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B1. A special case: two types

In this subsection, I study the delegation problem with binary types, high type θh
and low type θl. Let q(θ) denote the probability that the agent’s type is θ. Formally,
I solve for (w1, w0) : {θl, θh} → Γ such that

max
w1,w0

∑

θ∈{θl,θh}
q(θ)

(

θ

1 + θ
ηρw

1(θ)−
1

1 + θ
w0(θ)

)

,

subject to θlηαw
1(θl)− w0(θl) ≥ θlηαw

1(θh)− w0(θh),

θhηαw
1(θh)− w0(θh) ≥ θhηαw

1(θl)− w0(θl).

For ease of exposition, I refer to the contract for the low (high) type agent as the
low (high) type contract and the principal who believes to face the low (high) type
agent as the low (high) type principal. Let (w1∗(θl), w0∗(θl)) and (w1∗(θh), w0∗(θh))
denote the equilibrium bundles. The optimum is characterized as follows.

PROPOSITION 8 (Two types):
Suppose that (r + λ1)θlηρ/r > 1. There exists a b′ ∈ (1, θh/θl) such that

1.1 If ηα/ηρ ∈ [1, b′], the principal’s preferred bundles are implementable.

1.2 If ηα/ηρ ∈ (b′, θh/θl), separating is optimal. The low type contract is a

stopping-time policy, with the stopping time between τρ(θl) and τα(θl). The

low type’s IC constraint binds, and the high type’s does not.

1.3 If ηα/ηρ ≥ θh/θl, pooling is optimal.

In all cases, the optimum can be attained using bundles on the boundary of Γ.

The presumption (r + λ1)θlηρ/r > 1 ensures that both the low type principal’s
preferred stopping time τρ(θl) is strictly positive. The degenerate cases in which
τρ(θh) > τρ(θl) = 0 or τρ(θh) = τρ(θl) = 0 yield similar results to proposition 8, and
thus are omitted.
Proposition 8 describes the optimal contract as the bias level varies. According

to result (1.1), if the bias is low enough, the principal simply offers her preferred
policies given θl and θh. This is incentive compatible because, at a low bias level,
the low type agent prefers the low type principal’s preferred bundle instead of the
high type principal’s. Consequently the principal pays no information rents. This
result does not hold with a continuum of types. The principal’s preferred bundles
are two points on the southeast boundary of Γ with binary types, but they become
an interval on the southeast boundary with a continuum of types in which case lower
types are strictly better off mimicking higher types.
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The result (1.2) corresponds to medium bias level. As the bias has increased,
offering the principal’s preferred policies is no longer incentive compatible. Instead,
both the low type contract and the high type one deviate from the principal’s pre-
ferred policies. The low type contract is always a stopping-time policy while the high
type contract takes one of three possible forms: stopping-time, slack-after-success
or delay policies.26 One of the latter two forms is assigned as the high type contract
if the agent’s type is likely to be low, and his bias is relatively large. All three forms
are meant to impose a significant cost—excessive experimentation, constrained ex-
ploitation of success, or delay in experimentation—on the high type contract so as
to deter the low type agent from misreporting. However, the principal can more
than offset the cost by effectively shortening the low type agent’s experimentation.
In the end, the low type agent over-experiments slightly and the high type con-
tract deviates from the principal’s preferred policy (w1

ρ(θh), w
0
ρ(θh)) as well. One

interesting observation is that the optimal contract can take a form other than a
stopping-time policy.

If the bias is even higher, as shown by result (1.3), pooling is preferable. The
condition ηα/ηρ ≥ θh/θl has an intuitive interpretation that the low type agent
prefers to experiment longer than even the high type principal. The screening in-
struments utilized in result (1.2) impair the high type principal’s payoff more than
the low type agent’s. As a result, the principal is better off offering her uninformed
preferred bundle. For fixed types, the prior probabilities of the types do not affect
whether it is better to pool or separate. Only the bias level does.

I make two observations. First, the principal chooses to take advantage of the
agent’s private information unless the agent’s bias is too large. This result also ap-
plies to the continuous type case. Second, the optimal contract can be tailored to the
likelihood of the two types. For example, if the type is likely to be low, the principal
designs the low type contract close to her low type bundle and purposefully makes
the high type contract less attractive to the low type agent. Similarly, if the type
is likely to be high, the principal starts with a high type contract close to her high
type bundle without concerning about the low type’s over-experimentation. This
“type targeting”, however, becomes irrelevant when the principal faces a continuum
of types and has no incentives to target certain types.

PROOF OF PROPOSITION 8:

Let αl (or αh) denote the low (or high) type agent and ρl (or ρh) the low (or high)
type principal. Given that θh > θl and ηα > ηρ, the slopes of players’ indifference
curves are ranked as follows

θhηα > max{θhηρ, θlηα} ≥ min{θhηρ, θlηα} > θlηρ.

26Here, I give an example in which the high type contract is a slack-after-success policy. Parameters are
ηα = 6, ηρ = 1, θl = 3/2, θh = 19, r = λ1 = 1. The agent’s type is low with probability 2/3. The optimum
is (w1∗(θh), w

0∗(θh)) ≈ (0.98, 1) and (w1∗(θl), w
0∗(θl)) ≈ (0.96, 0.79).
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Let ICL and ICH denote αl’s and αh’s IC constraints. Let Iαl
denote αl’s indifference

curves. If αl prefers (w
1
ρ(θl), w

0
ρ(θl)) to (w1

ρ(θh), w
0
ρ(θh)), the optimum is

{(w1
ρ(θl), w

0
ρ(θl)), (w

1
ρ(θh), w

0
ρ(θh))}.

This is true when the slope of the line connecting (w1
ρ(θl), w

0
ρ(θl)) and (w1

ρ(θh), w
0
ρ(θh))

is greater than θlηα. This condition is satisfied when ηα/ηρ is bounded from above
by

b′ ≡
θh(λ

1 + r)
(

θh
r

λ1 − θl
r

λ1

)

r

(

θh
r+λ1

λ1 − θl
r+λ1

λ1

) .

If this condition does not hold, at least one IC constraint binds. I explain how to
find the optimal bundles as follows.

1) ICL binds. Suppose not. It must be the case that ICH binds and that the
principal offers two distinct bundles (w1(θl), w

0(θl)) < (w1(θh), w
0(θh)) which

lie on the same indifference curve of αh. Given that θhηα > max{θhηρ, θlηρ},
both ρh and ρl strictly prefer (w1(θl), w

0(θl)) to (w1(θh), w
0(θh)). The prin-

cipal is strictly better off by offering a pooling bundle (w1(θl), w
0(θl)). A

contradiction. Hence, ICL binds.

