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A Appendix: Model with Rigid Wages

This section outlines an alternative model that features efficient rigid wages, as opposed to a

surplus sharing rule, as well as the ability for workers to use their current and outside offers in

bargaining over their new wage with an outside or current firm, respectively. The time-path

of earnings around displacement implied by this alternative model resembles the time-path

of earnings in the baseline model, and so the main text develops the surplus sharing model,

which is standard in the search and matching literature.

The alternative bargaining solution results in an efficient rigid wage. I follow the approach

of MacLeod and Malcomson (1993), Malcomson (1999) and more recently Yamaguchi (2010).

When the worker and the firm first meet, they (Nash) bargain over an employment contract

given all relevant information such as the stochastic component and the fixed component.

Once they sign the contract, the firm pays a fixed flow wage w and the worker supplies a flow

of labor services until a possible renegotiation or separation. At this point the two parties

renegotiate the wage up/down if the worker/employer can credibly threaten to leave the em-

ployment relationship. The model therefore exhibits bargaining with nonemployed workers,

bilateral bargaining with employed workers when productivity fluctuations induce wage rene-

gotiation, and trilateral bargaining with employed workers when workers encounter outside

job offers. The solution to the trilateral bargaining problem comes from Cahuc, Postel-Vinay

and Robin (2006) who show that the worker’s threat point is the match value with the losing

firm. The model still features privately efficient separations alongside exogenous separations.
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A.1 Bellman Equations

This section details the Bellman equations characterizing the efficient rigid wage model.

A.1.1 Joint Value of a Match

Define the continuation value of employed workers and firms as W (x, y, w) and J(x, y, w)

respectively. Let N be the continuation value of nonemployed workers. For notational

convenience, define the joint value as the sum of the value of a match to the worker and the

firm:

V (x, y) = W (x, y, w) + J(x, y, w)

Notice that w does not change the joint value of a match V ; it merely determines the

allocation of the joint value between worker and firm. A higher w implies that the worker

receives more of the match value. The joint value function satisfies:

V (x, y) = x · y + δ(1− ps) (1− pE)︸ ︷︷ ︸
No outside

offer

∫
max{N, V (x′, y)}︸ ︷︷ ︸

Match continues or
terminates

dFx(x
′|x) + δpsN

+ δ(1− ps) pE︸︷︷︸
Outside

offer

∫ ∫ [
max{N, V (x′, y)︸ ︷︷ ︸

Match
continues

,

(1− β) max{N, V (x′, y)}+ βV (x0, ỹ)}︸ ︷︷ ︸
Worker moves to

poaching firm

}
]
dFx(x

′|x)dFy(ỹ)

(1)

where pE is the probability of contacting an outside firm, δ stands for the discount factor and

β represents the bargaining power of the worker. The flow payoff from the match equals x ·y,

the product of the stochastic and fixed components. Every period a shock to the stochastic

component arrives. In the event of no outside job offer (occurs with probability 1− pE), the

employment relationship either continues with joint value V (x′, y), or a separation occurs.

In the event of separation, the worker receives continuation value N and the firm is left with

nothing. Notice that the V (x′, y) term captures renegotiation: the employment relationship

continues, but a new wage, w′, divides the surplus differently.

When a shock to the stochastic component occurs and the worker contacts an outside

firm, three things can happen. First, the outside offer could be worse than the current match,

and the shock makes the current match unbearable. This causes a separation, which leaves

the worker with N and the firm with zero. Second, the current employment relationship
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continues with V (x′, y). This includes the case of a newly renegotiated wage at the current

firm because changing the wage contract does not change the match value. Third, the outside

offer induces renegotiation and the worker leaves the current firm (V (x0, ỹ) exceeds V (x′, y)).

The continuation value here looks like the outcome of generalized Nash bargaining with the

new employer using the value of the old relationship (or nonemployment, whichever is larger)

as a threat point. This result comes from Appendix A of Cahuc, Postel-Vinay and Robin

(2006).

