Online Appendix for

"Welfare Consequences of Information Aggregation and Optimal Market Size"

Kei Kawakami*

October 27th, 2016

Not for publication.

This online appendix contains all the proofs and background analyses to the main text. We characterize a price-taking equilibrium and a strategic equilibrium simultaneously, with general $\mu \in(0,1]$ and $\omega \in(0,1]$. We label endogenous variables in a strategic equilibrium with "st" (e.g., $\Pi_{i}^{s t}, G_{i}^{s t}$, and $G^{s t}$ etc). Whenever it is necessary to do so, "pt" is used for a price-taking equilibrium.

The rest of this appendix is organized as follows:

1. Proofs for the main text.
2. Background analysis.
2.1 Equilibrium with $\tau_{\varepsilon}>0$ (Lemma A1).

- Information aggregation (Lemma A2).
- Trade volume, hedging effectiveness, price impact (Lemma A3).
- Equilibrium as $n \rightarrow \infty$ (Lemma A4).
2.2 Equilibrium with $\tau_{\varepsilon}=0$ (Lemma A5).
2.3 Ex ante profits.
- Interim characterization (Lemma A6).
- Ex ante characterization (Lemma A7 through A10).
2.4 Optimal market size.
- For $\mu \omega=1$ (Lemma A11).
- For $\mu \omega<1$ (Lemma A12).

[^0]
1 Proofs for the main text

Proof of Lemma 1

Set $\mu=\omega=1$ in Lemma A1(a) to obtain the equilibrium demand function $q_{i}(p)$. See Lemma A1(c) for the expression of the price informativeness φ. The limit result follows from $p^{*}=\frac{\beta_{s}}{\beta_{p}}(v+\bar{\varepsilon})-\frac{\beta_{e}}{\beta_{p}} \bar{e}, q_{i}^{*}=\beta_{s}\left(\varepsilon_{i}-\bar{\varepsilon}\right)-\beta_{e}\left(e_{i}-\bar{e}\right)$, and the expression of $\left(\beta_{s}, \beta_{e}, \beta_{p}\right)$. $\quad(\mathbf{L} \mathbf{1})$

Proof of Lemma 2

See Lemma A6(a) for the derivation and the decomposition of the interim profit Π_{i}. $\quad(\mathbf{L} 2)$

Proof of Proposition 1

The results immediately follow from the expression of $\exp (2 \rho \Pi)$ shown after Proposition 1 in the main text. This expression of $\exp (2 \rho \Pi)$ is derived in Lemma A10 (substitute $X=\frac{n}{1+n}(1-\varphi), \exp \left(2 \rho \Pi^{n t}\right)=1-\alpha$, and $\alpha=\frac{\rho^{2}}{\tau_{e} \tau_{v}}$ to obtain the exact expression shown in the main text). From the expression of the lower bound for n^{*} derived in Lemma A11(a) (i.e., $\sqrt{\frac{1}{\varphi}\left(1+\frac{\tau_{v}}{\tau_{\varepsilon}}\right)}$, any comparative statics that implies $\varphi=\left(1+\frac{\rho^{2}}{\tau_{e} \tau_{\varepsilon}}\right)^{-1} \rightarrow 0$ also implies $n^{*} \rightarrow \infty$. $\quad(\mathbf{P} 1)$

Proof of Lemma 3

See Lemma A3(\mathbf{a}, \mathbf{b}) for trade volume and hedging effectiveness. See Lemma A5 for the characterization of equilibrium with $\tau_{\varepsilon}=0 . \square(\mathbf{L} 3)$

Proof of Lemma 4
See Lemma A4(c). ■ (L4)
Proof of Proposition 2
See Lemma A12(b) for the ex ante profit. See Lemma A3(a,b) for trade volume and hedging effectiveness. ■ (P2)

Proof of Lemma 5

See Lemma A3(a) for trade volume. See Lemma A10 for the ex ante profit. (L5)

Proof of Proposition 3

See Lemma A11(b) for the ex ante gains from trade. See Lemma A3(c) for price impact. See Lemma A3(b) for hedging effectiveness. \quad (P3)

2 Background analysis

This section presents a background analysis for the main text. We use the following notations throughout this section:

$$
\alpha \equiv \frac{\rho^{2}}{\tau_{v} \tau_{e}}, \quad d_{\varepsilon} \equiv \frac{\tau_{\varepsilon}}{\tau_{\varepsilon}+\tau_{v}}, \quad \alpha_{\varepsilon} \equiv \frac{\rho^{2}}{\tau_{\varepsilon} \tau_{e}} .
$$

Our main objective is to characterize the ex ante payoff Π and gains from trade (henceforth GFT) G, defined as below.

Definition 1 (ex ante profits)

The ex ante profit is $\Pi \equiv-\log \left(E\left[\exp \left(-\rho \pi_{i}\right)\right]\right)$.
The ex ante no-trade profit is $\Pi^{n t} \equiv-\log \left(E\left[\exp \left(-\rho v e_{i}\right)\right]\right)$.
The ex ante gains from trade is $G \equiv \Pi-\Pi^{n t}$.

Definition 2 (interim profits)

The interim profit is $\Pi_{i} \equiv-\log \left(E_{i}\left[\exp \left(-\rho \pi_{i}\right)\right]\right)$.
The interim no-trade profit is $\Pi_{i}^{n t} \equiv-\log \left(E_{i}\left[\exp \left(-\rho v e_{i}\right)\right]\right)$.
The interim gains from trade is $G_{i} \equiv \Pi_{i}-\Pi_{i}^{n t}$.
Note that Π is the right ex ante welfare measure because $\exp (-\Pi)=E\left[\exp \left(-\rho \pi_{i}\right)\right]$. We use interim profits and interim gains from trade only for the intermediate step in the characterization of ex ante profits. We also define $\widetilde{G} \equiv-\log \left(E\left[\exp \left(-\rho G_{i}\right)\right]\right)$. Due to risk aversion, $E\left[\Pi_{i}\right]=\Pi$ does not hold. ${ }^{1}$ For the same reason, G and \widetilde{G} are not equivalent.

2.1 Equilibrium with $\tau_{\varepsilon}>0$

We characterize the equilibrium where traders submit the order

$$
\begin{equation*}
q_{i}(p)=\beta_{s} s_{i}-\beta_{e} e_{i}-\beta_{p} p \tag{1}
\end{equation*}
$$

We define the balance of motives by $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}$.
Lemma A1 (equilibrium with $\tau_{\varepsilon}>0$)
(a) A price-taking equilibrium exists for all $n \geq 1$ and the optimal order has coefficients

$$
\begin{aligned}
\beta_{s}^{p t} & =\frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \sqrt{\mu} \frac{\tau_{\varepsilon}}{\rho} \\
\beta_{e}^{p t} & =\frac{1-\varphi}{1-(1-\omega) \varphi}, \\
\beta_{p}^{p t} & =\frac{1-\varphi}{1+\{\omega n-(1-\omega)\} \varphi} \frac{\tau}{\rho},
\end{aligned}
$$

where $\tau \equiv\left(\operatorname{Var}_{i}[v]\right)^{-1}$ and $\varphi \in(0,1)$ are characterized in the proof.
(b) A strategic equilibrium exists if and only if

$$
\begin{equation*}
0<\frac{n+1}{n-1}<\frac{1}{\omega} \frac{1-\varphi}{\varphi} . \tag{2}
\end{equation*}
$$

The optimal order has coefficients $\beta_{x}^{s t}=\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi} \beta_{x}^{p t}$ for $x \in\{s, e, p\}$.
(c) B, φ and traders' beliefs are the same in both equilibria.

[^1]$$
\text { If } \mu \omega=1 \text {, then } B=1 \text { and } \varphi=\left(1+\alpha_{\varepsilon}\right)^{-1}
$$

Remark. If $\mu \omega<1$, we show below that φ decreases in n and $\lim _{n \rightarrow \infty} \varphi=0$ (Lemma A2). Hence, the condition (2) implicitly defines a unique $\underline{n}>1$ such that a strategic equilibrium exists for all $n>\underline{n}$. If $\mu \omega=1$, then part (c) implies that this \underline{n} is determined by $\frac{n+1}{\underline{n}-1}=\alpha_{\varepsilon}$.

Proof.

($\mathbf{a}, \mathbf{b}, \mathbf{c}$) We proceed in three steps:

1) Characterize beliefs $E_{i}[\widetilde{v}], \widetilde{\tau} \equiv\left(\operatorname{Var}_{i}[\widetilde{v}]\right)^{-1}, E_{i}[v]$, and $\tau \equiv\left(\operatorname{Var}_{i}[v]\right)^{-1}$.
2) Derive the optimal order $q_{i}(p)$.

- a price-taking equilibrium and a strategic equilibrium.

3) Characterize the balance of motives $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}$ and the price informativeness φ.
[Step 1] Characterize $E_{i}[\widetilde{v}], \widetilde{\tau}, E_{i}[v]$ and τ.
From the conjectured order (1) and the market-clearing condition, information in p from trader i 's perspective is summarized by

$$
\begin{equation*}
h_{i} \equiv \frac{n \beta_{p} p-q_{i}}{n \beta_{s}}=\widetilde{v}+\left(\bar{\varepsilon}_{-i}-\frac{\beta_{e}}{\beta_{s}} \bar{e}_{-i}\right), \tag{3}
\end{equation*}
$$

where $\bar{\varepsilon}_{-i}=\sqrt{1-\omega} \epsilon_{0}+\sqrt{\omega} \bar{\epsilon}_{-i}$. Hence, $\left[\widetilde{v}, s_{i}, e_{i}, h_{i}\right]^{\top}$ is jointly normal with mean zero and a covariance matrix

$$
\left[\begin{array}{cccl}
\frac{1}{\tau_{v}} & \frac{1}{\tau_{v}} & 0 & \frac{1}{\tau_{v}} \\
& \frac{1}{\tau_{v}}+\frac{1}{\tau_{\varepsilon}} & 0 & \frac{1}{\tau_{v}}+(1-\omega) \frac{1}{\tau_{\varepsilon}} \\
& & \frac{1}{\tau_{e}} & 0 \\
& & & \frac{1}{\tau_{v}}+\frac{1}{n \tau_{\varepsilon}}\left\{\omega+n(1-\omega)+\left(\frac{\beta_{e}}{\beta_{s}}\right)^{2} \frac{\tau_{\varepsilon}}{\tau_{e}}\right\}
\end{array}\right]
$$

Let Σ be the variance-covariance matrix of $\left[s_{i}, e_{i}, h_{i}\right]^{\top}$. By Bayes' rule,

$$
\begin{aligned}
E_{i}[\tilde{v}] & =\left[\frac{1}{\tau_{v}}, 0, \frac{1}{\tau_{v}}\right] \Sigma^{-1}\left[s_{i}, e_{i}, h_{i}\right]^{\top} \\
\widetilde{\tau}^{-1} & =\tau_{v}^{-1}-\left[\frac{1}{\tau_{v}}, 0, \frac{1}{\tau_{v}}\right] \Sigma^{-1}\left[\frac{1}{\tau_{v}}, 0, \frac{1}{\tau_{v}}\right]^{\top}
\end{aligned}
$$

Define

$$
\begin{equation*}
\varphi \equiv\left\{1+\left(\frac{\beta_{e}}{\beta_{s}}\right)^{2} \frac{\tau_{\varepsilon}}{\tau_{e}}\right\}^{-1} \tag{4}
\end{equation*}
$$

to write the variance of the second term in (3) as

$$
\operatorname{Var}\left[\bar{\varepsilon}_{-i}-\frac{\beta_{e}}{\beta_{s}} \bar{e}_{-i}\right]=\frac{1}{n \tau_{\varepsilon}}\left\{\omega+n(1-\omega)+\left(\frac{\beta_{e}}{\beta_{s}}\right)^{2} \frac{\tau_{\varepsilon}}{\tau_{e}}\right\}=\frac{1}{n \tau_{\varepsilon}}\left\{\frac{1}{\varphi}+(1-\omega)(n-1)\right\} .
$$

Computing $E_{i}[\widetilde{v}]$ and $\widetilde{\tau}$ using this φ,

$$
\begin{equation*}
E_{i}[\widetilde{v}]=\frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{(1-\varphi) s_{i}+\omega \varphi\left\{\frac{\beta_{e}}{\beta_{s}} e_{i}+\frac{\beta_{p}}{\beta_{s}}(n+1) p\right\}}{1+(1-\omega)(\omega n-1) \varphi}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{\tau}=\tau_{v}+\tau_{\varepsilon} \frac{1+(\omega n-(1-\omega)) \varphi}{1+(1-\omega)(\omega n-1) \varphi} \tag{6}
\end{equation*}
$$

Note that φ is the right measure of price informativeness, because setting $\varphi=0$ attains the lower bound $\tau_{v}+\tau_{\varepsilon}$ for $\widetilde{\tau}$ (i.e., with only one signal), while setting $\varphi=1$ attains the upper bound $\tau_{v}+\tau_{\varepsilon} \frac{1+n}{1+(1-\omega) n}$ for $\widetilde{\tau}$ (with $1+n$ signals).

