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1 Derivation of the autocoherence conditions
in model 1

For convenience let us replicate Table 2 from the text:
Observable Expression
Output y = âyuû+ âyεε̂+ âyvv̂
Price π = âπuû+ âπεε̂+ âπvv̂

Coeffi cients Expression
âyu b̂+ âω̂γ

σ̂2u

âyv θ̂b̂
âyε γâ

âπu ρ̂b̂+ ρ̂âω̂γ
σ̂2u

âπv ρ̂(b̂θ̂ − 1)
âπε ρ̂γâ

Table 2
Table 1 is obtained trivially from the above by removing hats. The six

autocoherence conditions are Ez2 = Êz2, Eyz = Êyz, Eπz = Êπz, Ey2 =
Êy, and Eπ2 = Êπ2. Clearly, we can replace the second and third conditions
by the simpler ones E(y | z) = Ê(y | z) and E(π | z) = Ê(π | z).
In what follows we assume, as in the paper, that ω is common knowledge:

ω̂ = ω.
We get the following formulas
1. Variance of z. For this we only have to use the definition of z.
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Ez2 = 1 = ω2/σ2
u + σ2

ε

= Êz2 = ω2/σ̂2
u + σ̂2

ε. (1)

Because (1) has to hold, we can simplify the following expressions:

Ê(u | z) =
ω̂z

ω̂2/σ̂2
u + σ̂2

ε

= ωz; (2)

Ê(ε | z) =
σ̂2
εz

ω̂2/σ̂2
u + σ̂2

ε

= σ̂2
εz; (3)

γ = − âb̂ω̂

(ϕ+ â2)(ω̂2/σ̂2
u + σ̂2

ε)
= − âb̂ω

ϕ+ â2
. (4)

2. Expectation of y conditional on z. This is easily obtained from Table
1 and (4):

E(y | z) = ayuω + ayεσ
2
ε = Ê(y | z) = âyuω + âyεσ̂

2
ε

⇐⇒ ωb̂+ âγ
ω2

σ̂2
u

+ âγσ̂2
ε = ωb̂+ âγ = ωb+ aγ

⇐⇒ γ(â− a) = ω(b− b̂). (5)

3. Expectation of π conditional on z. From Table 2,

E(π | z) = aπuω + aπεσ
2
ε = ρE(y | z) = ρ̂Ê(y | z),

which, since E(y | z) = Ê(y | z) from the preceding autocoherence condition,
is equivalent to

ρ̂ = ρ. (6)

Since the steps in proving (6) do not hinge on the assumption that ω is
known, this proves Proposition 1.
4. Covariance between y and π

Eπy = ayuaπuσ
2
u + ayεaπεσ

2
ε + ayvaπvσ

2
v

= Êπy = âyuâπuσ̂
2
u + âyεâπεσ̂

2
ε + âyvâπvσ̂

2
v (7)

This is equivalent to, using Table 2 and (6),

a2
yuσ

2
u + a2

yεσ
2
ε + ayv(ayv − 1)σ2

v = â2
yuσ̂

2
u + â2

yεσ
2
ε + âyv(âyv − 1)σ̂2

v (8)
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5. Variance of y

Ey2 = a2
yuσ

2
u + a2

yεσ
2
ε + a2

yvσ
2
v

= Êy2 = â2
yuσ̂

2
u + â2

yεσ̂
2
ε + â2

yvσ̂
2
v. (9)

6. Variance of π

Eπ2 = a2
πuσ

2
u + a2

πεσ
2
ε + a2

πvσ
2
v

= Êπ2 = â2
πuσ̂

2
u + â2

πεσ̂
2
ε + â2

πvσ̂
2
v. (10)

This is equivalent to

a2
yuσ

2
u + a2

yεσ
2
ε + (ayv − 1)2σ2

v = â2
yuσ̂

2
u + â2

yεσ
2
ε + (âyv − 1)2σ̂2

v (11)

Now, combining (9) and (8) we find that (8) can be replaced by

ayvσ
2
v = âyvσ̂

2
v. (12)

Combining (9) and (11) we find that (11) can be replaced by

σ2
v(1− 2ayv) = σ̂2

v(1− 2âyv). (13)

In turn, (12) and (13) are equivalent to

σ2
v = σ̂2

v;

θb = θ̂b̂, (14)

where I have used the definitions in Tables 1 and 2 for ayv and âyv.
Finally, using these same tables, as well as (1), we can rewrite condition

(9) as follows:

b2σ2
u + a2γ2 + 2abγω = b̂2σ̂2

u + â2γ2 + 2âb̂γω. (15)

The following table summarizes the 6 autocoherent conditions, in the
simplified forms we have just derived:

ω2/σ̂2
u + σ̂2

ε = 1

γ(â− a) = ω(b− b̂).
ρ̂ = ρ
σ̂2
v = σ2

v

θ̂b̂ = θb

b̂2σ̂2
u + â2γ2 + 2âb̂γω = b2σ2

u + a2γ2 + 2abγω

Table A1 —The autocoherence conditions.

Proof of Proposition 2 —Table A1 proves claim (ii) in Proposition 2.
Claim (i) then derives from the formula for γ and from (1). Claim (iii) comes
from the equalities in Table A1 and the definitions of âyv and âπv in Table 2.
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2 Proof of Proposition 3

The autocoherent model picked by the expert must achieve γ = γE, or equiv-
alently

− âb̂ω

ϕ+ â2
= − abω

ϕE + a2
.

As seen in the text (Equation (16) in the text), â and b̂ are linked by the
following autocoherence condition:

b̂ = b
ϕ+ â2

ϕ+ aâ
. (16)

Solving for these two equations we get

â = a
ϕ

ϕE
;

b̂ = b
ϕ2
E + a2ϕ

ϕ2
E + a2ϕE

.

