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Appendix A. Proofs

Proof of Proposition 1. — The entrepreneur’s objective is to solve the following dynamic
programming problem:

(A1) Vt (Kjt−1, Bjt−1, Djt−1, εjt) = max
{Ijt,Djt,Bjt}

Cjt + βEt
Λt+1

Λt
Vt+1 (Kjt, Bjt, Djt, εjt+1) ,

subject to

Kjt = (1− δ)Kjt−1 + εjtIjt,(A2)

Bjt ≥ −µKjt−1,(A3)

Cjt + Ijt +Bjt +Djt = RktKjt−1 +
Rt−1

Πt
Bjt−1 +

Rt−1

Πt
Djt−1,(A4)

Cjt ≥ 0.(A5)

We conjecture that the value function takes the following form

(A6) Vt (Kjt−1, Bjt−1, Djt−1, εjt) = ϕkt (εjt)Kjt−1 + ϕbt (εjt)Bjt−1 + ϕdt (εjt)Djt−1,

where ϕit(εjt), i ∈ {k, b, d}, satisfy

qkt = βEt
Λt+1

Λt

∫
ϕkt+1(ε)dF (ε),(A7)

1 = βEt
Λt+1

Λt

∫
ϕbt+1(ε)dF (ε),(A8)

1 = βEt
Λt+1

Λt

∫
ϕdt+1(ε)dF (ε).(A9)

Substituting (A2), (A4), and the above conjecture into the Bellman equation (A1), we
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have

Vt (Kjt−1, Bjt−1, Djt−1, εjt)

= max
{Ijt,Djt,Bjt}

(
Rkt + (1− δ)βEt

Λt+1

Λt

∫
ϕkt+1(ε)dF (ε)

)
Kjt−1

+
Rt−1

Πt
Bjt−1 +

Rt−1

Πt
Djt−1 +

[
βEt

Λt+1

Λt

∫
ϕkt+1(ε)dF (ε)εjt − 1

]
Ijt

+

[
βEt

Λt+1

Λt

∫
ϕbt+1(ε)dF (ε)− 1

]
Bjt +

[
βEt

Λt+1

Λt

∫
ϕdt+1(ε)dF (ε)− 1

]
Djt.(A10)

Optimal choices of Bjt and Djt imply that (A8) and (A9) must hold in equilibrium. Oth-
erwise, all entrepreneurs will either save or borrow at the same time, contradicting the
market-clearing conditions for bonds.

Since Ijt ≥ 0 and Cjt ≥ 0, it follows that Ijt = 0 if εjt < 1/qkt ≡ ε∗t ; but the firm makes
as much investment as possible so that Cjt = 0 if εjt > ε∗t . It follows from (A4) that when
εjt > ε∗t , we have

Ijt = −Bjt −Djt +RktKjt−1 +
Rt−1

Πt
Bjt−1 +

Rt−1

Πt
Djt−1,(A11)

Djt = 0, Bjt = −µKjt−1.(A12)

Consider first the case where εjt < ε∗t and Ijt = 0. The entrepreneurs are indifferent
between borrowing and saving. Substituting the decision rules into (A10) and reorganizing
yield

Vt (Kjt−1, Bjt−1, Djt−1, εjt)

= max
{Ijt,Djt,Bjt}

(
Rkt + (1− δ)qkt

)
Kjt−1 +

Rt−1

Πt
Bjt−1 +

Rt−1

Πt
Djt−1.

Notice that (A8) and (A9) ensure that the indeterminacy of Bjt and Djt does not affect
the value function.

Matching the coefficients, we have

ϕkt (εjt) = Rkt + (1− δ)qkt ,

ϕbt(εjt) = ϕdt (εjt) =
Rt−1

Πt
.

Next we consider the case where εjt > ε∗t . Substituting (A11) and (A12) into (A10) and
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reorganizing yield

Vt (Kjt−1, Bjt−1, Djt−1, εjt)

= max
{Ijt,Djt,Bjt}

(
Rkt + (1− δ)qkt +Rkt

(
qkt εjt − 1

)
− µ

(
1− qkt εjt

))
Kjt−1

+
Rt−1

Πt

(
qkt εjt

)
Bjt−1 +

Rt−1

Πt

(
qkt εjt

)
Djt−1.