A.1.2 Value of Work to the Employee

The value of work satisfies the following equation:

W (x, y, w) = w + δ(1− ps)(1− pE)

∫
max{N,min{V (x′, y),W (x′, y, w)}}︸ ︷︷ ︸

Match continues or terminates;

possible wage renegotiation

dFx(x′|x) + δpsN

+ δ(1− ps)pE
∫ ∫ [

I{V (x0, ỹ) > V (x′, y)}︸ ︷︷ ︸
Worker leaves current firm

max{N, (1− β) max{V (x′, y), N}+ βV (x0, ỹ)}

+ I{V (x0, ỹ) ≤ V (x′, y)}︸ ︷︷ ︸
Worker turns down outside firm

max{N,min{V (x′, y),W (x′, y, w)}, V (x0, ỹ)}
]
dFx(x′|x)dFy(ỹ)

(2)

The value of work is a function of three state variables: the stochastic component x, the

fixed component y, and the previous wage w. The first term on the right hand side is the

flow payoff from working, which is the current wage: w. Note that I assume a linear utility

function (risk-neutrality).

The second term on the right hand side corresponds to the event of no outside job of-

fer. Since I assume the shock to the stochastic component arrives every period, I need

to consider what happens when this component changes. The are several possibilities.

First, if W (x′, y, w) > V (x′, y) ≥ N the relationship is still viable (there is positive sur-

plus), but the firm can credibly threaten to leave. In this case, the wage is reduced until

W (x′, y, w′) = V (x′, y), i.e., J(x′, y, w′) = 0 so that the firm is indifferent between separation

and continuation. Second, if V (x′, y) ≥ N > W (x′, y, w) the relationship is still viable,

but the worker can credibly threaten to leave. In this case the wage rises until the worker

is indifferent between nonemployment and working at the current firm: W (x′, y, w′) = N .

Third, if V (x′, y) < N the relationship is no longer viable. The employment partnership

comes to an end. Finally, if anything else happens the employment relationship continues

with continuation value W (x′, y, w).

The third term on the right hand side corresponds to the worker contacting an outside
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firm (and a shock to the stochastic component). The worker leaves the current employment

relationship only if the match value of the new match exceeds the value at the current firm.

The function I{V (x0, ỹ) > V (x′, y)} captures this outcome. The timing here is important:

the value from the current match and the value at the poaching firm are compared after the

shock to the stochastic component. In this case, the worker chooses between two options:

nonemployment and working at the new firm. In the latter case, the worker bargains with

the outside firm after renegotiating with his current firm. The worker’s continuation value is

“Outside Option + β × Match Surplus”. In this case the outside option is either V (x′, y) or

N . The latter occurs when the stochastic component induces a separation. If no separation

occurs, the current firm is willing to raise the wage until it is indifferent between separation

and continuation, and hence the outside option for the worker is V (x′, y).

The function I{V (x0, ỹ) ≤ V (x′, y)} captures the situation where the worker does not

go to the outside firm. There are several cases here. First, if N > V (x′, y) the relationship

is no longer viable. The employment partnership comes to an end. Second, if V (x0, ỹ) >

max{W (x′, y, w), N} the worker can use the outside offer to raise the wage at the current

firm. Third, if V (x′, y) ≥ N > max{V (x0, ỹ),W (x′, y, w)} the current match still has

positive surplus but worker can credibly threaten to leave. The wage is bid up so that worker

is indifferent between staying at current firm and flowing into nonemployment. Fourth, if

W (x′, y, w) > V (x′, y) ≥ N then there is positive surplus but the firm can credibly threaten

to leave. In this case, the wage is bid down so that the firm is indifferent between staying

and going. The continuation value in this case is V (x′, y). If anything else happens, then

the employment relationship continues with continuation value W (x′, y, w).

