Optimal Allocation with Ex-post Verification and Limited Penalties
Tymofiy Mylovanov and Andriy Zapechelnyuk
Online Appendix

Proof of Lemma 2. Consider an allocation $g(x)$ that satisfies (IC) and (F). We construct a monotonic $\tilde{g}(x)$ that preserves constraints (IC) and (F), but increases the principal's payoff.

We have assumed that F has almost everywhere positive density, so F^{-1} exists. Define

$$
S(t)=\left|\left\{y: g\left(F^{-1}(y)\right) \leq t\right\}\right|, \quad t \in \mathbb{R}_{+} .
$$

Note that S is weakly increasing and satisfies $S(t) \in[0,1]$ for all t. Define

$$
\tilde{g}(x)=S^{-1}(F(x))
$$

for all x where $S^{-1}(F(x))$ exists, and extend \tilde{g} to $[a, b]$ by right continuity. Observe that \tilde{g} satisfies (F) by construction. In addition,

$$
\sup _{x \in[a, b]} g(x)=\sup _{y \in[0,1]} g\left(F^{-1}(y)\right)=S^{-1}(1)=\sup _{y \in[0,1]} \tilde{g}\left(F^{-1}(y)\right)=\sup _{x \in[a, b]} \tilde{g}(x),
$$

thus \tilde{g} satisfies (IC). Finally, we show that \tilde{g} yields a weakly greater payoff to the principal. By construction,

$$
\int_{a}^{z} \tilde{g}(x) \mathrm{d} F(x) \leq \int_{a}^{z} g(x) \mathrm{d} F(x) \text { for all } z \in[a, b],
$$

and it holds with equality for $z=b$. Hence, using integration by parts, the expression
$\int_{a}^{b} x(\tilde{g}(x)-g(x)) \mathrm{d} F(x)=b \int_{a}^{b}(\tilde{g}(x)-g(x)) \mathrm{d} F(x)-\int_{a}^{b}\left(\int_{a}^{z}(\tilde{g}(x)-g(x)) \mathrm{d} F(x)\right) \mathrm{d} z$
is nonnegative.
Proof of Corollary 3. Let $Q=\int_{a}^{z^{*}} q \mathrm{~d} F(x)+\int_{z^{*}}^{b} \mathrm{~d} F(x)$ be the ex-ante probability to be short-listed, and let A and B be the expected probabilities to be chosen conditional on being shortlisted and conditional on not being short-listed, respectively:

$$
A=\sum_{k=1}^{n} \frac{1}{k}\binom{n-1}{k-1} Q^{k-1}(1-Q)^{n-k} \quad \text { and } \quad B=\frac{1}{n}(1-Q)^{n-1}
$$

The associated reduced-form rule is as follows. An agent's probability $g_{i}(x)$ to be chosen conditional on $x_{i} \geq z^{*}$ and $x_{i}<z^{*}$ is given by A and $q A+(1-q) B$,
respectively. Hence,

$$
g(x) \equiv \sum_{i} g_{i}(x)= \begin{cases}n(q A+(1-q) B), & x<z^{*} \tag{B1}\\ n A, & x \geq z^{*}\end{cases}
$$

We now prove that g is identical to g^{*} whenever q satisfies (15). We have

$$
\begin{align*}
Q & =\int_{a}^{z^{*}} q \mathrm{~d} F(x)+\int_{z^{*}}^{b} \mathrm{~d} F(x)=\int_{a}^{z^{*}}\left(1-\frac{c}{s}\right) \mathrm{d} F(x)+\int_{z^{*}}^{b} \mathrm{~d} F(x) \tag{B2}\\
& =\left(\int_{a}^{z^{*}}\left(\frac{1-c}{s}-\frac{1-s}{s}\right) \mathrm{d} F(x)+\int_{z^{*}}^{b}\left(\frac{1}{s}-\frac{1-s}{s}\right) \mathrm{d} F(x)\right) \\
& =\frac{1}{s}\left(\int_{a}^{z^{*}}(1-c) \mathrm{d} F(x)+\int_{z^{*}}^{b} \mathrm{~d} F(x)\right)-\frac{1-s}{s} \\
& =\frac{1 / r^{*}}{s}-\frac{1-s}{s}=\frac{1-r^{*}+r^{*} s}{r^{*} s},
\end{align*}
$$

where we used (9). Hence, $1-Q=\frac{r^{*}-1}{r^{*} s}$. Next,

$$
\begin{aligned}
A & =\sum_{k=1}^{n} \frac{1}{k} \frac{(n-1)!}{(k-1)!(n-k)!} Q^{k-1}(1-Q)^{n-k}=\frac{1}{n Q} \sum_{k=1}^{n} \frac{n!}{k!(n-k)!} Q^{k}(1-Q)^{n-k} \\
& =\frac{1}{n Q}\left(1-(1-Q)^{n}\right)
\end{aligned}
$$