2) If θhηρ ≤ θlηα, the optimum is pooling. Suppose not. Suppose that the prin-
cipal offers two distinct bundles (w1(θl), w

0(θl)) < (w1(θh), w
0(θh)) which are

on the same indifference curve of αl. Given that θlηρ < θhηρ < θlηα, αl’s in-
difference curves are steeper than ρh’s and ρl’s. Both ρh and ρl strictly prefer
(w1(θl), w

0(θl)) to (w
1(θh), w

0(θh)). The principal is strictly better off by offer-
ing a pooling bundle (w1(θl), w

0(θl)). A contradiction. If θhηρ = θlηα, ρh has
the same indifference curves as αl. If {(w

1(θl), w
0(θl)), (w

1(θh), w
0(θh))} is op-

timal, it is optimal for the principal to offer a pooling contract (w1(θl), w
0(θl)).

3) If θhηρ > θlηα, the optimum are on the boundary of Γ. Suppose not. Sup-
pose that (w1(θl), w

0(θl)) or (w1(θh), w
0(θh)) is in the interior. The indif-

ference curve of αl going through (w1(θl), w
0(θl)) intersects the boundary at

(w̃1(θl), w̃
0(θl)) and (w̃1(θh), w̃

0(θh)) such that w̃1(θl) < w̃1(θh). Given that
θhηρ > θlηα > θlηρ, ρh prefers (w̃1(θh), w̃

0(θh)) to (w1(θh), w
0(θh)) and ρl

prefers (w̃1(θl), w̃
0(θl)) to (w1(θl), w

0(θl)). The principal is strictly better off
by offering (w̃1(θl), w̃

0(θl)) and (w̃1(θh), w̃
0(θh)). Therefore, the optimal bun-

dles are on the boundary. The problem is reduced to locate the low type
agent’s indifference curve on which (w1∗(θl), w0∗(θl)) and (w1∗(θh), w0∗(θh))
lie. This indifference curve must be between the indifference curves of αl
which go through (w1

ρ(θl), w
0
ρ(θl)) and (w1

ρ(θh), w
0
ρ(θh)).

�
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B2. Discussion and necessity of assumption 1

In this subsection, I show that no xp-cutoff contract is optimal for any xp ∈ Θ if
assumption 1 does not hold. The xp-cutoff contract is defined as (w1(θ), w0(θ)) =
(w1

α(θ), w
0
α(θ)) for θ < xp and (w1(θ), w0(θ)) = (w1

α(xp), w
0
α(xp)) for θ ≥ xp. The

xp-cutoff contract is denoted (w1
xp , w

0
xp).

Define the Lagrangian functional associated with P as

L(w1, w0 | Λse,Λnw) = θηαw
1(θ)− w0(θ) + ηα

∫ θ

θ
w1(θ)G(θ)dθ(B1)

+

∫ θ

θ

(

θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0 − βse(w1(θ))

)

dΛse

+

∫ θ

θ

[

βnw(w1(θ))−

(

θηαw
1(θ)− ηα

∫ θ

θ
w1(θ̃)dθ̃ − θηαw

1(θ) + w0

)]

dΛnw,

where the function Λse,Λnw are the Lagrange multiplier associated with constraints
(9) and (10). I first show that if (w1

xp , w
0
xp) is optimal for some xp, there must exist

some Lagrange multipliers Λ̃se, Λ̃nw such that L(w1, w0 | Λ̃se, Λ̃nw) is maximized at
(w1

xp , w
0
xp). Since any xp-cutoff contract is continuous, I can restrict attention to the

set of continuous contracts

Φ̂ ≡
{

w1, w0 | w1 : Θ → [0, 1], w1 is nondecreasing and continuous, w0 ∈ [0, 1]
}

.

LEMMA 7 (Lagrangian—necessity):
If (w1

xp , w
0
xp) solves P, there exist nondecreasing functions Λ̃se, Λ̃nw : Θ → R such

that

0 =

∫ θ

θ

(

θηαw
1
xp(θ)− ηα

∫ θ

θ
w1
xp(θ̃)dθ̃ − θηαw

1
xp(θ) + w0

xp − βse(w1
xp(θ))

)

dΛ̃se

(B2)

+

∫ θ

θ

[

βnw(w1
xp(θ))−

(

θηαw
1
xp(θ)− ηα

∫ θ

θ
w1
xp(θ̃)dθ̃ − θηαw

1
xp(θ) + w0

xp

)]

dΛ̃nw.

Furthermore, it is the case that

L(w1
xp , w

0
xp | Λ̃se, Λ̃nw) ≥ L(w1, w0 | Λ̃se, Λ̃nw), ∀(w1, w0) ∈ Φ̂.

PROOF:

I first introduce the problem studied in section 8.4 of Luenberger, 1996, p. 217:
maxx∈X Q(x) subject to x ∈ Ω and J(x) ∈ P , where Ω is a convex subset of the
vector space X, Q : Ω → R and J : Ω → Z are both concave; where Z is a normed
vector space, and P is a nonempty positive cone in Z. To apply Theorem 1 in
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Luenberger, 1996, p. 217, set

X = {w1, w0 | w ∈ R and w1 : Θ → R},

Ω = Φ̂,

Z = {z | z : Θ → R2 with sup
θ∈Θ

‖z(θ)‖ <∞},

with the norm‖z‖ = sup
θ∈Θ

‖z(θ)‖,

P = {z | z ∈ Z and z(θ) ≥ (0, 0), ∀θ ∈ Θ}.

I let the objective function in (OBJ) be Q and the left-hand side of (9) and (10) be
defined as J . It is easy to verify that both Q and J are concave. This result holds
because the hypotheses of Theorem 1 in Luenberger, 1996, p. 217 are met. �

My next result shows that no xp-cutoff contract is optimal if assumption 1 fails.

PROPOSITION 9:
If assumption 1 does not hold, then no xp-cutoff contract is optimal for any xp ∈ Θ.

PROOF:
The proof proceeds by contradiction. Suppose that (w1

xp , w
0
xp) is optimal for some

xp ∈ Θ. According to lemma 7, there exist nondecreasing Λ̃se, Λ̃nw such that the

Lagrangian (B1) is maximized at (w1
xp , w

0
xp) and (B2) holds. This implies that Λ̃nw

is constant so the integral related to Λ̃nw can be dropped. Without loss of generality
I set Λ̃se(θ) = 1. Integrating the Lagrangian by parts yields

L(w1, w0 | Λ̃se) =
(

θηαw
1(θ)− w0

)

Λ̃se(θ) +

∫ θ

θ

(

θηαw
1(θ)− βse(w1(θ))

)

dΛ̃se

+ ηα

∫ θ

θ
w1(θ)

[

Λ̃se(θ)− (1−G(θ))
]

dθ.

