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Appendix A. Details of the microdata construction

This section provides a detailed description of how we constructed the two micro datasets.

We first show in detail how we constructed the data on entrusted loans and then describe

the construction of balance sheet data of individual commercial banks.

A.1. Construction of entrusted loan data. The data on entrusted loans are off banks’

balance sheets. We read all the raw announcements of entrusted lending between nonfi-

nancial firms from 2009 to 2015. One main reason we must read raw announcements line

by line is that there were often multiple announcements made by an individual lender for

the same transaction. In such cases, we manually combined these raw announcements into

one announcement. Some announcements were for repayment of entrusted loans. To avoid

double counting, we drop those announcements because the same transaction was recorded

in previous announcements. Another reason for reading through raw announcements relates

to the nuances of the Chinese language in expressing how the transaction of a particular

entrusted loan was conducted. For some announcements, the amount of an entrusted loan

was planned but never executed or executed with a different amount in a later announce-

ment. During the loan planning stage, the name of the trustee was often not given in an

announcement. If we had not been careful about these announcements, we would have ex-

aggerated the number and the amount of entrused loans collected. A fourth reason is that

we must remove announcements about loans that had already been paid to avoid dupli-

cation. The announcements organized this way are the ones we use for the paper and we

call them “announcements” rather than “raw announcements” with the understanding that

those announcements have been already cleaned up from raw announcements.

Our data construction involves extracting the transaction data, manually, from our cleaned-

up announcements of new loans. For each announcement, we recorded the names of the

lender and the borrower. Because the same transaction may be announced by both lender

and borrower, two announcements may correspond to only one transaction. In these cases,

we manually compared both announcements to ascertain the accuracy of our processed data

set.1 After the comparison, we merged the two announcements for the same transaction

into one unique observation. It turns out that there was only one such announcement for

the period 2009-2015. Subtracting this double-counted announcement gives us 1379 unique

1We find that the lender’s announcement typically contains more information than the borrower’s.
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observations. The timing of the observation corresponds to the exact timing of the trans-

action and does not necessarily correspond to the time when an announcement was made.

The transaction data constructed from these unique observations are used for our empirical

analysis.

The announcement data we constructed is the most important source for off-balance-sheet

activities. These data were also used by the PBC in their financial stability reports and we

cross-checked our data with these reports. We read through more than a thousand relevant

announcements line by line and cross-checked the data from different sources to decipher the

reporting nuances in the Chinese language, eliminate redundant and duplicated observations,

and obtain accurate and comprehensive data for entrusted lending facilitated by banks and

nonbank trustees. During this construction process that has taken us years to complete, we

identified lending firms, borrowing firms, and, most important of all, trustees that facilitated

entrusted lending between nonfinancial firms. Our data sample begins in 2009 and ends in

2015. There are relatively few observations before 2009.

Table A1 shows the number of unique observations without duplicated announcements.

The total number of unique observations must equal the sum of “NLA” and “NBA” minus

“NLABA” (the number of duplications). Clearly, the number of announcements made by

lenders was considerably greater than the number of announcements made by borrowers, a

fact that is consistent with the legal requirement that listed lending firms must reveal all the

details of entrusted loan transactions.

Table A2 shows a breakdown of transactions by different types of trustees and different

types of loans. Affiliated loans involve both lending and borrowing firms within the same

conglomerate. While most entrusted loans facilitated by nonbank trustees were affiliated

ones, a majority of affiliated loans were channeled by banks, a fact that is not well known.

As one can see from the table, no matter whether entrusted loans were affiliated, small banks

facilitated more transactions than large banks, and large banks facilitated more transactions

than nonbank trustees. Thus, banks played a critical role in facilitating both affiliated and

non-affiliated entrusted loans.

Nonstate banks accounted for the largest fraction of both loan transactions (number) and

loan volume (amount). Table A3 shows that the number of entrusted loan transactions

facilitated by nonstate banks took 50% of the total number and the amount of entrusted

loans 47% of the total amount in 2009-2015. Thus, nonstate banks played a special role in

funneling entrusted loans.
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Table A1. Number of announcements made by lenders and borrowers

Description NLA NBA NLABA Total

Number of observations 1152 228 1 1379

Note. NLA: number of lenders’ announcements; NBA: number of borrowers’

announcements; NLABA: number of the same transactions announced by both lenders and

borrowers.

Table A2. A breakdown of the total number of transactions by types of

trustees and types of loans

Description NBTs State banks Nonstate banks Total

Non-affiliated loans 5 11 255 376

Affiliated loans 304 256 443 1003

Total 309 372 698 1379

Note. NBTs: nonbank trustees.

Table A3. Proportions (%) of loan transactions and loan volume according

to different types of trustees

Description NBTs State banks Nonstate banks Total

Number of transactions 22.41 26.98 50.62 100

Loan volume 28.73 24.03 47.24 100

Note. NBTs: nonbank trustees.

A.2. Construction of bank asset data. The bank asset data contain bank loans and

ARIX on banks’ balance sheets. We constructed the bank asset dataset using banks’ quar-

terly reports downloaded from the WIND database. The Bankscope database is also used for

obtaining annual balance sheet information such as LDR, capital adequacy ratio, liquidity

ratio, and size for all Chinese commercial banks, including banks other than the 16 large

publicly listed banks. Quarterly series of bank-specific attributes are unavailable for most

private banks. Our panel regression analyses in Sections IV.A and IV.B of the main text

include private banks as facilitators of entrusted lending.

As for bank loans and ARI, we downloaded the quarterly reports for each of the 16

commercial banks listed in the Hongkong, Shenzhen, or Shanghai Exchanges from WIND.

Chinese commercial banks publish a first quarterly report (Q1), an interim report (Q2), a
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third quarterly report (Q3), and an annual report(Q4). The ARIX series, equal to ARI sub-

tracting the amount of central bank bills and government bonds, is available only annually;

we interpolated the quarterly ARIX series by the quarterly ARI series. Since the annual

ARIX series is missing for a number of commercial banks in 2009 and 2010, the interpolated

quarterly ARIX series are missing for these banks during these years. We organized all these

data into an unbalanced quarterly panel dataset from 2009Q1 to 2015Q4.