Substituting (B2) into the above yields

$$
A=\frac{r^{*} s}{n\left(1-r^{*}+r^{*} s\right)}\left(1-\frac{\left(r^{*}-1\right)^{n}}{\left(r^{*} s\right)^{n}}\right) .
$$

By (16), after some algebraic transformations,

$$
A=\frac{r^{*} s}{n\left(1-r^{*}+r^{*} s\right)}\left(1-\frac{\left(r^{*}-1\right)^{n}}{\left(r^{*} s\right)^{n}}\right)=\frac{r^{*}}{n} .
$$

Also, using (B2) and (16) we obtain

$$
B=\frac{1}{n}(1-Q)^{n-1}=\frac{1}{n} \frac{\left(r^{*}-1\right)^{n-1}}{\left(r^{*} s\right)^{n-1}}=\frac{(1-s) r^{*}}{n}
$$

Substitute A and B into (B1):

$$
n(q A+(1-q) B)=\frac{(s-c) n A+c n B}{s}=\frac{(s-c) r^{*}+c(1-s) r^{*}}{s}=(1-c) r^{*}
$$

and $n A=r^{*}$. Hence, $g(x)=g^{*}(x)$ for all $x \in X$.
It remains to show that, whenever $n \geq \bar{n}$, this shortlisting procedure is feasible and well defined, i.e., $h \geq s$ and the solution of (16) exists and is unique.
Let $n \geq \bar{n}$. Observe that $F\left(z^{*}\right)<1$, as evident from (8) and the assumption that $c>0$. Using the definition of r^{*}, we can rewrite (14) as

$$
r^{*} \leq \frac{1-F^{n}\left(z^{*}\right)}{1-F\left(z^{*}\right)}=1+F\left(z^{*}\right)+F^{2}\left(z^{*}\right)+\ldots+F^{n-1}\left(z^{*}\right)<n .
$$

In addition, $1 / r^{*}=(1-c) F\left(z^{*}\right)+1-F\left(z^{*}\right)<1$. Consequently, $\frac{1}{n}<\frac{1}{r^{*}}<1$.
Observe that $(1-s) s^{n-1}$ unimodal on $[0,1]$ with zero at the endpoints and the maximum at $s=\frac{n-1}{n}$. Moreover, it is strictly decreasing on $\left[\frac{n-1}{n}, 1\right]$. Since the right-hand side of (16) is strictly between zero and the maximum, there exists a unique solution of (16) on $\left[\frac{n-1}{n}, 1\right]$.

Now we prove that $c \leq s$. It is immediate if $c \leq \frac{n-1}{n}$ (since $s \in\left[\frac{n-1}{n}, 1\right]$). Assume now that $c>\frac{n-1}{/} n$. Because $n \geq \bar{n}$, condition (14) must hold, which can be written as

$$
F^{n-1}\left(z^{*}\right) \leq(1-c) r^{*}
$$

Thus, the right-hand side of (16) satisfies:

$$
\frac{1}{r^{*}}\left(1-\frac{1}{r^{*}}\right)^{n-1}=\frac{\left(c F\left(z^{*}\right)\right)^{n-1}}{r^{*}} \leq(1-c) c^{n-1}
$$

That is, $n \geq \bar{n}$ and (16) entail

$$
(1-s) s^{n-1}=\frac{1}{r^{*}}\left(1-\frac{1}{r^{*}}\right)^{n-1} \leq(1-c) c^{n-1} .
$$

As $(1-s) s^{n-1}$ is decreasing on $\left[\frac{n-1}{n}, 1\right]$ and we have assumed $c>(n-1) / n$, it follows that $c \leq s$.