Then, I establish the necessary first-order conditions for L(w1, w0 | Λ̃se) to be max-
imized at xp-cutoff rule and show that they cannot be satisfied if assumption 1
fails.
Let a, b ∈ Θ be such that a < b < θp and 1−G(a) > 1−G(b) (so assumption 1 does

not hold). It is easy to verify that the Gâteaux differential ∂L(w1
xp , w

0
xp ;w

1, w0 |

Λ̃se) exists for any (w1, w0) ∈ Φ̂. I want to show that a necessary condition that

(w1
xp , w

0
xp) maximizes L(w1, w0 | Λ̃se) over Φ̂ is that

∂L(w1
xp , w

0
xp ;w

1, w0 | Λ̃se) ≤ 0, ∀(w1, w0) ∈ Φ̂,(B3)

∂L(w1
xp , w

0
xp ;w

1
xp , w

0
xp | Λ̃se) = 0.(B4)

If (w1
xp , w

0
xp) maximizes L(w1, w0 | Λ̃se), then for any (w1, w0) ∈ Φ̂, it must be true
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that
d

dǫ
L((w1

xp , w
0
xp) + ǫ((w1, w0)− (w1

xp , w
0
xp)) | Λ̃

se)

∣

∣

∣

∣

ǫ=0

≤ 0.

Hence, ∂L(w1
xp , w

0
xp ; (w

1, w0)−(w1
xp , w

0
xp) | Λ̃

se) ≤ 0. Setting (w1, w0) = (w1
xp , w

0
xp)/2 ∈

Φ̂ yields ∂L(w1
xp , w

0
xp ;w

1
xp , w

0
xp | Λ̃se) ≥ 0. By the definition of (w1

xp , w
0
xp), there ex-

ists ǫ > 0 sufficiently small such that (1 + ǫ)(w1
xp , w

0
xp) ∈ Φ̂. Setting (w1, w0) to be

(1 + ǫ)(w1
xp , w

0
xp) yields ∂L(w1

xp , w
0
xp ;w

1
xp , w

0
xp | Λ̃se) ≤ 0. Together, (B3) and (B4)

obtain.

The last step is to show that there exists no Λ̃se that satisfies the first-order
conditions (B3) and (B4). Here, I use the same approach as in the proof of
proposition 4 in Amador, Werning and Angeletos (2006). The Gâteaux differen-
tial ∂L(w1

xp , w
0
xp ;w

1, w0 | Λ̃se) is similar to (A5) with θp replaced by xp. Conditions

(B3) and (B4) imply that Λ̃se(θ) = 0. Integrating the Gâteaux differential by parts
yields

(B5) ∂L(w1
xp , w

0
xp ;w

1, w0 | Λ̃se) = χ(θ)w1(θ) +

∫ θ

θ
χ(θ)dw1(θ),

with

χ(θ) ≡ ηα

∫ θ

θ

[

Λ̃se(θ̃)− (1−G(θ̃))
]

dθ̃ + ηα

∫ θ

max{xp,θ}
(θ̃ − xp)dΛ̃

se(θ̃).

By condition (B3), it follows that χ(θ) ≤ 0 for all θ. Condition (B4) implies that
χ(θ) = 0 for θ ∈ [θ, xp]. It follows that Λ̃se(θ) = 1 − G(θ) for all θ ∈ (θ, xp]. This

implies that xp ≤ b otherwise the associated multiplier Λ̃se would be decreasing.
Integrating by parts the second term of χ(θ), I obtain

χ(θ) =

∫ θ

θ
G(θ̃)dθ̃ + (θ − xp)(1− Λ̃se(θ)), ∀θ ≥ xp.

By definition of θp, there must exist a θ ∈ [xp, θp) such that the first term is strictly

positive; since Λ̃se(θ) ≤ 1, the second term is nonnegative. Hence χ(θ) > 0, contra-
dicting the necessary conditions. �

B3. Lévy processes and Lévy bandits

Here, I extend the analysis to the more general Lévy bandits (Cohen and Solan
(2013)). The risky task’s payoff is driven by a Lévy process whose Lévy triplet
depends on an unknown binary state. In what follows, I start with a reminder
about Lévy processes and Lévy bandits. Then, I show that the optimality of the
cutoff rule and its time consistency property generalize to Lévy bandits.

A Lévy process L = (L(t))t≥0 is a continuous-time stochastic process that (i)
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starts at the origin: L(0) = 0; (ii) admits càdlàg modification;27 (iii) has stationary
independent increments. Examples of Lévy processes include a Brownian motion, a
Poisson process, and a compound Poisson process.
Let (Ω, P ) be the underlying probability space. For every Borel measurable set

A ∈ B(R \ {0}), and every t ≥ 0, let the Poisson random measure N(t, A) be the
number of jumps of L in the time interval [0, t] with jump size in A: N(t, A) =
#{0 ≤ s ≤ t | ∆L(s) ≡ L(s)− L(s−) ∈ A}. The measure ν defined by

ν(A) ≡ E[N(1, A)] =

∫

N(1, A)(ω)dP (ω).

is called the Lévy measure of the process L.
I focus on Lévy processes that have finite expectation for each t. For a fixed Lévy

process L, there exists a constant µ ∈ R, a Brownian motion σZ(t) with standard
deviation σ ≥ 0, and an independent Poisson random measure Nν(t, dh) with the
associated Lévy measure ν such that, for each t ≥ 0, the Lévy-Itō decomposition of
L(t) is

L(t) = µt+ σZ(t) +

∫

R\{0}
hÑν(t, dh),

where Ñν(t, A) ≡ Nν(t, A) − tν(A) is the compensated Poisson random measure.28

Hence, a Lévy process L is characterized by a triplet 〈µ, σ, ν〉.
The agent operates a two-armed bandit in continuous time, with a safe task S that

yields a known flow payoff si to player i, and a risky task R whose payoff, depending
on an unknown state x ∈ {0, 1}, is given by the process Lx. For ease of exposition,
I assume that both players derive the same payoff from R but different payoffs from
S. For a fixed state x, Lx is a Lévy process characterized by the triplet 〈µx, σx, νx〉.
For an arbitrary prior p that the state is 1, I denote by Pp the probability measure
over the space of the realized paths.
I keep the same assumptions (A1–A6) on the Lévy processes Lx as in Cohen and

Solan (2013) and modify A5 to ensure that both players prefer to use R in state 1
and S in state 0. That is, µ1 > si > µ0, for i ∈ {α, ρ}.29 Let ηi = (µ1− si)/(si−µ

0)
denote player i’s net gain from the experimentation. I assume that the agent gains
more from the experimentation, i.e., ηα > ηρ.

30

A (pure) allocation policy is a nonanticipative stochastic process π = {πt}t≥0.