During the process of constructing our bank asset dataset, we discovered that commercial

banks were not required to report the detailed products within ARIX until recently and

there was no breakdown of the ARIX series until recent years as the CBRC regulations have

been increasingly enforced over time. We find that during 2014-2015, a breakdown of ARIX

may include asset management plan, trust plan, wealth management products, and various

bonds issued by corporations, financial institutions, and local governments (see Figures A1

and A2 for examples). The name “trust plan” or “asset management plan” can be deceiving

because the beneficiary rights of entrusted loans (entrusted rights) were repackaged by trust

companies or asset management companies into a trust plan or an asset management plan

to be sold to banks and other investors. In other words, investors (e.g., banks) did not

buy entrusted rights directly from the firm who was the lender of entrusted loans, but

rather they invested in a trust plan or an asset management plan used to transfer entrusted

rights. As an example of a trust plan, on July 8, 2010 CICTC trust announced a trust

plan to transfer the beneficiary right of an entrusted loan made by Guangzhou Electronic

Real Estate Development Co. Ltd to its affiliated company (see Figures A3-A5). As an

example of an asset management plan, Zhongrong (Beijing) Asset Management Co. Ltd

issued an announcement describing an asset management plan that was created to transfer

entrusted rights between two nonfinancial companies (see Figures A6-A7). We approximate

the amount of entrusted rights as the sum of trust plan and asset management plan, which

has an average 78.04% (43.64%) share of ARIX for nonstate (state) banks during 2014-2015.

The high share for nonstate banks is consistent with the high correlation between entrusted

loans and ARIX documented in Section IV.D of the main text.

Bonds issued by local governments within ARIX are related to Chen, He and Liu (2017) as

part of shadow banking products showing up on banks’ balance sheets. But unfortunately,

this portion is not always available on banks’ annual reports. Although we suspect that

bonds issued by local governments are part of ARIX, we cannot separate them from ARIX.
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Appendix B. A dynamic equilibrium model

In this section, we construct a dynamic theoretical model fully in regard to the impacts of

monetary policy shocks on banks’ portfolio allocation and total credit. The purpose of this

section is to provide a mechanism that shows that contractionary monetary policy causes

bank loans to decline as expected (the bank lending channel) but risky nonloan assets to

increase (dampening the effectiveness of monetary policy).

We begin with a description of the model and the bank’s optimization prolbem. We then

establish important features of the model, which makes it tractable to solve an individual

bank’s optimization problem. After that, we characterize the equilibrium solutions on banks’

portfolio and dividend choices. The proofs of all lemmas and propositions in this section are

provided in Appendix C.

To maintain tractability, we abstract from a host of factors such as reserve requirements

to highlight the bank lending channel. Instead, we focus on the two regulatory constraints

(LDR and safe-loan constraints) and regulatory costs associated with deposit shortfalls.

The economy is populated by a continuum of infinitely-lived banks whose identity is de-

noted by j ∈ [0, 1]. Each bank is subject to an idiosyncratic withdrawal shock to its deposits

with a fraction ωt of deposits withdrawn. Specifically, the idiosyncratic shock ωt is contin-

uously distributed with the probability density function f(ωt) that is uniformly distributed

with the support of [µ (εm,t) , 1], where εm,t is an i.i.d. monetary policy shock as in previous

empirical sections. As shown in Section V.A of the main text, a contractionary monetary

policy shock leads to a fall of aggregate deposits by changing the distribution of idiosyncratic

deposit withdrawals. That is,

µ (εm,t) ' −(2εm,t + 1).

In the subsequent analysis of an individual bank’s problem, we omit the subscript j as

we show that the bank’s equity is a sufficient statistic for that bank’s individual state. The

dynamic aggregation problem is postponed to Appendix C (see in particular equation (C48)).

The bank has three types of assets to choose: (i) cash represented by C, (ii) traditional bank

loans, B, subject to both LDR and safe-loan regulations, and (iii) risky investment assets,

Ir, subject to a default risk but not to the two regulations as Ir is not regarded as a part of

bank loans. Bank loans have a longer maturity than risky investment assets.2

Within each period, the banking activity involves two stages: lending and balancing stages.

2This feature is consistent with our empirical finding that entrusted loans had a shorter maturity than

bank loans (Table 1 of the main text).
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B.1. Lending stage. At the lending stage, the bank decides the amount of deposits to

demand, how much of the dividend to distribute, and how to allocate three types of assets

for investment: inter-temporal bank loans, within-period risky nonloan assets, and cash.

Bank loans, Bt, are safe (default free) but subject to the regulatory constraint on the LDR,

and are purchased at a discount price qt. Risky assets, Irt , have a default probability prt and

are purchased at a discount price 0 < qrt < 1.

The law of motion for bank loans evolves as

Bt = δB̃t + St, (B1)

where B̃t represents outstanding bank loans at the beginning of time t, (1− δ)B̃t represents

a fraction of loans that are retired, and St represents new bank loans. Denote cash at the

beginning of t by C̃t such that

Ct = C̃t + ϕt, (B2)

where ϕt represents additional cash holdings chosen by the bank.

At the beginning of period t, the repayment of the bank loan that is retired reduces the

bank’s liability by (1− δ)B̃t. Accordingly, the bank’s balance sheet constraint is

D̃t − (1− δ)B̃t + Et = C̃t + qtδB̃t, (B3)

where D̃t denotes deposits before the bank loan is repaid and Et the bank’s equity or capital.

Table B4, below, represents the balance sheet in which the left column indicates the asset

side and the right column the liability side.

Table B4. Balance sheet at the beginning of the period

Asset Liability

Cash
(
C̃t

)
Deposits

(
D̃t − (1− δ)B̃t

)
Loans

(
qtδB̃t

)
Equity (Et)

The bank’s balance sheet constraint, after choosing Ct (or ϕt), I
r
t , Bt (or St), Dt, and

dividend DIVt, is

Dt/R
D
t + Et −DIVt = Ct + qrt I

r
t + qBt, (B4)

where RD
t is the deposit rate. Without loss of generality, we assume RD

t > 1. Rearranging

the above equation yields the following balance sheet equation

Dt/R
D
t︸ ︷︷ ︸

deposits

+ Et −DIVt + (1− qrt )Irt + (1− qt)Bt︸ ︷︷ ︸
equity

= Ct︸︷︷︸
cash

+ Irt +Bt︸ ︷︷ ︸
assets

. (B5)
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The balance sheet now becomes Table B5.

Table B5. Balance sheet after the bank’s optimization

Asset Liability

Cash (Ct) Deposits

Risky assets Dt/R
D
t

Irt Equity

Loans Et −DIVt+

Bt (1− qrt )Irt + (1− qt)Bt

Substituting (B1), (B2), and (B3) into (B5) gives us the flow-of-funds constraint as

D/RD
t − D̃t︸ ︷︷ ︸

∆deposits

+ (1− qrt )Irt + (1− qt)St −DIVt︸ ︷︷ ︸
∆equity

= ϕt + Irt +
(
Bt − B̃t

)
︸ ︷︷ ︸

∆assets

. (B6)

The leverage constraint is

Dt/R
D
t ≤ κ [Et −DIVt] , (B7)

where κ is the leverage ratio and the term in brackets after κ represents the equity net of

the dividend payout. The liquidity constraint, as a proxy for a regulation on the sufficiency

of the bank’s liquid assets, is a lower bound for cash holdings in the model:

Ct ≥ ψ [Et −DIVt] . (B8)

B.2. Balancing stage. In the balancing stage, two random events occur: an idiosyncratic

withdrawal shock to deposits and a default shock to risky assets. When the first random

event occurs, the volume of bank loans is constrained by the LDR regulation as

qBt ≤ θ
(1− ωt)Dt

RD
,

where θ is the LDR ceiling set by the government.