Proof of Proposition 3. We have already established that the solution g must satisfy (21) for some $r \in R=[1, \min \{n, 1 /(1-c)\}]$. It remains to show that the optimal r is the unique solution of (22).

Let us first derive how \bar{x}_{r} and \underline{x}_{r} change w.r.t. r. From (19) we have

$$
\left(1-F\left(\bar{x}_{r}\right)\right) \mathrm{d} r-r f\left(\bar{x}_{r}\right) \mathrm{d} \bar{x}_{r}=-n F^{n-1}\left(\bar{x}_{r}\right) f\left(\bar{x}_{r}\right) \mathrm{d} \bar{x}_{r} .
$$

Hence,

$$
\frac{\mathrm{d} \bar{x}_{r}}{\mathrm{~d} r}=\frac{1-F\left(\bar{x}_{r}\right)}{\left(r-n F^{n-1}\left(\bar{x}_{r}\right)\right) f\left(\bar{x}_{r}\right)},
$$

and thus

$$
\begin{equation*}
\bar{x}_{r}\left(n F^{n-1}\left(\bar{x}_{r}\right)-r\right) f\left(\bar{x}_{r}\right) \frac{\mathrm{d} \bar{x}_{r}}{\mathrm{~d} r}=-\bar{x}_{r}\left(1-F\left(\bar{x}_{r}\right)\right) . \tag{B3}
\end{equation*}
$$

Next, if $\underline{x}_{r}=0$, then $\frac{\mathrm{d} \underline{x}_{r}}{\mathrm{~d} r}=0$. Suppose that $\underline{x}_{r}>0$. By (20) it satisfies $(1-c) r F\left(\underline{x}_{r}\right)+1-F^{n}\left(\underline{x}_{r}\right)=1$. Hence,

$$
(1-c) F\left(\underline{x}_{r}\right) \mathrm{d} r+(1-c) r f\left(\underline{x}_{r}\right) \mathrm{d} \underline{x}_{r}-n F^{n-1}\left(\underline{x}_{r}\right) f\left(\underline{x}_{r}\right) \mathrm{d} \underline{x}_{r}=0 .
$$

Hence,

$$
\frac{\mathrm{d} \underline{x}_{r}}{\mathrm{~d} r}= \begin{cases}\frac{F\left(\bar{x}_{r}\right)}{\left(n F^{n-1}\left(\underline{x}_{r}\right)-(1-c) r\right) f\left(\underline{x}_{r}\right)}, & \text { if } \underline{x}_{r}>0, \\ 0, & \text { if } \underline{x}_{r}=0 .\end{cases}
$$

Thus we obtain

$$
\begin{equation*}
\underline{x}_{r}\left((1-c) r-n F^{n-1}\left(\underline{x}_{r}\right)\right) f\left(\underline{x}_{r}\right) \frac{\mathrm{d} \bar{x}_{r}}{\mathrm{~d} r}=-\underline{x}_{r} F\left(\underline{x}_{r}\right) . \tag{B4}
\end{equation*}
$$

Finally, with $g=g_{r}$, the principal's objective function is

$$
W(r)=\int_{a}^{\underline{x}_{r}} x(1-c) r \mathrm{~d} F(x)+\int_{\underline{x}_{r}}^{\bar{x}_{r}} x n F^{n-1}(x) \mathrm{d} F(x)+\int_{\bar{x}_{r}}^{b} x r \mathrm{~d} F(x) .
$$

Taking the derivative w.r.t. r and using (B3) and (B4) we obtain

$$
\begin{aligned}
\frac{\mathrm{d} W(r)}{\mathrm{d} r} & =\int_{a}^{\underline{x}_{r}} x(1-c) \mathrm{d} F(x)+\int_{\bar{x}_{r}}^{b} x \mathrm{~d} F(x)+\underline{x}_{r}\left((1-c) r-n F^{n-1}\left(\underline{x}_{r}\right)\right) f\left(\underline{x}_{r}\right) \frac{\mathrm{d} \bar{x}_{r}}{\mathrm{~d} r} \\
& +\bar{x}_{r}\left(n F^{n-1}\left(\bar{x}_{r}\right)-r\right) f\left(\bar{x}_{r}\right) \frac{\mathrm{d} \bar{x}_{r}}{\mathrm{~d} r} \\
& =\int_{a}^{\underline{x}_{r}} x(1-c) \mathrm{d} F(x)+\int_{\bar{x}_{r}}^{b} x \mathrm{~d} F(x)-\underline{x}_{r} F\left(\underline{x}_{r}\right)-\bar{x}_{r}\left(1-F\left(\bar{x}_{r}\right)\right) \\
& =\int_{a}^{\underline{x}_{r}}\left(x-\underline{x}_{r}\right)(1-c) \mathrm{d} F(x)+\int_{\bar{x}_{r}}^{b}\left(x-\bar{x}_{r}\right) \mathrm{d} F(x) .
\end{aligned}
$$