27It is continuous from the right and has limits from the left.
28Consider a set A ∈ B(R \ {0}) and a function f : R → R. The integral with respect to a Poisson

random measure N(t, A) is defined as
∫

A
f(h)N(t,dh) =

∑

s≤t f(∆L(s))1A(∆(L(s))).
29The assumptions are (A1) E[(Lx)2(1)] = (µx)2 + (σx)2 +

∫

h2νx(dh) < ∞; (A2) σ1 = σ0; (A3)

|ν1(R \ {0}) − ν0(R \ {0})| < ∞; (A4) |
∫

h(ν1(dh) − ν0(dh))| < ∞; (A5) µ0 < sα < sρ < µ1; (A6)

For every A ∈ B(R \ {0}), ν0(A) < ν1(A). Assumption (A1) states that both L1 and L0 have finite
quadratic variation. It follows that both have finite expectation. Assumptions (A2) to (A4) ensure that
players cannot distinguish between the two states in any infinitesimal time. Assumption (A5) states that
the expected payoff rate of R is higher than that of S in state 1 and lower in state 0. The last assumption
(A6) requires that jumps of any size h, both positive or negative, occur more often in state 1 than in state
0. Consequently, jumps always provide good news, and increase the posterior belief of state 1.

30The results generalize to the case in which, for a fixed state x, the drift term of the Lévy process Lx

differs for the principal and the agent, as long as the relation ηα > ηρ holds.
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Here, πt ∈ [0, 1] (resp. 1− πt) may be interpreted as the fraction of the resource in
the interval [t, t+ dt) that is devoted to R (resp. S), which may depend only on the
history of events up to t.31 The space of all policies, including randomized ones, is
denoted Π. (See footnote 10.)
Player i’s payoff given a policy π ∈ Π and a prior belief p ∈ [0, 1] that the state is

1 is

Ui(π, p) ≡ E

[∫ ∞

0
re−rt

[

dLx
(∫ t

0
πsds

)

+ (1− πt) sidt

]

∣

∣

∣ π, p

]

.

Over an interval [t, t + dt), if the fraction πt of the resource is allocated to R, the
expected payoff increment to player i conditional on x is [(1 − πt)si + πtµ

x]dt. By
the Law of Iterated Expectations, player i’s payoff can be written as the discounted
sum of the expected payoff increments

Ui(π, p) = E

[∫ ∞

0
re−rt [πtµ

x + (1− πt)si] dt
∣

∣

∣
π, p

]

.

For a fixed policy π, I define W 1(π) and W 0(π) as follows:

W 1(π) ≡ E

[∫ ∞

0
re−rtπtdt

∣

∣

∣ π, 1

]

and W 0(π) ≡ E

[∫ ∞

0
re−rtπtdt

∣

∣

∣ π, 0

]

.

Then, player i’s payoff can be written as

Ui(π, p) = p
(

µ1 − si
)

W 1(π) + (1− p)
(

µ0 − si
)

W 0(π) + si.

Let Γ denote the image of the mapping (W 1,W 0) : Π → [0, 1]2, referred to as the
feasible set. The following lemma characterizes the southeast boundary of Γ.

LEMMA 8: There exists a∗ > 0 such that the southeast boundary of Γ is given by

{(w1, w0) | w0 = 1− (1− w1)a
∗/(1+a∗), w1 ∈ [0, 1]}

PROOF:
I want to show that the maximum in (5) is achieved by a lower-cutoff policy when

p1 ≥ 0, p2 ≤ 0. If p1 ≥ 0, p2 ≥ 0 (p1 ≤ 0, p2 ≤ 0), the maximum is achieved by
the policy which directs all resources to R (S). If p1 > 0, p2 < 0, according to
Cohen and Solan (2013), the maximum is achieved by a lower-cutoff Markov policy
which directs all resource to R if the posterior belief is above the cutoff and to S if
below. The cutoff belief, denoted p∗, satisfies the equation p∗/(1−p∗) = a∗/(1+a∗),
where a∗ is the positive root of Equation 6.1 in Cohen and Solan (2013). Let K(p) ≡
maxw∈Γ(p1, p2)·w. If |p1|/(|p1|+|p2|) ≤ p∗,K(p) equals zero. If |p1|/(|p1|+|p2|) > p∗,

I obtain K(p) = −p2

(

−p2a∗
p1(1+a∗)

)a∗

/(a∗ + 1) + p1 + p2. It is easy to verify that the

31Suppose the process L is a Lévy process L1 with probability p ∈ (0, 1) and L0 with probability 1− p.
Let FL

s be the sigma-algebra generated by the process (L(t))t≤s. Then it is required that the process π

satisfies that {
∫ t
0 πsds ≤ t′} ∈ FL

t′
, for any t, t′ ∈ [0,∞).
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functional form of the southeast boundary is

βse(w1) = 1− (1− w1)
a∗

a∗+1 , w1 ∈ [0, 1].

�

Given lemma 8, the proof of proposition 2, which only relies on the properties of
the southeast boundary of the feasible set, applies directly to the current setting.
Therefore, the cutoff rule is optimal.

PROPOSITION 10 (Lévy bandits—sufficiency):
The cutoff rule is optimal if assumption 1 holds.

For every prior p ∈ [0, 1] that the state is 1, the probability measure Pp satisfies
Pp = pP1+(1−p)P0. An important auxiliary process is the Radon-Nikodym density,
given by

ψt ≡
d(P0 | FK(t))

d(P1 | FK(t))
, where K(t) =

∫ t

0
πsds and t ∈ [0,∞).

According to lemma 1 in Cohen and Solan (2013), if the prior belief is p, the posterior
belief at time t is given by

pt =
p

p+ (1− p)ψt
.

The agent of type θ updates his belief about the state. He assigns odds ratio θ/ψt
to the state being 1, referred to as his type at time t. Let θt = max{θ, θ∗αψt}. Recall
that θ∗α denotes the odds ratio at which the agent is indifferent between continuing
and stopping. At time t, only those types above θt remain. The principal’s updated
belief about the agent’s type distribution, in terms of his type at time 0, is given by
the density function

f0t (θ) =







[p(θ)+(1−p(θ))ψt]f(θ)
∫ θ
θt
[p(θ)+(1−p(θ))ψt]f(θ)dθ

, if θ ∈ [θt, θ],

0, otherwise.

The principal’s belief about the agent’s type distribution, in terms of his type at
time t, is given by the density function

ft(θ) =

{

f0t (θψt)ψt, if θ ∈ [θt/ψt, θ/ψt],

0, otherwise.

I prove that continuing the cutoff rule is optimal by showing two things. First,
given the distribution ft at time t, the threshold of the top pooling segment is
θp/ψt. Second, if assumption 1 holds for θ ≤ θp under distribution f , then it holds
for θ ≤ θp/ψt under ft. The detailed proof is similar to that of proposition 5 and
hence omitted.
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PROPOSITION 11 (Lévy bandits—time consistency):
If assumption 1 holds, the cutoff rule is time-consistent.