Denote the deposit shortfall as

xt = qBt − θ
(1− ωt)Dt

RD
(B9)

and the extra cost to recoup the shortfall by

χ(xt) =

rbxt if xt ≥ 0

0 if xt < 0
,

where rb > 0 is an extra cost of acquiring additional deposits x.



8

When the default on Irt does not occur (the no-default state), the bank’s liability is reduced

at the end of the period because of repayment of the principal of risky assets. If Irt is defaulted

(the default state), the bank’s equity is reduced. We use the stochastic variable ξ to denote

this default contingency:

ξt =

1 with probability 1− pr (the no-default state)

φ with probability pr (the default state)
,

where 0 ≤ φ < 1 represents the recovering rate of risky assets in the default state. The

balance-sheet constraint for each bank is

Dt/R
D
t − ξtIrt︸ ︷︷ ︸

liabilities

+ Et −DIVt − (1− ξt) Irt + (1− qrt )Irt + (1− qt)Bt︸ ︷︷ ︸
equity

= Ct +Bt︸ ︷︷ ︸
assets

.

At the end of period t (the beginning of period t+ 1), the stock variables are balanced as

D̃t+1 = Dt(1− ωt) + χ(xt)− ξtRD
t+1I

r
t , (B10)

C̃t+1 = Ct − ωtDt, (B11)

B̃t+1 = Bt. (B12)

When there is a liquidity shortfall (Ct < ωtDt) due to a deposit withdrawal, the bank can

borrow from the central bank to satisfy depositors’ withdrawal needs and repay the loan at

the beginning of the next period.3 Accordingly, C̃t+1 corresponds to the net balance with the

central bank. A negative value of C̃t+1 simply means a net borrowing from the central bank.

Note that the balance sheet constraint (B4) makes sure that the bank repays the borrowed

amount to the central bank at the beginning of the next period.4

B.3. The bank’s optimizing problem. The bank takes µ(εm,t), as well as rb, qt, q
r
t , R

D
t , as

given when solving its problem. To avoid notational glut and make our theory transparent,

we omit the time subscript whenever no confusion arises. The optimizing behavior at the

3A major task of the PBC is to maintain the stability of liquidity within the banking system to prevent

default. For instance, the PBC provides short-term liquidity to the bank in need of liquidity via central bank

liquidity loans or the standing lending facility (SLF). The practice of these policy instruments is documented

in the PBC’s quarterly MPRs.
4To highlight the costs associated with a deposit shortfall and its impact on the bank’s portfolio choice

between bank loans and risky non-loan assets, we assume that the interest rate for the bank to borrow from

the central bank is zero.
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lending stage can thus be described as

V l
(
C̃, B̃, D̃; εm

)
= maxU(DIV) + Eω,ξ

[
V b(C,B,D; εm)

]
,

where V l is the value function at the lending stage, V b is the value function at the balancing

stage, and Eω,ξ is the mathematical expectation with respect to the (ω, ξ) measure. By

choosing (DIV, ϕ, S, Ir, D), the bank solves the above problem subject to

D/RD = D̃ − (1− δ)B̃ + DIV + ϕ+ qrIr + qS, (B13)

C = C̃ + ϕ, (B14)

B = δB̃ + S, (B15)

D/RD ≤ κ
[
C + qrIr + qB −D/RD

]
, (B16)

C ≥ ψ
[
C + qrIr + qB −D/RD

]
, (B17)

where constraint (B13) corresponds to (B6), and constraint (B16), derived from equa-

tion (B5) and (B7), represents the leverage constraint on the bank’s optimization problem.

The balancing stage behavior can be described as

V b(C,B,D; εm) = βEm

[
V l(C̃ ′, B̃′, D̃′; ε′m) | εm

]
subject to

D̃′ = (1− ω)D + χ(x)− ξRDIr, (B18)

C̃ ′ = C − ωD, (B19)

B̃′ = B, (B20)

x = qB − θ(1− ω)D/RD, (B21)

where β is a subjective discount factor and Em represents the mathematical expectation

with respect to monetary policy shocks. Constraints (B18), (B19), and (B20) correspond to

(B10), (B11), and (B12), respectively, and constraint (B21) corresponds to (B9).

Combining the two stages, we describe the overall optimization problem as

V l(C̃, B̃, D̃; εm) = maxU(DIV)

+ βEm,ω,ξ
[
V l
(
C − ωD,B, (1− ω)D + χ(x)− ξRDIr; ε′m

) ∣∣ εm] (B22)

subject to (B13), (B14), (B15), (B16), and (B17). The choice variables for this optimization

are (DIV, ϕ, S, Ir, D).
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B.4. Features of the bank’s optimization problem. We show that the original bank’s

optimization problem can be simplified into the single state-space representation. Moreover,

it satisfies two nice properties: homogeneity in bank equity and separability of portfolio

choice from dividend choice.

Proposition B1. The optimization problem (B22) can be simplified and collapsed into the

single-state representation

V (E ; εm) = maxU(DIV) + βEm,ω,ξ [V (E ′; ε′m) | εm] (B23)

subject to (B16), (B17), (B21), and

E −DIV = C + qrIr + qB −D/RD, (B24)

E ′ = C − ωD + q′δB + (1− δ)B −
[
(1− ω)D + χ(x)− ξRDIr

]
, (B25)

where the single state is E , (B24) corresponds to (B4), (B25) is derived from (B3), (B10),

(B11), and (B12) (by moving time t in (B3) forward to time t+ 1), and the choice variables

are (DIV, C,B,D, Ir).

Since constraints (B16), (B17), (B24), and (B25) are linear in E and the objective function

is homothetic in E , the solution to the bank’s problem not only exists but also is unique and

the policy function is linear in equity E . Moreover, thanks to the Principle of Optimality,

the bank’s dynamic problem can be separated into two subproblems, one concerning an

intertemporal choice of dividend payoffs and the other relating to an intratemporal portfolio

allocation. The following proposition formalizes these two results.5

Proposition B2. Let

U(DIV) =
DIV1−γ

1− γ
,

where γ ≥ 1. Optimization problem (B23) satisfies the two properties: homogeneity in E

and separability of portfolio choice from dividend choice.