Given the previous definitions, the value of a filled job to the firm is simply:

J(x, y, w) = V (x, y)−W (x, y, w) (3)

A.1.3 Value of Nonemployment

The value of nonemployment satisfies:

N = b+ δ(1− pN)N + δpN

∫
max{N,N + β[V (x0, ỹ)−N ]}︸ ︷︷ ︸

Match consummates or not

dFy(ỹ) (4)

where pN is the probability of making a contact with a job for nonemployed workers. The

first term captures the flow payoff from nonemployment: b. The second term corresponds to

no outside job offer. In this case the worker simply remains nonemployed. The third term
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corresponds to an outside job offer. In this case the worker chooses between working at the

contacting firm and nonemployment. The payoff from working at the firm is the outside

option, N , plus β times the surplus, which is [V (x0, ỹ)−N ]. Again, this is proved formally

in Cahuc, Postel-Vinay and Robin (2006). In particular, this generalized Nash outcome is

the result of an infinitely repeated game where worker and firm make alternating wage offers.

Note that V (x0, ỹ)−N = W (x0, ỹ, w
′), where w′ is chosen so that this is true.

A.2 Solving the Model

I derive one central functional equation in the surplus from a match, S(x, y). The derivation

is similar to the baseline model, and I present the equation here:

S(x, y) = x · y + δ(1− ps) (1− pE)︸ ︷︷ ︸
No outside

offer

∫
max{0, S(x′, y)︸ ︷︷ ︸

Match
continues

}dFx(x′|x)

+ δ(1− ps)pE
∫ ∫ [

max{0, S(x′, y)︸ ︷︷ ︸
Match

continues

,

max{0, S(x′, y)}+ β[S(x0, ỹ)−max{0, S(x′, y)}]︸ ︷︷ ︸
Worker moves to

poaching firm

}
]
dFx(x

′|x)dFy(ỹ)

− [b+ δpNβ

∫
max{0, S(x0, ỹ)}dFy(ỹ)]︸ ︷︷ ︸

Worker’s outside option

(5)

The first part of the right hand side is the flow payoff from a match, x · y. The second

piece captures the event of no outside job offer and the continuation value of the match. In

this case, the match either comes to an end or the match continues with the new stochastic

component. The third piece captures the event of the worker receiving an outside offer and

potentially moving to the poaching firm. When the worker moves to the poaching firm she

uses the surplus at his previous firm (or zero if his old relationship implies negative surplus

at the new level of the stochastic component) as a threat point. The final piece is the outside

option of an employed worker: she forgoes the value of nonemployment, b, and the possibility

of finding a job at a new firm with surplus S(x0, ỹ) and receiving β of this surplus. Notice

that equation (5) is a functional equation in only S(x, y). Value function iteration yields a

close approximation to this function, denoted by Ŝ(x, y).

Calibration and identification follow the baseline model and I omit them here.
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B Appendix: Surplus/Wage Equation and Numerical

Details

This section details the derivation of the surplus equation and the wage equation used in the

main text, as well as briefly describing the numerical approach.

B.1 The Surplus Equation

Here I outline how to solve for the surplus equation. I derive one central functional equation

in the surplus from a match: S(x, y) = W (x, y) + J(x, y) − N . First, re-arrange equation

(1) from the main text slightly to yield the equivalent expression:

W (x, y) = w(x, y) + δ(1− pE)(1− ps)
∫

max{N,W (x′, y)}dFx(x′|x) + δpsN

+ δpE(1− ps)
∫ ∫ [

I{W (x′, y) ≥ W (x0, ỹ)}max{N,W (x′, y)}

+ I{W (x′, y) < W (x0, ỹ)}max{N,W (x0, ỹ)}
]
dFx(x

′|x)dFy(ỹ)

(6)

Now simply combine equations (6) and (3) to write:

J(x, y) +W (x, y)−N = S(x, y)

= x · y + δ(1− pE)(1− ps)
∫ [

max{0, (1− β)S(x′, y)}+ max{0, βS(x′, y)}
]
dFx(x′|x)

+ δ(1− pE)(1− ps)N + δpsN

+ δpE(1− ps)
∫ ∫ [

I{S(x′, y) ≥ S(x0, ỹ)}
[

max{0, (1− β)S(x′, y)}+ max{0, βS(x′, y)}
]

+ I{S(x′, y) < S(x0, ỹ)}max{0, βS(x0, ỹ)}
]
dFx(x′|x)dFy(ỹ)

