv="ipa_dicts/english-general_american.csv"):↪→

20 """ Initializes models and the corpus of words. """

21 with open(path_to_csv, encoding="utf8") as f:

22 self.corpus = [w[1:-1] for row in csv.reader(f) \

23 for w in row[1].split(', ')]

24

25 self.ipa_model = to_ipa(self)

26 # SAE is "Standard American English"

27 self.SAE_model = tf.keras.models.load_model('IsAmericanEnglishv4.0')

28 self.root_model = tf.keras.models.load_model('RootLanguageModel')

29 self.combine_model = tf.keras.models.load_model('Combine Scores

Model')↪→

30

31 self.ngrams = NgramManager(self, 2, 3)

32

33 # Needed to communicate/share data across threads

34 self._gui = None

35 self.prog_val = None

36 self.to_gui_message = ""

37 self.is_warning = False

38 self.result = None

39 self.lock = threading.Lock()

40

41 def processInput(self, words):

42 """ Method to be called every time the user submits new words. """

43

44 # <names> is a list of every name the user inputted

45 names = list(map(lambda x: x.lower().strip(), list(words[0])))

46 self.addProgress(10)

47

48 progressDivisor = len(names)

49 if progressDivisor == 0:

50 progressDivisor = len(names)

51

52 # <ipa_names> is a list of the same length containing IPA

transcriptions of each name↪→

53 # i.e., ipa_names[i] is an IPA transcription of names[i]

54 ipa_names = []

55 progressVal = 0

56 for name in names:

57 ipa_names.append(self.ipa_model.to_ipa(name)[1:-1])

58

59 progressVal += (15 / progressDivisor)

60 if progressVal > 1:

2

61 self.addProgress(int(progressVal))

62 progressVal = 0

63

64 self.sendToMessageLog("IPA conversion complete", False)

65

66 gram_letters = []

67 progressVal = 0

68 for name in names:

69 gram_letters.append(round(100 -

self.ngrams.generateLetterProbs(name), 2))↪→

70

71 progressVal += (10 / progressDivisor)

72 if progressVal > 1:

73 self.addProgress(int(progressVal))

74 progressVal = 0

75

76 gram_phonemes = []

77 progressVal = 0

78 for name in ipa_names:

79 gram_phonemes.append(round(100 -

self.ngrams.generatePhonemeProbs(name), 2))↪→

80

81 progressVal += (10 / progressDivisor)

82 if progressVal > 1:

83 self.addProgress(int(progressVal))

84 progressVal = 0

85

86 self.sendToMessageLog("N-gram calculations complete", False)

87

88 # get neural net scores

89 # Tnks seems to take a while?

90 phonemeNN = convertToModelFormat(self.SAE_model,

91 pd.read_csv('Eng_2Chars.csv'),

92 self)

93 rootLanguageNN = convertToModelFormat(self.root_model,

94 pd.read_csv('singleChars.csv'),

95 self)

96

97 nn_scores = phonemeNN.convert(names)

98 root_NN_scores = rootLanguageNN.convert(ipa_names)

99 root_Parents = get_parent_languge(root_NN_scores)

100

101 self.sendToMessageLog("Neural Network calculations complete", False)

102

103

3

104

105 combinedNGrams = [round((gram_letters[i] + gram_phonemes[i]) / 2, 2)

106 for i in range(len(gram_letters))]

107

108 final_scores = get_combined_output(self.combine_model,

combinedNGrams, gram_letters, gram_phonemes, nn_scores)↪→

109 final_scores = [round(x, 2) for x in final_scores]

110 self.sendToMessageLog("Final score calculations complete", False)

111

112 # Threading Stuff - need to acquire the lock (just to make sure)

113 # then write the dataframe to the result attribute before

releasing↪→

114 # the lock and firing the end thread virtual event

115 self.lock.acquire()

116 self.result = pd.concat([words[0],

117 pd.DataFrame(final_scores),

118 pd.DataFrame(gram_letters),

119 pd.DataFrame(gram_phonemes),

120 pd.DataFrame(nn_scores),

121 pd.DataFrame(root_Parents)],

122 axis=1, ignore_index=True)

123 self.lock.release()

124 self.addProgress(5)

