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Appendix A: A Simulation Exercise 

 In this section we demonstrate that the choice restrictions we test in our 

conditional logit model would be satisfied by a broad range of generalized utility 

functions.  We start by considering CARA and CRRA utility functions with a range of 

values for risk aversion.  We then take the cost distributions generated from the Part D 

data for each plan and simulate individuals’ choices using the assumed utility function.  

Finally, we estimate the conditional logit model using these simulated choices and check 

whether the restrictions considered above hold.  We add a small amount of noise to each 

observation so that the coefficients are identified at small levels of risk aversion.
23

  The 

results of this exercise are reported in Appendix Table 1. 

The CRRA utility function is evaluated at wealth $17,000, the median financial 

wealth of those age 65-74 in 2004 (EBRI, 2005).  This is a conservative assumption 

which will tend to increase the curvature – and thus the degree of misspecification (it is 

especially conservative given that our analysis excludes individuals eligible for low-

income subsidies).  The absolute magnitude of the coefficients is determined by the 

amount of added noise (since this is the only omitted factor).  A more informative 

measure is the size of each coefficient relative to the coefficient on premiums: this 

measure gives the dollar value of a one unit change in the included variable. 

Regarding the first restriction, we see that, provided risk aversion is not too large 

(CRRA < 3, CARA < .0001), the coefficient on premiums equals the coefficient on OOP 

costs, and the two are very comparable in magnitude even at more extreme levels of risk 

aversion.  The second restriction appears to hold roughly over the same range: the plan 

characteristics are insignificant controlling for the mean and variance of out of pocket 

                                                 
23

 The standard deviation of the noise to 1/20
th

 of the interquartile range of utility. 
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costs provided CRRA < 3 and CARA < .003.  Even in the cases when they are 

significant, they are small in magnitude relative to premiums.  Dividing the coefficient on 

each variable by the coefficient on premiums gives the dollar value of a 1 unit increase in 

the variable.  In the CRRA = 10 case, the results would imply that individuals are willing 

to pay $9 for (full) donut hole coverage, would have to be paid $33 to go from a 0 

deductible to a $250 deductible, and would have to be paid $8 to accept generic donut 

hole coverage (since these values are driven entirely by misspecification there is no 

reason the signs should be sensible).  The third restriction is satisfied in the sense that we 

estimate risk aversion in all cases when the coefficient of risk aversion is greater than 0.  

The “risk index” is obtained by dividing two times the coefficient on the variance term by 

the coefficient on premiums.  We showed above that with CARA utility and normal 

noise, this index should approximate to (10
6
 times) the coefficient of absolute risk 

aversion.  We see in Appendix Table 1 that this approximation seems to get things 

roughly correct in our sample (despite the fact that costs are non-normal), although it 

begins to break down when risk aversion is grows very large.  
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Appendix Table 1: Simulation Results 

 CRRA (wealth = 17000) CARA   
 1 3 10 0.0001 0.0003 0.0005 
Premium -5.385** -5.057** -3.407** -5.288** -4.774** -3.877** 
(hundreds) (.0364) (.0337) (.0199) (.0354) (.0312) (.0237) 
OOP Cost -5.355** -4.911** -2.767** -5.284** -4.517** -3.379** 
(hundreds) (.0369) (.0335) (.0237) (.0359) (.0324) (.0268) 
Variance -1.903** -6.293** -19.87** -2.600** -9.244** -16.28** 
(times 10^6) (.1536) (.1329) (.1985) (.1489) (.1436) (.1919) 
Deductible -.0409 -.1567** -.4452** -.0424 -.2177** -.3728** 
(hundreds) (.0225) (.0211) (.0188) (.0221) (.0211) (.0198) 

Donut Hole -.0390 -.2506** .2974** .0210 -.0254 -.2393** 
 (.0863) (.0781) (.0549) (.0657) (.0703) (.0626) 
Generic Donut Hole -.0470 -.1412* -.2829** -.0325 -.1326** -.2782** 
 (.0680) (.0652) (.0560) (.0657) (.0629) (.0571) 
Cost Sharing .1905 1.207** 2.791** .2915 1.672** 2.726** 
 (.2546) (.2425) (.2114) (.2505) (.2393) (.2230) 
# in Top 100 .0115 -.0045 -.0056** .0110 -.0121** -.0098** 
 (.0036) (.0031) (.0023) (.0036) (.0029) (.0024) 
Avg. Quality Rating -.1281 -.0508 .0525** -.1186 -.0082 .0349** 
 (.0181) (.0164) (.0128) (.0175) (.0155) (.0137) 
Risk Index 71 249 1166 98 387 840 
       