Write $E_{i}[v]=\sqrt{\mu} E_{i}[\widetilde{v}]=\gamma_{s} s_{i}+\gamma_{e} e_{i}+\gamma_{p} p$, so that

$$
\begin{align*}
\gamma_{s} & =\sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi} \tag{7}\\
\gamma_{e} & =\sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{\omega \varphi}{1+(1-\omega)(\omega n-1) \varphi} \frac{\beta_{e}}{\beta_{s}} \\
\gamma_{p} & =\sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{\omega \varphi(n+1)}{1+(1-\omega)(\omega n-1) \varphi} \frac{\beta_{p}}{\beta_{s}} .
\end{align*}
$$

Next,

$$
\begin{aligned}
\tau^{-1} \equiv & \operatorname{Var}_{i}[v] \\
= & (1-\mu) \frac{1}{\tau_{v}}+\mu \frac{1}{\widetilde{\tau}} \\
= & \frac{1}{\widetilde{\tau}}\left\{\mu+(1-\mu) \frac{\widetilde{\tau}}{\tau_{v}}\right\} \\
= & \frac{1}{\tau_{v}} \frac{1+(1-\omega)(\omega n-1) \varphi}{1+(1-\omega)(\omega n-1) \varphi+\frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \times \\
& \left\{\mu+(1-\mu) \frac{1+(1-\omega)(\omega n-1) \varphi+\frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}}{1+(1-\omega)(\omega n-1) \varphi}\right\} \\
= & \frac{1}{\tau_{v}} \frac{\mu\{1+(1-\omega)(\omega n-1) \varphi\}+(1-\mu)\left\{1+(1-\omega)(\omega n-1) \varphi+\frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}\right\}}{1+(1-\omega)(\omega n-1) \varphi+\frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \\
= & \frac{1}{\tau_{v}} \frac{1+(1-w)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}}{1+(1-w)(\omega n-1) \varphi+\frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} .
\end{aligned}
$$

Thus, the belief updating with respect to variance is summarized by

$$
\begin{equation*}
\frac{\tau_{v}}{\tau}=\frac{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}}{1+(1-\omega)(\omega n-1) \varphi+\frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \tag{8}
\end{equation*}
$$

From (4), (6) and (7), the equilibrium beliefs depend on the strategy (1) only through the
ratios $\frac{\beta_{e}}{\beta_{s}}$ and $\frac{\beta_{p}}{\beta_{s}}$. Using the definition of the balance of motive $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}, \varphi$ in (4) can be written as

$$
\begin{equation*}
\varphi=\left(1+\alpha_{\varepsilon} B^{2}\right)^{-1}, \quad \text { where } \alpha_{\varepsilon} \equiv \frac{\rho^{2}}{\tau_{\varepsilon} \tau_{e}} \tag{9}
\end{equation*}
$$

Finally,

$$
\begin{align*}
\frac{\tau}{\widetilde{\tau}} & =\frac{1}{\widetilde{\tau}}\left\{(1-\mu) \frac{1}{\tau_{v}}+\mu \frac{1}{\widetilde{\tau}}\right\}^{-1}=\frac{1}{\mu+(1-\mu) \frac{\widetilde{\tau}}{\tau_{v}}} \tag{10}\\
& =\frac{1}{1+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}} \frac{1+(\omega n-(1-\omega)) \varphi}{1+(1-\omega)(\omega n-1) \varphi}} \\
& =\frac{1+(1-\omega)(\omega n-1) \varphi}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}}
\end{align*}
$$

[Step 2] Derive $q_{i}\left(p ; e_{i}, s_{i}\right)$.
We derive the optimal order given the belief $E_{i}[\widetilde{v}]$ and $\widetilde{\tau}$ derived above. From the conjecture (1) and the market-clearing condition $\sum_{j \neq i} q_{j}+q_{i}=0$,

$$
-q_{i}=\sum_{j \neq i} q_{j}=\beta_{s} \sum_{j \neq i} s_{j}-\beta_{e} \sum_{j \neq i} e_{j}-n \beta_{p} p .
$$

Solving for the price, we obtain

$$
\begin{equation*}
p=p_{i}+\lambda q_{i}, \tag{11}
\end{equation*}
$$

where

$$
p_{i} \equiv \frac{\beta_{s}}{\beta_{p}} \bar{s}_{-i}-\frac{\beta_{e}}{\beta_{p}} \bar{e}_{-i} \text { and } \lambda \equiv \frac{1}{n \beta_{p}} .
$$

Trader i maximizes $E_{i}\left[-\exp \left(-\rho \pi_{i}\right)\right]=-\exp \left(-\rho \Pi_{i}\right)$. Because of the normality of v conditional on each trader's information, the objective becomes

$$
\begin{equation*}
\Pi_{i}=E_{i}[v]\left(q_{i}+e_{i}\right)-\frac{\rho}{2} \operatorname{Var}_{i}[v]\left(q_{i}+e_{i}\right)^{2}-p q_{i} \tag{12}
\end{equation*}
$$

subject to (11). The first-order condition is

$$
E_{i}[v]-\frac{\rho}{\tau}\left(q_{i}+e_{i}\right)=p_{i}+2 \lambda q_{i}
$$

which, by (11), becomes

$$
\begin{equation*}
E_{i}[v]-\frac{\rho}{\tau}\left(q_{i}+e_{i}\right)=p+\lambda q_{i} . \tag{13}
\end{equation*}
$$

The second-order condition is

$$
\begin{equation*}
2 \lambda+\frac{\rho}{\tau}>0 \tag{14}
\end{equation*}
$$

From (13), we obtain

$$
\begin{equation*}
q_{i}(p)=\frac{E_{i}[v]-p-\frac{\rho}{\tau} e_{i}}{\lambda+\frac{\rho}{\tau}} . \tag{15}
\end{equation*}
$$

By substituting $E_{i}[v]=\gamma_{s} s_{i}-\gamma_{e} e_{i}-\gamma_{p} p$ into (15),

$$
q_{i}(p)=\frac{\gamma_{s} s_{i}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) e_{i}-\left(1-\gamma_{p}\right) p}{\lambda+\frac{\rho}{\tau}}
$$

By substituting (7), we have three best response coefficients:

$$
\begin{gather*}
\widehat{\beta}_{s}=\frac{\tau_{\varepsilon}}{\lambda \tau+\rho} \frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi} \frac{\tau}{\widetilde{\tau}} \sqrt{\mu}, \tag{16}\\
\widehat{\beta}_{e}=\frac{\rho}{\lambda \tau+\rho}\left(1-\frac{\omega \varphi}{1+(1-\omega)(\omega n-1) \varphi} \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}} \frac{\tau}{\widetilde{\tau}} \sqrt{\mu}\right), \tag{17}\\
\widehat{\beta}_{p}=\frac{\tau}{\lambda \tau+\rho}\left(1-\frac{\omega \varphi}{1+(1-\omega)(\omega n-1) \varphi} \frac{(n+1) \tau_{\varepsilon}}{\widetilde{\tau}} \frac{\beta_{p}}{\beta_{s}} \sqrt{\mu}\right) . \tag{18}
\end{gather*}
$$

An important observation is that the value of λ affects the level of coefficients $\left(\widehat{\beta}_{s}, \widehat{\beta}_{e}, \widehat{\beta}_{p}\right)$, but not their ratios. Since the equilibrium price $p^{*}=\frac{\beta_{s}}{\beta_{p}} \bar{s}-\frac{\beta_{e}}{\beta_{p}} \bar{e}$ and the associated information aggregation depend only on the ratios $\left(\frac{\beta_{s}}{\beta_{p}}, \frac{\beta_{e}}{\beta_{p}}\right)$, equilibrium beliefs (i.e. $\left.\varphi, E_{i}[v], \widetilde{\tau}, \tau\right)$ are identical in a strategic equilibrium and in a price-taking equilibrium. This proves that B, φ and traders' beliefs are the same in both equilibria (the first claim in part (c)).

For both types of equilibria, using (16) and (18), solving the fixed point problem $\frac{\widehat{\beta}_{p}}{\widehat{\beta}_{s}}=\frac{\beta_{p}}{\beta_{s}}$ yields

$$
\begin{equation*}
\frac{\beta_{p}}{\beta_{s}}=\frac{\widetilde{\tau}}{\sqrt{\mu} \tau_{\varepsilon}} \frac{1+(1-\omega)(\omega n-1) \varphi}{1+\{\omega n-(1-\omega)\} \varphi} . \tag{19}
\end{equation*}
$$

Substituting $\widetilde{\tau}$ given in (6),

$$
\begin{align*}
\frac{\beta_{p}}{\beta_{s}} & =\frac{1}{\sqrt{\mu}} \frac{\tau_{v}\{1+(1-\omega)(\omega n-1) \varphi\}+\tau_{\varepsilon}\{1+(\omega n-(1-\omega)) \varphi\}}{\tau_{\varepsilon}\{1+\{\omega n-(1-\omega)\} \varphi\}} \tag{20}\\
& =\frac{1}{\sqrt{\mu}}\left(\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega)(\omega n-1) \varphi}{1+\{\omega n-(1-\omega)\} \varphi}+1\right)>1
\end{align*}
$$

[A price-taking equilibrium]

By setting $\lambda=0$, (13)-(15) characterize a price-taking equilibrium. Hence (14) is satisfied in a price-taking equilibrium. From (16) with $\lambda=0$ and (19),

$$
\begin{aligned}
& \beta_{s}^{p t}=\frac{\tau_{\varepsilon}}{\rho} \frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi} \\
& \frac{\tau}{\bar{\tau}} \sqrt{\mu}, \\
& \beta_{p}^{p t}=\frac{\tau}{\rho} \frac{1-\varphi}{1+\{\omega n-(1-\omega)\} \varphi} .
\end{aligned}
$$

Combining this with the balance of motive $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}$, and (10), $\left(\beta_{s}^{p t}, \beta_{e}^{p t}, \beta_{p}^{p t}\right)$ is obtained. Therefore, the optimal order in a price-taking equilibrium has coefficients

$$
\begin{align*}
\beta_{s}^{p t} & =\frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi} \sqrt{\mu} \frac{\tau_{\varepsilon}}{\rho} \frac{\tau}{\tau} \tag{21}\\
\beta_{e}^{p t} & =\frac{\rho}{\tau_{\varepsilon}} B \beta_{s}^{p t}, \\
\beta_{p}^{p t} & =\frac{\tau}{\rho} \frac{1-\varphi}{1+\{\omega n-(1-\omega)\} \varphi} .
\end{align*}
$$

Using these results, $\left(p^{*}, q_{i}^{*}\right)$ can be computed by

$$
\begin{aligned}
p^{*} & =\frac{\beta_{s}}{\beta_{p}} \bar{s}-\frac{\beta_{e}}{\beta_{p}} \bar{e} \\
q_{i}\left(p^{*}\right) & =\beta_{s}\left(s_{i}-\bar{s}\right)-\beta_{e}\left(e_{i}-\bar{e}\right) .
\end{aligned}
$$

Using (10) in (21),

$$
\begin{align*}
q_{i}^{p t}(p)= & \frac{\sqrt{\mu}(1-\varphi)}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \tag{22}\\
& \times\left\{\frac{\tau_{\varepsilon}}{\rho} s_{i}-B e_{i}-\frac{\widetilde{\tau}}{\sqrt{\mu} \rho} \frac{1+(1-\omega)(\omega n-1) \varphi}{1+\{\omega n-(1-\omega)\} \varphi} p\right\} .
\end{align*}
$$

Substituting $\widetilde{\tau}$ given in (6), coefficients can be written as

$$
\begin{aligned}
\beta_{s}^{p t} & =\frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \sqrt{\mu} \frac{\tau_{\varepsilon}}{\rho} \\
\beta_{e}^{p t} & =\frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \sqrt{\mu} B \\
\beta_{p}^{p t} & =\frac{1+(1-\omega)(\omega n-1) \varphi+\frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \frac{1-\varphi}{1+(\omega n-(1-\omega)) \varphi} \frac{\tau_{v}}{\rho}
\end{aligned}
$$

The expression of $\beta_{e}^{p t}$ will be simplified in Step 3 after characterizing B.
[A strategic equilibrium]
From (19),

$$
\lambda=\frac{1}{n \beta_{p}^{s t}}=\frac{1}{n \beta_{s}^{s t}} \frac{\tau_{\varepsilon} \sqrt{\mu}}{\widetilde{\tau}} \frac{1+\{\omega n-(1-\omega)\} \varphi}{1+(1-\omega)(\omega n-1) \varphi} .
$$

Combine this and (16) to solve for $\beta_{s}^{s t}$:

$$
\beta_{s}^{s t}=\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1+(1-\omega)(\omega n-1) \varphi} \frac{\tau}{\rho} \sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} .
$$

From (19),

$$
\beta_{p}^{s t}=\frac{\tau}{\rho} \frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1+\{\omega n-(1-\omega)\} \varphi} .
$$

Notice that $\beta_{s}^{s t}$ is $\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}$ times $\beta_{s}^{p t}$, and $\beta_{p}^{s t}$ is also $\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}$ times $\beta_{p}^{p t}$. Because the balance of trading motives $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}$ is the same in both equilibria, $\beta_{e}^{s t}$ is also $\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}$ times $\beta_{e}^{p t}$.

Next, we check the second order condition for a strategic equilibrium. Substitute $\lambda=\frac{1}{n \beta_{p}^{s t}}$ into (14) to obtain $\frac{2}{n \beta_{p}^{s t}}+\frac{\rho}{\tau}>0 \Leftrightarrow 0<1+\frac{\tau}{\rho} \frac{2}{n \beta_{p}^{s t}}$. Substituting the expression of $\beta_{p}^{s t}$,

$$
\begin{aligned}
& 1+\frac{2}{n} \frac{\tau}{\rho} \frac{1}{\beta_{p}^{s t}} \\
= & 1+\frac{2}{n} \frac{1+\{\omega n-(1-\omega)\} \varphi}{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi} \\
= & 1+\frac{2\{1+(\omega n-(1-\omega)) \varphi\}}{n-1-\{(1+\omega) n-(1-\omega)\} \varphi} \\
= & \frac{n+1-\{(1+\omega) n-(1-\omega)\} \varphi+2(\omega n-(1-\omega)) \varphi}{n-1-\{(1+\omega) n-(1-\omega)\} \varphi} \\
= & \frac{n+1-\{(1+\omega) n-(1-\omega)-2(\omega n-(1-\omega))\} \varphi}{n-1-\{(1+\omega) n-(1-\omega)\} \varphi} \\
= & \frac{n+1-\{(1-\omega) n+(1-\omega)\} \varphi}{n-1-\{(1+\omega) n-(1-\omega)\} \varphi} \\
= & \frac{(n+1)\{1-(1-\omega) \varphi\}}{n-1-\{(1+\omega) n-(1-\omega)\} \varphi} \\
= & \frac{(n+1)\{1-(1-\omega) \varphi\}}{\{1-(1+\omega) \varphi\} n-\{1-(1-\omega) \varphi\}} .
\end{aligned}
$$

Because $1-(1-\omega) \varphi>0$,

$$
(14) \Leftrightarrow 0<\frac{n+1}{n-1}<\frac{1}{\omega} \frac{1-\varphi}{\varphi} .
$$

[Step 3] Characterize $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}$ and φ.
In both equilibria, solving a fixed point problem $\frac{\widehat{\beta}_{e}}{\widehat{\beta}_{s}}=\frac{\beta_{e}}{\beta_{s}}$ from (16) and (17) yields

$$
\begin{equation*}
\sqrt{\mu} \frac{\tau_{\varepsilon}}{\rho} \frac{\widehat{\beta}_{e}}{\widehat{\beta}_{s}}=\frac{\widetilde{\tau}}{\tau} \frac{1+(1-\omega)(\omega n-1) \varphi}{1-(1-\omega) \varphi} . \tag{23}
\end{equation*}
$$

Using $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}$, this becomes

$$
\begin{equation*}
\widehat{B}=\frac{\widetilde{\tau}}{\sqrt{\mu} \tau} \frac{1+(1-\omega)(\omega n-1) \varphi}{1-(1-\omega) \varphi} \tag{24}
\end{equation*}
$$

where φ depends on B through the expression given in (9). Combining (9) and (24) defines a cubic equation in B :

$$
F(B) \equiv\left(\alpha_{\varepsilon} B^{2}+\omega\right)\left\{\sqrt{\mu} B-\left(1+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\right)\right\}-\omega\left(1-\omega+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\right) n=0
$$

Use $1+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}=\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}$ and $1-\omega+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}=\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega$ to write this as

$$
\begin{equation*}
F(B) \equiv\left(\alpha_{\varepsilon} B^{2}+\omega\right)\left(\sqrt{\mu} B-\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}\right)-\omega\left(\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega\right) n=0 \tag{25}
\end{equation*}
$$

Because $\lim _{B \rightarrow-\infty} F(B)=-\infty, \lim _{B \rightarrow \infty} F(B)=\infty$ and $F(0)<0$, the cubic equation (25) has at least one and at most three positive solutions. Moreover, because $\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega>0$, any solution must satisfy $\sqrt{\mu} B \geq \frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}$. The uniqueness follows because $F^{\prime}(B)>0$ for all B that satisfies $\sqrt{\mu} B \geq \frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}$. This unique solution to (25) characterizes $B \equiv \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}$. Substituting this back into (9), we obtain the price informativeness φ.