Matching the coefficients yields

ϕkt (εjt) = Rkt

(
1 +

(
εjt
ε∗t

− 1

))
+ (1− δ)qkt + µ

(
εjt
ε∗t

− 1

)
,

ϕbt(εjt) = ϕdt (εjt) =
Rt−1

Πt

(
qkt εjt

)
=
Rt−1

Πt

(
1 +

(
εjt
ε∗t

− 1

))
.

Combining the two cases above, we have

ϕkt (εjt) = Rkt

(
1 + max

(
εjt
ε∗t

− 1, 0

))
+ (1− δ)qkt + µmax

(
εjt
ε∗t

− 1, 0

)
,

ϕbt(εjt) = ϕdt (εjt) =
Rt−1

Πt

(
1 + max

(
εjt
ε∗t

− 1, 0

))
,

for εjt ∈ [εmin, εmax] . Substituting these two equations into (A7), (A8) and (A9), we obtain
(13) and (14).

Finally, for the entrepreneur’s objective to be finite, the value function must satisfy the
following condition by the Bellman equation (A1):

lim
i→∞

Et
βiΛt+i

Λt
Vt+i (Kj,t+i−1, Bj,t+i−1, Dj,t+i−1, εj,t+i) = 0.

Using equations (A6)-(A9) we can derive the transversality condition (16). Q.E.D.

Proof of Lemma 1. — To simplify notations, we define

(A13) Mt+1 =
βΛt+1

Λt
, M l

t+1 =
βΛt+1

Λt

(
1 + qlt+1

)
, xt =

Dt−1Rt−1

Πt
.

Then we can rewrite (34) as

xt = St + EtMt+1xt+1 + Et

(
M l

t+1 −Mt+1

)
xt+1.
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Leading the above equation by one period and multiplying by Mt+1, we obtain

Mt+1xt+1 =Mt+1St+1 + Et+1Mt+1Mt+2xt+2 + Et+1Mt+1

(
M l

t+2 −Mt+2

)
xt+2.

Following similar procedures recursively until period t+ T, we have

Mt+1Mt+2...Mt+Txt+T = Mt+1Mt+2...Mt+TSt+T + Et+TMt+1Mt+2Mt+T+1xt+T+1

+Et+TMt+1Mt+2...Mt+T+1

(
M l

t+T+1 −Mt+T+1

)
xt+T+1.

Taking conditional expectations Et on the two sides of above system of T + 1 equations
and using (A13), we obtain
(A14)

Dt−1Rt−1

Πt
= Et

T∑
i=0

βiΛt+i

Λt
St+i+Et

T∑
i=0

βi+1Λt+i+1

Λt
qlt+i+1

Dt+iRt+i

Πt+i+1
+Et

βT+1Λt+1+T

Λt

Dt+TRt+T

ΠT+1
.

Summing over j in (16) and using the market-clearing conditions, we have

lim
i→∞

Et
βiΛt+i

Λt

(
qkt+iKt+i +Dt+i

)
= 0.

Since Kt+i > 0 and qkt+i > 0, we have

(A15) lim
i→∞

Et
βiΛt+i

Λt
Dt+i = 0.

Since qlt+1+T ≥ 0, it follows from (14) that

0 ≤ Et
βT+1Λt+1+T

Λt

Dt+TRt+T

Πt+T+1
≤ Et

βTΛt+T

Λt
β
Λt+1+T

Λt+T
(1 + qlt+1+T )

Dt+TRt+T

Πt+T+1

= Et
βTΛt+T

Λt
Et+T

βΛt+1+T

Λt+T
(1 + qlt+1+T )

Dt+TRt+T

Πt+T+1
= Et

βTΛt+T

Λt
Dt+T .