• Homogeneity. The value function V (E ; z) is

V (E ; z) = v(z)E 1−γ,

and v(z) satisfies the Bellman equation over the choice variables {div, c̃, ir, b̃, d̃}

v(z) = maxU(div) + βEm,ω,ξ

[
v(z′) (e′(ω, ξ; ε′m, εm))

1−γ | z
]

(B26)

5The homogeneity and separability properties in Proposition B2 are similar to Bianchi and Bigio (2017).
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subject to

d/RD ≤ κ
[
c+ qrir + qb− d/RD

]
, (B27)

1 = c+ div + qrir + qb− d/RD, (B28)

e′ = c+ (q′δ + 1− δ)b− d− χ
(
qb− θ(1− ω)d/RD

)
+ ξRDir, (B29)

c ≥ ψ
[
c+ qrir + qb− d/RD

]
, (B30)

where

[div, c, b, d, ir, e′] =
[DIV, C,B,D, Ir,E ′]

E
. (B31)

• Separability. Problem (B26) can be broken into two separate problems. The first

problem is for banks to make an optimal portfolio choice by choosing {wc, wi, wb, wd}
to maximize the certainty-equivalent portfolio value as

Ω(ε′m, εm) = max{Eω,ξ
[
wc +RIwi +RBwb −RDwd −Rx

]1−γ} 1
1−γ (B32)

subject to

1 = wc + wi + wb − wd, (B33)

wd ≤ κ(wc + wi + wb − wd), (B34)

wc ≥ ψ(wc + wi + wb − wd), (B35)

and taking the following prices as given

RI =
ξRD

qr
, RB =

q′δ + 1− δ
q

, Rx = χ (wb − θ(1− ω)wd) , (B36)

where

wc =
c

1− div
, wi =

qrir

1− div
, wb =

qb

1− div
, wd =

d/RD

1− div
.

The second problem is to choose div in response to aggregate shocks:

v(εm) = max
div

U(div) + β(1− div)1−γEm
[
Ω(ε′m, εm)1−γ v(ε′m)

∣∣ z] . (B37)

Note that equations (B27), (B28), (B29), and (B30) are derived from equations (B16),

(B24), (B25), and (B17) and that equation (B29) implies e′ is a function of ω, ξ, ε′m, and εm

such that

e′(ω, ξ; ε′m, εm) = (1− div)RE (ω, ξ; ε′m, εm) , (B38)

where RE is the return on the bank’s equity after dividend payout

RE (ω, ξ; ε′m, εm) = wc +RIwi +RBwb −RDwd −Rx. (B39)
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Proposition B2 breaks the potentially unmanageable problem into two tractable problems

by separating dividend decision about DIV from portfolio choice of ϕ, S, Ir, and D.

Thanks to the homogeneity feature, banks during the lending stage are replicas of one

another scaled by equity, making aggregation a straightforward exercise. In other words,

the equilibrium sequence of the aggregate variables {DIVt, Ct, Bt, Dt, I
r
t ,Et}

∞
t=0 is the same

as its counterpart in an otherwise identical representative bank environment in which the

representative bank faces a deposit withdrawal shock µ(εm) in each period. This allows us

to simplify the problem by solving the competitive equilibrium of the representative bank’s

problem numerically.

B.5. Characterizing the optimal portfolio allocation. The separability feature of the

bank’s optimal problem allows us to solve the bank’s optimal portfolio choice separately

from its dividend choice. In this section, we characterize the optimal choice of cash holdings,

deposits, and a portfolio allocation between bank loans and risky assets. The next section

characterizes the dividend choice and how it responds to monetary policy shocks.

Assumption 1.

RD < RB − rb, (B40)

Assumption 1 can be justified by the unique Chinese institutional feature that the deposit

rate imposed by the government was kept artificially low. We now establish the following

lemma regarding the bank’s optimal portfolio choice:

Proposition B3. With the low deposit rate satisfying Assumption 1, the bank’s optimal

portfolio choice {wc, wi, wb, wd} satisfies

(1) Both the leverage constraint (B34) and the liqidity constraint (B35) are always bind-

ing;

(2) The equilibrium portfolio allocation between wb and wd is governed by the following

no-arbitrage condition

Eξ(R
I)−

[
−

Covξ
(
RI , Eω(RE)−γ

)
Eξ [Eω(RE)−γ]

]
︸ ︷︷ ︸

default risk premium

= RB−Eω [Rx
b (wb, wd;ω)]︸ ︷︷ ︸

expected regulation cost

−
Covω

(
Rx
b , Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]︸ ︷︷ ︸
regulation risk premium

, (B41)

where Rx
b (wb, wd;ω) is the partial derivative of Rx(wb, wd;ω) with respect to wb:

Rx
b (wb, wd;ω) =

∂Rx(wb, wd;ω)

∂wb
=

{
rb if ω > 1− wb/(wd θ)
0 otherwise

.



13

The intuition for the binding leverage constraint is straight forward. Under Assumption 1,

the borrowing cost RD is lower than the effective return on bank loans. As a result, the

leverage constraint represented by (B34) is binding in equilibrium. The intuition for the

binding liquidity constraint as represented by (B35) is also simple: Since RD > 1 (a positive

deposit rate), with the return for cash lower than the borrowing cost, the bank would like

to hold the minimum cash in this economy to satisfy the liquidity constraint.

In equation (B41), the left side is the expected return on risky nonloan investments,

adjusted for the risk premium due to the default risk. The right side is the expected return

on bank loans, adjusted for the expected (marginal) regulation cost and regulation risk

premium. The risk premium is always positive. The expected regulation cost is the expected

marginal cost of recovering deposit shortfalls associated with lending amount B under the

LDR regulation. The non-negativeness of Rx
b implies that the expected regulation cost is

always positive.

The necessary condition for (B41) to hold is

Eξ(R
I) > RB − Eω [Rx

b (wb, wd;ω)]−
Covω

(
Rx
b , Eξ(R

E)−γ
)

Eξ [Eω(RE)−γ]
. (B42)

Equation (B42) states that the expected return on risky investments is greater than the

effective return on bank loans such that the bank has an incentive to invest in risky assets,

even if the bank is risk averse. Thus, it is optimal for the bank to increase the share of risky

assets in its total investment on the asset side of the balance sheet.

To understand the effects of monetary policy shocks on banks’ portfolio choice, note that

the expected regulation cost can be expressed as

Eω [Rx
b (wb, wd;ω)] = rb × Prob (ω ≥ 1− wb/ (wdθ))︸ ︷︷ ︸

Probability of deposit shortfalls

= rb
wb/ (wdθ)

1− µ (εm)
.