We simplify the expression of $\beta_{e}^{p t}$ using the property of B. Because B is a solution to (25),

$$
\sqrt{\mu} B=\omega \frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega}{\alpha_{\varepsilon} B^{2}+\omega} n+\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}=\omega \frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega}{1-(1-\omega) \varphi} \varphi n+\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}
$$

where the second equality follows from $\varphi=\left(1+\alpha_{\varepsilon} B^{2}\right)^{-1} \Leftrightarrow \alpha_{\varepsilon} B^{2}+\omega=\frac{1-(1-\omega) \varphi}{\varphi}$.
Recall that $1+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}=\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}$. Using these expression,

$$
\begin{aligned}
\beta_{e}^{p t} & =\frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \sqrt{\mu} B \\
& =(1-\varphi) \frac{\omega \frac{1-d_{\varepsilon}}{1-(1-\omega) \varphi} \varphi n+\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}}{\omega n \varphi\left\{1-\omega+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\right\}+\{1-(1-\omega) \varphi\}\left\{1+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\right\}} \\
& =\frac{1-\varphi}{1-(1-\omega) \varphi} \frac{\omega n \varphi \frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}-\omega}}{\omega n \varphi \frac{1-(1-\omega) \varphi}{\frac{1-\mu d_{\varepsilon}}{1-\omega}-\omega} \frac{1-\mu d_{\varepsilon}}{1-(1-\omega) \varphi}+\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}}}{} \\
& =\frac{1-\varphi}{1-(1-\omega) \varphi} .
\end{aligned}
$$

Finally, with $\mu=\omega=1$, the cubic equation (25) becomes

$$
F(B ; \mu=\omega=1) \equiv\left(\alpha_{\varepsilon} B^{2}+1\right)(B-1)=0 .
$$

It is immediate that $B=1$ is the unique solution, and $\varphi=\left(1+\alpha_{\varepsilon}\right)^{-1}$ follows from (9). (A1)

2.1.1 Information aggregation

Lemma A2 (information aggregation)

(a) If $\mu \omega=1$, then $\widetilde{\tau}=\tau_{v}+\tau_{\varepsilon}(1+n \varphi)$ and $\frac{\tau_{v}}{\widetilde{\tau}}$ converges to zero at the rate n^{-1}.
(b) If $\mu \omega<1$, then φ decreases in n at the rate $n^{-\frac{2}{3}}$ and $n \varphi$ and B increase in n at the rate $n^{\frac{1}{3}} . \tau$ increases in n and $\lim _{n \rightarrow \infty} \frac{\tau_{v}}{\tau}>0$.

Proof.

(a) From (8) with $\mu=\omega=1, \widetilde{\tau}=\tau_{v}+\tau_{\varepsilon}(1+n \varphi)$, where $\varphi=\left(1+\alpha_{\varepsilon}\right)^{-1}$ from Lemma A1(c).
(b) We proceed in four steps:

1) characterize B by solving the cubic equation (25).
2) characterize φ,
3) characterize $n \varphi$,
4) characterize τ.
[Step 1] Characterize B.
Because (25) is linear in n, it can be written as

$$
\begin{equation*}
F(B)=\frac{\partial F}{\partial n} n+\left(\alpha_{\varepsilon} B^{2}+\omega\right)\left(\sqrt{\mu} B-\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}\right) \tag{26}
\end{equation*}
$$

where $\frac{\partial F}{\partial n}=-\omega\left(\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega\right)$. First, we show that the solution B increases in n. From (25), the solution B must satisfy $\sqrt{\mu} B>\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}$. Let $\left.\frac{\partial F}{\partial n}\right|_{B}$ denote $\frac{\partial F}{\partial n}$ evaluated at the solution B. From (26), $\left.\frac{\partial F}{\partial n}\right|_{B}<0$ because $F(B)=0$ and the second term is positive. Because $F^{\prime}(B)>0$, by the implicit function theorem, B increases in n.
[Step 2] Characterize φ.
Because B increases in $n, \varphi=\left(1+\alpha_{\varepsilon} B^{2}\right)^{-1}$ decreases in n. The unique B solves

$$
F(B)=\left(\alpha_{\varepsilon} B^{2}+\omega\right)\left(\sqrt{\mu} B-\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}\right)-n \omega\left(\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega\right)=0
$$

Therefore, $\sqrt{\mu} B>\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}$ and B increases in n without a bound at the rate $n^{\frac{1}{3}}$. Hence, $\varphi=\left(1+\alpha_{\varepsilon} B^{2}\right)^{-1}$ decreases in n at the rate $n^{-\frac{2}{3}}$.
[Step 3] Characterize $n \varphi$.
$F(B)=0$ implies

Using this,

$$
\begin{aligned}
\frac{1}{n} \frac{1}{\varphi} & =\frac{1}{n}\left(1+\alpha_{\varepsilon} B^{2}\right) \\
& =\frac{1}{n}\left(\omega+\alpha_{\varepsilon} B^{2}\right)+\frac{1-\omega}{n} \\
& =\omega \frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega}{\sqrt{\mu} B-\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}}+\frac{1-\omega}{n} .
\end{aligned}
$$

This decreases in n because B increases in n. Hence $n \varphi$ increases in n. The rate of $n \varphi$ follows from the rate of φ.
[Step 4] Characterize τ.
From (6),

$$
\widetilde{\tau}=\tau_{v}+\tau_{\varepsilon} \frac{1-(1-\omega) \varphi}{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}
$$

This increases in n and $\lim _{n \rightarrow \infty} \widetilde{\tau}=\tau_{v}+\tau_{\varepsilon} \frac{1}{1-\omega}$. From $\tau=\left(\frac{1-\mu}{\tau_{v}}+\frac{\mu}{\widetilde{\tau}}\right)^{-1}, \tau$ increases in n and has a finite limit. $\square(\mathbf{A 2})$

2.1.2 Trade volume, hedging effectiveness, price impact

Lemma A3 (trade volume, hedging effectiveness, price impact)
(a) Trade volume is smaller in a strategic equilibrium than in a price-taking equilibrium.

Trade volume increases in n in both equilibria.
(b) Hedging effectiveness is identical in both equilibria

Hedging effectiveness decreases in n for sufficiently large n.
Suppose $\mu=\omega=1$.
If $\varphi \geq \frac{1}{2}$, then hedging effectiveness decreases in n.
Otherwise, it is hump-shaped in n and maximized at $n=\widehat{n} \equiv \frac{1}{\varphi}-2$.
(c) In a strategic equilibrium, price impact decreases in n and converges to zero as $n \rightarrow \infty$.

Proof.

(a) To compute trade volume $\frac{1}{2} E\left[\left|q_{i}^{*}\right|\right]=\frac{1}{2} \sqrt{\frac{2}{\pi} \operatorname{Var}\left[q_{i}^{*}\right]}$, recall $q_{i}^{*}=\beta_{s}\left(\varepsilon_{i}-\bar{\varepsilon}\right)-\beta_{e}\left(e_{i}-\bar{e}\right)=$ $\frac{n}{n+1}\left\{\beta_{s} \sqrt{\omega}\left(\epsilon_{i}-\bar{\epsilon}_{-i}\right)-\beta_{e}\left(e_{i}-\bar{e}_{-i}\right)\right\}$. From Lemma A1(b), $\frac{\beta_{x}^{s t}}{\beta_{x}^{p t}}=\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}<1$ for $x \in\{s, e, p\}$. This implies that $\operatorname{Var}\left[q_{i}^{*}\right]$ is smaller in a strategic equilibrium than in a price-taking equilibrium.

To do comparative statics of trade volume with respect to n, compute $\operatorname{Var}\left[q_{i}^{*}\right]$:

$$
\begin{aligned}
\operatorname{Var}\left[q_{i}^{*}\right] & =\frac{n}{n+1}\left(\frac{\omega}{\tau_{\varepsilon}} \beta_{s}^{2}+\frac{1}{\tau_{e}} \beta_{e}^{2}\right) \\
& =\frac{n}{n+1} \frac{1}{\tau_{e}} \beta_{e}^{2}\left\{\omega \frac{\tau_{e}}{\tau_{\varepsilon}}\left(\frac{\beta_{s}}{\beta_{e}}\right)^{2}+1\right\} \\
& =\frac{n}{n+1} \frac{1}{\tau_{e}} \beta_{e}^{2}\left\{\omega \frac{\tau_{e} \tau_{\varepsilon}}{\rho^{2}} \frac{1}{B^{2}}+1\right\} \\
& =\frac{n}{n+1} \frac{1}{\tau_{e}} \beta_{e}^{2} \frac{\omega+\alpha_{\varepsilon} B^{2}}{\alpha_{\varepsilon} B^{2}} .
\end{aligned}
$$

Using $\varphi=\left(1+\alpha_{\varepsilon} B^{2}\right)^{-1}$,

$$
\frac{\omega+\alpha_{\varepsilon} B^{2}}{\alpha_{\varepsilon} B^{2}}=\frac{\frac{1}{\varphi}-1+\omega}{\frac{1}{\varphi}-1}=\frac{1-(1-\omega) \varphi}{1-\varphi}=\frac{1}{\beta_{e}^{p t}}
$$

Therefore, for a price-taking equilibrium,

$$
\operatorname{Var}\left[q_{i}^{*}\right]=\frac{n}{n+1} \frac{1}{\tau_{e}} \beta_{e}^{p t}=\frac{n}{n+1} \frac{1}{\tau_{e}} \frac{1-\varphi}{1-(1-\omega) \varphi} .
$$

This increases in n, because from Lemma A2 φ is either independent of $n($ for $\mu \omega=1$) or decreases in n (for $\mu \omega<1$).

For a strategic equilibrium,

$$
\begin{aligned}
& \operatorname{Var}\left[q_{i}^{*}\right]=\frac{n}{n+1} \frac{1}{\tau_{e}}\left(\beta_{e}^{s t}\right)^{2} \frac{1}{\beta_{e}^{p t}} \\
&=\frac{n}{n+1} \frac{1}{\tau_{e}} \frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-(1-\omega) \varphi} \frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi \\
& 1-\varphi \\
&=\left(\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}\right)^{2} \frac{n}{n+1} \frac{1}{\tau_{e}} \frac{1-\varphi}{1-(1-\omega) \varphi}
\end{aligned}
$$

Because φ is the same in both equilibria, we already know that the term $\frac{n}{n+1} \frac{1}{\tau_{e}} \frac{1-\varphi}{1-(1-\omega) \varphi}$ increases in n. The other term in the above expression also increases in n because $\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}=$ $\frac{n-1}{n} \frac{\frac{1}{\varphi}-\omega \frac{n+1}{n-1}}{\frac{1}{\varphi}-1}$ increases in n.
(b) To compute the hedging effectiveness $\operatorname{Corr}[v-p, v]=\frac{\operatorname{Cov}[v-p, v]}{\sqrt{\operatorname{Var}[v-p] \operatorname{Var}[v]}}$, recall $v=$ $\sqrt{1-\mu} v_{0}+\sqrt{\mu} \widetilde{v}$ and the market-clearing price

$$
p=\frac{\beta_{s}}{\beta_{p}} \bar{s}-\frac{\beta_{e}}{\beta_{p}} \bar{e}=\frac{\beta_{s}}{\beta_{p}}\left(\widetilde{v}+\sqrt{1-\omega} \epsilon_{0}+\sqrt{\omega} \bar{\epsilon}\right)-\frac{\beta_{e}}{\beta_{p}} \bar{e} .
$$

Hence,

$$
v-p=\sqrt{1-\mu} v_{0}+\left(\sqrt{\mu}-\frac{\beta_{s}}{\beta_{p}}\right) \widetilde{v}-\frac{\beta_{s}}{\beta_{p}}\left(\sqrt{1-\omega} \epsilon_{0}+\sqrt{\omega} \bar{\epsilon}\right)+\frac{\beta_{e}}{\beta_{p}} \bar{e}
$$

Because only the ratios $\frac{\beta_{s}}{\beta_{p}}$ and $\frac{\beta_{e}}{\beta_{p}}$ are relevant, $\operatorname{Corr}[v-p, v]$ is the same in a price-taking equilibrium and in a strategic equilibrium.

Computing $\operatorname{Cov}[v-p, v]$,

$$
\operatorname{Cov}[v-p, v]=\left\{1-\mu+\left(\sqrt{\mu}-\frac{\beta_{s}}{\beta_{p}}\right) \sqrt{\mu}\right\} \frac{1}{\tau_{v}}=\left(1-\sqrt{\mu} \frac{\beta_{s}}{\beta_{p}}\right) \frac{1}{\tau_{v}} .
$$

Computing Var $[v-p]$,

$$
\begin{aligned}
\operatorname{Var}[v-p] & =\left\{1-2 \sqrt{\mu} \frac{\beta_{s}}{\beta_{p}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2}\right\} \frac{1}{\tau_{v}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2}\left(1-\omega+\frac{\omega}{n+1}\right) \frac{1}{\tau_{\varepsilon}}+\left(\frac{\beta_{e}}{\beta_{p}}\right)^{2} \frac{1}{n+1} \frac{1}{\tau_{e}} \\
& =\left\{1-2 \sqrt{\mu} \frac{\beta_{s}}{\beta_{p}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2}\right\} \frac{1}{\tau_{v}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2} \frac{1}{n+1} \frac{1}{\tau_{\varepsilon}}\left\{(1-\omega)(n+1)+\omega+\left(\frac{\beta_{e}}{\beta_{s}}\right)^{2} \frac{\tau_{\varepsilon}}{\tau_{e}}\right\} \\
& =\left\{1-2 \sqrt{\mu} \frac{\beta_{s}}{\beta_{p}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2}\right\} \frac{1}{\tau_{v}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2} \frac{1}{n+1} \frac{1}{\tau_{\varepsilon}}\left\{(1-\omega) n+1+\alpha_{\varepsilon} B^{2}\right\} \\
& =\left\{1-2 \sqrt{\mu} \frac{\beta_{s}}{\beta_{p}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2}\right\} \frac{1}{\tau_{v}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2} \frac{1+(1-\omega) n \varphi}{\tau_{\varepsilon}(n+1) \varphi},
\end{aligned}
$$

where the last equality used $1+\alpha_{\varepsilon} B^{2}=\frac{1}{\varphi}$. Note that $1-2 \sqrt{\mu} \frac{\beta_{s}}{\beta_{p}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2}=\left(1-\frac{\beta_{s}}{\beta_{p}}\right)^{2}+$ $2(1-\sqrt{\mu}) \frac{\beta_{s}}{\beta_{p}}$. Combining $\operatorname{Cov}[v-p, v]$ and $\operatorname{Var}[v-p]$,

$$
\begin{aligned}
\frac{\operatorname{Cov}[v-p, v]}{\sqrt{\operatorname{Var}[v-p] \operatorname{Var}[v]}} & =\frac{\left(1-\sqrt{\mu} \frac{\beta_{s}}{\beta_{p}}\right) \frac{1}{\tau_{v}}}{\sqrt{\left[\left\{\left(1-\frac{\beta_{s}}{\beta_{p}}\right)^{2}+2(1-\sqrt{\mu}) \frac{\beta_{s}}{\beta_{p}}\right\} \frac{1}{\tau_{v}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2} \frac{1+(1-\omega) n \varphi}{\tau_{\varepsilon}(n+1) \varphi}\right] \frac{1}{\tau_{v}}}} \\
& =\frac{1-\frac{\beta_{s}}{\beta_{p}}+(1-\sqrt{\mu}) \frac{\beta_{s}}{\beta_{p}}}{\sqrt{\left(1-\frac{\beta_{s}}{\beta_{p}}\right)^{2}+2(1-\sqrt{\mu}) \frac{\beta_{s}}{\beta_{p}}+\left(\frac{\beta_{s}}{\beta_{p}}\right)^{2} \frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}}}
\end{aligned}
$$

