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Could we significantly reduce U.S. unemployment by helping job
seekers move closer to jobs? Using data from the leading em-
ployment board CareerBuilder.com, we show that, indeed, workers
dislike applying to distant jobs: job seekers are 35 percent less
likely to apply to a job 10 miles away from their ZIP code of resi-
dence. However, because job seekers are close enough to vacancies
on average, this distaste for distance is fairly inconsequential: our
search and matching model predicts that relocating job seekers to
minimize unemployment would decrease unemployment by only 5.3
percent. Geographic mismatch is thus a minor driver of aggregate
unemployment.
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Job seekers’ optimal application strategy

Here, we derive job seekers’ optimal strategies. Let v = {v1, . . . vā} be the
ā-tuple of vacancies worker u applies to. We use the convention that utilities are
ranked as: wuv1 ≥ wuv2 ≥ . . . wuvā . The expected utility associated with strategy
v is:

(A1) U(v) = πj(v1)wuv1 +
ā∑
k=2

[
k−1∏
`=1

(1− πj(v`))

]
πj(vk)wuvk

With probability πj(v1), the job seeker u gets an offer from the highest utility
vacancy v1, which is located in j. Whatever other offers he might get, he takes v1

and his utility is wuv1 . He only takes an offer from vacancy vk if he does not get
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any offer from higher utility vacancies vk′ , k
′ < k, which happens with probability∏k−1

`=1 (1− πj(v`)).
Determining which strategy maximizes expected utility in equation A1 is com-

plex: an algorithm such as the one described in ? should be used. In the general
case, it is not an optimal strategy to apply to the ā highest expected utility jobs.
Instead, workers should first apply to the highest expected utility job, and then
gamble upwards by applying to jobs that have lower probability of yielding an
offer but higher utility. Computing the optimal strategy using the ? algorithm
would make our model computationally intractable. We must therefore find some
reasonable simplifying assumption to restore tractability.

One way to simplify the problem is to assume that the probability of a worker
getting more than one offer is zero. ? assume that the probability of getting an
offer from any given job is so low that the probability to receive two offers or more
is negligible. In this case, the expected utility simplifies to U(v) =

∑
k πj(vk)wuvk ,

implying that the optimal strategy is to apply to the vacancies with the highest
expected utility.

Another way of simplifying the problem is to assume that the probability πv of
getting an offer and the utility wuv associated with a vacancy v are not negatively
correlated. In this particular case, applying to the ā vacancies with the highest
expected utility is optimal, and the model becomes computationally tractable.
The intuition is this: if the probability of getting the job and the reward are not
negatively correlated, there is no trade-off between risk and reward (utility), and
there is therefore no opportunity for gambling upwards. Therefore, if there is no
negative correlation between the probability of getting an offer from a job in a
location j and the utility derived from a job in location j, it is optimal to apply
to the highest expected utility vacancies.

How likely is it that there is no negative correlation between the probability
of getting an offer from a job in a location j and the utility derived from a job
in location j? Utility is the product of two terms: f(d) is strictly decreasing
with geographic distance and ε is an idiosyncratic shock. By assumption, ε is a
random draw across vacancies, and thus will not generate any correlation between
the probability of getting an offer π and the utility w for a given vacancy.

Then, only a positive correlation between the probability of getting an offer
π and the distance d may generate a negative (remember that f(d) is strictly
decreasing in d) correlation between the probability of getting an offer and utility.
Unfortunately, it is hard to directly measure the correlation between π and the
distance d because we don’t observe the probability of getting an offer but instead
infer it on the basis of applicants’ behavior. Therefore, the inferred probabilities
of getting an offer πj in different locations j depend precisely on the assumption
about the strategy pursued by job seekers. To make the case that the correlation
is unlikely to be negative, we use two arguments. First, we show that, based
on the structure of the problem and the data, the correlation between a job’s
utility and the probability of getting an offer is unlikely to be strongly negative.



VOL. VOL NO. ISSUE MISMATCH UNEMPLOYMENT AND GEOGRAPHY 3

Second, we use the fact that, in the hires-maximizing allocation of job seekers,
the correlation between the probability of getting an offer π and the distance d is
zero and therefore non-negative.