+ δpE(1− ps)N − δ(1− pN )N − δpN
∫

max{0, βS(x0, ỹ)}dFy(ỹ)− δpNN

⇒ S(x, y) = x · y + δ(1− pE)(1− ps)
∫

max{0, S(x′, y)}dFx(x′|x)

+ δpE(1− ps)
∫ ∫ [

I{S(x′, y) ≥ S(x0, ỹ)}max{0, S(x′, y)}

+ I{S(x′, y) < S(x0, ỹ)}max{0, βS(x0, ỹ)}
]
dFx(x′|x)dFy(ỹ)

− (1− δ)N

6



where like terms have been combined and Nash bargaining has been used to substitute

J(x, y) = (1 − β)S(x, y) and W (x, y) −N = βS(x, y). Using equation (2) in the main text

to solve for (1− δ)N , and plugging into this equation yields the desired result.

Value function iteration yields Ŝ(x, y). Once I have Ŝ(x, y) I also have N̂ because N can

be written as a function of S(x, y). With Ŝ(x, y) and N̂ I can simulate the economy and

observe workers moving between employment and nonemployment and from job to job.

B.2 The Wage Equation

Start with equation (1) in the main text and subtract and add N under the integrals to

obtain:

W (x, y) = w(x, y) + δ(1− pE)(1− ps)
∫

max{0,W (x′, y)−N}dFx(x′|x)

+ δ(1− pE)(1− ps)N

+ δpE(1− ps)
∫ ∫

max{0,W (x′, y)−N,W (x0, ỹ)−N}dFx(x′|x)dFy(ỹ)

+ δpE(1− ps)N + δpsN

Simplifying the terms with N , subtracting N from both sides and using the fact that the

Nash bargain implies that W (x, y)−N = βS(x, y) yields:

βS(x, y) = w(x, y) + δ(1− pE)(1− ps)
∫

max{0, βS(x′, y)}dFx(x′|x)− (1− δ)N

+ δpE(1− ps)
∫ ∫

max{0, βS(x′, y), βS(x0, ỹ)}dFx(x′|x)dFy(ỹ)

∴ w(x, y) = βS(x, y) + [b+ δpNβ

∫
max{0, S(x0, ỹ)}dFy(ỹ)]

− δ(1− pE)(1− ps)β
∫

max{0, S(x′, y)}dFx(x′|x)

− δpE(1− ps)β
∫ ∫

max{0, S(x′, y), S(x0, ỹ)}dFx(x′|x)dFy(ỹ)

B.3 Numerical Details

I solve the model numerically using a contraction mapping in a discretized state space. I

discretize the AR(1) process for the stochastic component (x) onto 29 grid points using the

Rouwenhorst method. This method is most often attributed to Rouwenhorst (1995) and in a

recent article, Galindev and Lkhagvasuren (2010) have shown that this discretization method
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outperforms the approaches described in Tauchen (1986) and Tauchen and Hussey (1991).

In particular, for persistent AR(1) processes, as turns out to be the case here, the Tauchen

(1986) method requires a large number of grid points to produce close approximations,

which causes increased computational time. Galindev and Lkhagvasuren (2010) show that

the Rouwenhorst method provides a close approximation “robust to the number of discrete

values for a wide range of the parameter space.” Finally, the process for the fixed component

has 29 grid points and I also use the Rouwenhorst method for discretizing this state variable.

I solve the value function on a grid, and in the simulation interpolate for points off the gird

using linear interpolation. I do not allow state variables to take values above and below the

respective minimum and maximum values on the gird, although in practice this does not

affect the results because the probability of state variables falling outside the grid remains

extremely small.

Given the optimal decisions of workers and firms, the model generates simulated data

at a monthly frequency. In particular, I simulate 20,000 agents for 600 months (50 years).

To remove the effects of initial conditions, I simulate the model for 2100 months and then

discard the first 1500 months of the sample. This simulation provides a time-path of wages

and annual earnings, as well as an employment history.