# of patients 94732 94732 94732 94732 94732 94732 
# of plans 702 702 702 702 702 702 
# of states 47 47 47 47 47 47 
# of brands 36 36 36 36 36 36 
Notes:  Table shows conditional logit results from estimating the model given in equation (6) by 
maximum likelihood using simulated choices.  Each column shows coefficients from a single 
regression.  The coefficients reported are the parameters of the utility function, not marginal 
effects.  Standard errors are in parentheses.    * indicates significance at the 5% level and ** 
indicates significance at the 1% level.  The sample differs slightly from that in Table 1 because 
individuals with greater than 17000 in total costs for any plan are dropped.  All simulated 
choices are based on the cost distribution generated from the realized costs of 200 individuals in 
the same decile of 2005 total costs, decile of 2005 total days supply of branded drugs and decile 
of 2005 days supply of generic drugs.  The first three columns compute expected utility using a 
CRRA utility function with wealth of 17000 and the indicated coefficient of relative risk aversion, 
assuming that individuals select the choice which maximizes expected utility.  The final three 
columns compute expected utility using a CARA utility function with the indicated coefficient of 
absolute risk aversion.  Variable definitions are otherwise identical to Table 1. 

 



 60 

 Appendix B: Modeling Private Information 

In Part V of the paper we discuss an alternative model that incorporates private 

information.  This appendix presents a formal derivation of that model. 

Suppose that utility is given by: 

 𝑢𝑖𝑗 = 𝜇𝑖𝑗
∗ 𝛽1 + 𝜖𝑖𝑗  (6)  

where 𝜇𝑖𝑗
∗  represents expected costs, defined as the individual’s expectations of out of 

pocket costs at the time when they make their choice (for ease of exposition, we 

momentarily ignore the premium and variance terms).  𝜇𝑖𝑗
∗  is not observed.  However, we 

do observe realized costs, which can be written as the sum of expected costs and a noise 

term, defined as the component of realized costs unknown to the individual at the time of 

plan choice: 

 𝐶𝑖𝑗 = 𝜇𝑖𝑗
∗ + 𝜂𝑖𝑗  (7)  

where 𝐶𝑖𝑗  denote the realized costs of individual i upon enrolling in plan j, 𝜇𝑖𝑗
∗  denotes 

expected costs, and 𝜂𝑖𝑗  denotes noise. We can further decompose expected costs into the 

component of expected costs predictable from 2005 data, 𝜇𝑖𝑗 , and the component which 

is private information, 𝑒𝑖𝑗 .  This yields: 

 𝐶𝑖𝑗 =  𝜇𝑖𝑗 + 𝑒𝑖𝑗 + 𝜂𝑖𝑗  (8)  

We assume that 𝑢𝑖𝑗  and 𝑒𝑖𝑗  are independent of 𝜂𝑖𝑗 .
24

   This assumption implies that 

individuals are aware at the time when they make their choices of the component of costs 

that can be predicted based on their previous year’s consumption.  This “rational 

                                                 
24

 Combined with the additive structure assumed above, the assumption of independence also rules out the 

case in which the degree of uncertainty about costs varies with the level of expected costs.  We relax this 

strong assumption below by assuming only that  and  are conditionally independent given the 

measured variance of costs. 
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expectations” assumption is substantive, but conforms with the baseline rational choice 

model that is implicitly tested by our analysis.  We discuss this issue further below. 