Thus,

lim
T→∞

Et
βT+1Λt+1+T

Λt

Dt+TRt+T

Πt+T+1
= 0.

Taking limit in (A14) as T → ∞ gives (36). Q.E.D.
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Proof of Lemma 2. — Taking derivative of Rk(ε
∗) in (39) and reorganizing yields

(A16)
∂Rk(ε

∗)

∂ε∗
=
µ
∫ εmax

ε∗ εdF (ε)− (β−1(1 + g)− 1 + δ)F (ε∗)[∫ εmax

εmin
max (ε, ε∗) dF (ε)

]2 .

The numerator in (A16) is strictly decreasing in ε∗, with the maximum and the minimum
being µE [ε] ≥ 0 and −(β−1(1 + g)− 1 + δ) < 0, respectively. Hence, by the intermediate
value theorem, there exists a unique threshold εk ∈ [εmin, εmax] such that

µ

∫ εmax

εk

εdF (ε)− (β−1(1 + g)− 1 + δ)F (εk) = 0.

And it follows that ∂Rk(ε
∗)/∂ε∗ > 0 if ε∗ < εk; ∂Rk(ε

∗)/∂ε∗ ≤ 0 if ε∗ ≥ εk. Moreover, we
have εk = εk(µ) strictly increasing and limµ→0 εk = εmin. Q.E.D.

Proof of Lemma 3. — By Lemma 2, on [εk, εmax], Rk(ε
∗) is decreasing and thus Φ(ε∗) is

increasing. By (39), we compute

(A17) Rk(εk) =
(1 + g)/β − 1 + δ − µ

∫ εmax

εk
εdF (ε) + µεk(1− F (εk))

εkF (εk) +
∫ εmax

εk
εdF (ε)

.

By Lemma 1, we have
∂Rk(ε

∗)

∂ε∗
|εk = 0.

Thus,

(A18) µ

∫ εmax

εk

εdF (ε)− (β−1(1 + g)− 1 + δ)F (εk) = 0.

Using this equation, we can eliminate F (εk) in (A17) to obtain

Rk(εk) =
(1 + g)/β − 1 + δ − µ

∫ εmax

εk
εdF (ε)∫ εmax

εk
εdF (ε)

.

Substituting this expression into (40) yields

Φ(εk) = −(β−1 − 1)(1 + g)∫ εmax

εk
εdF (ε)

< 0.

Since Φ(εmax) = +∞ and Φ(εk) < 0 and Φ is increasing on [εk, εmax], it follows from
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the intermediate value theorem that there exists a unique value εl ∈ (εk, εmax) such that
Φ(εl) = 0.
By (39), we have

Rk(εmin) =
(1 + g)/β − 1 + δ − µ(E [ε]− εmin)

E [ε]
.

Substituting this expression into (40) yields

Φ(εmin) = −(β−1 − 1)(1 + g) + µεmin

Eε
< 0.

When µ = 0, we have

Φ(εmin) = −(β−1 − 1)(1 + g)

Eε
< 0.

By (A18), εk is an implicit continuous function of µ and εk → εmin as µ→ 0. By continuity,
for sufficiently small µ ≥ 0, we have Φ(ε∗) < 0 for ε∗ ∈ [εmin, εk] . Q.E.D.

Proof of Proposition 2. — By the assumption and Lemma 3, the investment cutoff ε∗ in
any steady state must satisfy ε∗ ≥ εk. Since Φ(εl) = 0, by (40) and setting ε∗ = εl, we have
d = 0. Thus (41) or (43) is satisfied for s = 0. We deduce that ε∗ = εl is the steady-state
cutoff for s = 0. This is the only steady state with d = 0 because Φ(ε∗) increases with
ε∗ ∈ [εk, εmax] by Lemma 2.
Suppose that there is another steady state with d > 0 if Rr(εl) > 1+g. Then (41) implies

that Rr (ε∗) = 1 + g for s = 0. Since Rr (ε∗) increases with ε∗ and since Rr(εl) > 1 + g,
we must have the steady state cutoff ε∗ < εl. Since Rk (ε