This proves the first two conditions in Proposition 3. Conditions (iv) and
(v) are already known, and the value of θ̂ in condition (iii) is straightforward
from (14). Finally, it can be checked that Equation (17) in the text can be
obtained from substituting (i) and (ii) of Proposition 3 into (15).
Conversely, it is straightforward to check that if the perceived model has

the parameter values of Proposition 3, all the autocoherence conditions hold
for γ = γE, which is the stabilization level that the government will choose.

3 Proof of Proposition 4

First, recall that â = α̂
1+µ̂η

and b̂ = 1
1+µ̂η

. From (i) and (ii) in Proposition 3
we get that

α̂ = αϕ
ϕE + a2

ϕ2
E + a2ϕ

.

Therefore,
dα̂

dϕE
∝ a2ϕ− 2a2ϕE − ϕ2

E.

This expression is negative for ϕE > −a2 +
√
a4 + a2ϕ, which is smaller

than ϕ/2.
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Using (i) and (ii) again, we have that

µ̂ = µ
ϕ2
E + a2ϕE
ϕ2
E + a2ϕ

+
1

η

a2(ϕE − ϕ)

ϕ2
E + a2ϕ

.

It is easy to check that

dµ̂

dϕE
∝ −ϕ2

E + a2ϕ+ 2ϕϕE,

which, from the discussion in the text following Proposition 3, is clearly
positive for ϕ < ϕm.
Q.E.D.

4 Correct model equilibrium with inflation
inertia

PROPOSITION A1 —A correct model equilibrium exists such that

0 < cπ < 1;

cy < 0,

γ > 0.

PROOF —To construct such an equilibrium, we have to show that there
exists a solution to these three equations:

cy = −µ(h− 1)c2
π + cycπ + αγ − αγcπ, (17)

cπ = ρcy + βc2
π + 1− β. (18)

γ = − mn

ϕ+m2
.

Where by definition

m =
α(1− βcπ)

1− βcπ − ρcy + µρ(h− 1)cπ + ραγ
, (19)

n =
(1− β)(cy − µ(h− 1)cπ − αγ)

1− βcπ − ρcy + µρ(h− 1)cπ + ραγ
. (20)
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From (17), we have that

cy − αγ = −µ(h− 1)c2
π

1− cπ
, (21)

which is < 0 for cπ < 1. It follows that for cπ < 1, the denominator of (19)
and (20) is positive.
Note that for any cπ the values of cy and γ can be solved uniquely from

(17) and (18). Let us denote these solutions by cy(cπ) and γ(cπ). We have
that

cy(cπ) =
1

ρ
(cπ(1− βcπ) + β − 1) (22)

and

γ(cπ) =
cy(cπ)(1− cπ) + µ(h− 1)c2

π

α(1− cπ)
(23)

Clearly, cy() is continuous over R and γ() is continuous over R−{1}.We can
also compute the corresponding values for m and n denoted by m(cπ) and
n(cπ). These also are continuous functions of cπ over [0, 1). An equilibrium
obtains if there exists a value of cπ for which

γ(cπ) = −m(cπ)n(cπ)

ϕ+m(c2
π)
≡ γ̃(cπ).

From the above equations it is easy to check that

cy(0) = −1− β
ρ

< 0, (24)

γ(0) = −1− β
ρα

< 0,

m(0) = α > 0.

n(0) = 0. (25)

Therefore,
γ̃(0) = 0 > γ(0).

Furthermore, from (23), (19) and (20),

lim
cπ−→1

γ(cπ) = +∞,

lim
cπ−→1

m = 0,

lim
cπ−→1

n = −1/ρ.
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Therefore,

lim
cπ−→1

γ̃(cπ) = 0 < lim
cπ−→1

γ(cπ).

By continuity, there exists cπ ∈ (0, 1) for which γ(cπ) = γ̃(cπ), which
proves that there exists an equilibrium.
In any such equilibrium, one must have γ > 0. To see this, note that,

m > 0 since its denominator is > 0 and both β and cπ are between 0 and 1.
Furthermore, substituting (21) into the numerator of (20) implies that n < 0.
Consequently, γ̃ = γ > 0.
Consider now the sign of cy. By (18), it is the same as that of cπ − βc2

π −
(1− β). The two roots of this polynomial are equal to 1 and 1−β

β
. If 1−β

β
> 1,

this expression is negative over (0, 1), implying that cy < 0. Assume that
1−β
β

< 1. We show that we can then pick cπ < 1−β
β
, implying again that

cy < 0. To see this, compute

cy(
1− β
β

) = 0, (26)

γ(
1− β
β

) =
µ(h− 1)

α

(1− β)2

β(2β − 1)
> 0, (27)

m(
1− β
β

) =
αβ

β + µρ(h− 1) 1−β
2β−1

> 0, (28)

n(
1− β
β

) = −(1− β)2

2β − 1

µ(h− 1)

β + µρ(h− 1) 1−β
2β−1

< 0. (29)

Hence

γ̃(
1− β
β

) =
β

2β − 1

αµ(1− β)2(h− 1)

ϕ
(
β + µρ(h− 1) 1−β

2β−1

)2

+ α2β2

< γ(
1− β
β

).

Therefore in this case we can pick an equilibrium such that cπ <
1−β
β
, imply-

ing that cy < 0.
QED.
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5 Linearization of equilibrium conditions

I now derive the formulas that form the basis of the numerical results for the
model with inflation inertia. Let

cy = cyc + ∆cπ,

cπ = cπc + ∆cy,

β̂ = β + ∆β̂,

ρ̂ = ρ+ ∆ρ̂,

γ = γc + ∆γ,

ϕE = ϕ+ ∆ϕ,

m = mc + ∆m,

n = nc + ∆n,

m̂ = m+ ∆m̂,

n̂ = n+ ∆n̂,

σ̂2
u = σ2

u + ∆σ̂2
u,

σ̂2
v = σ2

v + ∆σ̂2
v.