By dividing by $1-\frac{\beta_{s}}{\beta_{p}}$ and using $\chi \equiv \frac{\frac{\beta_{s}}{\beta_{p}}}{1-\frac{\beta_{s}}{\beta_{p}}}=\frac{1}{\frac{\beta_{p}}{\beta_{s}}-1}$ and $\chi+1=\frac{1}{1-\frac{\beta_{s}}{\beta_{p}}}$,

$$
\begin{aligned}
& \frac{1+(1-\sqrt{\mu}) \chi}{\sqrt{1+2(1-\sqrt{\mu}) \chi(1+\chi)+\chi^{2} \frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}}} \\
&= \frac{1+(1-\sqrt{\mu}) \chi}{\sqrt{1+2(1-\sqrt{\mu}) \chi+\chi^{2}\left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+2(1-\sqrt{\mu})\right\}}} \\
&= \frac{1+(1-\sqrt{\mu}) \chi}{\sqrt{\{1+(1-\sqrt{\mu}) \chi\}^{2}+\chi^{2}\left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+2(1-\sqrt{\mu})-(1-\sqrt{\mu})^{2}\right\}}} \\
&= \frac{1+(1-\sqrt{\mu}) \chi}{\sqrt{\{1+(1-\sqrt{\mu}) \chi\}^{2}+\chi^{2}\left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+1-\mu\right\}}} \\
& \sqrt{1+\left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+1-\mu\right\}\left(\frac{\chi}{1+(1-\sqrt{\mu}) \chi}\right)^{2}}
\end{aligned}
$$

From (20) in the proof of Lemma A1,

$$
\begin{aligned}
\frac{\beta_{p}}{\beta_{s}} & =\frac{1}{\sqrt{\mu}}\left(\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega)(\omega n-1) \varphi}{1+\{\omega n-(1-\omega)\} \varphi}+1\right) \\
& =\frac{1}{\sqrt{\mu}}\left(\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+1\right) \\
& =\frac{1}{\sqrt{\mu}}\left(\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{\frac{1-(1-\omega) \varphi}{\omega n \varphi}+1-\omega}{\left.\frac{1-(1-\omega) \varphi}{\omega n \varphi}+1\right) .}\right.
\end{aligned}
$$

From (25), $\frac{1-(1-\omega) \varphi}{\omega n \varphi}=\frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega}{\sqrt{\mu} B-\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}}$. This decreases in n because B increases in n (from Lemma A2(b)). Therefore, $\frac{\beta_{p}}{\beta_{s}}$ decreases in n with $\lim _{n \rightarrow \infty} \frac{\beta_{p}}{\beta_{s}}=\frac{1}{\sqrt{\mu}}\left\{\frac{\tau_{v}}{\tau_{\varepsilon}}(1-\omega)+1\right\}$. Therefore, $\chi=\frac{1}{\frac{\beta_{p}}{\beta_{s}}-1}$ increases in n with $\lim _{n \rightarrow \infty} \chi=\frac{\sqrt{\mu}}{\frac{\tau_{v}}{\tau_{\varepsilon}}(1-\omega)+1-\sqrt{\mu}}$.

To show that $\operatorname{Corr}[v-p, v]$ decreases in n for sufficiently large n, we show that

$$
\left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+1-\mu\right\}\left(\frac{\chi}{1+(1-\sqrt{\mu}) \chi}\right)^{2}
$$

increases in n for sufficiently large n. First,

$$
\begin{aligned}
\frac{\chi}{1+(1-\sqrt{\mu}) \chi} & =\frac{1}{\frac{\beta_{p}}{\beta_{s}}-1+1-\sqrt{\mu}}=\frac{1}{\frac{\beta_{p}}{\beta_{s}}-\sqrt{\mu}} \\
& =\frac{\sqrt{\mu}}{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+1-\mu} \\
& =\frac{\frac{\tau_{\varepsilon}}{\tau_{v}} \sqrt{\mu}}{\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu n \varphi}
\end{aligned} .
$$

Therefore,

$$
\left(\frac{\chi}{1+(1-\sqrt{\mu}) \chi}\right)^{2}=\frac{\left(\frac{\tau_{\varepsilon}}{\tau_{v}}\right)^{2} \mu}{\left\{\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu n)\right\}^{2}}
$$

Combining this with $\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+1-\mu=\frac{\tau_{v}}{\tau_{\varepsilon}}\left\{\frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu)\right\}$,

$$
\begin{aligned}
&\left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+1-\mu\right\}\left(\frac{\chi}{1+(1-\sqrt{\mu}) \chi}\right)^{2} \\
&= \frac{\frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu)}{\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu)} \frac{\frac{\tau_{\varepsilon}}{\tau_{v}} \mu}{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi} \\
& 1-(1-\omega) \varphi \\
&+\omega n \varphi \\
& 1-\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu)
\end{aligned} .
$$

Note that

$$
\frac{\frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu)}{\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu n)}=1+\frac{\frac{1+(1-\omega) n \varphi}{(n+1) \varphi}-\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\omega n \varphi}{\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu n \varphi} .
$$

Computing $\frac{1+(1-\omega) n \varphi}{(n+1) \varphi}-\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}$ + 五 yields

$$
\begin{aligned}
& \frac{\left\{\frac{1}{\varphi}+(1-\omega) n\right\}[1-(1-\omega) \varphi+\omega n \varphi]-(n+1)\{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi\}}{(n+1)[1-(1-\omega) \varphi+\omega n \varphi]} \\
= & \frac{\omega \frac{1-\varphi}{\varphi}}{(n+1)[1+\{n \omega-(1-\omega)\} \varphi]} .
\end{aligned}
$$

All in all,

$$
\begin{aligned}
& \left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+1-\mu\right\}\left(\frac{\chi}{1+(1-\sqrt{\mu}) \chi}\right)^{2} \\
= & {\left[1+\frac{\omega \frac{1-\varphi}{\varphi} \frac{1}{n+1} \frac{1}{1-(1-\omega) \varphi+\omega n \varphi}}{\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu n \varphi}\right] \frac{\frac{\tau_{\varepsilon}}{\tau_{v}} \mu}{\frac{1-(1-\omega) \varphi+(1-\omega) \omega n \varphi}{1-(1-\omega) \varphi}+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu n \varphi} . }
\end{aligned}
$$

$[\mu \omega<1]$ Because $\varphi \sim n^{-\frac{2}{3}}$ and $n \varphi \sim n^{\frac{1}{3}}$, for sufficiently large n, the terms in the square bracket approaches one from above as $\omega \frac{1-\varphi}{\varphi} \frac{1}{n+1} \frac{1}{1-(1-\omega) \varphi+\omega n \varphi}$ converges to zero at the rate $n^{-\frac{2}{3}}$. The term after the square bracket approaches $\frac{\frac{\tau_{\varepsilon}}{\tau_{v}} \mu}{1-\omega+\frac{\tau_{\varepsilon}}{\tau_{v}}(1-\mu)}$ from below as $\frac{1-(1-\omega) \varphi}{1-(1-\omega) \varphi+\omega n \varphi}$ converges zero at the rate $n^{-\frac{1}{3}}$. Therefore, $\left\{\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1+(1-\omega) n \varphi}{(n+1) \varphi}+1-\mu\right\}\left(\frac{\chi}{1+(1-\sqrt{\mu}) \chi}\right)^{2}$ approaches its limit from below.
[$\mu=\omega=1$]
First, $\frac{\beta_{p}}{\beta_{s}}=\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1}{1+n \varphi}+1$ and $\chi=\frac{\tau_{\varepsilon}}{\tau_{v}}(1+n \varphi)$, where φ is independent of n. The hedging effectiveness is

$$
\operatorname{Corr}[v-p, v]=\frac{1}{\sqrt{1+\frac{\tau_{v}}{\tau_{\varepsilon}} \frac{1}{(n+1) \varphi}\left\{\frac{\tau_{\varepsilon}}{\tau_{v}}(1+n \varphi)\right\}^{2}}}=\frac{1}{\sqrt{1+\frac{\tau_{\varepsilon}}{\tau_{v}} \frac{1}{\varphi} \frac{1}{n+1}(1+n \varphi)^{2}}} .
$$

This is inversely related to $\frac{(1+n \varphi)^{2}}{n+1}$. Taking the derivative of $\frac{(1+n \varphi)^{2}}{n+1}$ with respect to n,

$$
\frac{2(1+n \varphi) \varphi(n+1)-(1+n \varphi)^{2}}{(n+1)^{2}}=\frac{\varphi^{2} n^{2}+2 \varphi^{2} n-(1-2 \varphi)}{(n+1)^{2}}
$$

If $1-2 \varphi \leq 0, \frac{(1+n \varphi)^{2}}{n+1}$ always increases in n and hence $\operatorname{Corr}[v-p, v]$ decreases in n.
If $1-2 \varphi>0, \varphi^{2} n^{2}+2 \varphi^{2} n-(1-2 \varphi)=0$ has two solutions

$$
\frac{-\varphi^{2} \pm \sqrt{\varphi^{4}+\varphi^{2}(1-2 \varphi)}}{\varphi^{2}}=-1 \pm \frac{1-\varphi}{\varphi}=\left\{-\frac{1}{\varphi}, \frac{1-2 \varphi}{\varphi}\right\} .
$$

It remains to show that $\frac{\varphi^{2} n^{2}+2 \varphi^{2} n-(1-2 \varphi)}{(n+1)^{2}}$ is increasing in n at $n=\frac{1-2 \varphi}{\varphi}$. Taking the derivative of $\frac{\varphi^{2} n^{2}+2 \varphi^{2} n-(1-2 \varphi)}{(n+1)^{2}}$ with respect to n,

$$
\begin{aligned}
& \frac{2 \varphi^{2}(n+1)(n+1)^{2}-2(n+1)\left\{\varphi^{2} n^{2}+2 \varphi^{2} n-(1-2 \varphi)\right\}}{(n+1)^{4}} \\
= & \frac{2\left[\varphi^{2}(n+1)^{2}-\left\{\varphi^{2} n^{2}+2 \varphi^{2} n-(1-2 \varphi)\right\}\right]}{(n+1)^{3}} \\
= & \frac{2}{(n+1)^{3}}\left[\varphi^{2}+1-2 \varphi\right]=\frac{2(1-\varphi)^{2}}{(n+1)^{3}}>0 .
\end{aligned}
$$

Therefore, $\frac{(1+n \varphi)^{2}}{n+1}$ is uniquely minimized at $n=\widehat{n} \equiv \frac{1}{\varphi}-2$ and hence $\operatorname{Corr}[v-p, v]$ is uniquely maximized at \widehat{n}.
(c) The price impact is $\lambda=\frac{1}{n \beta_{p}^{s t}}$. Using the expression of $\beta_{p}^{s t}$ given in Lemma A1,

$$
n \beta_{p}^{s t}=\frac{n(1-\varphi)}{1+\{\omega n-(1-\omega)\} \varphi} \frac{\tau}{\rho} .
$$

$[\mu \omega=1]$ From Lemma A2(a), $\tau=\tau_{v}+\tau_{\varepsilon}(1+n \varphi)$ and φ is constant. Hence $n \beta_{p}^{s t}=$ $(1-\varphi) \frac{n}{1+n \varphi} \frac{\tau_{v}+\tau_{\varepsilon}(1+n \varphi)}{\rho}$ goes to infinity as $n \rightarrow \infty$. Also,

$$
n \beta_{p}^{s t}=\frac{\tau_{\varepsilon}}{\rho}(1-\varphi) n \frac{\frac{\tau_{v}}{\tau_{\varepsilon}}+1+n \varphi}{1+n \varphi}
$$

Taking the derivative of $n \frac{\frac{\tau_{v}}{\tau_{\varepsilon}}+1+n \varphi}{1+n \varphi}$ with respect to n,

$$
\frac{\left(\frac{\tau_{v}}{\tau_{\varepsilon}}+1+2 n \varphi\right)(1+n \varphi)-n \varphi\left(\frac{\tau_{v}}{\tau_{\varepsilon}}+1+n \varphi\right)}{(1+n \varphi)^{2}}
$$

The numerator is $(n \varphi)^{2}+\left\{3+\frac{\tau_{v}}{\tau_{\varepsilon}}-\left(\frac{\tau_{v}}{\tau_{\varepsilon}}+1\right)\right\} n \varphi+\frac{\tau_{v}}{\tau_{\varepsilon}}+1=\varphi^{2} n^{2}+2 \varphi n+\frac{\tau_{v}}{\tau_{\varepsilon}}+1>0$. This implies $n \beta_{p}^{s t}$ is strictly increasing in n.
$[\mu \omega<1]$ From Lemma A2(b), $\lim _{n \rightarrow \infty} \tau<\infty, \lim _{n \rightarrow \infty} \varphi=0$, and $\lim _{n \rightarrow \infty} n \varphi=\infty$. This implies $\lim _{n \rightarrow \infty} n \beta_{p}^{s t}=\infty$. To show that λ decreases in n, it suffices to show that $\frac{\lambda \tau}{\rho+\lambda \tau}$ decreases in n, because τ increases in $n\left(\right.$ Lemma A2(b)) and $\lambda=\frac{1}{n \beta_{p}^{\text {st }}}>0$ in equilibrium. First we show that $\frac{\lambda \tau}{\rho+\lambda \tau}=\frac{\omega \varphi+\frac{1-(1-\omega) \varphi}{n}}{1-\varphi}$. Using $\lambda=\frac{1}{n \beta_{p}^{s s}}, \frac{\lambda \tau}{\rho+\lambda \tau}=\frac{1}{\rho \beta_{p}^{s t n}+1}$. Recalling $\beta_{p}^{s t}=\beta_{p}^{p t} \frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}$ and $\beta_{p}^{p t}=\frac{\tau}{\rho} \frac{1-\varphi}{1+\{\omega n-(1-\omega)\} \varphi}$,

$$
\rho \beta_{p}^{s t} \frac{n}{\tau}=\frac{\rho}{\tau} \beta_{p}^{p t} n \frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi}=\frac{n-1-\{(1+\omega) n-(1-\omega)\} \varphi}{1+\{\omega n-(1-\omega)\} \varphi} .
$$