Using the first line of argument, we can say that, in general, if job seekers are
geographically dispersed as is the case in our data, π and d cannot be highly
correlated either positively or negatively. To see this, suppose that there are only
two places A and B, and two job seekers X and Y who live respectively in A and
B. Jobs in place A have a higher probability π of generating an offer than jobs in
place B. Therefore, for job seekers like X, there is a negative correlation between
distance and the probability of getting an offer. For job seekers like Y , there is a
positive correlation between distance and the probability of getting an offer. So,
depending on the job seekers’ location, the correlation between distance and the
probability of getting an offer from a job could be positive or negative, implying
that overall the correlation cannot be strongly positive or negative.

The question then becomes: how frequent are job seekers like Y and how often
do opportunities for gambling upwards arise? In the simple example above, the
opportunity for gambling upwards only arises if, for job seeker Y , jobs in A have
a higher expected utility than jobs in B. In this case, job seeker Y would not
only apply to jobs with the highest expected utility in A, but would want to
gamble upwards by applying to jobs in their own location B that have a higher
utility but a lower probability of yielding an offer. For jobs in A to have a higher
expected utility than jobs in B for Y , it must be that the distance from B to A
is not too large and/or that the probability of getting an offer from a job in A is
large enough. More generally, this suggests that applying to the highest expected
utility jobs is not optimal for job seekers in places where the probability of getting
an offer increases more steeply with distance than the disutility of distance.

The conclusion of this first line of argument based on the structure of the
problem and the data is this: as long as there are few job seekers for whom
labor market conditions (as measured by the probability of generating an offer π)
improve drastically within 60 miles or so of their place of residence (remember
than 90 percent of application are sent within 60 miles), the assumption that the
probability of getting an offer π and utility are not negatively correlated will be
generally correct.

The second line of argument relies on the hires-maximizing allocation of job
seekers. In this allocation, πj is equal across all locations j (see equation B2):
therefore, there is no correlation between the probability of getting an offer π and
distance d, and so applying to the highest expected utility vacancies is indeed
optimal. Since it turns out that the actual allocation of job seekers is fairly close
to the hires-maximizing allocation of job seekers (there is little mismatch), the πj
tend to be very similar across locations, and there is therefore not much correlation
between the probability of getting an offer π and distance d. In conclusion, the
assumption that there is no negative correlation between the probability of getting
an offer π and distaste for distance f(d) seems reasonable given the structure of
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the problem and the fact that the allocation of job seekers is close to the hires-
maximizing allocation.

Number of matches when job seekers have no distaste for distance

Starting from equation (3), we examine the case in which job seekers have no
distaste for distance, i.e. g(dij) = 1,∀i, j. We derive the probability for a job
seeker in i to apply to a vacancy in j pij as:

(B1) pij = ā
παj∑
` π

α
` V`

,∀i, j

In this case, pij does not depend on i. Let Ū and V̄ be the total number of job
seekers and vacancies in the economy. We now derive the probability of getting
an offer π. We have, for all j:

πj = qR

(
qāπαj

∑
k

Uk∑
` π

α
` V`

)

= qR
(
Ū

qāπαj∑
` π

α
` V`

)
The only term that depends on j on the right-hand side is πj itself. Therefore,
solving for πj is the same for any ZIP code j. Hence π is equal across ZIP codes
in the case of no distaste for distance. Since π is equal across ZIP codes, we can
rewrite π as a function of parameters, i.e.:

(B2) π = qR
(
qā
Ū

V̄

)
If g(dij) = 1, the total number of matches is:

(B3) M =
∑
k

Uk

[
1− exp

(
−ā
∑

` π
1+α
` V`∑

` π
α
` V`

)]

Since π is equal across ZIP codes, the total number of matches when there is no
distaste for distance is:

M = U [1− exp (−āπ)]

Replacing π by its expression in equation (B2),

(B4) M = Ū

[
1− exp

(
−qāR

(
qā
Ū

V̄

))]
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Thus, the number of matches obtained with no distaste for distance depends on
the aggregate number of job seekers Ū and the inverse of aggregate labor market
tightness (Ū/V̄ ). Since there is no distaste for distance, only the aggregates
matter: the location of jobs and job seekers is irrelevant. The total number of
matches also depends on qā, i.e. the product between the probability of a valid
application and the average number of applications sent by a job seeker, which is
equal to the average number of valid applications per job seeker. This makes sense
since, intuitively, a larger number of valid applications leads to more matches.