B4. Optimal contract with transfers

The set-up

In this subsection, I discuss the optimal contract when the principal can make
transfers to the agent. I assume that the principal has full commitment power,
that is, she can write a contract specifying both an experimentation policy π and
a transfer scheme c at the outset of the game. I also assume that the agent is
protected by limited liability so only nonnegative transfers from the principal to the
agent are allowed. An experimentation policy π is defined in the same way as before.
A transfer scheme c offered by the principal is a nonnegative, nondecreasing process
{ct}t≥0, which may depend only on the history of events up to t, where ct denotes
the cumulative transfers the principal has made to the agent up to, and including,
time t.32 Let Π∗ denote the set of all possible policy and transfer scheme pairs.
For any policy and transfer scheme pair (π, c) and any prior p, the principal’s and

the agent’s payoffs are respectively

Uα(π, c, p) = E

[∫ ∞

0
re−rt [(1− πt)sα + πtλ

ωhα] dt+

∫ ∞

0
re−rtdct

∣

∣

∣
π, c, p

]

Uρ(π, c, p) = E

[∫ ∞

0
re−rt [(1− πt)sρ + πtλ

ωhρ] dt−

∫ ∞

0
re−rtdct

∣

∣

∣
π, c, p

]

.

For a given policy and transfer scheme pair (π, c), I define t1(π, c) and t0(π, c) as
follows:

t1(π, c) ≡ E

[∫ ∞

0
re−rtdct

∣

∣

∣ π, c, 1

]

and t0(π, c) ≡ E

[∫ ∞

0
re−rtdct

∣

∣

∣ π, c, 0

]

.

I refer to t1(π, c) (resp. t0(π, c)) as the expected transfer in state 1 (resp. state 0).

LEMMA 9 (A policy and transfer scheme pair as four numbers):
For a given policy and transfer scheme pair (π, c) ∈ Π∗ and a given prior p ∈ [0, 1],
the principal’s and the agent’s payoffs can be written as

Uα(π, c, p) =p
[(

λ1hα − sα
)

W 1(π) + t1(π, c)
]

+ (1− p)
[(

λ0hα − sα
)

W 0(π) + t0(π, c)
]

+ sα

Uρ(π, c, p) =p
[(

λ1hρ − sρ
)

W 1(π)− t1(π, c)
]

+ (1− p)
[(

λ0hρ − sρ
)

W 0(π)− t0(π, c)
]

+ sρ.

32Formally, the number of successes achieved up to, and including, time t defines the point process
{Nt}t≥0. Let F ≡ {Ft}t≥0 denote the filtration generated by the process π and Nt. The process {ct}t≥0

is F-adapted.
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PROOF:

The agent’s payoff given (π, c) ∈ Π∗ and prior p ∈ [0, 1] is

Uα(π, c, p) =pE

[∫ ∞

0
re−rtπt

(

λ1hα − sα
)

dt+

∫ ∞

0
re−rtdct

∣

∣

∣ π, c, 1

]

+ (1− p)E

[∫ ∞

0
re−rtπt

(

λ0hα − sα
)

dt+

∫ ∞

0
re−rtdct

∣

∣

∣ π, c, 0

]

+ sα

=p
[(

λ1hα − sα
)

W 1(π) + t1(π, c)
]

+ (1− p)
[(

λ0hα − sα
)

W 0(π) + t0(π, c)
]

+ sα.

The principal’s payoff can be rewritten similarly. �

Lemma 9 shows that all payoffs from implementing (π, c) can be written in terms of
its expected resource and expected transfer pairs. Instead of working with a generic
policy/transfer scheme pair, it is without loss of generality to focus on its expected
resource and expected transfer pairs. The image of the mapping (W 1,W 0, t1, t0) :
Π∗ → [0, 1]2 × [0,∞) × [0,∞) can be interpreted as the new contract space when
transfers are allowed. The following lemma characterizes this contract space.

LEMMA 10: The image of the mapping (W 1,W 0, t1, t0) : Π∗ → [0, 1]2 × [0,∞) ×
[0,∞), denoted Γ∗, satisfies the following condition

int(Γ× [0,∞)2) ⊂ Γ∗ ⊂ Γ× [0,∞)2.

PROOF:

The relation Γ∗ ⊂ Γ× [0,∞)2 is obviously true. Hence, I only need to show that
int(Γ × [0,∞)2) ⊂ Γ∗. Given that Γ∗ is a convex set, I only need to show that Γ∗

is a dense set of int(Γ × [0,∞)2): For any (w1, w0, t1, t0) ∈ int(Γ × [0,∞)2) and
any ǫ > 0, there exists (π, c) such that the Euclidean distance ‖(w1, w0, t1, t0) −
(W 1,W 0, t1, t0)(π, c)‖ is below ǫ. Pick any point (w1, w0) ∈ int(Γ), there exists
a bundle (w̃1, w̃0) ∈ int(Γ) and a small number ∆ such that (w1, w0) = (1 −
∆)(w̃1, w̃0) + ∆(1, 1). The policy is as follows. With probability 1 −∆, the agent
implements a policy that is mapped to (w̃1, w̃0). With probability ∆, the agent im-
plements the policy that is mapped to (1, 1). In the latter case, the agent allocates
the unit resource to R all the time. Transfers only occur in the latter case. Here,
I construct a transfer scheme such that the expected transfer is arbitrarily close to
(t1, t0). Let pt denote the posterior belief that ω = 1. Given that all the resource is
directed to R, pt converges in probability to 1 conditional on state 1 and pt converges
in probability to 0 conditional on state 0. This implies that ∀ǫ̃ > 0, ∃t̃ such that for
all t ≥ t̃, I have Pr(|pt − 1| > ǫ̃ | ω = 1) < ǫ̃ and Pr(|pt − 0| > ǫ̃ | ω = 0) < ǫ̃. The

transfer scheme is to make a transfer of size t1/(∆re−rt̃) at time t̃ if pt̃ > 1− ǫ̃ and

make a transfer of size t0/(∆re−rt̃) if pt̃ < ǫ̃. The expected transfer conditional on
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state 1 is

∆re−rt̃
[

Pr(pt̃ > 1− ǫ̃ | ω = 1)
t1

∆re−rt̃
+ Pr(pt̃ < ǫ̃ | ω = 1)

t0

∆re−rt̃

]

=Pr(pt̃ > 1− ǫ̃ | ω = 1)t1 + Pr(pt̃ < ǫ̃ | ω = 1)t0.