Contractionary monetary policy causes the risk of deposit withdrawal to increase (i.e., µ (εm)

increases), which in turn increases the expected regulation cost. This tends to reduce the

effective return on bank loans. According to the no-arbitrage condition (B41), the decline

of the effective return on bank loans encourages the bank to substitute risky nonloan assets

for bank loans.6

6The effect of a monetary policy shock on the covariance terms in (B41) is of second order in magnitude

when compared with its effect on the expected regulation cost.
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B.6. Characterizing the optimal dividend choice. Because of the homogeneity and

separability features, the policy function for the portfolio choice of the bank, scaled by ex-

dividend equity, is the same every period. We now solve the value function and dividend

payout for transitional dynamics as well as the steady state. It follows from the first-order

condition for problem (B37) that

div−γ = β (1− γ) (1− div)−γ EM [v (ε′m) | εm] Ω(ε′m, εm)1−γ (B43)

which gives

div =
1

1 + {(1− γ) βEM [v (ε′m) | εm] Ω(ε′m, εm)1−γ}
1
γ

. (B44)

Substituting (B44) into (B37) and reorganizing the terms, we obtain the value function

v (εm) =
1

1− γ

{
1 +

[
(1− γ) βEM [v (ε′m) | εm] Ω(ε′m, εm)1−γ] 1

γ

}γ
. (B45)

At steady state, εm = ε′m and v (εm) = Em [v (ε′m) | εm] . Hence, (B45) implies the steady

state value function as

vss (εm) =
1

1− γ

[
1

1− β
1
γ Ω(εm)

1−γ
γ

]γ
. (B46)

Substituting (B46) into (B44), we obtain

divss = 1− β
1
γ Ω(εm)

1−γ
γ . (B47)

To understand the impacts of monetary policy shocks on the total credit, we establish the

following lemma:

Lemma B1. With γ > 1, ∂div
∂εm

> 0.

Equipped with Lemma B1, we have the following proposition regarding the impacts of

monetary policy shocks on total bank credit.

Proposition B4. With γ > 1, a contractionary monetary policy shock increases the total

credit. In other words,
∂ (qrir + qb)

∂εm
< 0.

Proposition B4 shows that a sufficient condition for a contractionary monetary policy shock

to increase the total credit is γ > 1, under which dividend payout (ex-dividend equity) falls

(increases) when there is monetary policy tightening. This can be seen from equation (B4)

in which the left side term increases when DIVt falls. This increase of total liability on the

bank’s balance sheet, together with the decline in bank loans in response to monetary policy
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tightening, implies that qrt I
r
t must increase more than the drop in bank loans, implying an

increase in total credit.

Intuitively, when the income effect of a reduction in the expected return on equity (Eω,ξR
E)

due to an increase in the expected regulation cost dominates the corresponding substitution

effect (the substitution between today’s and tomorrow’s dividend payoffs), it is optimal for

the bank to expand total credit via risky assets to compensate for extra costs of recouping

deposit losses. Note that in our theoretical model, the expected net return for leverage

adjusted for the risk premium is always greater than RD. Hence, when the risk of deposit

withdrawals increases due to monetary policy tightening, it is profitable for banks to borrow

as much as possible at the lending stage until the leverage constraint binds. The resource

from deposits, together with ex-dividend equity, is used to purchase risky nonloan assets to

compensate for the costs associated with actual deposit shortfalls in the balancing stage.

Appendix C. Additional details to the dynamic model

In this section, we provide additional details to the dynamic model described in Appen-

dix B. This includes the definition of the competitive equilibrium, proofs of lemmas and

propositions, and an algorithm for solving the model numerically. We also calibrate the

model to the Chinese economy and simulate the impulse responses to be comparable with

the point estimates of VAR impulse responses presented in Section V.B of the main text.

C.1. Equilibrium. Define E =
∫ 1

0
E (j) dj as the aggregate of equity in the banking sector.

The equity of an individual bank evolves according to E ′ (j) = e′(ω, ξ; ε′m, εm)E (j) . The

measure of equity holdings of each bank is denoted by Γ (E ). Since the model is invariant

to scale, we only need to keep track of the evolution of the average equity, which grows at

the rate Eω,ξ [e′(ω, ξ; ε′m, εm)] because

E
′
=

∫ 1

0

E ′ (j) dj =

∫ 1

0

E (j) dj

∫
ξ,ω

e′(ω, ξ; ε′m, εm)f (ω, ξ) d (ω, ξ)

= E × Eω,ξ [e′(ω, ξ; ε′m, εm)] . (C48)

We define the (partial) equilibrium for the banking sector as follows.

Definition C1. Given M0, D0, B0, a competitive equilibrium is a sequence of bank policy rules

{ct, dt, bt, irt , divt}∞t=0, bank value {vt}∞t=0 , government policies {µ(εm,t)}∞t=0 , and the measure

of equity distribution {Γt}∞t=0 such that
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(1) Given policy sequences {µ(εm,t)}∞t=0 , the policy functions {ct, dt, bt, irt , divt}∞t=0 are a

solution to problem (B32). Moreover, vt is the value for problem (B37).

(2) Γt evolves consistently with e′(ω, ξ; ε′m, εm).

(3) All policy functions satisfy [div, c, b, d, ir, e′] = [DIV, C,B,D,Ir,E ′]
E

.

C.2. Proofs of lemmas and proposition.

Proof of Proposition B1. The proof for Proposition B1 follows from the fact that E is a

sufficient statistic for the bank’s problem. In other words, once E is determined, the bank’s

optimal decision does not depend on the sources from which the equity E is accumulated. �

Proof of Proposition B2. We begin with the proof of homogeneity. We use the conjecture-

verify approach to this complicated problem. We conjecture that the form of the value

function is

V (E ; εm) = v(εm)E 1−γ.

Because

E ′ = e′(ω, ξ; ε′m, εm)E ,

the optimization problem (B23) can be rewritten as

V (E ; εm) = maxU(div E ) + βEm,ω,ξ

[
v(z′) (e′(ω, ξ; ε′m, εm)E )

1−γ
∣∣∣ εm]

= E 1−γ
{

maxU(div) + βEM,ω,ξ

[
v(ε′m) (e′(ω, ξ; ε′m, εm))

1−γ
∣∣∣ εm]}

subject to (B27), (B28),(B29), and (B30). Let ṽ(εm) be the solution of

ṽ(εm) = maxU(div) + βEm,ω,ξ

[
ṽ(ε′m) (e′(ω, ξ; ε′m, εm))

1−γ
∣∣∣ εm] (C49)

subject to (B27), (B28), (B29), and (B30). Hence, v(εm) = ṽ(εm), which verifies the conjec-

ture of our Bellman equation

V (E ; z) = v(z)E 1−γ.