The subscript c refers to the equilibrium value in the correct model (CM)
equilibrium. For any variable x, ∆x̂ is the difference between its perceived
and actual value in the autocoherent model (ACM) equilibrium associated
with ϕ = ϕE. On the other hand, ∆x is the difference between its actual
value in the ACM equilibrium and its actual value in the CM equilibrium.
The effect of ∆ϕ, the preference gap between the expert and the government,
on the gap between the perceived and actual value of any variable x, ∆x̂/∆ϕ,
is called its ideological sensitivity.
The set of equilibrium conditions is summarized in the following tables:
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Equation Meaning
cy = −µ(h− 1)c2

π + cycπ + αγ − αγcπ Equilibrium condition (17)
cπ = ρcy + βc2

π + 1− β. Equilibrium condition (18)
m = α(1−βcπ)

1−βcπ−ρcy+µρ(h−1)cπ+ραγ
Definition of m, (19)

n = (1−β)(cy−µ(h−1)cπ−αγ)

1−βcπ−ρcy+µρ(h−1)cπ+ραγ
Definition of n, (20)

γ = − m̂n̂
ϕ+m̂2 Government’s choice of γ

m̂ = α̂(1−β̂ĉπ)

1+γα̂ρ̂−β̂ĉπ−ρ̂ĉy+µ̂ρ̂(h−1)ĉπ
Definition of m̂, from Equation (32) in the text

n̂ = (1−β̂)(ĉy−µ̂(h−1)ĉπ−α̂γ)

1+γα̂ρ̂−β̂ĉπ−ρ̂ĉy+µ̂ρ̂(h−1)ĉπ
Definition of n̂, from Equation (33) in the text

cπ = ρ̂cy + β̂c2
π + 1− β̂. AC condition (41) in the text1

γ = − mn
ϕE+m2 Expert’s choice of γ

Table A2 —Model’s solution for VAR coeffi cients and autocoherence con-
dition for cπ

âyu = m̂
α

Impact effect of demand shock on output
âyv = θ̂ m̂

α
− ρ̂n̂

1−β̂ Impact effect of supply shock on output

âπu = ρ̂m̂

α(1−β̂cπ)
Impact effect of demand shock on inflation

âπv = ρ̂(θ̂−1)m̂

α(1−β̂cπ)
Impact effect of supply shock on inflation

a2
yuσ

2
u + a2

yvσ
2
v = â2

yuσ̂
2
u + â2

yvσ̂
2
v, Variance of output innovations matched

a2
πuσ

2
u + a2

πvσ
2
v = â2

πuσ̂
2
u + â2

πvσ̂
2
v Variance of inflation innovation matched

ayuaπuσ
2
u + ayvaπvσ

2
v = âyuâπuσ̂

2
u + âyvâπvσ̂

2
v. Covariance of innovations matched

Table A3 —Aurocoherence conditions on VAR innovations

The model can be solved as follows.
First, There are 5 equations that define a real block, i.e. which charac-

terizes the actual behavior of the economy. These equations are

cy = −µ(h− 1)c2
π + cycπ + αγ − αγcπ (30)

cπ = ρcy + βc2
π + 1− β. (31)

m =
α(1− βcπ)

1− βcπ − ρcy + µρ(h− 1)cπ + ραγ
(32)

n =
(1− β)(cy − µ(h− 1)cπ − αγ)

1− βcπ − ρcy + µρ(h− 1)cπ + ραγ
(33)

γ = − mn

ϕE +m2
. (34)

1Recall that the autocoherence condition for cy holds, i.e. eq. (40) in the text, holds
given our assumption that α and β are common knowledge.
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Given ϕE, these equations allow to compute cy, cπ,m, n, and γ.When lin-
earized around a correct model equilibrium, they deliver ∆cy,∆cπ,∆m,∆n,
and ∆γ as a function of ∆ϕE. In particular, from the last equation we have
that

(ϕ+m2
c)∆γ + γc∆ϕ+ 2γcmc∆m = −mc∆n− nc∆m. (35)

The remaining 4 equations of Table A2 define a perceived block, given by

m̂ =
α(1− β̂cπ)

1 + γαρ̂− β̂cπ − ρ̂cy + µρ̂(h− 1)cπ
(36)

n̂ =
(1− β̂) (cy − µ(h− 1)cπ − αγ)

1 + γαρ̂− β̂cπ − ρ̂cy + µρ̂(h− 1)cπ
(37)

cπ = ρ̂cy + β̂c2
π + 1− β̂ (38)

γ = − m̂n̂

ϕ+ m̂2
. (39)

We have used the autocoherence conditions for cy and cπ and the assumption
that α and µ are common knowledge. These equations solve for ρ̂, β̂, m̂ and n̂
for any γ delivered by the real block. I now show that they imply proposition
5.

Proof of Proposition 5 —Linearizing Equation (39) yields

(ϕ+m2
c)∆γ + 2γcmc(∆m̂+ ∆m) = −mc(∆n̂+ ∆n)− nc(∆m̂+ ∆m). (40)

Subtracting (35) from (40) we get

−γc∆ϕ+ 2γcmc∆m̂+mc∆n̂+ nc∆m̂ = 0. (41)

By construction, from (31) and (35) in the text, it must be that γm+n =
cy = γm̂+ n̂, implying that

∆n̂ = −γc∆m̂. (42)

Substituting into the preceding formula, we get that

∆m̂ =
γc∆ϕ

cyc
, (43)

which proves point (iii) and, together with (42), point (iv).
Next, from (36) and (37), we get that

m̂

n̂
=

α(1− β̂cπ)

(1− β̂)(cy − µ(h− 1)cπ − αγ)
.
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Consequently,

∆m̂

mc

− ∆n̂

nc
= − cπ∆β̂

1− βcπ
+

∆β̂

1− β .

Substituting (42), we get that

(mcγc + nc)∆m̂

mcnc
=

1− cπc
(1− β)(1− βcπ)

∆β̂.