Given that 1 − ǫ̃ < Pr(pt̃ > 1 − ǫ̃ | ω = 1) ≤ 1 and 0 ≤ Pr(pt̃ < ǫ̃ | ω = 1) < ǫ̃, the
expected transfer conditional on state 1 is in the interval (t1− ǫ̃t1, t1+ ǫ̃t0). Similarly,
the expected transfer conditional on state 0 is in the interval (t0 − ǫ̃t0, t0 + ǫ̃t1). As
ǫ̃ approaches zero, the constructed transfer scheme is arbitrarily close to (t1, t0). �

Lemma 10 says that any (w1, w0, t1, t0) ∈ Γ × [0,∞) × [0,∞) is virtually imple-
mentable: for all ǫ > 0, there exist a (π, c) such that (W 1,W 0, t1, t0)(π, c) is ǫ-close
to (w1, w0, t1, t0). To proceed, I treat the set Γ× [0,∞)× [0,∞), the closure of Γ∗,
as the contract space. Based on lemma 9, I can write players’ payoffs as functions
of (w1, w0, t1, t0). To simplify exposition, I assume that sα−λ

0hα = sρ−λ
0hρ. The

method illustrated below can be easily adjusted to solve for the optimal contract
when sα − λ0hα 6= sρ − λ0hρ. Without loss of generality, I further assume that
sα − λ0hα = 1. The principal’s and the agent’s payoffs given (w1, w0, t1, t0) and
type θ are then respectively

θ

1 + θ

(

ηρw
1 − t1

)

−
1

1 + θ

(

w0 + t0
)

and
θ

1 + θ

(

ηαw
1 + t1

)

−
1

1 + θ

(

w0 − t0
)

.

Based on lemma 9 and 10, I reformulate the contract problem. The principal simply
offers a direct mechanism (w1, w0, t1, t0) : Θ → Γ× [0,∞)× [0,∞), called a contract,
such that

max
w1,w0,t1,t0

∫

Θ

(

θ

1 + θ

(

ηρw
1(θ)− t1(θ)

)

−
1

1 + θ

(

w0(θ) + t0(θ)
)

)

dF (θ),

subject to the IC constraints.

Given a direct mechanism (w1(θ), w0(θ), t1(θ), t0(θ)), let Uα(θ) denote the pay-
off that the agent of type θ gets by maximizing over his report, i.e., Uα(θ) =
maxθ′∈Θ{θ

(

ηαw
1(θ′) + t1(θ′)

)

−w0(θ′)+t0(θ′)}. As the optimal mechanism is truth-
ful, Uα(θ) equals θ(ηαw

1(θ)+t1(θ))−w0(θ)+t0(θ) and the envelope condition implies
that U ′

α(θ) = ηαw
1(θ)+t1(θ). Incentive compatibility of (w1, w0, t1, t0) requires that,

for all θ

(B6)
(

t0
)′
(θ) = −θ

(

ηα
(

w1
)′
(θ) +

(

t1
)′
(θ)
)

+
(

w0
)′
(θ),

whenever differentiable, or in integral form,

t0(θ) = Uα(θ)−

∫ θ

θ

(

ηαw
1(s) + t1(s)

)

ds− θ
(

ηαw
1(θ) + t1(θ)

)

+ w0(θ).
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Incentive compatibility also requires ηαw
1 + t1 to be a nondecreasing function of θ.

Thus, (B6) and the monotonicity of ηαw
1 + t1 are necessary for incentive compati-

bility. As is standard, these two conditions are also sufficient.

The principal’s payoff for a fixed θ is denoted Uρ(θ)

Uρ(θ) =
θ

1 + θ

(

ηρw
1(θ)− t1(θ)

)

−
1

1 + θ

(

w0(θ) + t0(θ)
)

.

The principal’s problem is to maximize
∫

Θ Uρ(θ)dF subject to (i) (B6) and the
monotonicity of ηαw

1 + t1; (ii) the feasibility constraint (w1(θ), w0(θ)) ∈ Γ, ∀θ ∈ Θ;
and (iii) the limited liability constraint (hereafter, LL constraint) t1(θ), t0(θ) ≥
0, ∀θ ∈ Θ. I denote this problem by P. Substituting t0(θ) into the objective, I
rewrite

∫

Θ Uρ(θ)dF as

∫ θ

θ

[

(ηα + ηρ)θw
1(θ)

1 + θ
−

2w0(θ)

1 + θ
+

(

ηαw
1(θ) + t1(θ)

)

H(θ)

f(θ)

]

f(θ)dθ − Uα(θ)H(θ),

where h(θ) =
f(θ)

1 + θ
and H(θ) =

∫ θ

θ
h(s)ds.

I then define a relaxed problem P ′ which differs from P in two aspects: (i) the
monotonicity of ηαw

1 + t1 is dropped; and (ii) the feasibility constraint is replaced
with w0(θ) ≥ βse(w1(θ)), ∀θ ∈ Θ, where βse(·) characterizes the southeast boundary
of Γ. If the solution to P ′ is monotone and satisfies the feasibility constraint, it is
also the solution to P. The problem P ′ can be transformed into a control problem
with the state s = (w1, w0, t1, t0) and the control y = (y1, y0, y1t ). For problem P ′,
I define a Lagrangian

L(s,y,γ,µ, θ) =

[

(ηα + ηρ)θw
1(θ)

1 + θ
−

2w0(θ)

1 + θ
+

(

ηαw
1(θ) + t1(θ)

)

H(θ)

f(θ)

]

f(θ)

+ γ1(θ)y1(θ) + γ0(θ)y0(θ) + γ0t (θ)
[

y0(θ)− θ
(

ηαy
1(θ) + y1t (θ)

)]

+ γ1t (θ)y
1
t (θ) + µ1t (θ)t

1(θ) + µ0t t
0 + µ(θ)

[

w0(θ)− βse(w1(θ))
]

,

where γ = (γ1, γ0, γ1t , γ
0
t ) are the associated costate variables and µ = (µ1t , µ

0
t , µ)

are multipliers associated with the LL and feasibility constraints. The law of motion
is

(B7)
(

w1
)′
= y1,

(

w0
)′
= y0,

(

t1
)′
= y1t ,

(

t0
)′
= y0 − θ

(

ηαy
1 + y1t

)

.

From now on, the dependence of (s,y,γ,µ, f, h,H) on θ is omitted when no con-
fusion arises. Given any θ, the control maximizes the Lagrangian. The first-order

13



conditions are,

(B8)
∂L

∂y1
= γ1 − ηαθγ

0
t = 0,

∂L

∂y0
= γ0 + γ0t = 0,

∂L

∂y1t
= γ1t − θγ0t = 0.

The costate variables are continuous and have piecewise-continuous derivatives,

γ̇1 = −
∂L

∂w1
= −

[

θ

1 + θ
(ηα + ηρ) +

ηαH

f

]

f + µ (βse)′ (w1),

γ̇0 = −
∂L

∂w0
=

2

1 + θ
f − µ, γ̇1t = −

∂L

∂t1
= −H − µ1t , γ̇0t = −

∂L

∂t0
= −µ0t .

(B9)

This is a problem with free endpoint and a scrap value function Φ(θ) = −Uα(θ)H(θ).
Therefore, the costate variables must satisfy the following boundary conditions,

(γ1(θ), γ0(θ), γ1t (θ), γ
0
t (θ)) = (0, 0, 0, 0),

(γ1(θ), γ0(θ), γ1t (θ), γ
0
t (θ)) =

(

∂Φ

∂w1
,
∂Φ

∂w0
,
∂Φ

∂t1
,
∂Φ

∂t0

)∣

∣

∣

∣

θ=θ

=
(

−ηαθH(θ), H(θ),−θH(θ),−H(θ)
)

.