We turn to the proof of separability. From (B38) we have

(e′(ω, ξ; ε′m, εm))
1−γ

= (1− div)1−γ (RE (ω, ξ; ε′m, εm)
)1−γ

so that

Eω,ξ

[
(e′(ω, ξ; ε′m, εm))

1−γ
]

= (1− div)1−γEω,ξ

[(
RE (ω, ξ; ε′m, εm)

)1−γ
]
. (C50)
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Since the utility is a power function, the certainty equivalence of Eω,ξ

[(
RE (ω, ξ; ε′m, εm)

)1−γ
]
,

denoted as Ω(ε′m, εm), follows as

Ω(ε′m, εm) = max
{wc,wi,wb,wd}

{
Eω,ξ

[(
RE (ω, ξ; ε′m, εm)

)1−γ
]} 1

1−γ

= max
{wc,wi,wb,wd}

{
Eω,ξ

[(
wc +RIwi +RBwb −RDwd −Rx

)1−γ
]} 1

1−γ
(C51)

subject to (B33), (B34), and (B35). Substituting (C50) into (C49) and using the definition

of Ω(ε′m, εm) in (C51), we obtain (B37). �

Proof of Proposition B3. We first prove that the liquidity constraint (B35) is always

binding. Substituting (B33) into (B32) , (B34) and (B35) transforms the optimization

problem (B32) to

max
{wc,wi,wd}

{
Eω,ξ

[(
−(RB − 1)wc + (RI −RB)wi − (RB −RD)wd −Rx(wb, wd;ω)

)]1−γ} 1
1−γ

(C52)

subject to wd ≤ κ (with the Lagrangian multiplier φd) and wc ≥ ψ (with the Lagrangian

multiplier φc). The first order condition with respect to wc gives

φ̃c = RB − Eω (Rx
b )−

Covω
(
Rx
b , Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]
− 1. (C53)

where

φ̃c ≡
φc

Eω,ξ
[
(RE)−γ

] γ
1−γ Eω,ξ

[
(RE)−γ

]
We now show that φ̃c > 0. Note that

Covω
(
Rx
b , Eξ(R

E)−γ
)

= Eω
[
Eξ(R

E)−γRx
b

]
− Eω (Rx

b )Eω
[
Eξ(R

E)−γ
]

= rbEω

[
Eξ(R

E)−γ | ω > 1− L

θ

]
− rbprob

(
ω > 1− L

θ

)
Eωξ

[
(RE)−γ

]
≤ rbEωξ

[
(RE)−γ

]
− rbprob

(
ω > 1− L

θ

)
Eωξ

[
(RE)−γ

]
= rb

[
1− prob

(
ω > 1− L

θ

)]
Eωξ

[
(RE)−γ

]
Hence,

Covω
(
Rx
b , Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]
≤ rb

[
1− prob

(
ω > 1− L

θ

)]
(C54)
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Accordingly, we have

RB − Eω [Rx
b ]−

Covω
(
Rx
b , Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]
(C55)

≥ RB − rb × prob

(
ω > 1− L

θ

)
− rb

[
1− prob

(
ω > 1− L

θ

)]
= RB − rb

> RD.

Plugging (C55) into the right side of (C53) , we have

φ̃c > RD − 1 > 0.

Hence, the liquidity constraint (B35) is always binding. In other words, wc = ψ.

We now derive the optimal allocation between wb and wd. Denote

Rx (L, 1;ω) = χ (L− θ (1− ω)) , (C56)

where L ≡ wb/wd. The portfolio choice of the representative bank can be rewritten as

max
L,wd

{
Eω,ξ

[
RI − wc

(
RI − 1

)
+ wd

[(
RI −RD

)
−
(
RI −RB

)
L−Rx (L, 1;ω)

]]1−γ} 1
1−γ

subject to wd ≤ κ and wc = ψ.

The first order condition with respect to L is

RB−Eω [Rx
L (L, 1;ω)]︸ ︷︷ ︸

expected liquidity cost

−
Covω

(
Rx
L, Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]︸ ︷︷ ︸
regulation risk premium

= Eξ
(
RI
)
−

−Covξ
(
RI , Eω

(
RE
)−γ)

Eξ
[
Eω (RE)−γ

]


︸ ︷︷ ︸
default risk premium

. (C57)

where Rx
L (L, 1;ω) is the partial derivative of Rx (L, 1;ω) with respect to L

Rx
L (L, 1;ω) =

{
rb if ω ≥ 1− L

θ

0 otherwise.

Hence,

Rx
L (L, 1;ω) = Rx

b (wb, wd;ω) . (C58)

Plugging equation (C58) into (C57), we obtain (B41).

Finally, we prove that the leverage constraint (B34) is always binding. Define RL ≡(
RI −RD

)
−
(
RI −RB

)
L−Rx (L, 1;ω) . The first order condition with respect to wd is

Eω,ξ

[(
RE
)−γ

RL
]

=
µ

Eω,ξ
[
(RE)−γ

] γ
1−γ
≡ µ̃, (C59)
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where µ is the Larangian multiplier associated with the inequality constraint wd ≤ κ. Plug-

ging the definition of RL into (C59) and reordering the terms, we have

Eξ

{[(
RB −RI

)
L+

(
RI −RD

)]
Eω

[(
RE
)−γ]}− Eω [Eξ (RE

)−γ
Rx (L, 1;ω)

]
= µ̃,

which gives

µ̃

Eω,ξ
[
(RE)−γ

] = LRB −RD + (1− L)

Eξ (RI
)

+
Covξ

(
RI , Eω

(
RE
)−γ)

Eξ
[
Eω (RE)−γ

]


−
Eω

[
Eξ
(
RE
)−γ

Rx (L, 1;ω)
]

Eω,ξ
[
(RE)−γ

]
= LRB −RD + (1− L)

[
RB − Eω [Rx

b (wb, wd;ω)]−
Covω

(
Rx
L, Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]

]

−
LEω

[
Eξ
(
RE
)−γ

Rx
b

]
+ Eω

[
Eξ
(
RE
)−γ

Rx
d

]
Eω,ξ

[
(RE)−γ

] , (C60)

where the second equality is derived by utilizing equation (C57) and

Rx (L, 1;ω) = LRx
b +Rx

d ,

Rx
b =

{
rb if ω ≥ 1− L

θ

0 otherwise
,

and

Rx
d =

{
−rbθ (1− ω) if ω ≥ 1− L

θ

0 otherwise
.

Note that

Eω

[
Eξ
(
RE
)−γ

Rx
b

]
Eω,ξ

[
(RE)−γ

] =
Eω,ξ

[(
RE
)−γ]

Eω [Rx
b ] + covω

[
Eξ
(
RE
)−γ

, Rx
b

]
Eω,ξ

[
(RE)−γ

]
= Eω [Rx

b (wb, wd;ω)] +
covω

[
Eξ
(
RE
)−γ

, Rx
b

]
Eω,ξ

[
(RE)−γ

] (C61)

Substituting (C61) into (C60), we have

RB−Eω [Rx
b (wb, wd;ω)]−

Covω
(
Rx
L, Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]
−RD−

Eω

[
Eξ
(
RE
)−γ

Rx
d

]
Eω,ξ

[
(RE)−γ

] =
µ̃

Eω,ξ
[
(RE)−γ

] .
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We now show that µ̃ > 0, which implies that the collateral constraint is binding. It is easy

to show that

−
Eω

[
Eξ
(
RE
)−γ

Rx
d

]
Eω,ξ

[
(RE)−γ

]
= rbθEωξ

[(
RE
)−γ

(1− ω) | ω ≥ 1− L

θ

]
> 0

Together with (C55), this implies that µ̃ > 0. Hence, the leverage constraint (B34) is always

binding. �

Proof of Lemma B1. Equation (B43) expresses div as an implicit function of εm. Taking

the partial derivative of div with respect to εm, we have

∂div

∂εm
=

β (1− γ) (1− div)−γ
[
EM [v (ε′m) | εm]