 If this were a linear model, the assumption of independence would be sufficient to 

identify 𝛽1.  This assumption implies that we have a classical measurement error 

problem: 𝐶𝑖𝑗  is a noisy measure of 𝜇𝑖𝑗
∗ .  As usual, this problem can be solved with 

instrumental variables and in this case, 𝜇𝑖𝑗  is a valid instrument – it is correlated with 𝜇𝑖𝑗
∗  

and uncorrelated with 𝜂𝑖𝑗 , so instrumenting for 𝐶𝑖𝑗  with 𝜇𝑖𝑗  would consistently estimate 

𝛽1.  Because the model is non-linear, we need to be more explicit about the form of the 

measurement error to obtain consistent estimation.  First, we rewrite equation (6) 

substituting in equation (7): 

 𝑢𝑖𝑗 = 𝐶𝑖𝑗𝛽1 − 𝜂𝑖𝑗𝛽1 + 𝜖𝑖𝑗  (9)  

We assume further that 𝑒𝑖𝑗 ~𝑁(0, 𝜏𝑖𝑗
2 ) and 𝜂𝑖𝑗 ~𝑁(0, 𝜎𝑖𝑗

2 ).  Combined with equation (8) 

the normal updating formula implies: 

 
𝑓 𝜂𝑖𝑗  𝐶𝑖𝑗 , 𝜇𝑖𝑗  ~𝑁(

𝜎𝑖𝑗
2

𝜎𝑖𝑗
2 +𝜏𝑖𝑗

2  𝐶𝑖𝑗 − 𝜇𝑖𝑗  ,
𝜏𝑖𝑗

2 𝜎𝑖𝑗
2

𝜎𝑖𝑗
2 +𝜏𝑖𝑗

2 ) (10)  

We do not observe 𝜎𝑖𝑗
2  or 𝜏𝑖𝑗

2 .  However, provided we assume that 𝑉𝑎𝑟 𝑒𝑖𝑗 + 𝜂𝑖𝑗  𝑖, 𝑗 =

𝑉𝑎𝑟(𝑒𝑖𝑗 + 𝜂𝑖𝑗 |𝑍𝑖 , 𝑗) where 𝑍𝑖  are the variables which define each cell – that is, we 

assume that there is no heterogeneity in the variance of costs within cells – we do observe  

𝑉𝑎𝑟 𝑒𝑖𝑗 + 𝜂𝑖𝑗  ≡ 𝜎𝑖𝑗
2 .  This is the variance we construct from the 1000 cell exercise.  

This still leaves us with a separate parameter to identify for each (i,j) pair.  We 

additionally assume that a constant fraction 𝜏𝑓𝑟𝑎𝑐  of the variance of costs within cells is 

due to private information.  That is, we assume that 𝜏𝑖𝑗
2 = 𝜏𝑓𝑟𝑎𝑐 𝜎𝑖𝑗

2  and                       
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𝜎𝑖𝑗
2 = (1 − 𝜏𝑓𝑟𝑎𝑐 )𝜎𝑖𝑗

2 .  As written, this is a random coefficients model with one additional 

parameter beyond the 𝛽’s - 𝜏𝑓𝑟𝑎𝑐 , the degree of private information. 

 How is 𝜏𝑓𝑟𝑎𝑐  identified?  Equation (10) suggests a simple intuition.  We can think 

of the model as one with a fixed coefficient 𝛽1 on 𝐶𝑖𝑗  and a random coefficient with mean 

𝛽1𝜎𝑖𝑗
2

𝜎𝑖𝑗
2 +𝜏𝑖𝑗

2 =
𝛽1(1−𝜏𝑓𝑟𝑎𝑐 )𝜎𝑖𝑗

2 

𝜎𝑖𝑗
2 = 𝛽1 1 − 𝜏𝑓𝑟𝑎𝑐   on 𝐶𝑖𝑗 − 𝜇𝑖𝑗 .  Thus, the degree of private 

information is identified by the degree to which the coefficient on 𝐶𝑖𝑗 − 𝜇𝑖𝑗  falls short of 

the coefficient on 𝐶𝑖𝑗 .  If individuals have no information beyond what can be predicted 

from 2005 costs, we will observe 𝜏𝑓𝑟𝑎𝑐 = 0, and equation (9) will simplify to: 

 𝑢𝑖𝑗 = 𝐶𝑖𝑗𝛽1 −  𝐶𝑖𝑗 − 𝜇𝑖𝑗  𝛽1 + 𝜖𝑖𝑗 = 𝜇𝑖𝑗𝛽1 +  𝜖𝑖𝑗  (11)   

If on the other hand individuals have perfect information about 2006 costs, we will 

observe 𝜏𝑓𝑟𝑎𝑐 = 1, and equation (9) will simplify to: 

 𝑢𝑖𝑗 = 𝐶𝑖𝑗𝛽1 +  𝜖𝑖𝑗  (12)   

In the interim case, individual’s choose based on a linear combination of 𝐶𝑖𝑗  and 𝜇𝑖𝑗 , and 

the random coefficient on 𝐶𝑖𝑗 − 𝜇𝑖𝑗  captures the fact that different individuals with the 

same 𝐶𝑖𝑗  and 𝜇𝑖𝑗  can have varying amounts of private information. 