Replacing mcγc + nc with cyc and substituting in (43), we get (ii).
Linearizing (38) and (31) and taking differences, we get the trade-off

between ∆ρ̂ and ∆β̂ :

cyc∆ρ̂−∆β̂(1− c2
πc) = 0. (44)

Substituting into (ii), we get (i).
QED

The rest of the equilibrium perceived model is determined by Table A3,
which can be labelled the "residual block". It determines (âyu, âyv, âπu, âπv, θ̂, σ̂

2
u, σ̂

2
v).

This block can be linearized and then solved numerically. Let v = (∆m̂,∆n̂,∆ρ̂,∆β̂)′

and w = (∆âyu,∆âyv,∆âπu,∆âπv,∆θ̂,∆σ̂
2
u,∆σ̂

2
v)
′, where again∆âyu = âyu−

ayu, etc. We have that

Pw +Qv = 0,

where P is a 7 x 7 matrix and Q a 7 x 4 matrix. The nonzero coeffi cients
are:

P11 = 1, P22 = 1, P25 = −mc/α, P33 = 1/aπuc,

P44 = 1/aπvc, P43 = −1/aπuc, P45 = 1/(1− θ).
P51 = 2ayucσ

2
u, P52 = 2ayvcσ

2
v, P56 = a2

yuc, P57 = a2
yvc;

P63 = 2aπucσ
2
u, P64 = 2aπvcσ

2
v, P66 = a2

πuc, P67 = a2
πvc;

P71 = aπucσ
2
u, P72 = aπvcσ

2
v, P73 = ayucσ

2
u, P74 = ayvcσ

2
v, P76 = ayucaπuc, P77 = ayvcaπvc.

and

Q11 = −1/α,Q21 = −θ/α,Q22 = ρ/(1− β),

Q23 = nc/(1− β), Q24 =
ρnc

(1− β)2 ,

Q31 = −1/mc, Q33 = −1/ρ,Q34 = − cπ
1− βcπ

.
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Then, w = −P−1Qv. These formulas allow to numerically compute the
ideological sensitivity of the structural and reduced form parameters. This
has been done for 19683 different set of parameters, defined by the following
Table:

h 1.2,1.5,1
β 0.2,0.6,0.8
ρ 0.2,1,3
α 0.1,0.3,1
µ 0.02,0.1,0.6
θ 0.1,0.2,0.5
σ2
u 0.00004,0.0004,0.004
σ2
v 0.00004,0.0004,0.004
ϕ 0.1,1,5

Table A4 —Parameter sets
In all these simulations, without exception, the ideological sensitivities

∆σ̂2
u/∆ϕ and ∆σ̂2

v/∆ϕ are negative. Furthermore, that of the perceived
share of output fluctuations due to demand shocks, defined by

ŝu =
â2
yuσ̂

2
u

â2
yuσ̂

2
u + â2

yvσ̂
2
v

=
â2
yuσ̂

2
u

a2
yuσ

2
u + a2

yvσ
2
v

,

is always negative in all cases.

The real block can also be solved by linearization. We get that Ax +
B∆ϕ = 0, where x ≡ (∆cy,∆cπ,∆m,∆n,∆γ)′, A is a 5x5 matrix and B
is a 5x1 vector with the following nonzero coeffi cients (here (33) has been
replaced by the simpler equation γm+ n = cy):

A11 = 1− cπc, A12 = 2µ(h− 1)cπc − cyc + αγc, A15 = −α(1− cπc),
A22 = 1− 2βcπc, A21 = −ρ,

A31 = −ρmc, A32 = (α−mc)β +mcµρ(h− 1), A33 =
α(1− βcπc)

mc

, A35 = αρmc

A41 = −1, A43 = γc, A44 = 1, A45 = mc,

A53 = 2mcγc + nc, A54 = mc, A55 = ϕ+m2
c

B51 = γc.

These formulas allow to compute the response of x to ∆ϕ. In particular,
it has been checked that in all the simulations above, one has ∆γ

∆ϕ
< 0.
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6 Non-myopic government and expert

Assume the government is non myopic and cannot commit on its fiscal policy
rule. At each date it sets gt, so as to maximize

V̂ (πt−1, gt) = max
gt

Ê(−ϕg2
t − (yt − vt)2 + δV̂ (πt, g(πt))),

where δ is the discount factor, gt = g(πt−1) is the equilibrium policy rule and
expectations are conditional on πt−1 and gt. That is, gt is freely chosen by
the government at t. On the other hand, in the absence of commitment, the
government rationally anticipates that it will follow the equilibrium policy
rule at any future date s > t.
The FOC is, using the fact that V̂g(πt, g(πt)) = 0,

0 = V̂g(πt−1, gt)

= −2(ϕgt +
d̂yt

d̂gt
Êyt) + δ

d̂πt

d̂gt
ÊV̂π(πt, g(πt)). (45)

By the envelope theorem, we have that

V̂π(πt−1, gt) = −2
d̂yt

d̂πt−1

Êyt + δ
d̂πt

d̂πt−1

ÊV̂π(πt, g(πt)). (46)

As above, we look for an equilibrium where the optimal policy is a linear
function of the state variable,

gt = γπt−1. (47)

From the two perceived model equations in the text (29)-(30), which I
rewrite here for convenience,

yt = −µ̂(h− 1)ĉππt + ĉyπt + α̂gt + ût + θ̂v̂t − α̂γπt, (48)

πt = ρ̂yt + β̂ĉππt + (1− β̂)πt−1 − ρ̂v̂t, (49)

we get that

Êyt = m̂gt + n̂πt−1, (50)

as before, and

Êπt = q̂gt + r̂πt−1, (51)
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where

q̂ =
αρ̂

1− β̂cπ − ρ̂cy + µρ̂(h− 1)cπ + ρ̂αγ
, (52)

r̂ =
1− β̂

1− β̂cπ − ρ̂cy + µρ̂(h− 1)cπ + ρ̂αγ
. (53)

In those formulas, we readily make use of the assumption that α and µ
are common knowledge and of the autocoherence conditions cπ = ĉπ and
cy = ĉy.
Furthermore, since (48)-(49) is additive in the shocks ût and v̂t, it is also

true that d̂yt
d̂gt

= m̂t,
d̂yt
d̂πt−1

= n̂, d̂πt
d̂gt

= q̂, and d̂πt
d̂πt−1

= r̂.