Hence,

$$
\begin{aligned}
\rho \beta_{p}^{s t} \frac{n}{\tau}+1 & =\frac{n-1-\{(1+\omega) n-(1-\omega)\} \varphi+1+\{\omega n-(1-\omega)\} \varphi}{1+\{\omega n-(1-\omega)\} \varphi} \\
& =\frac{(1-\varphi) n}{1+\{\omega n-(1-\omega)\} \varphi}
\end{aligned}
$$

which implies

$$
\begin{equation*}
\frac{\lambda \tau}{\rho+\lambda \tau}=\frac{\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}}{1-\varphi}=\frac{\omega \varphi+\frac{1-(1-\omega) \varphi}{n}}{1-\varphi} \tag{27}
\end{equation*}
$$

Next, we show that $\frac{1-(1-\omega) \varphi}{n}$ decreases in n. From (25), $\frac{1-(1-\omega) \varphi}{n}=\frac{\omega\left(\frac{1-\mu d_{\varepsilon}}{\left.1-d_{\varepsilon}-\omega\right) \varphi}\right.}{\sqrt{\mu} B-\frac{1-\mu d \varepsilon}{1-d_{\varepsilon}}}$. This decreases in n because φ decreases in n and B increases in n (from Lemma A2(b)). Therefore, $\frac{\lambda \tau}{\rho+\lambda \tau}$ decreases in n. (A3)

2.1.3 Equilibrium as $n \rightarrow \infty$

Lemma A4 (equilibrium as $n \rightarrow \infty$)
(a) If $\mu<1$ or $\omega<1$, then there is $\underline{n} \in(1, \infty)$ such that (2) is satisfied for all $n>\underline{n}$. If $\mu=\omega=1$, then the same holds if $\alpha_{\varepsilon}>1$.
(b) Suppose $\mu=\omega=1$. For a strategic equilibrium, additionally assume $\alpha_{\varepsilon}>1$.
$\lim _{n \rightarrow \infty}\left(\beta_{s}, \beta_{e}, \beta_{p}\right)=\left\{\begin{array}{ll}\left(\frac{\rho}{\tau_{e}} \varphi, 1-\varphi, \frac{\rho}{\tau_{e}} \varphi\right) & \text { in a price-taking equilibrium } \\ \left(\frac{\rho}{\tau_{e}}(1-2 \varphi), 1-2 \varphi, \frac{\rho}{\tau_{e}}(1-2 \varphi)\right) & \text { in a strategic equilibrium }\end{array}\right.$, where $\varphi=\left(1+\alpha_{\varepsilon}\right)^{-1}$.
(c) Suppose $\mu<1$ or $\omega<1$. In both equilibria:
β_{s} and β_{p} converge to zero at the rate $n^{-\frac{1}{3}}$,
$1-\beta_{e}$ decreases in n and converges to zero at the rate $n^{-\frac{2}{3}}$, and the allocation approaches the average endowment.
(d) $\lim _{n \rightarrow \infty} p^{*}=\frac{\sqrt{\mu} d_{\varepsilon}}{(1-\omega)\left(1-d_{\varepsilon}\right)+d_{\varepsilon}}\left(\widetilde{v}+\sqrt{1-\omega} \epsilon_{0}\right)$ for all μ, ω in both equilibria.
(e) The price impact λ converges to zero at the rate n^{-1} if $\mu=\omega=1$, and at the rate $n^{-\frac{2}{3}}$ if $\mu \omega<1$.

Proof.

(a) From Lemma A2, $\lim _{n \rightarrow \infty} \varphi=0$ for $\mu<1$ or $\omega<1$. There exists a unique $\underline{n}>1$ such that $\frac{n+1}{\underline{n}-1}=\frac{1-\varphi}{\varphi}$, because $\frac{n+1}{n-1}$ increases in n with $\lim _{n \backslash 1} \frac{n+1}{n-1}=\infty$ and $\lim _{n \rightarrow \infty} \frac{n+1}{n-1}=1$ while φ decreases in n and $\lim _{n \rightarrow \infty} \frac{1-\varphi}{\varphi}=\infty$. Clearly, (2) is satisfied if and only if $n>\underline{n}$.

If $\mu=\omega=1$, (2) becomes $\frac{n+1}{n-1}<\alpha_{\varepsilon}$. As $\frac{n+1}{n-1}>1$ but $\lim _{n \rightarrow \infty} \frac{n+1}{n-1}=1$, the result follows.
(b) This follows from Lemma A2 and the expression of coefficients in Lemma A1. Note that $\alpha_{\varepsilon}>1$ implies $1-2 \varphi=\frac{\alpha_{\varepsilon}-1}{\alpha_{\varepsilon}+1}>0$.
(c) First, recall $\beta_{x}^{s t}=\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi} \beta_{x}^{p t}$ for $x \in\{s, e, p\}$ (from Lemma A1) and note that $\frac{\frac{n-1}{n}-\left(1+\omega-\frac{1-\omega}{n}\right) \varphi}{1-\varphi} \rightarrow 1$ because $\varphi \rightarrow 0$ (from Lemma A2). Therefore, it suffices to show the result for a price-taking equilibrium. We drop the superscript " $p t$ ".

For β_{s} and β_{e}, from their expressions given in Lemma A1, $\lim _{n \rightarrow \infty} \varphi=0$ and $\lim _{n \rightarrow \infty} n \varphi=\infty$ directly imply $\lim _{n \rightarrow \infty} \beta_{s}=0$ and $\lim _{n \rightarrow \infty} \beta_{e}=1$.

For $\beta_{p}=\frac{{ }_{n \rightarrow \infty}}{1+\{n \omega-(1-\omega)\} \varphi} \frac{\tau}{\rho}$, note that τ is bounded. Hence, β_{p} converges zero at the rate of $\frac{1}{n \varphi}$, i.e., $n^{-\frac{1}{3}}$. Using the results from Lemma A2 for $\varphi, n \varphi$, and τ given in (8),

$$
\lim _{n \rightarrow \infty} \frac{\beta_{s}}{\beta_{p}}=\frac{\sqrt{\mu} \tau_{\varepsilon}}{(1-\omega) \tau_{v}+\tau_{\varepsilon}}=\frac{\sqrt{\mu} d_{\varepsilon}}{(1-\omega)\left(1-d_{\varepsilon}\right)+d_{\varepsilon}} \in(0, \infty)
$$

Hence, β_{s} converges zero also at the rate $n^{-\frac{1}{3}}$. The rate at which $1-\beta_{e}$ converges to zero is obvious from

$$
1-\beta_{e}=\frac{1-(1-\omega) \varphi-(1-\varphi)}{1-(1-\omega) \varphi}=\frac{\omega \varphi}{1-(1-\omega) \varphi}
$$

The result on the allocation follows from $q_{i}^{*}=\beta_{s}\left(s_{i}-\bar{s}\right)-\beta_{e}\left(e_{i}-\bar{e}\right)$ and $\left(\beta_{s}, \beta_{e}\right) \rightarrow(0,1)$.
(d) We compute the limit of $p^{*}=\frac{\beta_{s}}{\beta_{p}} \bar{s}-\frac{\beta_{e}}{\beta_{p}} \bar{e}$. First, from Lemma A1,

$$
\begin{gather*}
\frac{\beta_{s}}{\beta_{p}}=\frac{1+\{\omega n-(1-\omega)\} \varphi}{1+(1-\omega)(\omega n-1) \varphi+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}\{1+(\omega n-(1-\omega)) \varphi\}} \sqrt{\mu} \frac{\tau_{\varepsilon}}{\tau} \\
\frac{\beta_{e}}{\beta_{p}}=\frac{1+\{\omega n-(1-\omega)\} \varphi}{1-(1-\omega) \varphi} \frac{\rho}{\tau} \tag{28}
\end{gather*}
$$

Therefore, $\lim _{n \rightarrow \infty} \frac{\beta_{s}}{\beta_{p}} \bar{s}=\frac{\sqrt{\mu} d_{\varepsilon}}{(1-\omega)\left(1-d_{\varepsilon}\right)+d_{\varepsilon}}\left(\widetilde{v}+\sqrt{1-\omega} \epsilon_{0}\right)$. It remains to show $\lim _{n \rightarrow \infty} \frac{\beta_{e}}{\beta_{p}} \bar{e} \rightarrow 0$.
First, consider the case $\mu=\omega=1$. In this case, $\tau=\tau_{v}+\tau_{\varepsilon}(1+n \varphi)$ and

$$
\frac{\beta_{e}}{\beta_{p}}=\frac{(1+n \varphi) \rho}{\tau_{v}+\tau_{\varepsilon}(1+n \varphi)}
$$

where φ is independent of n. Thus, $\lim _{n \rightarrow \infty} \frac{\beta_{e}}{\beta_{p}}=\frac{\rho}{\tau_{\varepsilon}}$ and $\lim _{n \rightarrow \infty} \frac{\beta_{e}}{\beta_{p}} \bar{e} \rightarrow 0$.
Next, consider the case $\mu<1$ or $\omega<1$. In this case, (28) is unbounded in n and increases in n at the same rate with $n \varphi$. From Lemma A2, this rate is $n^{\frac{1}{3}}=n^{-\frac{1}{6}} n^{\frac{1}{2}}$. Because $n^{\frac{1}{2}} \bar{e}$ converges in distribution to a normal random variable, $\lim _{n \rightarrow \infty} \frac{\beta_{e}}{\beta_{p}} \bar{e} \rightarrow 0$.
(e) This is immediate from the result for β_{p} in (c) and (d).

2.2 Equilibrium with $\tau_{\varepsilon}=0$

Lemma A5 (equilibrium with $\tau_{\varepsilon}=0$)
(a) A price-taking equilibrium exists for all $n \geq 1$ and the optimal order is $q_{i}^{p t}(p)=-e_{i}-\frac{\tau_{v}}{\rho} p$.
(b) A strategic equilibrium exists if and only if $1<n$. The optimal order has coefficients $\beta_{x}^{s t}=\frac{n-1}{n} \beta_{x}^{p t}$ for $x \in\{e, p\}$.
(c) Trade volume and hedging effectiveness increase in n, while price impact decreases in n.

Proof.

(a) Conjecture $q_{i}(p)=\beta_{e} e_{i}-\beta_{p} p$. Step 1 of Lemma A1 becomes $E_{i}[v]=0$ and $\tau=\tau_{v}$. Step 2 becomes $q_{i}(p)=\frac{-p-\frac{\rho}{\tau_{v}} e_{i}}{\lambda+\frac{\rho}{\tau_{v}}}$. Hence, $\widehat{\beta}_{e}=\frac{\rho}{\lambda \tau_{v}+\rho}$ and $\widehat{\beta}_{p}=\frac{\tau_{v}}{\lambda \tau_{v}+\rho}$. Price-taking or strategic, $\frac{\beta_{e}}{\beta_{p}}=\frac{\rho}{\tau_{v}}$. By setting $\lambda=0$, the optimal order in a price-taking equilibrium has $\beta_{e}^{p t}=1$ and $\beta_{p}^{p t}=\frac{\rho}{\tau_{v}}$. Note that the second order condition $\frac{\rho}{\tau_{v}}>0$ is always satisfied.
(b) For a strategic equilibrium, solve a fixed point problem in λ defined by $\widehat{\lambda}=\frac{1}{n \widehat{\beta}_{e}}=$ $\frac{\lambda \tau_{v}+\rho}{n \tau_{v}}$. Solving $\widehat{\lambda}=\lambda$, obtain $\lambda=\frac{1}{n-1} \frac{\rho}{\tau_{v}}, \beta_{p}^{s t}=\frac{\tau_{v}}{\frac{1}{n-1} \frac{\rho}{\tau_{v}} \tau_{v}+\rho}=\frac{n-1}{n} \frac{\rho}{\tau_{v}}$ and $\beta_{e}^{s t}=\frac{\rho}{\tau_{v}} \beta_{p}^{s t}=\frac{n-1}{n}$. Finally, the second order condition is $2 \lambda+\frac{\rho}{\tau_{v}}>0 \Leftrightarrow \frac{2}{n-1}+1>0 \Leftrightarrow n>1$. Note that $\lim _{n \searrow 1} q_{i}^{s t}(p)=0$.
(c) The quantity traded is $q_{i}^{*}\left(p^{*}\right)=\beta_{e}\left(e_{i}-\bar{e}\right)=\beta_{e} \frac{n}{n+1}\left(e_{i}-\bar{e}_{i}\right)$. Trade volume is

$$
\begin{aligned}
\frac{1}{2} E\left[\left|\beta_{e} \frac{n}{n+1}\left(e_{i}-\bar{e}_{i}\right)\right|\right] & =\frac{1}{2} \operatorname{Var}\left[\beta_{e} \frac{n}{n+1}\left(e_{i}-\bar{e}_{i}\right)\right] \\
& =\frac{1}{2} \beta_{e}^{2} \frac{n}{n+1} \frac{1}{\tau_{e}}
\end{aligned}
$$

This increases in n in both equilibria, because $\beta_{e}^{p t}=1$ and $\beta_{e}^{s t}=\frac{n-1}{n}$ both (weakly) increase in n. The price impact $\lambda=\frac{1}{n-1} \frac{\rho}{\tau_{v}}$ clearly decreases in n. Finally, the market-clearing price $p=-\frac{\beta_{e}}{\beta_{p}} \bar{e}$ is uncorrelated with v and $v-p=v+\frac{\rho}{\tau_{v}} \bar{e}$. Therefore, the hedging effectiveness is

$$
\operatorname{Corr}[v-p, v]=\frac{\frac{1}{\tau_{v}}}{\sqrt{\left(\frac{1}{\tau_{v}}+\left(\frac{\rho}{\tau_{v}}\right)^{2} \frac{1}{n+1} \frac{1}{\tau_{e}}\right) \frac{1}{\tau_{v}}}}=\frac{1}{\sqrt{1+\frac{\rho^{2}}{\tau_{v} \tau_{e}} \frac{1}{n+1}}}
$$

This increases in n and $\lim _{n \rightarrow \infty} \operatorname{Corr}[v-p, v]=1$. (A5)

2.3 Ex ante profits

2.3.1 Interim characterization

We first characterize the interim GFT. Recall that the interim payoff, the interim GFT, and the ex ante GFT in a strategic equilibrium are denoted with superscript "st", i.e. $\Pi_{i}^{s t}, G_{i}^{s t}$, and $G^{s t}$. We drop " $p t$ " for the price-taking case for brevity.

Lemma A6 (interim characterization)

(a) $\Pi_{i}=\frac{\tau}{2 \rho}\left(a_{i}^{2}+b_{i}^{2}-c_{i}^{2}\right)$ and $\Pi_{i}^{n t}=\frac{\tau}{2 \rho}\left(b_{i}^{2}-c_{i}^{2}\right)$, where

$$
a_{i} \equiv E_{i}[v]-p-\frac{\rho}{\tau} e_{i}, \quad b_{i} \equiv E_{i}[v], \quad c_{i} \equiv E_{i}[v]-\frac{\rho}{\tau} e_{i} .
$$

(b) $\Pi_{i}^{s t}=\frac{\tau}{2 \rho}\left((1-\widetilde{\lambda}) a_{i}^{2}+b_{i}^{2}-c_{i}^{2}\right)$ and $G_{i}^{s t}=(1-\widetilde{\lambda}) G_{i}$, where $\widetilde{\lambda} \in(0,1)$ defined below decreases in n.

$$
\begin{equation*}
\widetilde{\lambda} \equiv\left(\frac{\lambda \tau}{\rho+\lambda \tau}\right)^{2}=\left(\frac{\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}}{1-\varphi}\right)^{2} . \tag{29}
\end{equation*}
$$

If $\mu=\omega=1$, then $\lim _{n \rightarrow \infty} \widetilde{\lambda}=\left(\frac{\varphi}{1-\varphi}\right)^{2}>0$ with $\varphi=\left(1+\alpha_{\varepsilon}\right)^{-1}$.
Otherwise, $\lim _{n \rightarrow \infty} \widetilde{\lambda}=0$ at the rate $n^{-\frac{4}{3}}$.