I calibrate the parameters of the model using simulated method of moments. The pro-

cedure minimizes the distance between the summary statistics of the simulated data and

the summary statistics of real data. Specifically, if θ represents the vector of structural pa-

rameters, ĝ represents the moments of the actual data, and g(θ) represents the moments of

simulated data, then the simulated minimum distance estimator is defined as:

θ̂ = arg min
θ
L(θ) = arg min

θ
[g(θ)− ĝ]′W [g(θ)− ĝ] (7)

Here g(θ) represents a nonlinear transformation of the structural parameters by the model

and a transformation of the simulated data to achieve moments that match observed mo-

ments. In practice, the weighting matrix used is the diagonal of the efficient weighting

matrix, which weights the moments by the inverse variance-covariance matrix. I do not use

the entire efficient weighting matrix because I do not have the variability of the mean-min

wage ratio estimates from HKV.1

The optimization is implemented using a coarse grid search across the relevant state

space to obtain areas where the loss function might be minimized. Once the initial points

1Since most of the estimates for the mean-min wage ratio seem to lie in between 1.5 and 2, I use weight
0.012 for this moment.
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are evaluated, I use MATLAB’s Nelder-Mead optimization routine, fminsearchbnd, from each

candidate solution to find the minimum objective function value in that region of the state

space. The global minimum is taken as the minimum of all these local minima.

C Appendix: Benchmarking the PSID Worker Flows

This section shows that the average worker flow probabilities from the PSID that are used

to calibrate the model are broadly consistent with results from other data sets. Moreover,

the PSID data is consistent with life-cycle separation rates, and E-U probabilities by tenure.

Table 1 lines up the PSID worker flows data with similar data from the CPS and SIPP.

The PSID monthly strings are broadly consistent with other data sets. In particular, the

E-E probability in the PSID is around 1.8 percent, whereas in the SIPP and CPS it ranges

from 1.9 to 2.6 percent. The average U-E probability in the PSID is in the middle of the

estimates from the other two datasets. Finally, the layoff rate into unemployment in the

PSID is consistent with the SIPP and CPS, and the layoff rate ending in nonparticipation

is lower in the PSID.

I also present E-U probabilities by tenure and age and show that they are consistent

with similar analyses using the SIPP. Figure 1 shows the average separation probability into

unemployment by age in the PSID data. The average E-U probability is around 2.5 percent

for 18 year old men, 1.5 percent for 25 year old men, and then falls significantly over the

life-cycle to around 0.3 percent at age 65. Figure 2 in Menzio, Telyukova and Visschers

(2015) shows a very similar pattern in the SIPP.

Figure 2 presents the results of E-U probabilities for different months of tenure. At low

levels of tenure the E-U probability is around two percent and falls steadily over the next five

years to around 0.3 percent. Figure 9 in Menzio, Telyukova and Visschers (2015) shows a

similar pattern in the SIPP, although for low levels of tenure, the SIPP data suggest slightly

higher average E-U probabilities.

Figure 3 in the main text shows the average E-E probabilities by tenure. A similar figure

can be found in Menzio, Telyukova and Visschers (2015) (Figure 10). The two profiles are

generally the same, showing a four percent E-E probability for workers with one month of

tenure and a reduction in E-E probabilities with increased tenure. The SIPP data, however,

shows slightly higher E-E probabilities for workers with more than two years of tenure, as the

PSID profile continues to decline after this tenure level, whereas the SIPP profile plateaus.
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Figure 1: Average E-U Probability by Age in the PSID

Note: The empirical EU-age profile using the PSID. This includes the raw data and the (smoothed)
average E-U probability at each age in the PSID. Smoothing is performed using locally weighted
(LOWESS) regressions scatter-plot smoothing (with bandwidth set to 0.8).