Elimination of ÊV̂π between (45) and (46), shows that in equilibrium
V̂π(πt−1, gt)must be linear in (πt−1, gt). Consequently, it must be that V̂π(πt, g(πt)) =
V̂π(πt, γπt) = eπt, where e is a coeffi cient which remains to be determined.
From (51), it follows that

ÊV̂π(πt, g(πt)) = e.(q̂gt + r̂πt−1). (54)

To compute e, we apply (46) at gt = g(πt−1) = γπt−1, which yields

e = −2n̂(m̂γ + n̂) + δer̂(q̂γ + r̂),

and noting that from (50) and (51) it must be that m̂γ+ n̂ = cy and q̂γ+ r̂ =
cπ, it follows that

e =
−2n̂cy

1− δr̂cπ
. (55)

Substituting (54) and (50) into the FOC (45), and then using (55), we
get a formula for the equilibrium γ :

γ

(
ϕ+ m̂2 + δq̂2 n̂cy

1− δr̂cπ

)
= −m̂n̂− δq̂r̂ n̂cy

1− δr̂cπ
. (56)

This expression should replace (39). The expert will equate γ with the
policy parameter he would pick on the basis of his own preferences, therefore

γ

(
ϕE +m2 + δEq

2 ncy
1− δErcπ

)
= −mn− δEqr

ncy
1− δErcπ

. (57)

where obviously

q =
αρ

1− βcπ − ρcy + µρ(h− 1)cπ + ραγ
, (58)
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and

r =
1− β

1− βcπ − ρcy + µρ(h− 1)cπ + ραγ
. (59)

Equation (57) replaces (34). It is the only equation of the model where the
expert’s preferences appear.
It is again possible to construct a correct model equilibrium, as summa-

rized by the following proposition

PROPOSITION A2 —A correct model equilibrium exists such that

0 < cπ < 1;

cy < 0.

PROOF —The steps are the same as in Proposition A1, but the γ̃ function
in its proof now has to be replaced with a new formula from (57), that is,

γ̆(cπ) =
−m(cπ)n(cπ)− δq(cπ)r(cπ)n(cπ)cy(cπ)

1−δr(cπ)cπ

ϕ+m(cπ)2 + δq(cπ)2 n(cπ)cy(cπ)

1−δr(cπ)cπ

. (60)

The functions q() and r() are obviously defined by expressing the RHS of
(58) and (59) as functions of cπ by using (22).
Next, note that from (25), γ̆(0) = 0 > γ(0) = −1−β

ρα
.

Second,
lim
cπ−→1

γ̆(cπ) = 0 < lim
cπ→1

γ = +∞,

since cy(1) = 0 = limm = lim r = lim q.
By continuity, again, there exists an equilibrium such that cπ ∈ (0, 1) .
To complete the proof, we again prove that we can choose the equilibrium

such that cy < 0. Note that (22) still holds. Clearly, then, if (1− β)/β ≥ 1,
cy < 0. Assume that (1−β)/β < 1. Since cy((1−β)/β) = 0, from (60), (58),
and (26)-(29) we have that

γ̆((1−β)/β) =
µ(h− 1)αβ(1− β)2

(2β − 1)

[
ϕ
(
β + µρ(h− 1) 1−β

2β−1

)2

+ α2β2

] < µ(h− 1)

α

(1− β)2

β(2β − 1)
= γ(

1− β
β

).

As in Proposition A1, by continuity, there exists a solution such that
cπ ∈

(
0, 1−β

β

)
and therefore cy < 0.

This completes the proof of Proposition A1. Note that now we cannot
establish an analytical result for the sign of γ.
QED
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Proof of Proposition 6 —The system is recursive in the sense that ∆ϕ
and ∆δ only appear through Equation (57). Consequently, any equilibrium
quantity, whether it is perceived or real, will depend on ∆ϕ and ∆δ only
through ωϕ∆ϕ + ωδ∆δ, where ωϕ and ωδ are the coeffi cients that multiply
∆ϕ and ∆δ in a linearization of (57). Next, observe that since cy < 0 and,
from (21), cy−αγ < 0, we have that q > 0 and 0 < r < 1 in the CME, as well
as m > 0 and n < 0. From this it follows that (i) an increase in ϕE raises the
LHS of (57) if γ > 0, (ii), an increase in δE raises the LHS of (57) if γ > 0,
and (iii) an increase in δE reduces the RHS of (57). Therefore, ωϕωδ > 0 if
γ > 0, from which the statement in Proposition 6 follows trivially.
QED

Under this extension, it is no longer possible to prove analytical results
regarding the perceived model. The entire system has to be linearized.
First, linearizing both (56) and (57) and subtracting one from the other

yields:

γc

[
2mc(1− δrccπc)∆m̂− δ(ϕ+m2

c)cπc∆r̂ + 2δqc∆q̂nccyc + δq2
ccyc∆n̂

−(1− δrccπc)∆ϕ+ (ϕ+m2
c)rccπc∆δ − q2

cnccyc∆δ

]
(61)

= −nc(1− δrccπc)∆m̂−mc(1− δrccπc)∆n̂+ δmcnccπc∆r̂ − δrcnccyc∆q̂ − δqcnccyc∆r̂
−δqcrccyc∆n̂+ ∆δqcrccycnc −∆δmcnccπcrc.

where ∆q̂ is implictly defined by linearizing (52), or equivalently the sim-
pler relationship q̂ = ρ̂m̂/(1− β̂cπ), yielding

∆q̂

qc
=

∆ρ̂

ρ
+

∆m̂

mc

+
cπc∆β̂

1− βcπc
,

and similarly from (53), which is equivalent to r̂ = (1− β̂)m̂/
[
α(1− β̂cπ)

]
,

we have that
∆r̂

rc
=

∆m̂

mc

+
(cπc − 1)∆β̂

(1− β)(1− βcπc)
.