∂Eω,ξ

[
(RE)

1−γ]
∂εm

+ Eω,ξ

[(
RE
)1−γ

]
∂EM [v(ε′m)|εm]

∂εm

]
−γdiv−γ−1 − β (1− γ) (1− div)−γ−1EM [v (ε′m) | εm]Eω,ξ

[
(RE)1−γ]

(C62)

Given γ > 1, the denominator on the right side of (C62) is negative.7 Hence, to prove
∂div
∂εm

> 0, we only need to show the numerator is negative. We now show

∂Eω,ξ

[(
RE
)1−γ

]
∂εm

< 0 (C63)

Since ∂µ(εm)
∂εm

< 0, this is equivalent to
∂Eω,ξ

[
(RE)

1−γ]
∂µ(εm)

> 0. Note that

Eω,ξ

[(
RE
)1−γ

]
=

∫ 1−L/θ

µ

Eξ
(
RE(ω)

)1−γ
f(ω)dω +

∫ 1

1−L/θ
Eξ
(
RE(ω)

)1−γ
f(ω)dω

= Eξ
(
RE (Rx = 0)

)1−γ 1− L/θ − µ
1− µ

+

∫ 1

1−L/θ
Eξ
(
RE(ω)

)1−γ 1

1− µ
dω

Hence,

∂Eω,ξ

[(
RE
)1−γ

]
∂µ (εm)

= −Eξ
(
RE (Rx = 0)

)1−γ L/θ

(1− µ)2 +

∫ 1

1−L/θ
Eξ
(
RE(ω)

)1−γ 1

(1− µ)2dω

(C64)

Given the definition of RE as in (B39), it is easy to show that ∀ω ∈ (1− L/θ, 1] , ∂R
E(ω)
∂ω

< 0.

Hence, with γ > 1, we have ∀ω ∈ (1− L/θ, 1]

Eξ
(
RE (ω)

)1−γ
> Eξ

(
RE (ω = 1− L/θ)

)1−γ
= Eξ

(
RE (Rx = 0)

)1−γ
.

7Equation (B45) implies that when γ > 1, EM [v (ε′m) | εm] < 0.
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Therefore,∫ 1

1−L/θ
Eξ
(
RE(ω)

)1−γ 1

(1− µ)2dω >

∫ 1

1−L/θ
Eξ
(
RE (Rx = 0)

)1−γ 1

(1− µ)2dω

= Eξ
(
RE (Rx = 0)

)1−γ L/θ

(1− µ)2 . (C65)

Plugging (C65) into (C64), we have

∂Eω,ξ

[(
RE
)1−γ

]
∂µ (εm)

> −Eξ
(
RE (Rx = 0)

)1−γ L/θ

(1− µ)2 + Eξ
(
RE (Rx = 0)

)1−γ L/θ

(1− µ)2 = 0.

Therefore,
∂Eω,ξ

[
(RE)

1−γ]
∂εm

< 0. Since εm is serially independent random shocks, ∂EM [v(ε′m)|εm]
∂εm

=

0. Hence,

β (1− γ) (1− div)−γ

EM [v (ε′m) | εm]
∂Eω,ξ

[(
RE
)1−γ

]
∂εm

+ Eω,ξ

[(
RE
)1−γ

] ∂EM [v (ε′m) | εm]

∂εm


= β (1− γ) (1− div)−γ EM [v (ε′m) | εm]

∂Eω,ξ

[(
RE
)1−γ

]
∂εm

< 0.

�

Proof of Proposition B4. By definition,

qrir + qb = (1− div) (wi + wd)

= (1− div) (1− wc + wd)

= (1− div) (1− ψ + κ)

By Lemma B1, with γ > 1, ∂div
∂εm

> 0. Hence, ∂(qrir+qb)
∂εm

= − (1− ψ + κ) ∂div
∂εm

< 0. �

C.3. Calibration. To obtain quantitative implications of the dynamic model, we calibrate

the key model parameters. These parameters are
{
β, κ,RD, δ, qr, q, ψ, pr, γ, µ, rb, φ, θ

}
. The

time period of the model is calibrated to be quarterly.

Following Bianchi and Bigio (2017), we set β = 0.98. We set θ = 0.75, which is the PBC’s

official LDR limit. We set κ = 7.2 so that the capital adequacy ratio E /(C + qB + qrIr) is

12% in steady state as in the data. The quarterly deposit rate RD = 1.0068 corresponds to

an annual interest rate of 2.7%, which is the mean deposit interest rate between 2009 and

2015. We set δ = 0.33 such that the average maturity of bank loans is 1.5 times that of risky

assets to be consistent with the data. We set qr = 0.9882 such that an annualized return of

a risky investment is 7.5%
(
RD

qr
× 4
)

, consistent with the mean return on entrusted lending
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during the 2009-2015 period (Table 1 of the main text). We set q = 0.9762 such that an

annualized loan rate is 6.5%
((
δ + 1−δ

q

)
× 4
)

, consistent with the average loan rate for the

2009-2015 period (Table 1 of the main text). The parameter for the lower bound for the

liquidity constraint is set at ψ = 2.354 such that the liquidity ratio, C
C+qB+qrIr

, is targeted at

27%, which equals the average liquidity ratio for the 2009-2015 period (Table 6 of the main

text).

According to Sheng et al. (2015), the NPL rate for China’s shadow banking is 4% under

their optimistic scenario and 10% under their benchmark scenario. Therefore, we take the

median and set the probability of default for risky investments at pr = 0.07, which is much

higher than the average NPL rate for bank loans reported in Table 6 of the main text. Such

a low NPL rate for bank loans is consistent with the assumption that bank loans are safe.

Without loss of generality, we set the risk aversion parameter at γ = 2. The steady state

value of µ is set to be −1 for εm = 0 (no monetary policy shock in the steady state). The

cost of meeting deposit shortfalls is set at rb = 1.75% according to the recent WIND data.

The recovery rate of risky assets is set at φ = 0.85. This high rate reflects the reality in

China that banks benefit from the government’s implicit guarantees on their deposits as well

as on risky investments.8

C.4. Impulse responses. We use the calibrated model and simulate the dynamics of bank

loans and risky nonloan assets in response to contractionary shocks to monetary policy. The

simulation is based on the aggregate (average) bank loans and risky assets to be comparable

with the VAR results.

The impulse responses of aggregate bank loans and risky assets are computed as the sum of

the impulse responses for state and nonstate banks. To obtain the impulse responses of state

banks, we simulate a counterfactual economy in which the response of Irt to contractionary

monetary policy (a one-standard-deviation fall of εm,t) is restricted to be zero, while all

parameter values are the same as in our benchmark economy. This setup stems from the

institutional fact that state banks are part of the government and hence have no incentive

to exploit shadow banking activities for regulatory arbitrage.