∗) decreases with ε∗ on (εk, εl) ,
it follows (40) that Φ increases with ε∗ on (εk, εl). Thus we have Φ (ε∗) < Φ (εl) = 0 for
ε∗ ∈ (εk, εl), contradicting equation (40) as d > 0 and Rr > 0.
If Rr(εl) < 1 + g, we show that there is another steady state with d > 0. It follows from

(41) we must have Rr = 1 + g. Since Rr (ε∗) is a continuous and increasing function and
since Rr(εl) < 1+ g and Rr(εmax) = (1+ g)/β > 1+ g, by the intermediate value theorem
there is a unique solution ε∗ = εh ∈ (εl, εmax) such that Rr(ε∗) = 1 + g. We then have
Rr = Rr(εh) = 1+g in the steady state. It follows from (40) that Rrd/k = Φ(εh). Q.E.D.

Proof of Proposition 3:. — Recall that εl satisfies Φ(ε
∗
l ) = 0. Total differentiating this

equation and reorganizing yield

dεl
dµ

= −

(
1 + ∂Rk(εl)

∂µ

) ∫ εmax

εl
εdF (ε)

∂Rk(εl)
∂εl

∫ εmax

εl
εdF (ε)− (µ+Rk(εl))εlF ′(εl)

.

By (39), we have 1+∂Rk(εl)/∂µ > 0 and that ∂Rk(εl)/∂εl < 0. Thus we have dεl/dµ > 0.
By (38), Rr (ε∗) increases with ε∗. It follows that both εl and Rr(εl) increase with µ.
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Q.E.D.

Proof of Proposition 4:. — By Lemma 2, for a sufficiently small µ ≥ 0, we only need
to consider steady-state the investment cutoffs in [εk, εmax] . It follows from Lemma 1 that
Rk (ε

∗) is a decreasing function of ε∗ ∈ [εk, εmax] . Thus Φ(ε
∗) increases with ε∗ ∈ [εk, εmax]

by (40). We also know that Rr(ε∗) increases with ε∗ ∈ [εmin, εmax] . By (43) we have

(A19) Ψ (ε∗) =

[
1− 1 + g

Rr(ε∗)

]
αpw
Rk(ε∗)

Φ(ε∗).

Thus Ψ (ε∗) is a product of three increasing functions on [εk, εmax] . Since Φ(εl) = 0 and
Φ(ε∗) < Φ(εl) = 0 for ε∗ ∈ [εk, εl] , we will focus on the region [εl, εmax] as equation (40)
must hold with Rrd ≥ 0. On this region Φ(ε∗) ≥ 0.

Suppose that Rr (εl) > 1 + g. Then we have

1− 1 + g

Rr(ε∗)
> 1− 1 + g

Rr(εl)
> 0

for ε∗ > εl > εk. Since Φ(εl) = 0, we have Φ(ε∗) > 0 for ε∗ > εl. Thus, as a product of
three positive increasing functions on [εl, εmax], Ψ (ε∗) increases with ε∗ ∈ [εl, εmax] . Since
Ψ (εl) = 0 and Ψ (εmax) = +∞, it follows from the intermediate value theorem that there
exists a unique solution εp ∈ (εl, εmax) to equation (43). Then Rr (εp) > Rr (εl) > 1 + g.

Suppose that Rr (εl) < 1 + g. Then Proposition 2 shows that there exists εh ∈ (εl, εmax)
such that Rr(εh) = 1 + g and Ψ (εh) = 0. Thus Rr(ε∗) > 1 + g for ε∗ ∈ [εh, εmax] by the
monotonicity of Rr (ε∗) . It follows that Ψ (ε∗) increases with ε∗ ∈ [εh, εmax] because Ψ (ε∗)
is a product of three positive increasing functions on [εh, εmax] . The intermediate value
theorem implies that there exists a unique cutoff εp ∈ (εh, εmax) such that Ψ (εp) = s/y > 0.
Then we have Rr (εp) > Rr (εh) = 1 + g.