Mismatch unemployment by education

Our main results assume that job seekers are homogeneous: here we estimate
mismatch while allowing for worker heterogeneity by education. Specifically, we
divide job seekers in three educational groups: high school graduates, associate
degrees (AA), and bachelor degrees (BA) and more.1 We also compute the num-
ber of vacancies for each education category based on the SOC code of each
vacancy and O*NET’s determination of the level of education needed in each
SOC code.

We compute mismatch by education assuming that job seekers only apply to
jobs in their own educational category, so that each education level is a completely
separate market. In a first version, we keep all parameters as in the baseline
case (i.e. Table 2), except for the geographic distribution of job seekers and
vacancies. Mismatch decreases with education (Figure E2). Yet, even for high
school graduates, mismatch is only 6.9 percent. In a second version, we adjust
all parameters for each education category, and we find that mismatch for high
school graduates and AA is only about 4 percent, while mismatch for BA and
above is only 1.8 percent (Figure E2).2

Overall, since mismatch remains low even for less educated workers, these re-
sults reinforce our main conclusion that geographic mismatch is a minor driver of
U.S. aggregate unemployment.

1In our data, we cannot separate high school dropouts from individuals with missing information on
education. While mismatch is likely to be higher for high-school dropouts than for high-school graduates,
we cannot estimate a mismatch index for this category.

2See Tables E2 and E3 in appendix for the parameters used and for the estimated distaste for distance
parameters by education.
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A simpler mismatch index, and applications

In this section of the appendix, we investigate how mismatch varies with the
Pareto parameter for the match-specific utility component α, and we show that
a simpler mismatch index can be derived when α = 0. Finally, we show how this
simpler mismatch index can be used to compute mismatch under less restrictive
hypotheses while preserving computational feasibility.

D1. Calculating a simple mismatch index

Specifically, we vary α between 0 and 2 in increments of 0.2 (remember that
our baseline estimate is α = 0.4629). Mismatch is maximum at 6 percent when
α = 0 and decreases for larger values of α (appendix Figure E3). This makes sense
because α can be interpreted as the weight put by applicants on the probability
of getting an offer from a given vacancy relative to the distance to that vacancy
(see equation 3). A smaller α increases mismatch because it hinders job seekers
from directing applications to vacancies with higher probability of yielding an
offer. Since we estimate a value of α that is close to 0, our geographic mismatch
is close to the maximum that it could be as a function of α.

When α = 0, job seekers only care about distance and do not take into account
the probability of getting an offer when they apply, i.e. they are not strategic. In
this case, the mismatch index simplifies considerably because we do not need to
ensure that the probability of getting an offer π is consistent with the behavior
of job seekers as was the case in equation (5). The mismatch takes a closed form
that depends only on where job seekers and vacancies are located and job seekers’
distaste for distance:

(D1) Mns = 1−
∑
k

Uk
M∗Ū

[
1− exp

(
−qā

∑
` g(dk`)V`R(qāν`)∑

` g(dk`)V`

)]

where R(x) = [1 − exp(−x)]/x, M∗ is defined in equation (7) and νj is a gener-
alized inverse tightness3 in the no-strategy case defined as:

(D2) νj =
∑
k

g(dkj)Uk∑
` g(dk`)V`

Mismatch with non-strategic job seekers is very similar but slightly higher
than our baseline estimates (compare appendix Figure E4 and Figure 6 inter-
connected). This is not surprising since job seekers do not behave optimally:

3If we are interested in measuring the number of job seekers who compete for a job in a ZIP code j,
we don’t want to use the simple inverse tightness Uj/Vj because job seekers apply to jobs beyond their
own ZIP code. Since labor markets are interconnected, the generalized inverse tightness at a place j
will depend on the number of job seekers and job vacancies around j. To illustrate how the generalized
inverse tightness νj varies with j, we plot it for each ZIP code j in the U.S. (appendix Figure E5).