125 self._gui.generateEvent("<<ThreadEnded>>")

126

127 def setGUI(self, gui_win):

128 """

129 Method used to set the object's gui attribute.

130 @params - self

131 - gui_win: the Root_Win object to set _gui to

132 @returns - None

133 """

134 self._gui = gui_win

135

136

137 def setNGrams(self, nlist):

138 """

139 Method used to set the object's NGram's manager object so the user

140 can select which n they want to run with Ngrams. (This method

cannot↪→

141 be run by the GUI while in a multithreaded state, that would

142 probably create issues)

143 @params - self

144 - nlist: a list of ints to pass to the NGrams manager

constructor↪→

4

145 @returns - None

146 """

147 self.ngrams = NgramManager(self, *nlist)

148

149 def addProgress(self, value):

150 """

151 Method used to add progress to the progress bar. Sets prog_val to

value↪→

152 and then fires the virtual event to add progress

153 @params - self

154 - value: the value to add to the progress bar

155 @returns - None

156 """

157 self.lock.acquire()

158 self.prog_val = value

159 self.lock.release()

160 self._gui.generateEvent("<<AddProgress>>")

161

162 def sendToMessageLog(self, output, warning=True):

163 """

164 Method used to output a message to the message log. Sets

is_warning to↪→

165 warning, to_gui_message to output, and fires the

166 <<SendMessage>> virtual event

167 @params - self

168 - output: The message to be outputted to the log

169 - warning: If true, the message is treated as a warning.

170 Otherwise, it is treated as an 'info' message.

171 @returns - None

172 """

173 self.lock.acquire()

174 self.is_warning = warning

175 self.to_gui_message = output

176 self.lock.release()

177 self._gui.generateEvent("<<SendMessage>>")

178

179

180 def test_gui(self, words):

181 """

182 Method used to test the gui without running the entire program.

183 To use, on the line root = RootWin(model), add a true parameter

184 to the RootWin constructor.

185 """

186 self._gui.generateEvent("<<ThreadEnded>>")

187

5

188 def main():

189 """

190 Main sets up the MainModel object and the GUI, then calls the GUI's

191 mainloop.

192 Since the GUI Needs to know about the model and the model about the

GUI,↪→

193 we create the model first, then the GUI with the model, then set the

model's↪→

194 gui to be the GUI we just created, before calling the mainloop.

195 """

196 try:

197 model = MainModel()

198 root = RootWin(model)

199 model.setGUI(root)

200 except Exception as e:

201 output = "An error occured while setting up the program:\n"

202 output += "".join(traceback.format_exception(type(e), e,

e.__traceback__))↪→

203 print(output, file=sys.stderr)

204 sys.exit(1)

205

206 root.mainLoop()

207

208

209

210

211 if __name__ == '__main__':

212 main()

213

214

215

216 # def testoutput():

217 # with open("ipa_dicts/english-general_american.csv",

encoding="utf8") as f:↪→

218 # reader = csv.reader(f)

219 # corpus = [w[1:-1] for row in reader for w in row[1].split(', ')]

220 # names = [choice(corpus) for _ in range(200)]

221 # ipa_names = [ipa_model.ipa(name)[1:-1] for name in names]

222 # ngrams_scores = [ngrams_phoneme_algorithm(name) for name in

ipa_names]↪→

223 # nn_scores = getoutput(ipa_names, model)

224 # final_scores = [round(((nn_scores[i] + ngrams_scores[i]) / 2) *

100, 2) for i in range(len(ngrams_scores))]↪→

225 # final_scores = [round(100 - x, 2) for x in final_scores]

226 # with open("test-out.csv", 'w', encoding="utf8") as f:

6

227 # writer = csv.writer(f)

228 # writer.writerows([[names[i], final_scores[i]] for i in

range(len(names))])↪→

Here is python code that helps derive difficulty scores for letter n-grams and
phoneme n-grams:

1 import csv

2 class NgramManager:

3 def __init__(self, mainModel, *sizes):

4 self.grams = [Ngrams(size) for size in sorted(sizes)]

5 self.mainModel = mainModel

6

7 def generateLetterProbs(self, words):

8 probs = []

9 #to deal with if name is multiple words

10 words = words.split()