For ε∗ ∈ (εl, εh) , we have Rr(ε∗) < Rr (εh) = 1 + g and thus Ψ (ε∗) < 0. There cannot
exist a steady state with s/y > 0 by (43). Q.E.D.

Proof of Proposition 5:. — As in the proof of Proposition 4, for a sufficiently small µ ≥ 0,
we only need to consider the region [εl, εmax] for the steady state investment cutoff. By
assumption, Rr (εl) < 1+ g. By the proof of Proposition 4, Ψ (ε∗) is positive and increases
with ε∗ ∈ (εh, εmax]. But Ψ (ε∗) is negative for ε∗ ∈ (εl, εh) . Moreover, Ψ (εh) = Ψ (εl) = 0.
Let s be defined as in the proposition. By the intermediate value theorem, for any s/y ∈
(−s, 0) , there exist at least two steady-state cutoffs ε∗l and ε∗h with εl < ε∗l < ε∗h < εh such
that (43) holds. Q.E.D.
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Appendix B. Detrended Equilibrium System

The model exhibits long-run growth. To find a steady state and to study the dynamics
around a steady state, we need to detrend the model around a long-run growth path. We
consider transformations of xt = Xt/At for any variable Xt ∈ {Kt, Dt, St, Yt, Wt, Ct,
It}. For the marginal utility, we denote λt = AtΛt. Then the detrended system can be
summarized by the following 20 equations in 20 variables {Rkt, kt, Rt, q

k
t , q

l
t, ε

∗
t , dt, τt, Πt,

p∗t , Γ
a
t , Γ

b
t , ∆t, wt, λt, pwt, Nt, yt, ct, it}, where {R−1, ∆−1, d−1, k−1} and {zmt, zτ,t, Gat}

are given exogenously:

1) The capital return,

(B1) Rkt = α (1 + g)1−α pwtk
α−1
t−1 N

1−α
t .

2) Evolution of capital,

(B2) (1 + g)kt = (1− δ)kt−1 +

(
(µ+Rkt) kt−1 +

Rt−1

Πt
dt−1

)∫ εmax

ϵ∗t

εdF (ε).

3) The nominal interest rate,

(B3) 1 =
β

1 + g
Et
λt+1

λt

Rt

Πt+1

(
1 + qlt+1

)
.

4) Tobin’s Q,
(B4)

qkt =
β

1 + g
Et
λt+1

λt
Rkt+1

(
1 + qlt+1

)
+

β

1 + g
Et
λt+1

λt
qkt+1(1− δ) +

βµ

1 + g
Et
λt+1

λt
qlt+1.

5) Liquidity premium,

(B5) qlt =

∫ εmax

ε∗t

(
qkt ε− 1

)
dF (ε).

6) Investment cutoff,

(B6) ε∗t = 1/qkt .

7) Government budget constraint,

(B7)
Rt−1

Πt

dt−1

1 + g
= τt −Gat + dt.
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8) Fiscal policy rule,

(B8) (τt − τ) /y = ϕd(dt−1 − d)/y + zτ,t.

9) Monetary policy rule,

(B9) Rt = R

(
Πt

Π

)ϕπ

exp(zmt).

10) Pricing rule,

(B10) p∗t =
σ

σ − 1

Γa
t

Γb
t

.

11) Numerator in the pricing rule,

(B11) Γa
t = λtpwtyt + βξEt

(
Πt+1

Π

)σ

Γa
t+1.

12) Denominator in the pricing rule,

(B12) Γb
t = λtyt + βξEt

(
Πt+1

Π

)σ−1

Γb
t+1.

13) Evolution of inflation,

(B13) 1 =

[
ξ

(
Π

Πt

)1−σ

+ (1− ξ) p∗1−σ
t

] 1
1−σ

.

14) Price dispersion,

(B14) ∆t = (1− ξ)p∗−σ
t + ξ

(
Π

Πt

)−σ

∆t−1.

