Procurement design with corruption Online Appendix

Roberto Burguet
Institute for Economic Analysis (CSIC) and Barcelona GSE

July 6, 2016

Section 2.3

First, we show that concavity of $B(m)$ is sufficienty for the optimal choice of m to be zero.

Lemma 1 For any IC, IR direct mechanism, (p, q, m), there exists an IC, IR mechanism with $m(\theta)=0 \forall \theta \in[\underline{\theta}, \bar{\theta}]$, so that $E[q(\theta)-m(\theta)-p(\theta)]$ is higher for the latter.

Proof. Assume $m(\theta)>0$ for some value θ, and consider a change in the mechanism so that $q^{\prime}(\theta)=q(\theta)-m(\theta), m^{\prime}(\theta)=0$, and $p^{\prime}(\theta)=p(\theta)-B(m(\theta))$. The profits of type θ do not change. Also, a type θ^{\prime} imitating type θ could achieve

$$
p(\theta)-\min _{z \in[0, q(\theta)]}\left\{C\left(q(\theta)-z ; \theta^{\prime}\right)+B(z)\right\}
$$

with the original mechanism, whereas with the modified mechanism she can obtain

$$
\begin{aligned}
& p^{\prime}(\theta)-\min _{z \in\left[0, q^{\prime}(\theta)\right]}\left\{C\left(q^{\prime}(\theta)-z ; \theta^{\prime}\right)+B(z)\right\} \\
= & p(\theta)-B(m(\theta))-\min _{z \in[0, q(\theta)-m(\theta)]}\left\{C\left(q(\theta)-m(\theta)-z ; \theta^{\prime}\right)+B(z)\right\} \\
= & p(\theta)-\min _{z \in[0, q(\theta)-m(\theta)]} C\left(q(\theta)-m(\theta)-z ; \theta^{\prime}\right)+B(z)+B(m(\theta)) \\
= & p(\theta)-\min _{h \in[m(\theta), q(\theta)]} C\left(q(\theta)-h ; \theta^{\prime}\right)+B(h-m(\theta))+B(m(\theta)) .
\end{aligned}
$$

where we have used the change of variable $h=z+m(\theta)$. This expression is smaller since B is concave and the choice set of h is smaller than the choice set of z in the
original mechanism. The profits of θ^{\prime} imitating any other type have not changed, and the profits of θ imitating any other type are not larger.

Next, we prove the claim that the results in Proposition 3 extend to the concave case, provided assumptions A1, A2, and A3 are satisfied

Claim 2 Under concavity of $B(m), A 1, A 2$, and $A 3$, if $q^{N B}(\theta)$ violates (12) then there exist θ^{a} and θ^{c}, with $\underline{\theta}<\theta^{a} \leq \theta^{c}<\bar{\theta}$ such that at the optimal mechanism; (i) $q(\theta)=0$ if $\theta>\theta^{c}$; (ii) $q(\theta)=q^{N B}(\theta)$ if $\theta \in\left(\theta^{a}, \theta^{c}\right)$; and (iii) $q(\theta)=q^{N B}\left(\theta^{a}\right)$ if $\theta<\theta^{a}$.

Proof. Given an exogenous $q(\underline{\theta})$, the result is proved exactly as Proposition 3. Thus, we need only show that the sponsor's surplus is maximized for $q(\underline{\theta})<q^{N B}(\underline{\theta})$. The sponsor's objective is still given by (22), and so its derivative at $q^{N B}(\underline{\theta})$ is also given by (23). Then, we only need show that $\frac{d \theta^{c}}{d q(\underline{\theta})}<0$. Totally differentiatin the equivalent now to (21),

$$
B(q(\underline{\theta}))-C(q(\underline{\theta}) ; \underline{\theta})-\int_{\underline{\theta}}^{\theta^{a}} C_{\theta}(q(\underline{\theta}) ; z) d z-\int_{\theta^{a}}^{\theta^{c}} C_{\theta}\left(q^{N B}(z) ; z\right) d z=0
$$

we have

$$
\frac{d \theta^{c}}{d q(\underline{\theta})}=\frac{B^{\prime}(q(\underline{\theta}))-C_{q}(q(\underline{\theta}) ; \underline{\theta})-\int_{\underline{\theta}}^{\theta^{a}} C_{\theta q}(q(\underline{\theta}) ; z) d z}{C_{\theta}\left(q^{N B}\left(\theta^{c}\right) ; \theta^{c}\right)}<0
$$

where the inequality follows from A 2 and the fact that $C_{\theta q}(q ; \theta)>0$.