This model also has implications for the variance term and the measurement of 

risk aversion.   The measured variance from the 1000 cell exercise  𝜎𝑖𝑗
2  overstates the true 

variance in costs because some of this variation represents variation in realized costs 

which is unpredictable based on 2005 costs but is known to the individual at the time 

when they choose.  Thus, the correct variance to use in the model is (1 − 𝜏𝑓𝑟𝑎𝑐 )𝜎𝑖𝑗
2 , the 

variance of the noise term.  To the extent that individuals are responsive to the variance 
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term, omitting this correction will tend to bias our estimates of risk aversion downward 

by a factor of 
1

1−𝜏𝑓𝑟𝑎𝑐
.
25

 

Reintroducing the variance and the premium term, we obtain: 

 𝑢𝑖𝑗 =  𝜋𝑖𝑗𝛽0 + 𝐶𝑖𝑗𝛽1 − 𝜂𝑖𝑗 𝛽1 +  1 − 𝜏𝑓𝑟𝑎𝑐  𝜎𝑖𝑗
2 𝛽2 + 𝜖𝑖𝑗  (13)  

where the distribution of  is given by equation (10). 

                                                 
25

 Note that this model does not directly allow for private information about the variance of costs; in some 

cases, individuals may learn that they are at risk of developing a certain condition which would require 

treatment with prescription drugs.  This knowledge would increase their expected out of pocket costs in the 

coming year and would also increase the variance in their forecast.  The model above does not allow for 

this type of information; while the model allows individuals in the same cell to have different values of 

expected costs based on their realization of private information, we continue to assume that all individuals 

in the same cell in the 1000-cell model face the same variance.  To the extent that this assumption is false, 

our model could be viewed as substituting the predicted variance given the variables used to construct the 

1000-cell model for the actual variance.   



 64 

Appendix C: More General Measurement Error 

In the text, we document three choice inconsistencies and argue that they arise as 

a result of individuals choosing plans with desirable characteristics without regard for 

whether those characteristics are valuable given their individual circumstances.  In this 

section we consider an alternative hypothesis: could the choice inconsistencies arise as a 

result of mismeasured out of pocket costs?  To investigate this question, we use the 

simulation model from Appendix A to artificially introduce alternative types of 

measurement error into our out-of-pocket measure and see how it impacts our results. 

 We assume that individual’s true utility functions are CRRA with coefficient of 

relative risk aversion equal to 1 (one of the specification’s we considered in our original 

simulation section).  We simulate their choices taking the distribution of costs 

constructed from the 200 individuals in the same cell as the true distribution, and 

assuming that only this distribution impacts utility.  We then estimate our logit models 

assuming we observe only a noisy measure of out of pocket costs, given by: 

 𝜇𝑖𝑗 = 𝛼𝑖𝑗 𝜇𝑖𝑗
∗ + 𝑥𝑗𝛿 + 𝑒𝑖𝑗  (14)  

where 𝜇𝑖𝑗
∗  denotes expected out of pocket costs, 𝛼𝑖𝑗  represent multiplicative errors, 𝑒𝑖𝑗  

represent additive errors and 𝑥𝑗𝛿 represent systematic errors correlated with plan 

characteristics.  In this section, we simulate a number of different specifications for  𝜇𝑖𝑗 . 

Given each simulation, we compute the variance and cost sharing variables as if 𝜇𝑖𝑗  is the 

only variable that we observe.  Thus, the noise directly impacts the specification of out of 

pocket costs, the variance of out of pocket costs, and the average cost sharing term. 