The equation $\frac{\mathrm{d} W(r)}{\mathrm{d} r}=0$ is exactly (22). To show that it has a unique solution, observe that $\frac{\mathrm{d} \underline{x}_{r}}{\mathrm{~d} r} \geq 0$ and $\frac{\mathrm{d} \underline{x}_{r}}{\mathrm{~d} r}>0$ (since $g_{r}\left(\underline{x}_{r}\right)=n F^{n-1}\left(\underline{x}_{r}\right) \geq(1-c) r$ and $g_{r}\left(\bar{x}_{r}\right)=n F^{n-1}\left(\bar{x}_{r}\right) \leq r$ by (IC)). Consequently, $\frac{\mathrm{d} W(r)}{\mathrm{d} r}$ is strictly decreasing in r. Moreover, for r sufficiently close to 0 , we have both \underline{x}_{r} and \bar{x}_{r} close to a, in which case $W(r)>0$, and similarly, for $r=1 /(1-c)$, we have $\bar{x}_{r}=\underline{x}_{r}=b$, in which case $W(r)<0$.

Proof of Propositions 5a, 5b, 5c. The points of interest are the optimal principal's payoff z^{*} and the structure of the optimal allocation mechanism.

First, let us deal with the optimal principal's payoff z^{*}.
5a: Increasing c affects only the incentive constraint (IC) by making it looser. Optimization on a larger set yields a weakly higher optimal payoff.
5 b: Increasing n affects only the feasibility constraint (F) by making it looser. Optimization on a larger set yields a weakly higher optimal payoff. When $n \geq \bar{n}$, the feasibility constraint is not binding and hence has no effect on the optimal payoff.

5c: Let $\tilde{F}(x) \leq F(x)$ for all x. This affects the feasibility constraint (F) by making it looser for all x. Optimization on a larger set yields a weakly higher optimal payoff.
Next, we deal with the structure of the optimal allocation mechanism: threshold \bar{x} of the high pooling interval and threshold \underline{x} of the low pooling interval for the case of $n<\bar{n}$. The interval $[\underline{x}, \bar{x}]$ is the separating interval. There are three cases to consider.
Case 1: $n \geq \bar{n}$. By Proposition 2, the optimal allocation has to satisfy the equation

$$
(1-c) \int_{a}^{z^{*}}\left(z^{*}-x\right) \mathrm{d} F(x)=\int_{z^{*}}^{b}\left(x-z^{*}\right) \mathrm{d} F(x) .
$$

Integrating by parts, we obtain

$$
\begin{equation*}
(1-c) \int_{a}^{z^{*}} F(x) \mathrm{d} x=\int_{z^{*}}^{b}(1-F(x)) \mathrm{d} x . \tag{B5}
\end{equation*}
$$

In this case, the threshold of the high pooling interval and the principal's payoff are the same, $\bar{x}=z^{*}$. The separating interval is empty.

5a: From (B5) it is immediate that $\frac{\mathrm{d} z^{*}}{\mathrm{~d} c}>0$. That is, the size of the high pooling interval is decreasing in c.

5b: Equation (B5) is independent of n, so a change in n has no effect (so long as $n \geq \bar{n}$).

5c: Let $\tilde{F}(x) \leq F(x)$ for all x. From (B5) it is immediate that replacing F with \tilde{F} yields a greater solution z^{*}. That is, the high pooling interval shrinks.