VOL. VOL NO. ISSUE MISMATCH UNEMPLOYMENT AND GEOGRAPHY 7

they apply to vacancies only as a function of distance, and do not take into ac-
count the probability of getting an offer. Overall, we conclude that, in the case
of the U.S. in 2012, this mismatch index with non-strategic job seekers is a fair
approximation of our more comprehensive approach.

Because it is much simpler to compute, this non-strategic mismatch index could
be straightforwardly used to calculate mismatch with other datasets that contain
the geographic distribution of job seekers and vacancies, Ui, Vj . Apart from the
distribution of job seekers and vacancies, only two other ingredients are needed:

• The distaste for distance g, which we provide in Table 1. Alternatively,
users can specify any other distaste for distance.

• qā, the scale parameter, which should be calibrated using a target job finding
rate.

Mismatch is maximum when α = 0, but it is still only 6 percent. Furthermore,
the assumption that α = 0 yields a simpler mismatch index that can be used in
other applications.

D2. Mismatch when employers have a distaste for hiring distant workers

In our main analysis, we assume that employers do not differentiate between
workers on the basis of distance, so that the job finding rate per application q
does not depend on the distance between the job seeker and the job. Here we
relax this assumption, and we use the simple mismatch index expression to do so.

The data does not allow us to separately identify the distaste for distance for
employers and job seekers. We therefore let the distaste for distance for employers
take different values: zero (our baseline case), half of the distaste for distance
that workers exhibit, and the same distaste for distance as workers. Employers’
distaste for distance is unlikely to be as strong as workers’ distaste for distance
because workers would typically bear most of the moving and commuting costs.
Since mismatch increases with employers’ distaste for distance, assuming that
employers have the same distaste for distance as workers is likely to yield an
upper bound for mismatch.

Specifically, in the simple mismatch index, we allow qā, the job finding rate
multiplied by the average number of applications, to differ with dij , the distance
between worker i and job j.

The job-finding rate for a worker located in i is equal to:

ri = 1− exp

(∑
` āq(di`)g(di`)V`R(ν̃`)∑

` g(di`)V`

)

where ν̃` =
∑

k
āq(dk`)g(dk`)Uk∑

j g(dkj)Vj
is a modified version of our generalized inverse

tightness, which accounts for the fact that employers value less the applications
coming from further away.
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We specify āq(d) = āqg(d)ζ , with g(d) being the distaste for distance of workers,
and ζ a parameter indicating how much employers dislike applications from far
away. In what follows, we experiment with different values of ζ and calibrate the
āq to get the right job finding rate overall. In detail, we wish to find the qā that
minimizes: [∑

i Uiri(qā)∑
i Ui

− r̄
]2

Once qā is known, we can compute the total number of matches:

M =
∑
i

Uiri(qā)

as well as the maximum number of matches for the same job seekers:

M∗ = Ū

[
1− exp

(
−qāR

(
qā
Ū

V̄

))]
where Ū is the total number of job seekers.

At the zip code level, the mismatch index is equal to 5.7 percent, 8.5 percent and
8.5 percent respectively when employers have no distaste for distance, have half
workers’ distaste for distance, and have the same distaste for distance as workers.
As is intuitive, mismatch increases when employers also exhibit a distaste for
distance, and 8.5 percent is likely to be an upper bound for mismatch when
employers dislike applications from far away.

D3. Geographic mismatch with a different q in each occupation

In this subsection, we relax the assumption that the scale parameter q is con-
stant across occupations. We extend the geographic mismatch index from section
III.A by allowing q to depend on the previous occupation of job seekers, at the
2-digit SOC level.