(B10)

Also, the following slackness conditions must be satisfied,

µ1t ≥ 0, t1 ≥ 0, µ1t t
1 = 0; µ0t ≥ 0, t0 ≥ 0, µ0t t

0 = 0;

µ ≥ 0, w0 − βse(w1) ≥ 0, µ
(

w0 − βse(w1)
)

= 0.
(B11)

LEMMA 11 (Necessity and sufficiency):
Let y

∗ be the optimal control and s
∗ the corresponding trajectory. Then there

exist costate variables γ
∗ and multipliers µ

∗ such that (B7)–(B11) are satisfied.

Conversely, (B7)–(B11) are also sufficient since the Lagrangian is concave in (s,y).

Based on the sufficiency part of lemma 11, I only need to construct (s,y,γ,µ) such
that the conditions (B7)–(B11) are satisfied. In what follows, I first describe the
optimal contract and then prove its optimality.

Optimal contract: description

I identify a bundle (w1, w0) on the southeast boundary of Γ with the deriva-
tive (βse)′ (w1) at that point. If the optimal contract only involves bundles on the
southeast boundary, the trajectory (βse)′ (w1(θ)) uniquely determines the trajectory
(w1(θ), w0(θ)) and vice versa. Figure B1 illustrates three important trajectories of
(βse)′ (w1(θ)) which determine the optimal contract under certain regularity condi-
tions. The x axis is the agent’s type. The y axis indicates the slope of the tangent
line at a certain bundle on the southeast boundary. The thick-dashed line (labeled
T2) corresponds to the slope (or the bundle) preferred by the agent for any given
θ. The thin-dashed line (labeled T3) shows the bundle preferred by the principal if
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she believes that the agent’s type is above θ. The thin-solid line (labeled T1) is the
bundle given by the following equation

(B12) (βse)′ (w1(θ)) =
(ηα + ηρ)θ

2− (1+θ)H
θf + 1+θ

θ2f

∫ θ
θ H(s)ds

.

Loosely speaking, it is the bundle that the principal would offer if the LL constraint
were not bound. Besides these three trajectories, the dotted line shows the bundle
preferred by the principal for any given θ. Let θ∗ denote the type at which T1 and
T2 intersects and θp the type at which T2 and T3 intersects. Equations (B13) and
(B14) gives the formal definition of θ∗ and θp. It is easy to verify that θ∗ > θ and
θp < θ. Moreover, θ∗ increases and θp decreases in ηα/ηρ.

θ∗ ≡ sup







θ̂ ∈ Θ :
(ηα + ηρ)θ

2− (1+θ)H
θf + 1+θ

θ2f

∫ θ
θ H(s)ds

< ηαθ, ∀θ ≤ θ̂







,(B13)

θp ≡ inf







θ̂ ∈ Θ :
ηρ
∫ θ
θ sh(s)ds

H(θ)−H(θ)
≤ ηαθ, ∀θ ≥ θ̂







.(B14)

When the bias ηα/ηρ is small, θ∗ < θp. The optimal contract (the thick-solid line)
consists of three separate segments, i.e., [θ, θ∗], [θ∗, θp], and [θp, θ]. (See figure B1.)
When the agent’s type is below θ∗, the equilibrium allocation is given by (B12),
which lies between that optimal for the principal ((βse)′ (w1(θ)) = ηρθ) and that
optimal for the agent ((βse)′ (w1(θ)) = ηαθ). As θ increase, the contract bundle
shifts toward the agent’s preferred bundle, with a corresponding decrease in the
transfer payments. When θ ∈ [θ∗, θp], the bundle that is preferred by the agent
is offered and no transfers are made. It is as if the agent is free to choose any
experimentation policy. For types above θp, the agent always chooses the bundle
preferred by type θp. There is, effectively, pooling over [θp, θ].
When the bias ηα/ηρ is large, θ∗ > θp. The optimal contract (the thick-solid

line) consists of only two segments which are denoted [θ, θ̃p] and [θ̃p, θ]. (See figure

B2.) When θ ∈ [θ, θ̃p], the equilibrium allocation is between the principal’s preferred
bundle and the agent’s preferred one. The contract bundle shifts toward the agent’s
preferred one as the type increases with a corresponding decrease in the transfers.
When θ ∈ [θ̃p, θ], all types are pooled. The pooling bundle specifies a lower level of

experimentation than what the principal prefers given the pooling segment [θ̃p, θ].
There is no segment in which the agent implements his preferred bundle.
One immediate observation is that the most pessimistic type’s policy is socially

optimal. The contract for type θ is chosen such that (βse)′ (w1(θ)) = (ηα + ηρ)θ/2.
A key feature is that transfers only occur in state 1. The intuition can be seen by
examining a simple example with three types θl < θm < θh. To prevent the medium
type from mimicking the high type, the principal compensates the medium type by
promising him a positive transfer. This transfer promise makes the medium type’s
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T1

T2

T3

Equilibrium

Principal’s preferred

Principal’s preferred

given [θ, θ]

Agent’s preferred

Positive transfers

θ θθ∗ θp

(βse)′ (w1(θ))

θ

Figure B1. Equilibrium allocation: three segments

Note: Parameters are ηα = 1, ηρ = 4/5, θ = 1, θ = 3, f(θ) = 1/2.

contract more attractive to the low type. To make the medium type’s transfer less
attractive to the low type, the principal concentrates all the payments in state 1 as
the low type is less confident that the state is 1. Whenever the principal promises
type θ a positive transfer, she makes type θ’s contract more attractive to a lower
type, say θ′ < θ. As type θ′ is less confident that the state is 1 than type θ, type θ′

does not value transfers in state 1 as much as type θ is. Therefore, the most efficient
way to make transfers is to condition on state being 1.

T1

T2

T3

Equilibrium

Principal’s preferred

Principal’s preferred

given [θ, θ]

Agent’s preferred

Positive transfers

θ θθ∗θp θ̃p

(βse)′ (w1(θ))

θ

Figure B2. Equilibrium allocation: two segments

Note: Parameters are ηα = 1, ηρ = 3/5, θ = 1, θ = 3, f(θ) = 1/2.
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Optimal contract: proof

I start with the case when the bias is small and the contract has three seg-
ments. The proof is constructive. I first determine the trajectory of the costate
γ0, which pins down γ1, γ1t , γ

0
t according to (B8). Then I determine the trajectories

of µ, µ1t , µ
0
t , w

1 based on (B9). The trajectories of w0, t1, t0 then follow.