Equation (61) replaces (41) and is completed by three equations that are
unchanged from the myopic model: (42), (44), and the linearization of (36)
minus that of (32), which boils down to

∆m̂

mc

+
1

D1

(
−cπc∆β̂ − cyc∆ρ̂+ µ(h− 1)cπc∆ρ̂+ αγc∆ρ̂

)
= − cπc∆β̂

1− βcπc
,

where
D1 = 1− βcπc − ρcyc + µρ(h− 1)cπc + αργc.
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These four equations allow to solve for v = (∆m̂,∆n̂,∆ρ̂,∆β̂)′ as they
can be written as Gv + H(∆ϕ,∆δ)′ = 0, where G is a 4x4 matrix and H a
4x2 matrix with the following nonzero coeffi cients:

G11 =
1

mc

, G13 =
−cyc + µ(h− 1)cπc + αγc

D1

, G14 = −cπc
D1

+
cπc

1− βcπc
,

G21 = γc, G22 = 1,

G33 = cyc, G34 = c2
πc − 1,

G41 = 2mcγc(1− δrccπc)− δ(ϕ+m2
c)cπcγc

rc
mc

+ 2δq2
cnc

cyc
mc

γc

+nc(1− δrccπc)− δnccπcrc + 2δrcnccyc
qc
mc

G42 = δγcq
2
ccyc +mc(1− δrccπc) + δrcqccyc

G43 = 2δγcq
2
ccycnc/ρ+ δrcqccycnc/ρ

G44 = −δrccπcγc(ϕ+m2
c)(cπc − 1)

(1− β)(1− βcπc)
+

2δq2
cncγccyccπc
1− βcπc

−δmcnccπcrc(cπc − 1)

(1− β)(1− βcπc)
+
δrcqccycnccπc

1− βcπc
+
δrcqccycnc(cπc − 1)

(1− β)(1− βcπc)
H41 = −γc(1− δrccπc)
H42 = γcrccπc(ϕ+m2

c)− γcq2
cnccyc − qcrccycnc +mcnccπcrc

Clearly, then, v = −G−1H(∆ϕ,∆δ)′. The residual block is unchanged
compared to the myopic model, therefore w can again be computed as w =
−P−1Qv.
Relative to the myopic case, the real block is defined as follows: (30)-

(32) are unchanged, as well as the condition γm + n = cy which is used
instead of (33). The definition of q (58), in the form q = ρm/(1 − βcπ) is
added to the system, while r is replaced by the RHS of (59), expressed as
(1−β)m/ [α(1− βcπ)] , and the optimality condition (34) has to be replaced
by (57). As a result, when linearized, the real block is now expressed as
Ax+B(∆ϕ,∆δ)′ = 0, where now x ≡ (∆cy,∆cπ,∆m,∆n,∆q,∆γ)′ and the
matrices A and B are 6x6 and 6x2 respectively, and their nonzero coeffi cients
are now defined as
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A11 = 1− cπc, A12 = 2µ(h− 1)cπc − cyc + αγc, A16 = −α(1− cπc),
A22 = 1− 2βcπc, A21 = −ρ,

A31 = −ρmc, A32 = (α−mc)β +mcµρ(h− 1), A33 =
α(1− βcπc)

mc

, A36 = αρmc

A41 = −1, A43 = γc, A44 = 1, A46 = mc,

A52 = −β/(1− βcπc), A53 = −1/mc, A55 = 1/qc,

A61 = γcδq
2
cnc + δqcncrc, A62 = −γcδrc(ϕ+m2

c)−mcncδrc + Ã
rcβ

1− βcπc
,

A63 = (2γcmc + nc)(1− δrccπc) + Ãrc/mc,

A64 = δγcq
2
ccyc +mc(1− δrccπc) + δqcrccyc, A65 = 2γcδqcnccyc + ncδrccyc,

A66 =
(
ϕ+m2

c

)
(1− δrccπc) + δq2

cnccyc,

B61 = γc(1− δrccπc), B62 = −γc(ϕ+m2
c)rccπc + γcq

2
cnccyc −mcncrccπc + qcrcnccyc.

and the quantity Ã stands for −γcδcπc(ϕ+m2
c) + δqcnccyc − δcπcmcnc.

The simulations above have been run for the entire alternative sets of
parameters and for δ = 0.5, 0.9, and 0.99. In all these simulations, without
exceptions, we get that ∆ρ̂/∆ϕ > 0,∆β̂/∆ϕ < 0,∆m̂/∆ϕ < 0,∆n̂/∆ϕ >
0,∆σ̂2

u/∆ϕ < 0,∆σ̂2
v/∆ϕ < 0, ∆ŝu

∆ϕ
< 0, and ∆γ

∆ϕ
< 0, as in Proposition 5 and

the simulations that follow it. In all those simulations, γc > 0, so that Propo-
sition 6 applies. Consequently, we also have that ∆ρ̂/∆δ > 0,∆β̂/∆δ <
0,∆m̂/∆δ < 0,∆n̂/∆δ > 0,∆σ̂2

u/∆δ < 0,∆σ̂2
v/∆δ < 0, ∆ŝu

∆δ
< 0, and

∆γ
∆δ

< 0.