We use the Current Population (CPS) basic extracts to compute empirical job
finding rates by 2-digit SOC code as follows:

1) Create a panel data using basic CPS April through July 2012.

2) Use a crosswalk to convert the CPS occupation codes into SOC 2010 codes.

3) Calculate the job finding rate by 2-digit SOC of origin and by month, using
weights.

4) For each 2-digit SOC, take the average across months.

The objective is to allow qā in the simple mismatch index to be different for each
2-digit SOC occupation and to reflect the job finding rates of each occupation.
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The job finding rates in each occupation are used as targets to estimate qā in this
task. We denote these targets as r̄o, for occupation o, and qo the q specific to the
previous occupation o of job seekers.

The job-finding rate for a worker in occupation o and located in i is equal to:

ri(q
oā) = 1− exp

(
−qoā

∑
` g(di`)V`R(qoāν`)∑

` g(di`)V`

)

where ν` =
∑

k
g(dk`)Uk∑
j g(dkj)Vj

is our generalized inverse tightness.

Calling Uoi the number of workers of occupation o in location i, we wish to find
the qoā that minimizes: [∑

i U
o
i ri(q

oā)∑
i U

o
i

− r̄o
]2

Once qoā is known, we can compute the total number of matches:

M(o) =
∑
i

Uoi ri(q
oā)

as well as the maximum number of matches for the same job seekers:

M∗(o) = Ūo
[
1− exp

(
−qoāR

(
qoā

Ū

V̄

))]
where Ū is the total number of job seekers (from all occupations).

The overall mismatch is then:

1−
∑

oM(o)∑
oM

∗(o)

At the county level, mismatch is equal to 5.5 percent when we allow qā to vary
across occupations,4 to be compared to 6.6 percent when we ignore the variability
of qā. Therefore, allowing q to vary across occupations does not substantively
impact the measure of mismatch in the economy.

Because we are using the simpler mismatch index, we can even calculate mis-
match at the zip code by occupation level. Mismatch is equal to 5.3 percent when
we allow qā to vary across occupations to be compared to 6.4 percent when we
ignore the variability of qā. Therefore, using this simpler mismatch index also
allows us to show that the calculation at the county level happens to given levels
of mismatch that are similar to what is measured at the zip code level.

4For a few occupations, it is not possible to find a qā high enough that the job finding rate ri(qā)
reaches the empirical job finding rate. Since, in practice, mismatch decreases with a higher level of qā,
it is likely that this issue leads us to overestimate mismatch.
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Additional figures and tables

Figure E1. Log likelihood as a function of η, the scaling parameter for the distaste for

distance, and α the Pareto parameter for the match-specific utility shock

Source: CareerBuilder database.
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High School Associates BA and Above
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Figure E2. Mismatch unemployment by education: baseline parameters (“Base”) and each

education category’s own specific parameters (“Spec”)

Source: CareerBuilder database.
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Figure E3. Robustness to various values

of the Pareto parameter for the match-

specific utility component α

Source: CareerBuilder database.
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Source: CareerBuilder database.
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Figure E5. Generalized inverse tightness: number of unemployed workers per job, taking

into account the geography of job search

Source: CareerBuilder database.
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Table E1— Estimation of the CZ × SOC model

(1) (2) (3)