15) Labor demand,

(B15) wt = (1− α) (1 + g)−α pwtk
α
t−1 (Nt)

−α .
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16) Labor supply,

(B16) wt =
ψ

λt
.

17) Marginal utility,

(B17) λt = 1/ct.

18) Aggregate output,

(B18) yt = ∆−1
t (1 + g)−α kαt−1 (Nt)

1−α .

19) Aggregate investment,

(B19) (1 + g)it =

(
(µ+Rkt) kt−1 +

Rt−1

Πt
dt−1

)
(1− F (ε∗t )) .

20) Resource constraint,

(B20) ct + it +Gat = yt.

For the real version of our model, we set pwt = 1−1/σ, Πt = ∆t = 1, and Rt = Rr
t in the

above system and the detrended equilibrium system consists of 13 equations (B1)-(B7),
and (B15)-(B20) in 13 variables {Rt, Rkt, λt, ε

∗
t , q

k
t , q

l
t, wt, dt, kt, Nt, yt, ct, it}.

Appendix C. Steady-State System

We study the nonstochastic steady state of the detrended system with s/y and Π being
exogenously given. Define real interest rate as Rr = R/Π. Let variables without time
subscripts denote their steady state values. By the steady-state version of (B13), we obtain
p∗ = 1. It then follows from (B14) that ∆ = 1. Combining (B10), (B11), and (B12), we
have pw = 1− 1/σ, Γa = pwΓ

b = pwλy/(1− βξ). With w and λ being eliminated by using
(B16) and (B17), and noting that zτ = zm = 0, we obtain a steady-state system of 11
equations in 11 variables {Rr, Rk, ε

∗, qk, d, k, N , y, c, i, ql} :

1) The capital return,

(C1) Rk = (1− 1/σ)α (1 + g)1−α kα−1N1−α.
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2) Evolution of capital,

(C2) (g + δ)k = ((µ+Rk) k +Rrd)

∫ εmax

ϵ∗
εdF (ε).

3) Nominal interest rate,

(C3) 1 =
β

1 + g
Rr
(
1 + ql

)
.

4) Tobin’s Q,

(C4) qk =
β

1 + g
Rk

(
1 + ql

)
+

β

1 + g
qk(1− δ) +

β

1 + g
µql.

5) Liquidity premium,

(C5) ql =

∫ εmax

ε∗

(
qkε− 1

)
dF (ε).

6) Investment cutoff,

(C6) ε∗ = 1/qk.

7) Government budget constraint,

(C7)

(
Rr

1 + g
− 1

)
d

y
=
s

y
.

8) Labor demand,

(C8) ψc = (1− 1/σ) (1− α) (1 + g)−α kαN−α.

9) Aggregate output,

(C9) y = (1 + g)−α kαN1−α.

10) Aggregate investment,

(C10) (1 + g)i = [(µ+Rk) k +Rrd] (1− F (ε∗)) .
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11) Resource constraint,

(C11) c+ i+Ga = y.

As discussed in Section II, the investment cutoff ε∗ can be solved for by combining (C3),
(C4), (C5), (C6), and (C7). Given the inflation target Π, we obtain the nominal interest
rate R = Rr(ε∗)Π. By (C6), qk = 1/ε∗. By (C5), we derive ql. With Rr = Rr(ε∗),
Rk = Rk(ε

∗) and Rrd/k = Φ(ε∗), we can determine y/k from Rk = (1− 1/σ)(1 + g)αy/k
and d/k = Φ(ε∗)/Rr(ε∗). Noticing that equation (C10) pins down the value of i/k, we can
derive i/y = (i/k)/(y/k). Using the resource constraint and the exogenously given Ga/y
by calibration, we obtain c/y = 1−Ga/y− i/y. Dividing (C8) over (C9) and reorganizing
yield the steady-state value of labor:

N = (1− 1/σ)
1− α

ψ
/(
c

y
).

Then by noting that Rk = Rk(ε
∗) = (1 − 1/σ)α(1 + g)1−αkα−1N1−α, we can solve for k.