On the interval [θ, θ∗], t1 > 0 and t0 = 0, so the LL constraint t1 ≥ 0 does
not bind. Therefore, I have µ1t = 0 and γ̇1t = −H. Combined with the boundary

condition, this implies that γ1t = −
∫ θ
θ H(s)ds. From (B8), we know that

γ0 =

∫ θ

θ
H(s)ds/θ and γ1 = −ηα

∫ θ

θ
H(s)ds.

Substituting γ̇1 and γ̇0 into (B9), I have

µ =
2f

1 + θ
−
H(θ)

θ
+

∫ θ
θ H(s)ds

θ2
,

(βse)′ (w1(θ)) =
(ηα + ηρ)θ

2− (1+θ)H
θf + 1+θ

θ2f

∫ θ
θ H(s)ds

.

Since µ0t = −γ̇0t = γ̇0, I have

µ0t = −

∫ θ

θ
H(s)ds/(θ2) +H(θ)/θ,

which is always positive.

On the interval [θ∗, θp], the type θ is assigned his most preferred bundle. Transfers
t1 and t0 both equal zero. Therefore, I have (βse)′ (w1(θ)) = ηαθ. From (B8), we
know that γ0 = −γ̇1/ηα − θγ̇0. Substituting γ̇1, γ̇0 and (βse)′ (w1(θ)) = ηαθ, I have

(B15) γ0 = H −
θ

1 + θ

ηα − ηρ
ηα

f.

Combining (B9) and (B15), I have

µ =
f

1 + θ

(

1 +
ηα − ηρ
ηα

1

1 + θ
+
ηα − ηρ
ηα

f ′

f
θ

)

,

µ0t =
f

1 + θ

(

1−
ηα − ηρ
ηα

1

1 + θ
−
ηα − ηρ
ηα

f ′

f
θ

)

,

µ1t =
θ

1 + θ
f

(

1−
ηα − ηρ
ηα

2 + θ

1 + θ
−
ηα − ηρ
ηα

f ′

f
θ

)

.
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The multipliers µ, µ0t and µ1t have to be weakly positive, which requires that

ηα
ηα − ηρ

≥ −
1

1 + θ
−
f ′

f
θ, ∀θ ∈ [θ∗, θp](B16)

ηα
ηα − ηρ

≥
2 + θ

1 + θ
+
f ′

f
θ, ∀θ ∈ [θ∗, θp].(B17)

Note that assumption (B16) is the same as the main assumption in the delegation
case. On the interval [θp, θ], all types choose the same bundle, the one preferred by
type θp. Transfers t

1 and t0 both equal zero. The threshold of the pooling segment
θp satisfies the following condition,

(βse)′ (w1(θp)) = θpηα =
ηρ
∫ θ
θp
θh(θ)dθ

H(θ)−H(θp)
.

I first check that the boundary condition γ1(θ) = −ηαH(θ)θ is satisfied. Over the
interval [θp, θ], I have

γ̇1 = −

[

θ

1 + θ
(ηα + ηρ)f + ηαH

]

+ µ (βse)′ (w1(θp)).

Given the definition of θp, it is easy to verify that

(βse)′ (w1(θp))

∫ θ

θp

µdθ = (βse)′ (w1(θp))

∫ θ

θp

(

2f

1 + θ
− γ̇0

)

dθ

= ηρ

∫ θ

θp

θh(θ)dθ − (ηα − ηρ)
θ2p

1 + θp
f(θp).

Therefore, I have

γ1(θ)− γ1(θp) = −ηα

∫ θ

θp

θh(θ)dθ − ηα

∫ θ

θp

H(θ)dθ − (ηα − ηρ)
θ2p

1 + θp
f(θp)

= −H(θ)θηα − γ1(θp).

Therefore, the boundary condition γ1(θ) = −ηαH(θ)θ is satisfied. The slackness
condition µ ≥ 0 and µ0t ≥ 0 requires that 0 ≤ γ̇0 ≤ 2f/(1+ θ). This is equivalent to
the condition that 0 ≤ γ0(θ)− γ0(θp) ≤ 2

(

H(θ)−H(θp)
)

, which is satisfied iff

(B18)
ηα

ηα − ηρ
≥

θp
1+θp

f(θp)

H(θ)−H(θp)
.

The slackness condition µ1t ≥ 0 requires that γ̇1t ≤ −H. This is equivalent to the
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condition that

γ1t (θ)− γ1t (θp) = −θH(θ) + θpH(θp)−
θ2p

1 + θp

ηα − ηρ
ηα

f(θp) ≤ −

∫ θ

θp

H(s)ds,

which is always satisfied.
To sum, if assumptions (B16), (B17) and (B18) hold, the constructed trajectory

solves P ′. If the trajectory w1 defined by (B12) is weakly increasing over [θ, θ∗], the
monotonicity of ηαw

1+ t1 is satisfied.33 Therefore, the constructed trajectory solves
P as well.
When the bias is large and the contract has two segments, the proof is similar to

the previous case. So, I mainly explain how to pin down the threshold θ̃p. When

θ ∈ [θ, θ̃p], the LL constraint t1 ≥ 0 does not bind. The costate is derived in

the same way as in the previous case when θ ∈ [θ, θ∗]. This implies that γ1(θ̃p) =

−ηα
∫ θ̃p
θ H(s)ds. On the other hand, the threshold θ̃p is chosen so that the boundary

condition γ1(θ) = −ηαH(θ)θ is satisfied. This means that
∫ θ
θ̃p
γ̇1dθ = −ηαH(θ)θ +

ηα
∫ θ̃p
θ H(s)ds. Substituting γ̇1 and simplifying, I obtain that (βse)′ (w1(θ̃p)) must

satisfy the following condition

(B19) (βse)′ (w1(θ̃p)) =
ηρ
∫ θ
θ̃p
θh(θ)dθ − ηαθ̃pH(θ̃p) + ηα

∫ θ̃p
θ H(s)ds

H(θ)− 2H(θ̃p) +

∫ θ̃p
θ

H(s)ds

θ̃p

At the same time, θ̃p must also satisfy (B12). Equation (B12) and (B19) determines

the threshold θ̃p. Since (βse)′ (w1(θ̃p)) < ηαθ̃p, (B19) implies that

(βse)′ (w1(θ̃p)) <
ηρ
∫ θ
θ̃p
θh(θ)dθ

H(θ)−H(θ̃p)
.

This shows that over the pooling region [θ̃p, θ] the agent is asked to implement a
bundle with less experimentation than what the principal prefers given that θ ∈
[θ̃p, θ].

33Given that t0 is constantly zero, I have ηα
(

w1
)′

(θ)+
(

t1
)′

(θ) =
(

w0
)′

(θ)/θ. Therefore, the monotonic-

ity of w0 implies the monotonicity of ηαw1 + t1. Given that only boundary bundles (w1, w0) are assigned,
the monotonicity of w1 suffices.
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