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Convergence to steady state
The main model assumes steady state. Embedding the above framework into a dy-

namic setting in which new cohorts of investors sample from previous cohorts of investors

naturally leads to asking when we should expect to see convergence to steady state as

considered in the main analysis. Another legitimate concern is whether the overoptimism

bias identified in the main analysis would still arise in case there would be no convergence.

To model the dynamics most simply, consider within the MLRP scenario discussed in the

main model a sequence of time periods t = 1, 2, ... Assume that in every period t > 1

there is a new cohort of investors of the same mass who sample from the implemented

projects handled by the cohort of investors living in period t− 1, and assume to fix ideas

that in the first period investors choose to invest whatever signal they observe.

In such a dynamic setting, investors in period t would adopt a threshold strategy

zt specifying to invest if the observed signal realization a is above zt and to not invest

otherwise where the sequence of zt would be characterized inductively by z1 = a (since the

first generation of investors was assumed to invest always) and for all t > 1, the threshold

zt+1 would be uniquely defined by H(zt+1, zt) = c (assuming H(a, z) < c < H(a, z) for

all z) where H(·, ·) is the function defined in Section 3 of the paper. It appears that

z2 coincides with aR, and using the monotonicity of H, it can be shown by induction

that the sequence (z2k+1)k≥1 is weakly decreasing and satisfies z2k+1 ≥ aS for all k while

the sequence (z2k)k≥1 is weakly increasing and satisfies z2k ≤ aS for all k where aS is

the equilibrium threshold defined in Proposition 1. Thus, (z2k+1)k≥1 converges to z∗ and

(z2k)k≥1 converges to z∗ with z∗ ≤ aS ≤ z∗. If z∗ = z∗ = aS the system converges to the
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steady state described in Proposition 1. If z∗ < aS < z∗, the system converges to a limit

two-period cycle in which in odd periods there is less activity as dictated by the threshold

strategy z∗ and in even periods there is more activity as dictated by the threshold strategy

z∗. Whether the system converges or cycles depends on how the slope (∂H/∂z)(∂H/∂a)

compares to 1. When it is uniformly lower than 1, (as is the case for the leading example

with variance σ = 1), there is convergence. When it is larger than 1 in the neighborhood

of a = z = aS, the two-period limit cycle prevails.1

It should be noted that in the above dynamics whether or not there is convergence,

the overoptimism and overinvestment biases hold in every period (this follows from the

monotonicity of H and the observation that H(aR, a) = c). Moreover, since zt ≤ aR for

all t and z2 = aR, the monotonicity of H implies that the smallest zt which corresponds to

the most biased investment strategy is obtained in period 3 when the samples considered

by the current cohort consist of projects handled by rational investors. In all subsequent

periods, because sampled investors adopt suboptimal strategies, the sampling heuristic

leads to less severe biases.

Cycling with heterogeneous investors
It is natural to combine dynamics as just considered with the possibility that investors

could vary in their degree of sophistication, some of them being rational and others being

subject to selection neglect as proposed in the main model. A full-fledged dynamic model

along these lines would aim at endogenizing entry and exit of entrepreneurs, assuming

for example entrepreneurs’ sophistication vary with their experience. Analyzing such a

model is clearly beyond the scope of this online appendix. Yet, in order to illustrate

that some rich dynamics can be expected, consider the following stylized setting. In each

period t = 1, 2, ... a new cohort of agents decides whether or not to become entrepreneur.

Every entrepreneur faces the same distribution of projects as described above but agents

may have different outside options assumed to be drawn independently across agents

from a distribution with cumulative G. In every period, the share of rational agents is λ

and the share of sampling agents is 1 − λ. Let wR denote the expected payoff a rational

investor gets by becoming an entrepreneur (i.e., wR = E(max vR(a)−c, 0)), and let wS(λ)

denote the expected payoff a sampling investor subjectively expects to get when facing

1If investors were sampling from all previous cohorts rather than just the most recent one, I suspect
the convergence scenario would be made more likely (because such a sampling device would smoothen
the reaction to previous behaviors), but more work is needed to establish this formally.
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a share λ (resp. 1 − λ) of rational (resp. sampling) investors.2 Rational agents become

entrepreneur whenever their outside option falls below wR, i.e. with probability G(wR).

Sampling agents who would sample from a mix λ of rational investors and 1−λ of sampling

investors would become entrepreneur with probability G(wS(λ)). Thus assuming the

cohort of (sampling) agents in period t samples from the implemented projects in period

t− 1, the share λt of rational investors in period t would follow the dynamic:

λt =
µG(wR)

µG(wR) + (1 − µ)G(wS(λt−1))
.

As can be inferred from the above analysis, wS(·) is increasing in λ. Thus, a higher share

of rational investors in period t would lead more sampling agents to become entrepreneurs

in period t + 1, which would result in a lower share of rational investors in period t + 1.

Depending on the shape of G, such a dynamic system may either converge to a limit share

λ∗ of rational investors or lead to long term cycling between high and low shares (away

and respectively above and below λ∗) of rational investors, corresponding respectively to

low and high levels of entrepreneurial activity.3

2With the notation previously introduced, wS(λ) = E[max(H(a, aS(λ)) − c, 0)] where the density of

a is fλ(a) =
∑

x∈X f(a|x)[(1−λ)(1−F (aS(λ)|x))+λ(1−F (aR|x))]l(x)∑
x∈X([1−λ)(1−F (aS(λ)|x))+λ(1−F (aR|x))]l(x) .

3λ∗ is a solution to λ∗ = µG(wR)
µG(wR)+(1−µ)G(wS(λ∗))

and if G has sufficient mass around wS(λ∗) one should

expect cycling to emerge.
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