Proof.

(a) By plugging the optimal demand function (15) into the interim profit (12), obtain

$$
\begin{equation*}
\Pi_{i}^{s t}=\left(1-\left(\frac{\lambda \tau}{\rho+\lambda \tau}\right)^{2}\right)\left\{\frac{\tau}{2 \rho}\left(E_{i}[v]-p\right)^{2}+p e_{i}\right\}+\left(\frac{\lambda \tau}{\rho+\lambda \tau}\right)^{2}\left(E_{i}[v] e_{i}-\frac{\rho}{2 \tau} e_{i}^{2}\right) \tag{30}
\end{equation*}
$$

By setting $q_{i}=0$ in (12), the interim no-trade profit is

$$
\begin{aligned}
\Pi_{i}^{n t} & =E_{i}[v] e_{i}-\frac{\rho}{2 \tau} e_{i}^{2} \\
& =\frac{\tau}{2 \rho}\left(E_{i}[v]\right)^{2}-\frac{\rho}{2 \tau}\left(\frac{\tau}{\rho} E_{i}[v]-e_{i}\right)^{2} \\
& =\frac{\tau}{2 \rho}\left\{\left(E_{i}[v]\right)^{2}-\left(E_{i}[v]-\frac{\rho}{\tau} e_{i}\right)^{2}\right\} \\
& =\frac{\tau}{2 \rho}\left(b_{i}^{2}-c_{i}^{2}\right)
\end{aligned}
$$

By setting, $\lambda=0$ in (30), the interim profit in the price-taking equilibrium is

$$
\Pi_{i}=\frac{\tau}{2 \rho}\left(E_{i}[v]-p\right)^{2}+p e_{i} .
$$

Because $G_{i} \equiv \Pi_{i}-\Pi_{i}^{n t}=\frac{\tau}{2 \rho}\left(E_{i}[v]-p-\frac{1}{\tau} e_{i}\right)^{2}=\frac{\tau}{2} a_{i}^{2}$,

$$
\Pi_{i}=G_{i}+\Pi_{i}^{n t}=\frac{\tau}{2 \rho}\left(a_{i}^{2}+b_{i}^{2}-c_{i}^{2}\right)
$$

(b) From (30),

$$
\begin{equation*}
\Pi_{i}^{s t}=\left(1-\left(\frac{\lambda \tau}{\rho+\lambda \tau}\right)^{2}\right) \Pi_{i}+\left(\frac{\lambda \tau}{\rho+\lambda \tau}\right)^{2} \Pi_{i}^{n t}=(1-\widetilde{\lambda}) \Pi_{i}+\widetilde{\lambda} \Pi_{i}^{n t} \tag{31}
\end{equation*}
$$

Using the result above,

$$
\begin{aligned}
\Pi_{i}^{s t} & =(1-\widetilde{\lambda})\left(G_{i}+\Pi_{i}^{n t}\right)+\widetilde{\lambda} \Pi_{i}^{n t}=(1-\widetilde{\lambda}) G_{i}+\Pi_{i}^{n t} \\
& =\frac{\tau}{2 \rho}(1-\widetilde{\lambda}) a_{i}^{2}+\Pi_{i}^{n t}=\frac{\tau}{2 \rho}\left((1-\widetilde{\lambda}) a_{i}^{2}+b_{i}^{2}-c_{i}^{2}\right)
\end{aligned}
$$

This implies $G_{i}^{s t} \equiv \Pi_{i}^{s t}-\Pi_{i}^{n t}=(1-\widetilde{\lambda}) G_{i}$. Recall that $\frac{\lambda \tau}{\rho+\lambda \tau}=\frac{\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}}{1-\varphi}$ decreases in n (see (27) in the proof of Lemma A3(c)). Accordingly, $\widetilde{\lambda}=\left(\frac{\lambda \tau}{\rho+\lambda \tau}\right)^{2}$ decreases in n.

If $\mu=\omega=1$, then $\lim _{n \rightarrow \infty} \frac{\lambda \tau}{\rho+\lambda \tau}=\lim _{n \rightarrow \infty} \frac{\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}}{1-\varphi}=\frac{\varphi}{1-\varphi}$ with $\varphi=\left(1+\alpha_{\varepsilon}\right)^{-1}$. Therefore, $\lim _{n \rightarrow \infty} \widetilde{\lambda}=\left(\frac{\varphi}{1-\varphi}\right)^{2}$.

If $\mu<1$ or $\omega<1$, then from Lemma A2 φ decreases in n at the rate $n^{-\frac{2}{3}}$. Therefore,
$\lim _{n \rightarrow \infty} \frac{\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}}{1-\varphi}=0$ and hence $\lim _{n \rightarrow \infty} \widetilde{\lambda}=0$ at the rate $n^{-\frac{4}{3}}$.

2.3.2 Ex ante characterization

Denote the covariance matrix of $\left(a_{i}, b_{i}, c_{i}\right)$ by

$$
\Sigma_{a b c} \equiv \operatorname{Var}\left[\left[a_{i}, b_{i}, c_{i}\right]\right]=\left[\begin{array}{ccc}
V_{a} & V_{a b} & V_{a c} \\
& V_{b} & V_{b c} \\
& & V_{c}
\end{array}\right] .
$$

Lemma A7 (ex ante \#1)

$$
\begin{align*}
& \exp (2 \rho \Pi)=\left(1+\tau V_{a}\right) \exp \left(2 \rho \Pi^{n t}\right)+\Delta, \tag{32}\\
& \exp \left(2 \rho \Pi^{s t}\right)=\left(1+(1-\widetilde{\lambda}) \tau V_{a}\right) \exp \left(2 \rho \Pi^{n t}\right)+(1-\widetilde{\lambda}) \Delta, \\
& \text { where } \exp \left(2 \rho \Pi^{n t}\right)=\left(1+\tau V_{b}\right)\left(1-\tau V_{c}\right)+\left(\tau V_{b c}\right)^{2} \\
& \text { and } \Delta \equiv \tau^{2}\left(V_{a c}^{2}-V_{a b}^{2}\right)+\tau^{3}\left(V_{a c}^{2} V_{b}+V_{a b}^{2} V_{c}-2 V_{a b} V_{b c} V_{a c}\right) .
\end{align*}
$$

Remark. Lemma A7 immediately implies:

$$
\begin{align*}
\exp (2 \rho G) & =1+\tau V_{a}+\Delta \exp \left(-2 \rho \Pi^{n t}\right) \tag{33}\\
\exp \left(2 \rho G^{s t}\right) & =1+(1-\widetilde{\lambda})\left\{\tau V_{a}+\Delta \exp \left(-2 \rho \Pi^{n t}\right)\right\} .
\end{align*}
$$

Proof. We apply the following fact to $\left(G_{i}, \Pi_{i}, \Pi_{i}^{n t}, G_{i}^{s t}, \Pi_{i}^{s t}\right)$.

Fact 1. Given the n-dimensional random vector z that is normally distributed with mean zero and variance-covariance matrix Σ,

$$
E\left[-\exp \left(-\rho\left(z C z^{\top}\right)\right)\right]=-\left\{\operatorname{det}\left(I_{n}+2 \rho \Sigma C\right)\right\}^{-\frac{1}{2}}
$$

where I_{n} is the n-dimensional identity matrix and C is an n-by-n matrix.

Since $\left(a_{i}, b_{i}, c_{i}\right)$ have zero means, we can apply Fact 1 to $\Pi_{i}=\frac{\tau}{2 \rho}\left(a_{i}^{2}+b_{i}^{2}-c_{i}^{2}\right)$:

$$
\begin{aligned}
E\left[-\exp \left(-\rho \Pi_{i}\right)\right] & =E\left[-\exp \left(-\rho\left(\left[a_{i}, b_{i}, c_{i}\right] C\left[a_{i}, b_{i}, c_{i}\right]^{\top}\right)\right)\right]=-\left\{\operatorname{det}\left(I_{3}+2 \rho \Sigma_{a b c} C\right)\right\}^{-\frac{1}{2}} \\
\text { where } C & \equiv \frac{\tau}{2 \rho}\left[\begin{array}{cccc}
1 & & \\
& 1 & \\
& & -1
\end{array}\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
E\left[-\exp \left(-\rho \Pi_{i}^{s t}\right)\right] & =-\left\{\operatorname{det}\left(I_{n}+2 \rho \Sigma_{a b c} C^{s t}\right)\right\}^{-\frac{1}{2}} \\
\text { where } C^{s t} & \equiv \frac{\tau}{2 \rho}\left[\begin{array}{ccc}
1-\widetilde{\lambda} & & \\
& 1 & \\
& & -1
\end{array}\right]
\end{aligned}
$$

Because off-diagonal elements of C and $C^{s t}$ are zeros, we have

$$
\begin{aligned}
I_{3}+2 \rho \Sigma_{a b c} C & =\left[\begin{array}{rrr}
1+\tau V_{a} & \tau V_{a b} & -\tau V_{a c} \\
\tau V_{a b} & 1+\tau V_{b} & -\tau V_{b c} \\
\tau V_{a c} & \tau V_{b c} & 1-\tau V_{c}
\end{array}\right], \\
I_{3}+2 \rho \Sigma_{a b c} C^{s t}= & {\left[\begin{array}{rrr}
1+(1-\widetilde{\lambda}) \tau V_{a} & \tau V_{a b} & -\tau V_{a c} \\
(1-\tilde{\lambda}) \tau V_{a b} & 1+\tau V_{b} & -\tau V_{b c} \\
(1-\tilde{\lambda}) \tau V_{a c} & \tau V_{b c} & 1-\tau V_{c}
\end{array}\right] . }
\end{aligned}
$$

Because $\Pi_{i}^{n t}=\frac{\tau}{2 \rho}\left(b_{i}^{2}-c_{i}^{2}\right)$, the 2-by-2 matrix on the bottom-right of the above two matrices corresponds to the ex ante no-trade profit. Using $|\cdot|$ as determinant operator,

$$
\exp \left(2 \rho \Pi^{n t}\right)=\left|\begin{array}{rr}
1+\tau V_{b} & -\tau V_{b c} \tag{34}\\
\tau V_{b c} & 1-\tau V_{c}
\end{array}\right|=\left(1+\tau V_{b}\right)\left(1-\tau V_{c}\right)+\left(\tau V_{b c}\right)^{2} .
$$

Also, from $\widetilde{G} \equiv-\frac{1}{\rho} \log \left(E\left[\exp \left(-\rho G_{i}\right)\right]\right)$ and $\widetilde{G}^{\text {st }} \equiv-\frac{1}{\rho} \log \left(E\left[\exp \left(-\rho G_{i}^{s t}\right)\right]\right)$,

$$
\exp (2 \rho \widetilde{G})=1+\tau V_{a} \text { and } \exp \left(2 \rho \widetilde{G}^{s t}\right)=1+(1-\widetilde{\lambda}) \tau V_{a}
$$

Therefore,

$$
\begin{aligned}
\exp (2 \rho \Pi)= & \left(1+\tau V_{a}\right)\left|\begin{array}{rr}
1+\tau V_{b} & -\tau V_{b c} \\
\tau V_{b c} & 1-\tau V_{c}
\end{array}\right|-\tau V_{a b}\left|\begin{array}{cc}
\tau V_{a b} & -\tau V_{a c} \\
\tau V_{b c} & 1-\tau V_{c}
\end{array}\right|+\tau V_{a c}\left|\begin{array}{rr}
\tau V_{a b} & -\tau V_{a c} \\
1+\tau V_{b} & -\tau V_{b c}
\end{array}\right| \\
= & \exp (2 \rho \widetilde{G}) \exp \left(2 \rho \Pi^{n t}\right) \\
& -\tau V_{a b}\left\{\tau V_{a b}\left(1-\tau V_{c}\right)+\tau^{2} V_{a c} V_{b c}\right\}+\tau V_{a c}\left\{\tau V_{a c}\left(1+\tau V_{b}\right)-\tau^{2} V_{a b} V_{b c}\right\} \\
= & \exp (2 \rho \widetilde{G}) \exp \left(2 \rho \Pi^{n t}\right) \\
& +\tau^{2}\left(V_{a c}^{2}-V_{a b}^{2}\right)+\tau^{3}\left(V_{a c}^{2} V_{b}+V_{a b}^{2} V_{c}-2 V_{a b} V_{b c} V_{a c}\right) \\
= & \exp (2 \rho \widetilde{G}) \exp \left(2 \rho \Pi^{n t}\right)+\Delta .
\end{aligned}
$$

Computing $\exp \left(2 \rho \Pi^{s t}\right)$ is similar and omitted. ■ (A7)
We need to characterize $\Sigma_{a b c}$. This is done in two lemmas below. Recall $E_{i}[v]=\gamma_{s} s_{i}+$
$\gamma_{e} e_{i}+\gamma_{p} p$, where $\gamma_{s}, \gamma_{e}, \gamma_{p}$ are given in (7). With these coefficients,

$$
\begin{aligned}
a_{i} & =\gamma_{s} s_{i}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) e_{i}-\left(1-\gamma_{p}\right) p \\
b_{i} & =\gamma_{s} s_{i}+\gamma_{e} e_{i}+\gamma_{p} p \\
c_{i} & =\gamma_{s} s_{i}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) e_{i}+\gamma_{p} p
\end{aligned}
$$

Lemma A8 $\left(\gamma_{s}, \gamma_{e}, \gamma_{p}\right)$
(a) $\gamma_{e}=\frac{\rho}{\tau} \frac{\omega \varphi}{1-(1-\omega) \varphi}, \gamma_{p}=\frac{\omega \varphi(n+1)}{1+\{n \omega-(1-\omega)\} \varphi}$, and $\gamma_{s}=\frac{\tau_{\varepsilon}}{\rho} \frac{1-\varphi}{\omega \varphi} \frac{1}{B} \gamma_{e}$.
(b) $\frac{\rho}{\tau}-\gamma_{e}=\frac{1-\varphi}{\omega \varphi} \gamma_{e}$ and $\frac{\rho}{\tau}-2 \gamma_{e}=\frac{1-(1+\omega) \varphi}{\omega \varphi} \gamma_{e}$.
$1-\gamma_{p}=\frac{1-\varphi}{1+\{n \omega-(1-\omega)\} \varphi}, 1-2 \gamma_{p}=\frac{1-\{1+\omega(n+1)\} \varphi}{1+\{n \omega-(1-\omega)\} \varphi}$, and $\frac{1-\gamma_{p}}{\gamma_{p}}=\frac{1}{n+1} \frac{1-\varphi}{\omega \varphi}$.

Proof.