Combining with the ratios given above, we can then determine y, d, i, c, w, and s. Finally,
we have Γa = (1− 1/σ)Γb = (1− 1/σ)(y/c)/(1− βξ).

Appendix D. Linearized System

Let x̂t = (xt−x)/x denote the log deviation from steady state for any variable xt except
for the surplus st and public debt dt. For these two variables we consider level deviation
relative to output, d̃t = (dt − d) /y and τ̃t = (τt − τ) /y, instead of log deviation, because
d may be zero and τ may be negative.

By standard linearization of the DNK model, we know the deviation of price dispersion
∆̂t is of second-order. Thus we ignore the law of motion for the price dispersion. Moreover,
the supply block can be summarized by the New-Keynesian Phillips curve. Hence, we can
further eliminate p̂∗t , Γ̂

a
t , and Γ̂b

t . Then the linearized model can be summarized by a system

of 16 equations in 16 variables, R̂kt, k̂t, R̂t, q̂
k
t , q̂

l
t, ε̂

∗
t , d̃t, τ̃t, Π̂t, p̂wt, ŵt, λ̂t, N̂t, ŷt, ĉt,

and ît, where R̂−1, d̃−1, and k̂−1 are predetermined, and zτ,t, zmt, and Ĝat are exogenous
AR(1) processes:

1) The capital return,

(D1) R̂kt = p̂wt + (α− 1)k̂t−1 + (1− α)N̂t.
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2) Evolution of capital,

(1 + g)k̂t =(1− δ)k̂t−1 −
(
µ+Rk +

Rrd

k

)
ε∗2f(ε∗)ε̂∗t

(D2)

+

∫ εmax

ε∗
εdF (ε)

(
(µ+Rk)k̂t−1 +RkR̂kt +

Rrd

k

(
R̂t−1 − Π̂t

)
+
Rry

k
d̃t−1

)
.

3) Nominal interest rate,

(D3) R̂t − EtΠ̂t+1 = Et

(
λ̂t − λ̂t+1

)
− ql

1 + ql
Etq̂

l
t+1.

4) Tobin’s Q,

q̂kt =Et

(
λ̂t+1 − λ̂t

)
+

β

1 + g

Rk(1 + ql)

qk
EtR̂kt+1(D4)

+
β

1 + g

(µ+Rk) q
l

qk
Etq̂

l
t+1 +

β

1 + g
(1− δ)Etq̂

k
t+1.

5) Liquidity premium,

(D5) q̂lt = −
∫ εmax

ε∗ εdF

qlε∗
ε̂∗t .

6) Investment cutoff,

(D6) ε̂∗t = −q̂kt .

7) Government budget constraint,

(D7) τ̃t + d̃t =
Ga

y
Ĝat +

Rr

1 + g
d̃t−1 +

Rr

1 + g

d

y

(
R̂t−1 − Π̂t

)
.

8) Fiscal policy rule,

(D8) τ̃t = ϕdd̃t−1 + zτ,t.
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9) Monetary policy rule,

(D9) R̂t = ϕπΠ̂t + zmt.

10) New-Keynesian Phillips curve,

(D10) Π̂t = βEtΠ̂t+1 + κp̂wt,

where κ = (1− ξ)(1− βξ)/ξ.

11) Labor demand,

(D11) ŵt = p̂wt + αk̂t−1 − αN̂t.

12) Labor supply,

(D12) ŵt = −λ̂t.

13) Marginal utility,

(D13) λ̂t = −ĉt.

14) Aggregate output,

(D14) ŷt = αk̂t−1 + (1− α)N̂t.

15) Aggregate investment,

(1 + g)
i

k
ît = [1− F (ε∗)]

[
(µ+Rk)k̂t−1 +RkR̂kt +

Rrd

k
R̂t−1 −

Rrd

k
Π̂t +

Rry

k
d̃t−1

](D15)

−
(
µ+Rk +

Rrd

k

)
f(ε∗)ε∗ε̂∗t .