 Case 1: Idiosyncratic Additive Error 
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The first case we consider is the case where 𝛼𝑖𝑗 = 1, 𝛿 = 0, and 𝑒𝑖𝑗 ~𝑖𝑖𝑑𝑁(0, 𝜎2) 

for alternative values of 𝜎2.  The purpose of this case is to show that using predicted 

costs in place of realized costs effectively instruments for measurement error of this type 

as it would in a linear model.  To choose values for 𝜎2, we first compute for each 

individual the standard deviation of out of pocket costs across the plans in their choice 

set.  We then consider 𝜎  equal to 5%, 10%, 30% and 50% of this standard deviation. 

Appendix Table 2 gives the results for this case.  In each model, the coefficient on 

OOP costs is roughly equal to the coefficient on premiums.  For the financial plan 

characteristics, the third row indicates the dollar value computed by dividing by the 

coefficient on premiums and multiplying by -100.  A few characteristics, such as 

deductibles, donut hole and quality enter significantly, but in each case the magnitude of 

the coefficient when converted into dollars by dividing by the coefficient on premiums is 

10-100 times smaller than the magnitude estimated in the data (shown in the first 

column). 

 Case 2: Idiosyncratic Attrition & Additive Error 

 In this case, we consider a form of multiplicative error designed to mimic what 

might be observed if there were attrition due to patients having claims at pharmacies not 

included in our data.  In particular, we assume that 𝛼𝑖𝑗 ~𝑖𝑖𝑑𝑈[a, 1] for several alternative 

values of the lower bound a.  We also consider specifications with both attrition and 

additive error to determine whether the combination of the two might be problematic. 

 

 Appendix Table 3 gives the results for this case.  The first three specifications 

(after the original specification) show the impact of increasing the amount of additive 

noise with a small amount of attrition.  The last three show the impact of increasing the 
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degree of attrition for a fixed amount of additive noise (the maximum we consider).  A 

first point to note is that attrition actually biases the coefficient on OOP costs upward.  If 

OOP costs were systematically biased downward by 50% for all patients and plans, the 

coefficient would be biased upwards by 100%.  The simulations show that even when the 

degree of bias varies across plans and individuals, the net result is an upward bias.  Plan 

characteristics enter significantly in some specifications, but the magnitude is 

substantially smaller than in the model estimated on the real Part D data, and many of the 

signs are the reverse of what we observe in the data. 

 Case 3: Systematic by Plan Multiplicative Error 

 The final simulation we consider is one in which there is a systematic plan-

specific error, perhaps because of errors in the crosswalk matching drug IDs in the WK 

data with drug IDs listed in the formulary.  We consider a multiplicative specification to 

capture the fact that the impact of such errors on OOP costs would likely be proportional 

to the number of claims an individual possessed.  In particular, we assume     

𝛼𝑖𝑗 ~𝑖𝑖𝑑𝑈[1 − a, 1 + 𝑎] (so unlike in the previous section, we allow for the fact that we 

may overstate OOP costs if we indicate as uncovered drugs which are actually covered).   

 Appendix Table 4 gives the results for this case.  In the specifications with less 

error, the coefficient is again biased upward.  In the specification with a = 0.5, the 

coefficient is biased downward, but it is still about 2/3 as large as the premium coefficient 

(rather than the 1/3
rd

 we observe in this specification in the actual data).  In this last 

specification, the coefficient on full donut hole coverage is roughly 2/3 what we observe 

in the data and the coefficient on formularies is actually larger, but the coefficients on the 
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deductible, generic donut hole coverage, cost sharing and quality all have the opposite 

sign of what we observe in the data. 
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Appendix Table 2: Idiosyncratic Additive Errors 