Case 2: $n<\bar{n}$ and $\underline{x}=0$. By Proposition 3, the optimal allocation has to satisfy equation (22) where we use $\underline{x}=0$:

$$
\int_{a}^{0}(-x)(1-c) \mathrm{d} F(x)=\int_{\bar{x}}^{b}(x-\bar{x}) \mathrm{d} F(x) .
$$

Integrating by parts, we obtain

$$
\begin{equation*}
(1-c) \int_{a}^{0} F(x) \mathrm{d} x=\int_{\bar{x}}^{b}(1-F(x)) \mathrm{d} x . \tag{B6}
\end{equation*}
$$

Note that (19) is satisfied, as it has a free variable r that does not appear in (B6). Assuming that variations of the parameters are marginal and \underline{x} remains equal
to zero, the value of interest is the threshold \bar{x} of the high pooling interval. The change in the length of the separating interval $t=\bar{x}-\underline{x}$ is the same as the change in \bar{x}.
5a: From (B6) it is immediate that $\frac{\mathrm{d} \bar{x}}{\mathrm{dc}}>0$. That is, the high pooling interval is decreasing and the separating interval is increasing in c.
5b: Equation (B6) is independent of n. Hence, a change in n has no effect, so long as $\underline{x}=0$.
5c: Let $\tilde{F}(x) \leq F(x)$ for all x. From (B6) it is immediate that replacing F by \tilde{F} yields a greater solution \bar{x}. That is, the high pooling interval shrinks and the separating interval expands.
Case 3: $n<\bar{n}$ and $\underline{x}>0$. By Proposition 3, the optimal allocation is described by thee variables, \bar{x}, \underline{x}, and r, that must satisfy (19), (20), and (22). Combining (19) and (20) to eliminate r, we obtain

$$
\begin{equation*}
(1-c) \frac{1-F^{n}(\bar{x})}{1-F(\bar{x})}=F^{n-1}(\underline{x}) . \tag{B7}
\end{equation*}
$$

Also, integrating (22) by parts, we obtain

$$
\begin{equation*}
(1-c) \int_{a}^{\underline{x}} F(x) \mathrm{d} x=\int_{\bar{x}}^{b}(1-F(x)) \mathrm{d} x . \tag{B8}
\end{equation*}
$$

Thus, the structure of the optimal allocation is characterized by \bar{x} and \underline{x} that satisfy (B7) and (B8).
Let us now evaluate $\frac{\mathrm{d} \bar{x}}{\mathrm{~d} n}, \frac{\mathrm{~d} x}{\mathrm{~d} n}, \frac{\mathrm{~d} \bar{x}}{\mathrm{~d} c}$, and $\frac{\mathrm{d}(\bar{x}-\underline{x})}{\mathrm{d} c}$. After taking the full differential of (B7) and (B8) w.r.t. $\bar{x}, \underline{x}, c$, and n, we obtain

$$
\begin{align*}
& 0=L_{\bar{x}} \mathrm{~d} \bar{x}-L_{\underline{x}} \mathrm{~d} \underline{x}-L_{c} \mathrm{~d} c+L_{n} \mathrm{~d} n, \tag{B9}\\
& 0=M_{\bar{x}} \mathrm{~d} \bar{x}+M_{\underline{x}} \mathrm{~d} \underline{x}-M_{c} \mathrm{~d} c,
\end{align*}
$$

where

$$
\begin{aligned}
& L_{\bar{x}}=(1-c) \frac{\mathrm{d}}{\mathrm{~d} \bar{x}}\left(1+F(\bar{x})+F^{2}(\bar{x})+\ldots+F^{n-1}(\bar{x})\right)>0, \\
& L_{\underline{x}}=\frac{\mathrm{d}}{\mathrm{~d} \underline{x}} F^{n-1}(\underline{x})>0, \\
& L_{c}=1+F(\bar{x})+F^{2}(\bar{x})+\ldots+F^{n-1}(\bar{x})>0, \\
& L_{n}=-\left((1-c) \frac{F^{n}(\bar{x})}{1-F(\bar{x})} \ln F(\bar{x})+F^{n-1}(\underline{x}) \ln F(\underline{x})\right)>0, \\
& M_{\bar{x}}=1-F(\bar{x})>0, \\
& M_{\underline{x}}=(1-c) F(\underline{x})>0, \\
& M_{c}=\int_{a}^{\underline{x}} F(x) \mathrm{d} x>0,
\end{aligned}
$$

where we used $c>0, \underline{x}>a$ and $\bar{x}<b$ (i.e., the best payoff is better than random allocation) and that $f(x)$ is everywhere positive.