7 Scilab source code for the simulations re-
ported in section II.B.

h=1.5
mu=0.6
ro=1
al=0.3
be=0.1
th=0.2
siu=0.0004
siv=0.0004
phi=0.1
fpos=zeros(4,1)
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nsim=3*3*3*3*3*3*3*3*3
avg=fpos
for h=[1.2 1.5 2]
for mu = [0.2 0.6 0.8]
for ro = [0.2 1 3]
for al = [0.1 0.3 1]
for be = [0.02 0.1 0.6]
for th = [0.1 0.2 0.5]
for siu=[0.00004 0.0004 0.004]
for siv =[0.00004 0.0004 0.004]
for phi = [0.2 1 5]
// First we compute benchmark correct model equilibrium
cpimin=0
cpimax=min(1,(1-mu)/mu)
while cpimax-cpimin>0.0001
cpi=(cpimin+cpimax)/2
cy=(cpi-mu*cpi^2+mu-1)/ro
gal=(cy+be*(h-1)*cpi^2-cy*cpi)/al/(1-cpi)
m=al*(1-mu*cpi)/(1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+ro*al*gal)
n=(cy-be*(h-1)*cpi-al*gal)*(1-mu)/(1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+ro*al*gal)
gar=-m*n/(phi+m^2)
dif=gar-gal
if dif>0 then
cpimin=cpi
else
cpimax=cpi
end
end
ga=gar
ayu=m/al
ayv=(th*m/al-ro*n/(1-mu))
apiu=ro*m/al/(1-mu*cpi)
apiv=ro*(th-1)*m/al/(1-mu*cpi)
dmh=ga/cy
dnh=-ga^2/cy
dmuh=-(1-mu)*(1-mu*cpi)/(1-cpi)/(phi+m^2)
droh=-(1-mu)*(1-mu*cpi)/(phi+m^2)*(1+cpi)/cy
v=[dmh dnh droh dmuh]’
pp=zeros(7,7)
qq=zeros(7,4)
pp(1,1)=1
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pp(2,2)=1
pp(2,5)=-m/al
pp(3,3)=1/apiu
pp(4,4)=1/apiv
pp(4,3)=-1/apiu
pp(4,5)=1/(1-th)
pp(5,1)=2*ayu*siu
pp(5,2)=2*ayv*siv
pp(5,6)=ayu^2
pp(5,7)=ayv^2
pp(6,3)=2*apiu*siu
pp(6,4)=2*apiv*siv
pp(6,6)=apiu^2
pp(6,7)=apiv^2
pp(7,1)=apiu*siu
pp(7,2)=apiv*siv
pp(7,3)=ayu*siu
pp(7,4)=ayv*siv
pp(7,6)=ayu*apiu
pp(7,7)=ayv*apiv
qq(1,1)=-1/al
qq(2,1)=-th/al
qq(2,2)=ro/(1-mu)
qq(2,3)=n/(1-mu)
qq(2,4)=ro*n/(1-mu)^2
qq(3,1)=-1/m
qq(3,3)=-1/ro
qq(3,4)=-cpi/(1-mu*cpi)
ww=-inv(pp)*qq*v
chdemprop=2*ww(1,:)/ayu+ww(6,:)/siu
//for chdemprop this gives the sign, not the exact value
fpos(1:2,1)=fpos(1:2,1)+(ww(6:7,1)>=0)
fpos(3,1)=fpos(3,1)+(chdemprop>=0)
avg(1:2,1)=avg(1:2,1)+ww(6:7,1)
avg(3,1)=avg(3,1)+chdemprop
// Now we numerically compute the changes in the real economy
aa=zeros(5,5)
bb=zeros(5,1)
aa(1,1)=1-cpi
aa(1,2)=2*be*(h-1)*cpi-cy+al*ga
aa(1,5)=-al*(1-cpi)
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aa(2,2)=1-2*mu*cpi
aa(2,1)=-ro
aa(3,1)=-ro*m
aa(3,2)=-mu*m+al*mu+m*be*ro*(h-1)
aa(3,3)=al*(1-mu*cpi)/m
aa(3,5)=al*ro*m
aa(4,1)=-1
aa(4,3)=ga
aa(4,4)=1
aa(4,5)=m
aa(5,3)=2*m*ga+n
aa(5,4)=m
aa(5,5)=phi+m^2
bb(5,1)=ga
xx=-inv(aa)*bb
fpos(4,1)=fpos(4,1)+(xx(5,1)>0)
avg(4,1)=avg(4,1)+xx(5,1)
end
end
end
end
end
end
end
end
end
avg=avg/nsim

8 Scilab source code for the simulations re-
ported in Section II.C.

h=1.5
mu=0.6
ro=1
al=0.3
be=0.1
th=0.2
siu=0.0004
siv=0.0004
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phi=0.1
de=0.5
fpos=zeros(4,2)
nsim=3*3*3*3*3*3*3*3*3
avg=fpos
gpos=zeros(4,2)
gavg=gpos
gasgn=0
fpos2=zeros(3,1)
gpos2=zeros(4,1)
n1=0
mu1mean=0
ro1mean=0
al1mean=0
be1mean=0
th1mean=0
phi1mean=0
siu1mean=0
siv1mean=0
for h=[1.2 1.5 2]
for mu = [0.2 0.6 0.8]
for ro = [0.2 1 3]
for al = [0.1 0.3 1]
for be = [0.02 0.1 0.6]
for th = [0.1 0.2 0.5]
for siu=[0.00004 0.0004 0.004]
for siv =[0.00004 0.0004 0.004]
for phi = [0.2 1 5]
// First we compute benchmark correct model equilibrium
cpimin=0
cpimax=min(1,(1-mu)/mu)
while cpimax-cpimin>0.000001
cpi=(cpimin+cpimax)/2
cy=(cpi-mu*cpi^2+mu-1)/ro
gal=(cy+be*(h-1)*cpi^2-cy*cpi)/al/(1-cpi)
m=al*(1-mu*cpi)/(1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+ro*al*gal)
n=(cy-be*(h-1)*cpi-al*gal)*(1-mu)/(1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+ro*al*gal)
q=ro*m/(1-mu*cpi)
r=(1-mu)*m/al/(1-mu*cpi)
z=de*q*n*cy/(1-de*r*cpi)
gar=(-m*n-r*z)/(phi+m^2+q*z)
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dif=gar-gal
if dif>0 then
cpimin=cpi
else
cpimax=cpi
end
end
ga=gar
ayu=m/al
ayv=(th*m/al-ro*n/(1-mu))
apiu=ro*m/al/(1-mu*cpi)
apiv=ro*(th-1)*m/al/(1-mu*cpi)
ee=zeros(4,4)
ff=zeros(4,2)
d1=1-mu*cpi-ro*cy+be*ro*(h-1)*cpi+al*ro*ga
ee(1,1)=1/m
ee(1,3)=(-cy+be*(h-1)*cpi+al*ga)/d1
ee(1,4)=-cpi/d1+cpi/(1-mu*cpi)
ee(2,1)=ga
ee(2,2)=1
ee(3,3)=cy
ee(3,4)=cpi^2-1
ee(4,1)=2*ga*m*(1-de*r*cpi)-de*(phi+m^2)*cpi*ga*r/m+2*de*q^2*n*cy/m*ga+n*(1-