Additive Error Original 5% 10% 30% 50% 
Premium -.7843** -5.444** -5.435** -5.277** -5.049** 
(hundreds) (.0038) (.0399) (.0399) (.0385) (.0365) 
OOP Costs (predicted) -.2638** -5.417** -5.421** -5.300** -5.091** 
(hundreds) (.0042) (.0410) (.0408) (.0376) (.0343) 
Variance .0038** -.0035** -.0032** -.0025** -.0017** 
(times 10^6) (.0004) (.0298) (.0003) (.0002) (.0092) 
Deductible -.2304** -.0515** -.0478** -.0158** .0076 
(hundreds) (.0051) (.0104) (.0103) (.0087) (.0814) 
 -29.38 -0.95 -0.88 -0.30 0.15 
Donut Hole 2.890** -.0882 -.0473 .1989* .3618** 
 (.0186) (.1059) (.1046) (.0902) (.0814) 
 368.48 -1.62 -0.87 3.77 7.17 
Generic Coverage .4102** -.0639 -.0600 -.0146 -.0350 
 (.0141) (.0799) (.0797) (.0788) (.0779) 
 52.30 -1.17 -1.10 -0.28 -0.69 
Full Cost Sharing 1.994** .0043 .0050 .0004 -.0069 
 (.0645) (.0105) (.0105) (.0102) (.0100) 
 -0.69 0.00 0.00 0.00 0.00 
# of top 100 on Form .0927** .0006 .0022 .0073 .0146** 
 (.0007) (.0039) (.0039) (.0038) (.0036) 
 11.82 0.01 0.04 0.14 0.29 
Avg. Quality .7406** -.2126** -.2153** -.2327** -.2657** 
 (.0039) (.0250) (.0250) (.0247) (.0242) 
 94.43 -3.91 -3.96 -4.41 -5.26 

Notes:  Table shows conditional logit results from estimating the model given in equation (6) 
with measurement error in OOP costs by maximum likelihood.  Each column shows coefficients 
from a single regression.  The coefficients reported are the parameters of the utility function, 
not marginal effects.  Standard errors are in parentheses, followed by the dollar value of the 
coefficients computed by normalizing by the coefficient on premiums.    * indicates significance 
at the 5% level and ** indicates significance at the 1% level.  The sample differs slightly from 
that in Table 1 because individuals with greater than 17000 in total costs for any plan are 
dropped.  All simulated choices are based on the cost distribution generated from the realized 
costs of 200 individuals in the same decile of 2005 total costs, decile of 2005 total days supply of 
branded drugs and decile of 2005 days supply of generic drugs.  The first column shows the 
coefficients from the model estimated on the actual data (the coefficients differ slightly from 
those in Table 1 because predicted costs is used in lieu of realized costs).  Columns (2)-(5) 
introduce normally distributed measurement error which is i.i.d. across plans and individuals 
with standard deviation equal to the indicated percentage of the standard deviation of OOP cost 
computed for each individual based on their choice set.  Variable definitions are otherwise 
identical to Table 1.
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Appendix Table 3: Idiosyncratic Attrition & Additive Error 

a  .9 .9 .9 .75 0.5 
Additive Error Original 5% 30% 50% 50% 50% 

Premium -.7843** -5.412** -5.237** -4.906** -4.732** 4.121** 
(hundreds) (.0038) (.0397) (.0381) (.0353) (.0339) (.0286) 
OOP Costs (predicted) -.2638** -5.692** -5.576** -5.177** -5.423** 5.483** 
(hundreds) (.0042) (.0431) (.0393) (.0346) (.0356) (.0345) 
Variance .0038** -.0033** -.0016** -.0017** -.0025** .0020** 
(times 10^6) (.0004) (.0003) (.0002) (.0001) (.0076) (.0069) 
Deductible -.2304** -.0418** .0033 .0271** .0288** .0889** 

(hundreds) (.0051) (.0101) (.0086) (.0075) (.0070) (.0058) 
 -29.38 -0.77 0.06 0.55 0.61 2.16 
Donut Hole 2.890** .0577 .3800** .5095** .4495** .7577** 
 (.0186) (.1040) (.0891) (.0780) (.0760) (.0679) 
 368.48 1.07 7.26 10.39 9.50 18.39 
Generic Coverage .4102** -.0366 .0350 .0311 -.0220 -.0453 
 (.0141) (.0798) (.0786) (.0765) (.0763) (.0733) 
 52.30 -0.68 0.67 0.63 -0.46 -1.10 
Full Cost Sharing 1.994** .0104 .0133 .0031 -.0050 .0408* 
 (.0645) (.0117) (.0119) (.0119) (.0135) (.0191) 
 -0.69 0.19 0.25 0.06 -0.11 0.99 
# of top 100 on Form .0927** .0026 .0120** .0167** .0161** .0307** 
 (.0007) (.0039) (.0038) (.0036) (.0036) (.0034) 
 11.82 0.05 0.23 0.34 0.34 0.74 
Avg. Quality .7406** -.2231** -.2293** -.2687** -.3185** .4196** 
 (.0039) (.0251) (.0247) (.0238) (.0236) (.0024) 
 94.43 -4.12 -4.38 -5.48 -6.73 -10.18 