(a) First, from (7) and (21),

$$
\begin{aligned}
& \gamma_{s}=\sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{1-\varphi}{1+(1-\omega)(\omega n-1) \varphi} \\
& \gamma_{e}=\sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{\omega \varphi}{1+(1-\omega)(\omega n-1) \varphi} \frac{\beta_{e}}{\beta_{s}} \\
& \gamma_{p}=\sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{\omega \varphi(n+1)}{1+(1-\omega)(\omega n-1) \varphi} \frac{\beta_{p}}{\beta_{s}}
\end{aligned}
$$

Use (23) for γ_{e} to obtain

$$
\gamma_{e}=\left(\sqrt{\mu} \frac{\tau_{\varepsilon}}{\rho} \frac{\beta_{e}}{\beta_{s}}\right) \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{\rho}{\tau_{\varepsilon}} \frac{\omega \varphi}{1+(1-\omega)(\omega n-1) \varphi}=\frac{\rho}{\tau} \frac{\omega \varphi}{1-(1-\omega) \varphi}
$$

Similarly, use (19) for γ_{p} to obtain

$$
\gamma_{p}=\sqrt{\mu} \frac{\tau_{\varepsilon}}{\widetilde{\tau}} \frac{\omega \varphi(n+1)}{1+(1-\omega)(\omega n-1) \varphi} \frac{\widetilde{\tau}}{\sqrt{\mu} \tau_{\varepsilon}} \frac{1+(1-\omega)(\omega n \omega-1) \varphi}{1+\{\omega n-(1-\omega)\} \varphi}=\frac{\omega \varphi(n+1)}{1+\{\omega n-(1-\omega)\} \varphi} .
$$

Finally, using $\frac{\beta_{e}}{\beta_{s}}=\frac{\rho}{\tau_{\varepsilon}} B, \frac{\gamma_{s}}{\gamma_{e}}=\frac{\tau_{\varepsilon}}{\rho} \frac{1-\varphi}{\omega \varphi} \frac{1}{B}$.
(b) Using the results from (a),

$$
\begin{gathered}
\frac{\rho}{\tau}-\gamma_{e}=\frac{\rho}{\tau}\left(1-\frac{\omega \varphi}{1-(1-\omega) \varphi}\right)=\frac{1-\varphi}{\omega \varphi} \gamma_{e} \\
\frac{\rho}{\tau}-2 \gamma_{e}=\left(\frac{1-\varphi}{\omega \varphi}-1\right) \gamma_{e}=\frac{1-(1+\omega) \varphi}{\omega \varphi} \gamma_{e} \\
1-\gamma_{p}=1-\frac{\omega \varphi(n+1)}{1+\{\omega n-(1-\omega)\} \varphi}=\frac{1+\{\omega n-(1-\omega)\} \varphi-\omega \varphi(n+1)}{1+\{\omega n-(1-\omega)\} \varphi}=\frac{1-\varphi}{1+\{\omega n-(1-\omega)\} \varphi}
\end{gathered}
$$

$$
\begin{gather*}
1-2 \gamma_{p}=\frac{1-\varphi}{1+\{\omega n-(1-\omega)\} \varphi}-\frac{\omega \varphi(n+1)}{1+\{\omega n-(1-\omega)\} \varphi}=\frac{1-\{1+\omega(n+1)\} \varphi}{1+\{\omega n-(1-\omega)\} \varphi} \\
\frac{1-\gamma_{p}}{\gamma_{p}}=\frac{1}{n+1} \frac{1-\varphi}{\omega \varphi} . \tag{A8}
\end{gather*}
$$

Lemma A9 ($\Sigma_{a b c}$)
(a) $V_{b}=V_{b c}=\frac{1}{\tau_{v}}-\frac{1}{\tau}$ and $V_{c}=V_{b}+\frac{\alpha}{\tau} \frac{\tau_{v}}{\tau}$.
(b) $V_{a}=V_{a c}=\frac{\alpha}{\tau} \frac{\tau_{v}}{\tau} \frac{n}{1+n} \frac{1-\varphi}{1-(1-\omega) \varphi}$.
(c) $V_{a b}=0$.

Proof.

(a) First,

$$
\begin{aligned}
V_{b} & =\operatorname{Var}\left[E\left[v \mid s_{i}, e_{i}, p\right]\right] \\
& =\operatorname{Var}[v]-\operatorname{Var}\left[v \mid s_{i}, e_{i}, p\right]=\frac{1}{\tau_{v}}-\frac{1}{\tau} .
\end{aligned}
$$

Because $c_{i}=b_{i}-\frac{\rho}{\tau} e_{i}$,

$$
\begin{aligned}
V_{b c} & =V_{b}-\frac{\rho}{\tau} \operatorname{Cov}\left[b_{i}, e_{i}\right], \\
V_{c} & =V_{b}+\left(\frac{\rho}{\tau}\right)^{2} \frac{1}{\tau_{x}}-2 \frac{\rho}{\tau} \operatorname{Cov}\left[b_{i}, e_{i}\right] \\
& =V_{b}+\frac{\alpha}{\tau} \frac{\tau_{v}}{\tau}-2 \frac{\rho}{\tau} \operatorname{Cov}\left[b_{i}, e_{i}\right] .
\end{aligned}
$$

Thus, showing $\operatorname{Cov}\left[b_{i}, e_{i}\right]=0$ proves the results. We first characterize $\Sigma_{\text {sep }} \equiv \operatorname{Var}\left[\left[s_{i}, e_{i}, p\right]\right]=$ $\left[\begin{array}{ccc}V_{s} & 0 & V_{s p} \\ & V_{e} & V_{e p} \\ & & V_{p}\end{array}\right]$. First, $V_{e}=\operatorname{Var}\left[e_{i}\right]=\frac{1}{\tau_{e}}$ and

$$
V_{s}=\operatorname{Var}\left[s_{i}\right]=\frac{1}{\tau_{v}}+\frac{1}{\tau_{\varepsilon}}=\frac{\tau_{v}+\tau_{\varepsilon}}{\tau_{v} \tau_{\varepsilon}}=\frac{1}{d_{\varepsilon} \tau_{v}} .
$$

Using $p^{*}=\frac{\beta_{s}}{\beta_{p}} \bar{s}-\frac{\beta_{e}}{\beta_{p}} \bar{e},(7)$ and (21), we have

$$
\begin{aligned}
V_{s p} & =\frac{\gamma_{s}}{\gamma_{p}} \frac{\omega \varphi}{1-\varphi}\left\{\left(1+d_{\varepsilon} n\right) V_{s}+(1-\omega) \frac{n}{\tau_{\varepsilon}}\right\} \\
V_{e p} & =-\frac{\gamma_{e}}{\gamma_{p}} V_{e} \\
V_{p} & =(1+n)\left(\frac{\gamma_{s}}{\gamma_{p}} \frac{\omega \varphi}{1-\varphi} V_{s p}-\frac{\gamma_{e}}{\gamma_{p}} V_{e p}\right) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\operatorname{Cov}\left[b_{i}, e_{i}\right] & =\operatorname{Cov}\left[\gamma_{e} e_{i}+\gamma_{p} p, e_{i}\right] \\
& =\gamma_{e} V_{e}+\gamma_{p}\left(-\frac{\gamma_{e}}{\gamma_{p}} V_{e}\right)=0 .
\end{aligned}
$$

(b) Using Lemma A8 and the expression of V_{p} obtained in the proof of part (a),

$$
\begin{aligned}
V_{a}= & \operatorname{Var}\left[\gamma_{s} s_{i}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) e_{i}-\left(1-\gamma_{p}\right) p\right] \\
= & \gamma_{s}^{2} V_{s}+\left(\frac{\rho}{\tau}-\gamma_{e}\right)^{2} V_{e}+\left(1-\gamma_{p}\right)^{2}(1+n)\left(\frac{\gamma_{s}}{\gamma_{p}} \frac{\omega \varphi}{1-\varphi} V_{s p}-\frac{\gamma_{e}}{\gamma_{p}} V_{e p}\right) \\
& -2\left(1-\gamma_{p}\right)\left\{\gamma_{s} V_{s p}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) V_{e p}\right\} \\
= & \gamma_{s}^{2} V_{s}+\left(\frac{1-\varphi}{\omega \varphi} \gamma_{e}\right)^{2} V_{e}+\left(1-\gamma_{p}\right) \gamma_{s}\left\{\frac{1-\gamma_{p}}{\gamma_{p}}(1+n) \frac{\omega \varphi}{1-\varphi}-2\right\} V_{s p} \\
& -\left(1-\gamma_{p}\right) \gamma_{e}\left\{\frac{1-\gamma_{p}}{\gamma_{p}}(1+n)-2 \frac{1-\varphi}{\omega \varphi}\right\} V_{e p} .
\end{aligned}
$$

Using $\frac{1-\gamma_{p}}{\gamma_{p}}=\frac{1}{n+1} \frac{1-\varphi}{\omega \varphi}$,

$$
\begin{aligned}
V_{a}= & \gamma_{s}^{2} V_{s}+\left(\frac{1-\varphi}{\omega \varphi} \gamma_{e}\right)^{2} V_{e}-\left(1-\gamma_{p}\right)\left(\gamma_{s} V_{s p}-\frac{1-\varphi}{\omega \varphi} \gamma_{e} V_{e p}\right) \\
= & \gamma_{s}^{2}\left\{1-\frac{1-\gamma_{p}}{\gamma_{p}} \frac{\omega \varphi}{1-\varphi}\left(1+d_{\varepsilon} n\right)\right\} V_{s}-\gamma_{s}^{2} \frac{1-\gamma_{p}}{\gamma_{p}} \frac{\omega \varphi}{1-\varphi}(1-\omega) \frac{n}{\tau_{\varepsilon}} \\
& +\gamma_{e}^{2}\left\{\left(\frac{1-\varphi}{\omega \varphi}\right)^{2}-\frac{1-\varphi}{\omega \varphi} \frac{1-\gamma_{p}}{\gamma_{p}}\right\} V_{e} \\
= & \gamma_{s}^{2}\left(1-\frac{1+d_{\varepsilon} n}{n+1}\right) \frac{1}{d_{\varepsilon} \tau_{v}}-\gamma_{s}^{2} \frac{n}{n+1} \frac{1-\omega}{\tau_{\varepsilon}}+\left(\frac{1-\varphi}{\omega \varphi}\right)^{2} \gamma_{e}^{2} \frac{n}{n+1} \frac{1}{\tau_{e}} \\
= & \left(\frac{\tau_{\varepsilon}}{\rho} \frac{1-\varphi}{\omega \varphi} \frac{1}{B} \gamma_{e}\right)^{2} \frac{n}{n+1} \frac{\omega}{\tau_{\varepsilon}}+\left(\frac{1-\varphi}{\omega \varphi}\right)^{2} \gamma_{e}^{2} \frac{n}{n+1} \frac{1}{\tau_{e}} \\
= & \left(\frac{1-\varphi}{\omega \varphi}\right)^{2} \gamma_{e}^{2} \frac{n}{n+1} \frac{1}{\tau_{e}}\left\{\frac{\tau_{\varepsilon} \tau_{x}}{\rho^{2}} \frac{1}{B^{2}} \omega+1\right\} \\
= & \left(\frac{1-\varphi}{\omega \varphi}\right)^{2} \gamma_{e}^{2} \frac{n}{n+1} \frac{1}{\tau_{e}}\left\{\frac{\omega \varphi}{1-\varphi}+1\right\} \\
= & \left(\frac{\gamma_{e}}{\omega \varphi}\right)^{2}(1-\varphi) \frac{n}{n+1} \frac{1}{\tau_{e}}(1-(1-\omega) \varphi) .
\end{aligned}
$$

Use $\gamma_{e}=\frac{\rho}{\tau} \frac{\omega \varphi}{1-(1-\omega) \varphi}$ to obtain

$$
V_{a}=\left(\frac{\rho}{\tau}\right)^{2} \frac{1}{\tau_{e}} \frac{n}{n+1} \frac{1-\varphi}{1-(1-\omega) \varphi}=\frac{\alpha}{\tau} \frac{\tau_{v}}{\tau} \frac{n}{n+1} \frac{1-\varphi}{1-(1-\omega) \varphi}
$$

Next, we show $V_{a c}=V_{a}$. Because $c_{i}=b_{i}-\frac{\rho}{\tau} e_{i}$,

$$
V_{a c}=\operatorname{Cov}\left[a_{i}, b_{i}-\frac{\rho}{\tau} e_{i}\right]=V_{a b}-\frac{\rho}{\tau} \operatorname{Cov}\left[a_{i}, e_{i}\right] .
$$

Because $V_{a b}=0$ is proved in part (c) below, it suffices to show $-\frac{\rho}{\tau} \operatorname{Cov}\left[a_{i}, e_{i}\right]=V_{a}$.

$$
\begin{aligned}
-\frac{\rho}{\tau} \operatorname{Cov}\left[a_{i}, e_{i}\right] & =-\frac{\rho}{\tau} \operatorname{Cov}\left[\gamma_{s} s_{i}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) e_{i}-\left(1-\gamma_{p}\right) p, e_{i}\right] \\
& =-\frac{\rho}{\tau}\left\{-\left(\frac{\rho}{\tau}-\gamma_{e}\right) V_{e}-\left(1-\gamma_{p}\right) V_{e p}\right\} \\
& =\frac{\rho}{\tau} \gamma_{e}\left\{\frac{1-\varphi}{\omega \varphi}-\frac{1-\gamma_{p}}{\gamma_{p}}\right\} V_{e} \\
& =\frac{\rho}{\tau} \gamma_{e} \frac{1-\varphi}{\omega \varphi}\left(1-\frac{1}{n+1}\right) V_{e} \\
& =\left(\frac{\rho}{\tau}\right)^{2} \frac{1-\varphi}{1-(1-w) \varphi} \frac{n}{n+1} \frac{1}{\tau_{e}}=V_{a}
\end{aligned}
$$

(c)

$$
\begin{aligned}
V_{a b}= & \operatorname{Cov}\left[\gamma_{s} s_{i}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) e_{i}-\left(1-\gamma_{p}\right) p, \gamma_{s} s_{i}+\gamma_{e} e_{i}+\gamma_{p} p\right] \\
= & \gamma_{s}^{2} V_{s}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) \gamma_{e} V_{e}-\left(1-\gamma_{p}\right) \gamma_{p} V_{p} \\
& -\gamma_{s}\left(1-2 \gamma_{p}\right) V_{s p}-\left\{\left(\frac{\rho}{\tau}-\gamma_{e}\right) \gamma_{p}+\gamma_{e}\left(1-\gamma_{p}\right)\right\} V_{e p} \\
= & \gamma_{s}^{2} V_{s}-\left(\frac{\rho}{\tau}-\gamma_{e}\right) \gamma_{e} V_{e}-\left(1-\gamma_{p}\right) \gamma_{p}(1+n)\left(\frac{\gamma_{s}}{\gamma_{p}} \frac{w \varphi}{1-\varphi} V_{s p}-\frac{\gamma_{e}}{\gamma_{p}} V_{e p}\right) \\
& -\gamma_{s}\left(1-2 \gamma_{p}\right) V_{s p}-\left\{\left(\frac{\rho}{\tau}-2 \gamma_{e}\right) \gamma_{p}+\gamma_{e}\right\} V_{e p} .
\end{aligned}
$$