16) Resource constraint,

(D16)
c

y
ĉt +

i

y
ît +

Ga

y
Ĝat = ŷt.
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Appendix E. Additional Results

In this appendix we present some additional results not reported in the main text. First,
Figure E1 shows the determinacy region for the steady state in which the interest rate is
higher than the economic growth rate. We set the long-run s/y = 4.45% and fix other
parameter values as in Table 1. The implied debt to GDP ratio is 120%.
Next we study welfare for different policy parameter mixes ϕd ∈ [−0.2, 0.2] and ϕπ ∈ [0, 3]

given adverse financial shocks as in Section IV. We consider parameter values in the set
such that the model admits a unique equilibrium. Figures E2, E3, and E4 present the
welfare losses in terms of the consumption equivalent relative to the steady state without
the financial shock for the equilibria around the three steady states, respectively. We find
that the welfare loss is the smallest when ϕd = −0.2 and ϕπ = 0 in regime F.

Figure E1. : Determinacy region for the steady state with Rr > 1 + g.
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Figure E2. : Welfare loss in response to financial shocks under different policy mixes around
steady state L.

Figure E3. : Welfare loss in response to financial shocks under different policy mixes around
steady state H.



VOL. VOL NO. ISSUE FISCAL AND MONETARY POLICY INTERACTIONS 61

Figure E4. : Welfare loss in response to financial shocks under different policy mixes around
the steady state with Rr > 1 + g.
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Appendix F. The Standard New Keynesian Block

Retailers are monopolistically competitive. Their role is to introduce nominal price
rigidities. In each period t they buy intermediate goods from entrepreneurs at the real
price pwt and sell good j at the nominal price Pjt. Intermediate goods are transformed into
final goods according to the CES aggregator

Yt =

[∫ 1

0
Yjt

σ−1
σ dj

] σ
σ−1

, σ > 1.

Thus retailers face demand given by

(F1) Yjt =

(
Pjt

Pt

)−σ

Yt,

where the price index is given by

(F2) Pt ≡
[∫ 1

0
Pjt

1−σdj

] 1
1−σ

.

Aggregating equation (F1) yields aggregate output equation (31).

To introduce price stickiness, we assume that each retailer is free to change its price in
any period only with probability 1−ξ, following Calvo (1983). To introduce trend inflation,
we follow Erceg, Henderson and Levin (2000) and assume that whenever the retailer is not
allowed to reset its price, its price is automatically increased at the steady-state inflation
rate. The retailer selling good j chooses the nominal price P ∗

jt in period t to maximize the
discounted present value of real profits

max
P ∗
t

∞∑
k=0

ξkEt

[
βkΛt+k

Λt

(
ΠkP ∗

jt

Pt+k
− pw,t+k

)
Y ∗
jt+k

]
,

subject to the demand curve

Y ∗
jt+k =

(
ΠkP ∗

jt

Pt+k

)−σ

Yt+k, k ≥ 0,

where Π denotes the steady-state inflation target. We use the household intertemporal
marginal rate of substitution as the stochastic discount factor because retailers must hand
in all profits to households who are the shareholders.
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The first-order condition gives the pricing rule

P ∗
jt = P ∗

t ≡ σ

σ − 1

Et
∑∞

k=0 (βξ)
k Λt+kpw,t+kP

σ
t+kYt+k(Π

k)−σ

Et
∑∞

k=0 (βξ)
k Λt+kP

σ−1
t+k (Πk)1−σYt+k

for all j. Let p∗t = P ∗
t /Pt. We can then write the pricing rule in a recursive form as follows

p∗t =
σ

σ − 1

Γa
t

Γb
t

,

where

Γa
t = ΛtpwtYt + βξEt

(
Πt+1

Π

)σ

Γa
t+1,

Γb
t = ΛtYt + βξEt

(
Πt+1

Π

)σ−1

Γb
t+1.

It follows from (F2) and Calvo price setting that

1 =

[
ξ

(
Π

Πt

)1−σ

+ (1− ξ) p∗1−σ
t

] 1
1−σ

.