11 for word in words:

12 for gram in self.grams:

13 if len(word) == 1:

14 #if the input is a single letter, "pronuncability" =

100↪→

15 probs.append(100)

16 if gram.length > len(word):

17 break

18 probs.append(gram.generateLetterProbOccurence(word))

19 if probs == []:

20 self.mainModel.sendToMessageLog(f"Input: {word} too small for

the current set nGrams, ignoring")↪→

21 return 0

22 return sum(probs) / len(probs)

23

24 def generatePhonemeProbs(self, words):

25 probs = []

26 #to deal with if name is multiple words

27 words = words.split()

28 for word in words:

29 for gram in self.grams:

30 if len(word) == 1:

31 #if the input is a single phoneme, "pronuncability" =

100↪→

32 probs.append(100)

33 if gram.length > len(word):

34 break

35 probs.append(gram.generatePhonemeProbOccurence(word))

7

36 if probs == []:

37 self.mainModel.sendToMessageLog(f"Input: {word} too small for

the current set nGrams, ignoring")↪→

38 return 0

39 return sum(probs) / len(probs)

40

41 class Ngrams:

42 def __init__(self, length,

corpus="ipa_dicts/english-general_american.csv",

occurence_table="unigram_freq.csv"):

↪→

↪→

43 self.length = length

44 self.corpus = corpus

45 self.occurence_table = occurence_table

46 self.letter_dictionary = {}

47 self.phoneme_dictionary = {}

48 self.letter_occurence_dictionary = {}

49 self.phoneme_occurence_dictionary = {}

50 self._generateNgramDictionaries()

51 #self._generateOtherOccurrenceDictionaries()

52 self._generateOccurrenceDictionaries()

53

54 def _generateOtherOccurrenceDictionaries(self):

55 """ Opens and creates dictionaries that map each gram in the

occurence dictionary to↪→

56 how often it occurs, (most is 1, least is 0)"""

57 #print("starting to generate dictionaries")

58 with open(self.occurence_table, encoding="utf8") as f:

59 for row in csv.reader(f):

60 #row[0] is the word, row[1] is the phoneme, row[2] is the

occurence value↪→

61 letter_grams = self.generateNgrams(row[0])

62 phoneme_grams = self.generateNgrams(row[1])

63 for gram in letter_grams:

64 if self.letter_occurence_dictionary.get(gram) is None:

65 self.letter_occurence_dictionary.update({gram:

row[2]})↪→

66 else:

67 num = self.letter_occurence_dictionary.get(gram)

68 self.letter_occurence_dictionary.update({gram: num

+ row[2]})↪→

69 #print("finished letter dictionaries")

70 for gram in phoneme_grams:

71 if self.phoneme_occurence_dictionary.get(gram) is None:

72 self.phoneme_occurence_dictionary.update({gram:

row[2]})↪→

8

73 else:

74 num = self.phoneme_occurence_dictionary.get(gram)

75 self.phoneme_occurence_dictionary.update({gram: num

+ row[2]})↪→

76

77 #now we have the dictionaries with the total occurences. sort

them from highest to lowest↪→

78 # and then scale them

79 #print("generated non-scaled dictionaries")

80 letter_sorted = sorted(self.letter_occurence_dictionary,

key=self.letter_occurence_dictionary.get)↪→

81 for i in range(len(self.letter_occurence_dictionary)):

82 self.letter_occurence_dictionary.update({letter_sorted[i]: ((i

+ 1) / len(self.letter_occurence_dictionary))})↪→

83

84 phoneme_sorted = sorted(self.phoneme_occurence_dictionary,

key=self.phoneme_occurence_dictionary.get)↪→

85 for i in range(len(self.phoneme_occurence_dictionary)):

86 self.phoneme_occurence_dictionary.update({phoneme_sorted[i]:

((i + 1) / len(self.phoneme_occurence_dictionary))})↪→

87

88 return

89

90 def _generateOccurrenceDictionaries(self):

91 """ Opens and creates dictionaries that map each word/phoneme to

how often it occurs↪→

92 (most is 1, least is 0)"""

93 count = 0

94 with open(self.occurence_table, encoding="utf8") as f:

95 for row in csv.reader(f):

96 #hard coded the lengths of the occurence dictionaries,

will need to change later↪→

97 #if user wants to provide their own

98 self.letter_occurence_dictionary[row[0]] = ((333333 -

count) / 333333)↪→

99

100 if self.phoneme_occurence_dictionary.get(row[1]) != None:

101 #this is done because there are a lot of words that

are pronounced↪→

102 #the same, but spelled differently

103 count += 1

104 continue

105 self.phoneme_occurence_dictionary[row[1]] = ((333333 -

count) / 333333)↪→

106 count += 1

9

107

108 def generateNgrams(self, str):

109 """ Given a string and an n, return a list of all grams of that

length"""↪→

110 answer = []

111 for i in range(0, len(str) - self.length + 1):

112 end = i + self.length

113 answer.append(str[i:end])

114 return answer

115

116 def _generateNgramDictionaries(self):

117 """ Generates the dictionaries for both letters and phonemes,

keeping track of↪→

118 the total occurences"""

119 with open(self.corpus, encoding="utf8") as f:

120 letter_corpus = [w[1:-1] for row in csv.reader(f) \

121 for w in row[0].split(', ')]

122 with open(self.corpus, encoding="utf8") as f:

123 phoneme_corpus = [w[1:-1] for row in csv.reader(f) \

124 for w in row[1].split(', ')]

125

126 for str in letter_corpus:

127 letter_grams = self.generateNgrams(str)

128 for gram in letter_grams:

129 if self.letter_dictionary.get(gram) is None:

130 self.letter_dictionary.update({gram: 1})

131 else:

132 num = self.letter_dictionary.get(gram)

133 self.letter_dictionary.update({gram: num + 1})

134

135 for str in phoneme_corpus:

136 phoneme_grams = self.generateNgrams(str)

137 for gram in phoneme_grams:

138 if self.phoneme_dictionary.get(gram) is None:

139 self.phoneme_dictionary.update({gram: 1})

140 else:

141 num = self.phoneme_dictionary.get(gram)

142 self.phoneme_dictionary.update({gram: num + 1})

143

144 return

145

146 def generateDictionaryLetterProb(self, word):

147 """ Given a word, scale data with 100 == most occurences in the

dictionary,↪→

148 not to be confused with the occurence csv"""

10

149 grams = self.generateNgrams(word)

150 max_occurences = max(self.letter_dictionary.values()) / 100

151 average_gram_prob = 0

152 for gram in grams:

153 if self.letter_dictionary.get(gram) == None:

154 #if the gram is not in the dictionary, treat it as zero

to avoid↪→

155 #dividing NoneType

156 continue

157 average_gram_prob += self.letter_dictionary.get(gram) /

max_occurences↪→

158

159 if average_gram_prob != 0:

160 average_gram_prob = average_gram_prob / len(grams)

161 return average_gram_prob

162

163 def generateDictionaryPhonemeProb(self, word):

164 """ Given a phoneme, scale data with 100 == most occurences in

the dictionary,↪→

165 not to be confused with the occurence csv"""

166 grams = self.generateNgrams(word)

167 max_occurences = max(self.phoneme_dictionary.values()) / 100

168 average_gram_prob = 0

169 for gram in grams:

170 if self.phoneme_dictionary.get(gram) == None:

171 #if the gram is not in the dictionary, treat it as zero

to avoid↪→

172 #dividing NoneType

173 continue

174 average_gram_prob += self.phoneme_dictionary.get(gram) /

max_occurences↪→

175

176 if average_gram_prob != 0:

177 average_gram_prob = average_gram_prob / len(grams)

178 return average_gram_prob

179

180 def generateLetterProbOccurence(self, word):

181 """ Given a word, call generateDictionaryLetterProb, and then

scale it up↪→

182 using the letter occurence table"""

183 prob = self.generateDictionaryLetterProb(word)

184 if self.letter_occurence_dictionary.get(word) == None:

185 #word is not in the occurence dictionary, so no scaling is

done↪→

186 return prob

11

187 scaler = float(self.letter_occurence_dictionary[word])

188 prob += (100 - prob) * scaler

189 return prob

190

191 def generatePhonemeProbOccurence(self, phoneme):