The initial state at t = 0 is in the steady state. A negative shock to monetary policy,

εm,t < 0, occurs at t = 1.9 In response to a one-standard-deviation shock, we simulate the

dynamic paths of new bank loans St and risky investments Irt for t ≥ 1 with the initial

8See Dang, Wang and Yao (2015) for a formal model of implicit guarantees of China’s shadow banking.

9Without loss of generality, we assume that the path of money growth after t = 1 is perfectly foresighted.
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response of Irt set at 0.5%, the same value as the estimated one for the empirical panel VAR

model studied in Section V.B of the main text.

Figure A8 displays the cumulative impulse responses of Irt and St. Risky assets increase

and reach 1.9% at the tenth quarter. Note that the response of aggregate risky assets

to contractionary monetary policy shocks is equal to the response of nonstate banks. By

contrast, bank loans of both state and nonstate banks decline in response to contrationary

monetary policy shocks via the bank lending channel. The economic intuition behind the

opposite effects of contractionary monetary policy on risky assets and bank loans comes

directly from the asset pricing equation governing the tradeoff between bank loans and risky

investment assets (equation (B41)). When εm,t falls, the probability of deposit shortfalls

increases. This leads to a rise of the expected regulation cost. As a result, the return on

risky assets relative to the return on bank loans increases, making it optimal for the bank

to rebalance its portfolio by increasing risky assets in total assets.

The bottom panel of Figure A8 shows that the response of total credit for the whole bank-

ing system is slightly above zero for most periods, indicating that the decline of aggregate

bank loans is offset by the increase of aggregate risky assets.

C.5. Algorithms for a numerical solution.

C.5.1. Steady state. Given µ(εm), rb, q, qr, and RD, we need to solve for{
L∗, w∗d, w

∗
b , w

∗
i , R

B∗,Ω∗, div∗, v∗, w∗ς
}
,

where ς = {c, i, b, d} and the superscript ∗ indicates that the values are at steady state. The

algorithm for computing the steady state is as follows.

(1) Guess q, the price for B.

(2) Calculate w∗d = κ,w∗c = ψ,RB = δ + 1−δ
q

.

(3) Solve L∗ according to the no-arbitrage equation

RB−rb×prob

(
ω > 1− L

θ

)
−

Covω
(
Rx
b , Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]
= Eξ

(
RI
)
−

−Covξ
(
RI , Eω

(
RE
)−γ)

Eξ
[
Eω (RE)−γ

]
 ,

where

Prob

(
ω > 1− L

θ

)
=

L/θ

1− µ
.

(4) Calculate w∗b = Lw∗d, w
∗
i = 1− w∗b − w∗c + w∗d.
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(5) Solve Ω∗ according to

Ω(ε′m, εm) = {Eω,ξ
[
RIw∗i + w∗c +RBw∗b −RDw∗d −Rx

]1−γ} 1
1−γ ,

where RI = ξRD

qr
, Rx = χ (w∗b − θ(1− ω)w∗d).

(6) Solve the value function and dividend payout according to (B46) and (B47).

(7) Calculate

c = w∗c (1− div) , qrir = w∗i (1− div) , qb = w∗b (1− div) , d/RD = w∗d (1− div)

(8) Calculate Eω,ξ [e′] = c+[qδ + (1− δ)] b−rb
[
qb L/θ

1−µ(εm)
+ θd/RD(L/θ)2

2(1−µ(εm))

]
+RD (1− pr) ir.

(9) If expected equity growth equals zero (i.e., Eω,ξ [e′] does not change within the nu-

merical tolerance), stop. Otherwise, adjust the value of q and continue the iteration.

C.5.2. Transitional dynamics. Given the sequence of {µ(εm,t)}∞t=0, the algorithm for com-

puting the dynamic responses is as follows:

(1) Calculate wd,t = κ,wc,t = ψ,RB
t = qδ+1−δ

q
.

(2) Solve Lt according to the no-arbitrage equation

RB
t −rb×probt

(
ωt > 1− Lt

θ

)
−

Covω
(
Rx
b , Eξ(R

E)−γ
)

Eω [Eξ(RE)−γ]
= Eξ

(
RI
)
−

−Covξ
(
RI , Eω

(
RE
)−γ)

Eξ
[
Eω (RE)−γ

]
 ,

where

RE
t = RI

t − wc,t
(
RI − 1

)
+ wd,t

[(
RI
t −RD

t

)
−
(
RI
t −RB

t

)
Lt −Rx (Lt, 1;ωt)

]
,

RI
t =

ξtR
D
t

qr
,

Rx (Lt, 1;ωt) = χ (Lt − θ (1− ωt)) .

(3) Calculate wb,t = Ltκ;wi,t = 1− wb,t − wc,t + wd,t.

(4) Solve Ωt according to Ωt = {Eω,ξ
[
RE
t

]1−γ} 1
1−γ .

(5) Solve the value function and dividend payout according to (B45) and (B44).

(6) Calculate

ct = w∗c,t (1− divt) , q
rirt = w∗i,t (1− divt) , qbt = w∗b,t (1− divt) , dt/R

D = w∗d,t (1− divt) .

(7) Calculate Eω,ξ [et+1] = ct+[qδ + (1− δ)] bt−rb
[
qbt

Lt/θ
1−µ(εm,t)

+ θdt/RD(Lt/θ)
2

2(1−µ(εm,t))

]
+RD (1− pr) irt .

(8) Calculate E t+1 = Eω,ξ [et+1] E t.

(9) Calculate
[
DIVt, Ct, Bt, Dt, I

r

t

]
= [divt, ct, bt, dt, i

r
t ] E t .
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Figure A1. A snapshot of the balance sheet of China Construction Bank

(state bank). Source: an annual report of China Construction Bank.
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Figure A2. A snapshot of the balance sheet of Industrial Bank (nonstate

bank). Source: an annual report of Industrial Bank.
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Figure A3. A snapshot of the description of a trust plan that was created to

transfer entrusted rights (see the circled portion). Source: a public announce-

ment by a trust company.
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Figure A4. A snapshot of the description of a trust plan that was created

to transfer entrusted rights (continued). Source: a public announcement by a

trust company.
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Figure A5. A snapshot of the description of a trust plan that was created

to transfer entrusted rights (continued). Source: a public announcement by a

trust company.
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Figure A6. A snapshot of the description of how an asset management plan

was created to transfer entrusted rights (see the circled portion). Source: a

public announcement by an asset management company.
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Figure A7. A snapshot of the description of how an asset management plan

was created to transfer entrusted rights (see the circled portion)—continued.

Source: a public announcement by an asset management company.
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Figure A8. Dynamic responses to a one-standard-deviation fall of exogenous

money growth in the theoretical model.