Geographic distance
< 50 miles -0.0405 -0.0711 -0.0671

0.0027 0.0021 0.0025
< 75 miles 0.0190 0.0586 0.0582

0.0075 0.0068 0.0080
< 100 miles -0.0573 -0.0564 -0.0603

0.0115 0.0098 0.0117
< 200 miles 0.0598 0.0459 0.0463

0.0072 0.0061 0.0073
< 500 miles 0.0155 0.0193 0.0194

0.0011 0.0014 0.0016
< 1, 000 miles 0.0031 0.0032 0.0030

0.0002 0.0003 0.0003
< 2, 000 miles 0.0001 -0.0003 -0.0004

0.0001 0.0002 0.0002
> 2, 000 miles 0.0004 0.0022 0.0021

0.0001 0.0003 0.0003
SOC2

Different SOC2 -1.2922 -1.0231 -0.7224
0.0696 0.0539 0.0437

Distance SOC2 -0.2271 -0.3734 -0.4532
0.0261 0.0223 0.0113

Difference Factor 1 0.2957 0.6082 0.0061
0.0112 0.0130 0.0119

Difference Factor 2 0.2598 0.3551 0.1916
0.0121 0.0116 0.0100

N 83,533,150 80,833,282 67,653,650
Fixed-effects No User CZSOC Job CZSOC

Notes: Poisson model (column 1) or Conditional Fixed-Effect Poisson model (columns 2 and 3).
Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The 10 nodes for the spline that parametrizes workers’ willingness to apply as a function of distance are
at 10, 20, 30, 50, 75, 100, 200, 500, 1000 and 2000 miles. The piecewise-linear spline function is defined
by its slopes. With 10 nodes {d̄i}i=1...10, the spline is parameterized by 11 parameters {γi}i=1...(11). It

is defined so that the derivative of the spline with respect to distance is s′(d) = γ1 when distance is

below the first node, i.e. when d < d̄1; s′(d) =
∑j

i=1 γi when d ∈ (d̄j−1, d̄j) and j = 2 . . . 10;

s′(d) =
∑11

i=1 γi when d > d̄10.
Different SOC2 is a dummy for the SOC2 of the applicant’s last job differing from the SOC2 of the

vacancy. Distance SOC2 is the distance between the applicant’s SOC2 and the vacancy’s SOC2.
Difference Factor 1 is the difference between the first factor of the applicant’s SOC2 and the first factor

of the vacancy’s SOC2; the same definition holds for Difference Factor 2.
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Table E2—Parameters for each education category

Parameter High School Associates BA and above

Number of applications 13.8 14.0 13.6
Tightness 0.20 0.33 0.80
Job Finding Rate 0.17 0.17 0.20
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Table E3—Probability of application as a function of distance by education: Poisson regres-

sion

(1) (2) (3)
High School AA BA and Above

γ1 -0.0348*** -0.0425*** -0.0498***
(0.00476) (0.00222) (0.00531)

γ2 -0.0146** -0.00239 0.00867
(0.00695) (0.00338) (0.00799)

γ3 -0.000455 0.00112 -0.00425
(0.00698) (0.00299) (0.00736)

γ4 -0.0461*** -0.0391*** -0.0329***
(0.00578) (0.00259) (0.00705)

γ5 0.0367*** 0.0302*** 0.0268***
(0.00635) (0.00306) (0.00756)

γ6 0.0368*** 0.0278*** 0.0353***
(0.00787) (0.00407) (0.00827)

γ7 0.00855 0.0152*** 0.00627
(0.00546) (0.00287) (0.00513)

γ8 0.00974*** 0.00500*** 0.00631***
(0.00166) (0.000822) (0.00153)

γ9 0.00401*** 0.00431*** 0.00346***
(0.000873) (0.000334) (0.000626)

γ10 -0.000335 4.36e-05 -0.000238
(0.000458) (0.000230) (0.000325)

γ11 3.07e-05 0.000253 0.000698***
(0.000367) (0.000214) (0.000237)

Observations 57,997,472 178,134,756 29,997,033
Log-PseudoLikelihood -122959.6 -1256988.9 -100679.32

Notes: Conditional Fixed-Effect Poisson model with user ZIP code fixed effects. Robust standard errors
in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.

The 10 nodes for the spline that parametrizes workers’ willingness to apply as a function of distance are
at 10, 20, 30, 50, 75, 100, 200, 500, 1000 and 2000 miles. The piecewise-linear spline function is defined
by its slopes. With 10 nodes {d̄i}i=1...10, the spline is parameterized by 11 parameters {γi}i=1...(11). It

is defined so that the derivative of the spline with respect to distance is s′(d) = γ1 when distance is

below the first node, i.e. when d < d̄1; s′(d) =
∑j

i=1 γi when d ∈ (d̄j−1, d̄j) and j = 2 . . . 10;

s′(d) =
∑11

i=1 γi when d > d̄10.