10



1 12 24 36 48 60
Tenure in Months

0

0.005

0.01

0.015

0.02

0.025

0.03

A
ve

ra
ge

 E
-U

 p
ro

ba
bi

lit
y

PSID (smooth)
PSID (raw)

Figure 2: Average E-U Probabilities by Tenure in the PSID

Note: The empirical EU-tenure profile using the PSID. This includes the raw data and the (smoothed)
average E-U probability for each month of tenure in the PSID. Smoothing is performed using locally
weighted (LOWESS) regressions scatter-plot smoothing (with bandwidth set to 0.8).
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Table 1: Comparing Worker Flows

Flow PSID SIPP CPS
E-U 0.8 0.5-0.9 0.9-2
E-N 0.5 1.4 1.5
U-E 22 21-26 20-30
N-E 3.1 N/A 2.5
E-E 1.8 1.9-2.2 2.5-2.6

Note: The PSID worker flows are broadly consistent with SIPP and CPS counterparts. All values are in
percent. As an example, 1.8 percent for E-E means that, as a fraction of those employed in month t− 1,
1.8 percent of individuals switched employers between months t− 1 and t. The CPS values are taken from
Nagypal (2008), Elsby, Hobijn and Sahin (2013) and Fallick and Fleischman (2004), and the SIPP values
are taken from Nagypal (2008) and Menzio, Telyukova and Visschers (2015). In this table only, ‘N’ stands
for not in labor force.
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D Appendix: Identifying the Persistence of the Stochas-

tic Component

In the main text, I claim that the persistence of the stochastic component, ρx, is identified

by the slope of the EN-tenure profile for E-E and N-E jobs. In this appendix I perform a

robustness exercise to validate this claim. In particular, I take the baseline model and fix the

value of ρx to different values (0.25, 0.5, and 0.95) and re-calibrate the model for each value

of ρx using the same calibration procedure as in the main text. For each of these calibrations

I compute the (smoothed) average E-N probabilities for 1 through 60 months of tenure for

both E-E and N-E jobs. Figure 3 shows the results of this exercise. As value of ρx varies, the

EN-tenure profiles show considerable movement: as the persistence parameter ρx rises, the

EN-tenure profiles become steeper, especially for low levels of tenure, although the pattern

changes for very high levels of persistence. The relationship between ρx and the slope of the

EN-tenure profile is particularly pronounced for E-E jobs.

Intuitively, the separation probabilities for individuals in low-tenure jobs are driven by

downward movements in the stochastic component, x. As the persistence in this process

rises, these downward movements have greater force because they persist for longer. For

a given volatility, σεx , this has the effect of raising the job destruction probability for low-

tenure jobs. Separations in higher-tenure jobs are driven chiefly by exogenous separation

shocks, so the effect described above diminishes with tenure, thus increasing the steepness

of the profile.

The figure shows that this effect is nonmonotonic: for high levels of persistence, the

average E-N probability for individuals with low levels of tenure in E-E jobs actually begins

to fall. This can be explained as follows. For high persistence values movements in the

stochastic component affect even higher-tenure jobs. As an example, Figure 3 shows that for

ρx = 0.95 the average E-N probabilities for individuals in E-E jobs with more than two years

of tenure exceed the baseline calibration.2 In order to match the average E-N probability, a

key targeted moment, the calibration with ρx = 0.95 flattens out the EN-tenure profile for

E-E jobs by bringing down significantly the volatility of the stochastic component, σεx . This,

in turn, reduces the average E-N probability of those in low-tenure E-E jobs significantly.

Although reducing σεx ensures that the average E-N probability is matched, it compromises

on the average E-N probability for low-tenure E-E jobs. The baseline calibration ends up

picking out a value of persistence for the stochastic component that best delivers the observed

EN-tenure profiles.

2All the calibrations have a similar exogenous probability of separation, ps, of around 0.4 percent.
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Figure 3: Average E-N Probabilities by Tenure (N-E and E-E Jobs) for Different ρx Values

Note: The slope of the separation profile for E-E jobs provides identification for the persistence of the
stochastic component, ρx: as the persistence changes, the EN-tenure profiles move considerably, especially
for E-E jobs. This figure shows the resulting average E-N probabilities by tenure for N-E and E-E jobs for
the model with different values of ρx where, for each value, the model has been re-calibrated to hit all the
baseline moments. Smoothing is performed using locally weighted (LOWESS) regressions scatter-plot
smoothing (with bandwidth set to 0.8).
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