192 """ Given a phoneme, call generateDictionaryPhonemeProb, and then

scale it up↪→

193 using the phoneme occurence table"""

194 prob = self.generateDictionaryPhonemeProb(phoneme)

195 if self.phoneme_occurence_dictionary.get(phoneme) == None:

196 #phoneme is not in the occurence dictionary, so no scaling is

done↪→

197 return prob

198 scaler = float(self.phoneme_occurence_dictionary[phoneme])

199 prob += (100 - prob) * scaler

200 return prob

The following code provides examples of calculation for a sample of words:

1 # def generateLetterProbOccurence(self, word):

2 # """ Given a word, call generateDictionaryLetterProb, and then

scale it up↪→

3 # using the letter occurence table"""

4 # prob = self.generateDictionaryLetterProb(word)

5 # average_scaler = 0

6 # for gram in self.generateNgrams(word):

7 # if self.letter_occurence_dictionary.get(gram) == None:

8 # continue

9 # average_scaler +=

float(self.letter_occurence_dictionary[gram])↪→

10 # if average_scaler != 0:

11 # average_scaler = average_scaler /

len(self.generateNgrams(word))↪→

12 # prob += (100 - prob) * average_scaler

13 # return prob

14

15 # def generate_prob(self, word):

16 # """ Given a word, compute the average gram prob """

17 # grams = self.generateNgrams(word)

18 # average_gram_prob = 0

19 # for gram in grams:

20 # average_gram_prob += self.dictionary.get(gram) / self.population

21

22 # if average_gram_prob != 0:

12

23 # average_gram_prob = average_gram_prob / len(grams)

24 # return average_gram_prob

25

26 # data = ["hello", "world", "Ihope", "thisworks"]

27 # bi_gram = ngrams(data, 2)

28

29 # print(bi_gram.dictionary)

30 # def ngrams_word_algorithm(word):

31 # """ Given a word, compute the tri_grams and get the average

tri-gram value of the word↪→

32 # from the corpus """

33 # word_trigrams = self.generateNgrams(word, 3)

34 # average_trigram_prob = 0

35 # for gram in word_trigrams:

36 # average_trigram_prob += tri_grams.get(gram) /

bi_grams.get(gram[:-1])↪→

37

38 # # To make sure that the word isn't composed completely of

tri-grams not found↪→

39 # # in the corpus

40 # if average_trigram_prob != 0:

41 # average_trigram_prob = average_trigram_prob /

len(word_trigrams)↪→

42

43 # return average_trigram_prob

44

45 # def ngrams_phoneme_algorithm(phoneme):

46 # """ Given a phoneme, compute the z-score from the average of

the bi-gram calculations↪→

47 # and convert to a float between 0-1 """

48 # word_bigrams = generateNgrams(phoneme, 2)

49

50 # average_bigram_prob = 0

51 # for gram in word_bigrams:

52 # # If the corpus doesn't have this bi-gram, continue on to

the next bi-gram.↪→

53 # # Might need to change the weight of this later but for now

it seems fine↪→

54 # if bi_grams.get(gram) == None:

55 # continue

56

57 # average_bigram_prob += bi_grams.get(gram) /

un_grams.get(gram[0])↪→

58 # #average_bigram_prob += bi_grams.get(gram) / bi_gram_pop

59

13

60 # # To make sure that the word isn't composed completely of

bi-grams not found↪→

61 # # in the corpus

62 # if average_bigram_prob != 0:

63 # average_bigram_prob = average_bigram_prob /

len(word_bigrams)↪→

64

65 # z_score = (average_bigram_prob - average_corpus_prob) /

standard_deviation↪→

66

67 # answer = .5 * (math.erf(z_score / 2 ** .5) + 1) #

https://stackoverflow.com/questions/2782284/function-to-convert-a ⌋

-z-score-into-a-percentage

↪→

↪→

68

69 # return answer #average_bigram_prob

70 #average_corpus_prob = len(bi_grams) / bi_gram_pop

71 # average_corpus_prob = 0

72 # for gram in bi_grams:

73 # average_corpus_prob += bi_grams.get(gram) / un_grams.get(gram[0])