Notes:  Table shows conditional logit results from estimating the model given in equation (6) 
with measurement error in OOP costs by maximum likelihood.  Each column shows coefficients 
from a single regression.  The coefficients reported are the parameters of the utility function, 
not marginal effects.  Standard errors are in parentheses, followed by the dollar value of the 
coefficients computed by normalizing by the coefficient on premiums.    * indicates significance 
at the 5% level and ** indicates significance at the 1% level.  The sample differs slightly from 
that in Table 1 because individuals with greater than 17000 in total costs for any plan are 
dropped.  All simulated choices are based on the cost distribution generated from the realized 
costs of 200 individuals in the same decile of 2005 total costs, decile of 2005 total days supply of 
branded drugs and decile of 2005 days supply of generic drugs.  The first column shows the 
coefficients from the model estimated on the actual data (the coefficients differ slightly from 
those in Table 1 because predicted costs is used in lieu of realized costs).  Columns (2)-(5) 
introduce a combination of additive error as in Appendix Table 2, and multiplicative attrition on 
OOP costs i.i.d. across plans and individuals drawn as a 𝑈[𝑎, 1] random variable.  Variable 
definitions are otherwise identical to Table 1.
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Appendix Table 4: Systematic Plan-Specific Error 

a Original .05 0.1 0.3 0.5 
Premium -.7843** -4.221** -3.203** -1.564** -1.412** 
(hundreds) (.0038) (.0295) (.0195) (.0087) (.0078) 
OOP Costs (predicted) -.2638** -4.488** -3.621** -1.957** -.9768** 
(hundreds) (.0042) (.0327) (.0246) (.0114) (.0086) 
Variance .0038** .0022** .0077** .0126** .0083** 
(times 10^6) (.0004) (.0003) (.0002) (.0001) (.0001) 
Deductible -.2304** -.0096 .1823** .5777** .4927** 
(hundreds) (.0051) (.0096) (.0081) (.0055) (.0054) 
 -29.38 -0.23 5.69 36.94 34.89 
Donut Hole 2.890** 1.496** 3.404** 3.983** 3.741** 
 (.0186) (.0832) (.0587) (.0332) (.0299) 
 368.48 35.44 106.28 254.67 264.94 
Generic Coverage .4102** .5150** .3169** -.1309* -.1525** 
 (.0141) (.0737) (.0681) (.0619) (.0612) 
 52.30 12.20 9.89 -8.37 -10.80 
Full Cost Sharing 1.994** -.2803** -.2852** -.3423** -.2203** 
 (.0645) (.0096) (.0088) (.0074) (.0078) 
 254.24 -6.64 -8.90 -21.89 -15.60 
# of top 100 on Form .0927** .0264** .1026** .2569** .2804** 
 (.0007) (.0037) (.0038) (.0034) (.0034) 
 11.82 0.63 3.20 16.43 19.86 
Avg. Quality .7406** -.4968** -.7256** -1.056** -1.047** 
 (.0039) (.0242) (.0210) (.0150) (.0137) 
 94.43 -11.77 -22.65 -67.52 -74.15 

Notes:  Table shows conditional logit results from estimating the model given in equation (6) 
with measurement error in OOP costs by maximum likelihood.  Each column shows coefficients 
from a single regression.  The coefficients reported are the parameters of the utility function, 
not marginal effects.  Standard errors are in parentheses, followed by the dollar value of the 
coefficients computed by normalizing by the coefficient on premiums.    * indicates significance 
at the 5% level and ** indicates significance at the 1% level.  The sample differs slightly from 
that in Table 1 because individuals with greater than 17000 in total costs for any plan are 
dropped.  All simulated choices are based on the cost distribution generated from the realized 
costs of 200 individuals in the same decile of 2005 total costs, decile of 2005 total days supply of 
branded drugs and decile of 2005 days supply of generic drugs.  The first column shows the 
coefficients from the model estimated on the actual data (the coefficients differ slightly from 
those in Table 1 because predicted costs is used in lieu of realized costs).  Columns (2)-(5) 
introduce multiplicative error given by i.i.d. random draws for each plan from a 𝑈[1 − 𝑎, 1 + 𝑎] 
random variable.  Variable definitions are otherwise identical to Table 1. 