To evaluate $\frac{\mathrm{d} \bar{x}}{\mathrm{~d} n}$ and $\frac{\mathrm{d} x}{\mathrm{~d} n}$, we set $\mathrm{d} c=0$ and solve the system of equations (B9),

$$
\begin{aligned}
& \frac{\mathrm{d} \bar{x}}{\mathrm{~d} n}=-\frac{L_{n} M_{\underline{x}}}{L_{\bar{x}} M_{\underline{x}}+L_{\underline{x}} M_{\bar{x}}}<0, \\
& \frac{\mathrm{~d} \underline{x}}{\mathrm{~d} n}=\frac{L_{n} M_{\bar{x}}}{L_{\bar{x}} M_{\underline{x}}+L_{\underline{x}} M_{\bar{x}}}>0
\end{aligned}
$$

and hence $\frac{\mathrm{d}(\bar{x}-\underline{x})}{\mathrm{d} n}<0$.
To evaluate $\frac{\mathrm{d} \bar{x}}{\mathrm{~d} c}$ and $\frac{\mathrm{d} x}{\mathrm{dc}}$, we set $\mathrm{d} n=0$ and solve the system of equations (B9),

$$
\begin{aligned}
& \frac{\mathrm{d} \bar{x}}{\mathrm{~d} c}=\frac{L_{\underline{x}} M_{c}+L_{c} M_{\underline{x}}}{L_{\bar{x}} M_{\underline{x}}+L_{\underline{x}} M_{\bar{x}}}>0 \\
& \frac{\mathrm{~d} \underline{x}}{\mathrm{~d} c}=\frac{L_{\bar{x}} M_{c}-L_{c} M_{\bar{x}}}{L_{\bar{x}} M_{\underline{x}}+L_{\underline{x}} M_{\bar{x}}}
\end{aligned}
$$

To prove $\frac{\mathrm{d}(\bar{x}-\underline{x})}{\mathrm{d} c}>0$, it is sufficient to check that $\frac{L \underline{x}-L_{\bar{x}}}{(1-c) L_{c}}>0$. By (B7) we have

$$
L_{c}=1+F(\bar{x})+F^{2}(\bar{x})+\ldots+F^{n-1}(\bar{x})=\frac{1}{1-c} F^{n-1}(\underline{x}) .
$$

Thus,

$$
\begin{aligned}
\frac{L \underline{x}-L_{\bar{x}}}{(1-c) L_{c}} & =\frac{\frac{\mathrm{d}}{\mathrm{~d} \bar{x}} F^{n-1}(\underline{x})}{F^{n-1}(\underline{x})}-\frac{\frac{\mathrm{d}}{\mathrm{~d} \bar{x}}\left(1+F(\bar{x})+F^{2}(\bar{x})+\ldots+F^{n-1}(\bar{x})\right)}{1+F(\bar{x})+F^{2}(\bar{x})+\ldots+F^{n-1}(\bar{x})} \\
& =\frac{(n-1) f(\underline{x})}{F(\underline{x})}-\frac{\left(1+2 F(\bar{x})+\ldots+(n-1) F^{n-2}(\bar{x})\right) f(\bar{x})}{1+F(\bar{x})+F^{2}(\bar{x})+\ldots+F^{n-1}(\bar{x})} \\
& >(n-1)\left(\frac{f(\underline{x})}{F(\underline{x})}-\frac{f(\bar{x})}{F(\bar{x})}\right) \geq 0,
\end{aligned}
$$

where we use

$$
\frac{\left(1+2 x+3 x^{2} \ldots+(n-1) x^{n-2}\right)}{1+x+x^{2}+\ldots+x^{n-1}}<\frac{n-1}{x}, x \in(0,1)
$$

and the hazard rate condition, $F(x) / f(x)$ is increasing.
Lastly, we cannot conclude anything from (B7)-(B8) about how the thresholds change if F is f.o.s.d. improved.

To summarize:
5a: The high pooling interval decreases and, under the hazard rate condition, the separating interval increases in c;

5b: The high pooling interval increases and the separating interval decreases in
n.
5c: The result is ambiguous. If $\tilde{F}(x) \leq F(x)$ for all x, we are unable to make any conclusions about how thresholds \bar{x} and \underline{x} change if F is replaced by \tilde{F}.