74 # average_corpus_prob = average_corpus_prob / bi_gram_pop

75

76 # standard_deviation = 0

77 # for gram in bi_grams:

78 # standard_deviation += (bi_grams.get(gram) / un_grams.get(gram[0]) -

average_corpus_prob) * (bi_grams.get(gram) / un_grams.get(gram[0]) -

average_corpus_prob)

↪→

↪→

79 # #standard_deviation += ((bi_grams.get(gram) / bi_gram_pop) -

average_corpus_prob) * ((bi_grams.get(gram) / bi_gram_pop) -

average_corpus_prob)

↪→

↪→

80 # standard_deviation = standard_deviation / (bi_gram_pop - 1)

81 # standard_deviation = math.sqrt(standard_deviation)

The following code takes the letter-based difficulty scores and the phoneme-
based difficulty scores and uses a neural network model to calculate a final word
difficulty score that is scaled to be between 0-100:

1 import os

2 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

3 import pandas as pd

4 import tensorflow as tf

5 from tensorflow import keras

6 from tensorflow.keras import layers

7 import numpy as np

8 import time

14

9 import os

10 from to_ipa import to_ipa

11

12 class convertToModelFormat():

13 def __init__(self, model, columns, mainModel):

14 self.model = model

15 self.columns = columns

16 self.columns.columns = ["Char(s)"]

17 self.mainModel = mainModel

18

19

20

21 def convert(self, inputlist):

22 """Takes in inputs, and uses the columns given by preselected csv

to run on the matching model↪→

23 """

24 output = []

25 progressDivisor = len(inputlist)

26 if progressDivisor == 0:

27 progressDivisor = len(inputlist)

28

29 progressVal = 0

30 temparr = []

31

32 for ipaword in inputlist:

33

34 temp = []

35 for i in self.columns['Char(s)']:

36

37 if i in ipaword:

38 temp.append(1)

39 else:

40 temp.append(0)

41

42 temparr.append(temp)

43 progressVal += 25 / progressDivisor

44 if progressVal > 1:

45 self.mainModel.addProgress(int(progressVal))

46 progressVal = 0

47

48

49 answer = pd.DataFrame(temparr)

50 answer.columns = self.columns['Char(s)'].values

51

52 # Most of the runtime, presumably. Unpack?

15

53 prediction = self.model.predict(temparr)

54

55

56 roundedpred = []

57 for i in prediction:

58 temp = []

59 for j in i:

60 temp.append(j.round())

61 roundedpred.append(temp)

62

63 #output.append(roundedpred)

64

65 return roundedpred

66

67 def get_parent_languge(arr):

68 outputs = []

69 for i in arr:

70 if i[0] == 1:

71 outputs.append("Germanic")

72 elif i[1] == 1:

73 outputs.append("Romance")

74 elif i[2] == 1:

75 outputs.append("Sino-Tebetan")

76 else:

77 outputs.append("Japonic")

78 return outputs

79

80 def get_combined_output(model, final_scores, gram_letters, gram_phonemes,

nn_scores):↪→

81 """Takes in the model, and the outputs from all other aspects of the

program, and combines them into one score"""↪→

82 #The STDDEV and mean of the training data, used for scaling the

outputs↪→

83 STDDEV = 0.136461

84 MEAN = 1.251892

85 inputDF = pd.DataFrame()

86 temp = []

87 for i in nn_scores:

88 temp.append(i[0])

89 inputDF["FinScores"] = final_scores

90 inputDF["LetterNGramScores"] = gram_letters

91 inputDF["PhonemeNGramScores"] = gram_letters

92 inputDF["NNscores"] = temp

93 prediction = model.predict(inputDF)

94 holder = []

16

95 for i in prediction:

96 for j in i:

97 #Ensures score is never over 100 or below 0

98 if ((((j-MEAN)/STDDEV)*33) +50)> 100:

99 holder+=[100.0]

100 elif ((((j-MEAN)/STDDEV)*33) + 50)< 0:

101 holder+=[0.0]

102 else:

103 #Scaled by 33 to make results spread wider across all

values between 0-100, not centered around 50↪→

104 holder+=[(((j-MEAN)/STDDEV)*33) + 50]

105

106 return holder

17