de*r*cpi)-de*n*r*cpi+2*de*r*n*cy*q/m
ee(4,2)=de*ga*q^2*cy+m*(1-de*r*cpi)+de*r*q*cy
ee(4,3)=2*de*ga*q^2*cy*n/ro+de*r*q*cy*n/ro
ee(4,4)=-de*r*cpi*ga*(phi+m^2)*(cpi-1)/(1-mu)/(1-mu*cpi)+2*de*q^2*n*cy*cpi*ga/(1-

mu*cpi)-de*m*n*cpi*r*(cpi-1)/(1-mu)/(1-mu*cpi)+de*r*q*cy*n*cpi/(1-mu*cpi)+de*r*q*cy*n*(cpi-
1)/(1-mu)/(1-mu*cpi)
ff(4,1)=-ga*(1-de*r*cpi)
ff(4,2)=ga*r*cpi*(phi+m^2)-ga*q^2*n*cy-q*r*cy*n+m*n*cpi*r
//The following lines compute v=-inv(ee)*ff in a way which is robust to

singularities in ee, due to the use of intermediate expressions m and n that
may turn up to be colinear for some parameter values
v2=-inv(ee(3:4,3:4)-ee(3:4,1:2)*inv(ee(1:2,1:2))*ee(1:2,3:4))*ff(3:4,:)
v1=-inv(ee(1:2,1:2))*ee(1:2,3:4)*v2
v=cat(1,v1,v2)
gpos=gpos+(v>0)
gavg=gavg+v
gasgn=gasgn+(ga>0)
pp=zeros(7,7)
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qq=zeros(7,4)
pp(1,1)=1
pp(2,2)=1
pp(2,5)=-m/al
pp(3,3)=1/apiu
pp(4,4)=1/apiv
pp(4,3)=-1/apiu
pp(4,5)=1/(1-th)
pp(5,1)=2*ayu*siu
pp(5,2)=2*ayv*siv
pp(5,6)=ayu^2
pp(5,7)=ayv^2
pp(6,3)=2*apiu*siu
pp(6,4)=2*apiv*siv
pp(6,6)=apiu^2
pp(6,7)=apiv^2
pp(7,1)=apiu*siu
pp(7,2)=apiv*siv
pp(7,3)=ayu*siu
pp(7,4)=ayv*siv
pp(7,6)=ayu*apiu
pp(7,7)=ayv*apiv
qq(1,1)=-1/al
qq(2,1)=-th/al
qq(2,2)=ro/(1-mu)
qq(2,3)=n/(1-mu)
qq(2,4)=ro*n/(1-mu)^2
qq(3,1)=-1/m
qq(3,3)=-1/ro
qq(3,4)=-cpi/(1-mu*cpi)
ww=-inv(pp)*qq*v
chdemprop=2*ww(1,:)/ayu+ww(6,:)/siu
//for chdemprop this gives the sign, not the exact value
fpos(1:2,:)=fpos(1:2,:)+(ww(6:7,:)>=0)
fpos(3,:)=fpos(3,:)+(chdemprop>=0)
avg(1:2,:)=avg(1:2,:)+ww(6:7,:)
avg(3,:)=avg(3,:)+chdemprop
//Now we numerically compute the changes in the real economy
aa=zeros(6,6)
bb=zeros(6,2)
atilda=-ga*de*cpi*(phi+m^2)+de*q*n*cy-de*cpi*m*n
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aa(1,1)=1-cpi
aa(1,2)=2*be*(h-1)*cpi-cy+al*ga
aa(1,6)=-al*(1-cpi)
aa(2,2)=1-2*mu*cpi
aa(2,1)=-ro
aa(3,1)=-ro*m
aa(3,2)=-mu*m+al*mu+m*be*ro*(h-1)
aa(3,3)=al*(1-mu*cpi)/m
aa(3,6)=al*ro*m
aa(4,1)=-1
aa(4,3)=ga
aa(4,4)=1
aa(4,6)=m
aa(5,2)=-mu/(1-mu*cpi)
aa(5,3)=-1/m
aa(5,5)=1/q
aa(6,1)=ga*de*q^2*n+de*q*n*r
aa(6,2)=-ga*de*r*(phi+m^2)-m*n*de*r+atilda*r*mu/(1-mu*cpi)
aa(6,3)=(2*ga*m+n)*(1-de*r*cpi)+atilda*r/m
aa(6,4)=de*ga*q^2*cy+m*(1-de*r*cpi)+de*q*r*cy
aa(6,5)=2*ga*de*q*n*cy+de*n*r*cy
aa(6,6)=(phi+m^2)*(1-de*r*cpi)+de*q^2*n*cy
bb(6,1)=ga*(1-de*r*cpi)
bb(6,2)=-ga*(phi+m^2)*r*cpi+ga*q^2*n*cy-m*n*r*cpi+q*r*n*cy
xx=-inv(aa)*bb
fpos(4,:)=fpos(4,:)+(xx(6,:)>0)
avg(4,:)=avg(4,:)+xx(6,:)
//gpos2 and fpos2 check that phi and de have opposite effect on perceived

parameter iff dga/dde>0
end
end
end
end
end
end
end
end
end
avg=avg/nsim
gavg=gavg/nsim

25