Using $\frac{\rho}{\tau}-\gamma_{e}=\frac{1-\varphi}{\omega \varphi} \gamma_{e}$ and $\frac{\rho}{\tau}-2 \gamma_{e}=\frac{1-(1+\omega) \varphi}{\omega \varphi} \gamma_{e}$ (by Lemma A8),

$$
\begin{aligned}
V_{a b}= & \gamma_{s}^{2} V_{s}-\frac{1-\varphi}{\omega \varphi} \gamma_{e}^{2} V_{e}-\left(1-\gamma_{p}\right)(1+n)\left(\gamma_{s} \frac{\omega \varphi}{1-\varphi} V_{s p}-\gamma_{e} V_{e p}\right) \\
& -\gamma_{s}\left(1-2 \gamma_{p}\right) V_{s p}-\gamma_{e}\left\{\frac{1-(1+\omega) \varphi}{\omega \varphi} \gamma_{p}+1\right\} V_{e p} \\
= & \gamma_{s}^{2} V_{s}-\frac{1-\varphi}{\omega \varphi} \gamma_{e}^{2} V_{e}-\gamma_{s} V_{s p}\left\{\left(1-\gamma_{p}\right)(1+n) \frac{\omega \varphi}{1-\varphi}+\left(1-2 \gamma_{p}\right)\right\} \\
& +\gamma_{e} V_{e p}\left\{\left(1-\gamma_{p}\right)(1+n)-\left\{\frac{1-(1+\omega) \varphi}{\omega \varphi} \gamma_{p}+1\right\}\right\}
\end{aligned}
$$

Using $1-\gamma_{p}=\frac{1-\varphi}{1+\{n \omega-(1-\omega)\} \varphi}$ and $1-2 \gamma_{p}=\frac{1-\varphi(1+\omega)-\omega \varphi n}{1+\{n \omega-(1-\omega)\} \varphi}$,

$$
\begin{aligned}
V_{a b}= & \gamma_{s}^{2} V_{s}-\frac{1-\varphi}{\omega \varphi} \gamma_{e}^{2} V_{e}-\frac{\gamma_{s} V_{s p}}{1+\{n \omega-(1-\omega)\} \varphi}\{(1+n) \omega \varphi+1-\varphi(1+\omega)-n \omega \varphi\} \\
& -\frac{\gamma_{e} V_{e p}}{1+\{n \omega-(1-\omega)\} \varphi}\left\{\frac{1-(1+\omega) \varphi}{\omega \varphi} \omega \varphi(n+1)+1+\{n \omega-(1-\omega)\} \varphi-(1+n)(1-\varphi)\right\} \\
= & \gamma_{s}^{2} V_{s}-\frac{1-\varphi}{w \varphi} \gamma_{e}^{2} V_{e}-\frac{1-\varphi}{1+\{n \omega-(1-\omega)\} \varphi}\left(\gamma_{s} V_{s p}+\gamma_{e} V_{e p}\right) .
\end{aligned}
$$

Substituting $V_{s p}$ and $V_{e p}$,

$$
\begin{aligned}
V_{a b}= & \gamma_{s}^{2} V_{s}\left\{1-\frac{1-\varphi}{1+\{n \omega-(1-\omega)\} \varphi} \frac{1}{\gamma_{p}} \frac{\omega \varphi}{1-\varphi}\left(1+d_{\varepsilon} n\right)\right\} \\
& -\gamma_{s}^{2} \frac{1-\varphi}{1+\{n \omega-(1-\omega)\} \varphi} \frac{1}{\gamma_{p}} \frac{\omega \varphi}{1-\varphi}(1-\omega) \frac{n}{\tau_{\varepsilon}} \\
& -\gamma_{e}^{2} V_{e}\left\{\frac{1-\varphi}{\omega \varphi}-\frac{1-\varphi}{1+\{n \omega-(1-\omega)\} \varphi} \frac{1}{\gamma_{p}}\right\} \\
= & \gamma_{s}^{2} V_{s}\left\{1-\frac{1+d_{\varepsilon} n}{n+1}\right\}-\gamma_{s}^{2} \frac{n}{n+1} \frac{1-\omega}{\tau_{\varepsilon}}-\gamma_{e}^{2} V_{e} \frac{1-\varphi}{\omega \varphi}\left\{1-\frac{1}{n+1}\right\} .
\end{aligned}
$$

Using $\gamma_{s}=\frac{\tau_{\varepsilon}}{\rho} \frac{1-\varphi}{\omega \varphi} \frac{1}{B} \gamma_{e}, V_{s}=\frac{1}{d_{\varepsilon} \tau_{v}}$, and $V_{e}=\frac{1}{\tau_{e}}$,

$$
\begin{aligned}
V_{a b} & =\frac{n}{n+1} \gamma_{e}^{2}\left\{\left(\frac{\tau_{\varepsilon}}{\rho} \frac{1-\varphi}{\omega \varphi} \frac{1}{B}\right)^{2}\left\{\frac{1}{\tau_{\varepsilon}}-\frac{1-\omega}{\tau_{\varepsilon}}\right\}-\frac{1-\varphi}{\omega \varphi} \frac{1}{\tau_{e}}\right\} \\
& =\frac{n}{n+1} \gamma_{e}^{2} \frac{1-\varphi}{\omega \varphi}\left\{\frac{\tau_{\varepsilon}}{\rho^{2}} \frac{1}{B^{2}} \frac{1-\varphi}{\varphi}-\frac{1}{\tau_{e}}\right\}=0
\end{aligned}
$$

The last equality follows from $\frac{1-\varphi}{\varphi}=\frac{\rho^{2}}{\tau_{\varepsilon} \tau_{e}} B^{2}$ by (9). ■ (A9)

Lemma A10 (ex ante \#2)

Given $\alpha<1$, $\exp \left(2 \rho \Pi^{n t}\right)=1-\alpha$ and

$$
\exp (2 \rho \Pi)=1-\alpha+\alpha \frac{\tau_{v}}{\tau} X(1-\alpha+\alpha X)>\exp \left(2 \rho \Pi^{s t}\right)=1-\alpha+\alpha \frac{\tau_{v}}{\tau} X^{s t}(1-\alpha+\alpha X)
$$

$$
\begin{equation*}
\text { where } \frac{\tau_{v}}{\tau}=\frac{1-\mu d_{\varepsilon}+\frac{\omega n \varphi}{1-(1-\omega) \varphi}\left(1-\mu d_{\varepsilon}-\omega\left(1-d_{\varepsilon}\right)\right)}{1+\frac{\omega n \varphi}{1-(1-\omega) \varphi}\left(1-\omega\left(1-d_{\varepsilon}\right)\right)}<1-\mu d_{\varepsilon} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
X \equiv \frac{n}{1+n} \frac{1-\varphi}{1-(1-\omega) \varphi}<1 \tag{36}
\end{equation*}
$$

$$
\begin{equation*}
X^{s t} \equiv \frac{n-1}{n}-\frac{n+1}{n} \frac{\omega \varphi}{1-\varphi}<1 . \tag{37}
\end{equation*}
$$

Also, $\frac{X^{s t}}{X}=1-\tilde{\lambda}$ increases in n.

Remark. $\alpha<1$ is necessary for $\Pi^{n t}$ to be well-defined. Given this condition, Lemma A10 immediately implies
$\exp (2 G)=1+\alpha \frac{\tau_{v}}{\tau} X\left(1+\frac{\alpha}{1-\alpha} X\right) \quad$ and $\quad \exp \left(2 G^{s t}\right)=1+\alpha \frac{\tau_{v}}{\tau} X^{s t}\left(1+\frac{\alpha}{1-\alpha} X\right)$.

Proof.
By Lemma A9(a), $1+\tau V_{b}=\frac{\tau}{\tau_{v}}$. Applying Lemma A9 to Δ and (34),

$$
\begin{aligned}
\Delta & \equiv \tau^{2}\left(V_{a c}^{2}-V_{a b}^{2}\right)+\tau^{3}\left(V_{a c}^{2} V_{b}+V_{a b}^{2} V_{c}-2 V_{a b} V_{b c} V_{a c}\right) \\
& =\left(\tau V_{a}\right)^{2}\left(1+\tau V_{b}\right) \\
& =\left(\tau V_{a}\right)^{2} \frac{\tau}{\tau_{v}}, \\
\exp \left(2 \rho \Pi^{n t}\right) & =\left(1+\tau V_{b}\right)\left(1-\tau V_{c}\right)+\left(\tau V_{b c}\right)^{2} \\
& =\left(1+\tau V_{b}\right)\left(1-\tau\left(V_{b}+\left(\frac{\rho}{\tau}\right)^{2} \frac{1}{\tau_{x}}\right)\right)+\left(\tau V_{b}\right)^{2} \\
& =1-\left(1+\tau V_{b}\right) \frac{\rho^{2}}{\tau \tau_{e}} \\
& =1-\frac{\rho^{2}}{\tau_{v} \tau_{e}}=1-\alpha .
\end{aligned}
$$

From (32) in Lemma A7,

$$
\begin{aligned}
\exp (2 \rho \Pi) & =(1-\alpha)\left(1+\tau V_{a}\right)+\left(\tau V_{a}\right)^{2} \frac{\tau}{\tau_{v}}=1-\alpha+\tau V_{a}\left(1-\alpha+\tau V_{a} \frac{\tau}{\tau_{v}}\right) \\
\exp \left(2 \rho \Pi^{s t}\right) & =1-\alpha+(1-\widetilde{\lambda}) \tau V_{a}\left(1-\alpha+\tau V_{a} \frac{\tau}{\tau_{v}}\right)
\end{aligned}
$$

From Lemma A9(b),

$$
\tau V_{a}=\alpha \frac{n}{n+1} \frac{1-\varphi}{1-(1-\omega) \varphi} \frac{\tau_{v}}{\tau}=\alpha \frac{\tau_{v}}{\tau} X
$$

Therefore,

$$
\exp (2 \rho \Pi)=1-\alpha+\alpha \frac{\tau_{v}}{\tau} X(1-\alpha+\alpha X)
$$

Using $1+(1-\mu) \frac{\tau_{\varepsilon}}{\tau_{v}}=\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}$ and $1+\frac{\tau_{\varepsilon}}{\tau_{v}}=\frac{1}{1-d_{\varepsilon}}$ in (8),

$$
\begin{aligned}
\frac{\tau_{v}}{\tau} & =\frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}(1-(1-\omega) \varphi)+\omega n \varphi\left(\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega\right)}{\frac{1}{1-d_{\varepsilon}}(1-(1-\omega) \varphi)+\omega n \varphi\left(\frac{1}{1-d_{\varepsilon}}-\omega\right)} \\
& =\frac{1-\mu d_{\varepsilon}+\frac{\omega n \varphi}{1-(1-\omega) \varphi}\left(1-\mu d_{\varepsilon}-\omega\left(1-d_{\varepsilon}\right)\right)}{1+\frac{\omega n \varphi}{1-(1-\omega) \varphi}\left(1-\omega\left(1-d_{\varepsilon}\right)\right)} .
\end{aligned}
$$

To derive $\Pi^{s t}$, recall from Lemma $\mathbf{A 6} \mathbf{(b)}$ that $\widetilde{\lambda}=\left(\frac{\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}}{1-\varphi}\right)^{2}$ decreases in n. Hence, $1-\widetilde{\lambda}$ decreases in n. Computing $1-\widetilde{\lambda}$,

$$
\begin{aligned}
1-\widetilde{\lambda} & =\left(1-\left(\frac{\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}}{1-\varphi}\right)^{2}\right) \\
& =\frac{1}{(1-\varphi)^{2}}\left(1-\varphi-\left(\omega-\frac{1-\omega}{n}\right) \varphi-\frac{1}{n}\right)\left(1-\varphi+\left(\omega-\frac{1-\omega}{n}\right) \varphi+\frac{1}{n}\right) \\
& =\frac{1}{(1-\varphi)^{2}}\left(\frac{n-1}{n}-\left(\frac{n-1}{n}+\frac{n+1}{n} \omega\right) \varphi\right)\left(\frac{n+1}{n}-(1-\omega) \frac{n+1}{n} \varphi\right) \\
& =\frac{1}{(1-\varphi)^{2}}\left\{\frac{n-1}{n}(1-\varphi)-\frac{n+1}{n} \omega \varphi\right\}(1-(1-\omega) \varphi) \frac{n+1}{n} \\
& =\frac{1-(1-\omega) \varphi}{1-\varphi} \frac{n+1}{n}\left(\frac{n-1}{n}-\frac{n+1}{n} \frac{\omega \varphi}{1-\varphi}\right)=\frac{X^{s t}}{X}<1 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \exp \left(2 \rho \Pi^{s t}\right)=1-\alpha+(1-\widetilde{\lambda}) \alpha \frac{\tau_{v}}{\tau} X(1-\alpha+\alpha X) \\
&=1-\alpha+\alpha \frac{\tau_{v}}{\tau} X^{s t}(1-\alpha+\alpha X) \\
&<\exp (2 \rho \Pi) . \\
&(\mathbf{A 1 0})
\end{aligned}
$$

2.4 Optimal market size

Recall from Lemma A10 that
$\exp (2 \rho \Pi)=1-\alpha+\alpha \frac{\tau_{v}}{\tau} X(1-\alpha+\alpha X) \quad$ and $\quad \exp \left(2 \rho \Pi^{s t}\right)=1-\alpha+\alpha \frac{\tau_{v}}{\tau} X^{s t}(1-\alpha+\alpha X)$.
The optimal market size maximizes $\frac{X(1-\alpha+\alpha X)}{\tau}$ in a price-taking equilibrium, and $\frac{X^{s t}(1-\alpha+\alpha X)}{\tau}$ in a strategic equilibrium.

2.4.1 The case with $\mu=\omega=1$

Lemma A11 (optimal market size with $\mu \omega=1$)
(a) $\lim _{n \rightarrow \infty} \Pi=\Pi^{n t}$ and there is unique market size $n^{*}>\sqrt{\frac{1}{d_{\varepsilon} \varphi}}$ that maximizes Π.
(b) $\lim _{n \rightarrow \infty} \Pi^{s t}=\Pi^{n t}$ and the optimal market size $n_{s t}^{*}$ is greater than n^{*}.
(c) For sufficiently large $\tau_{v}, n^{*}>\widehat{n}$, where $\widehat{n} \equiv \frac{1}{\varphi}-2$ is the market size which maximizes hedging effectiveness.

Proof.

From Lemma A2, $B=1$ and

$$
\varphi=\left(1+\alpha_{\varepsilon}\right)^{-1}=\frac{1}{1+\frac{\rho^{2}}{\tau_{\varepsilon} \tau_{e}}}=\frac{\tau_{\varepsilon}}{\tau_{\varepsilon}+\frac{\rho^{2}}{\tau_{e}}}
$$

Also, $\frac{\tau_{v}}{\tau}, X, X^{s t}$ defined by (35)-(37) become

$$
\frac{\tau_{v}}{\tau}=\frac{1-d_{\varepsilon}}{1+d_{\varepsilon} n \varphi}, \quad X=\frac{n}{1+n}(1-\varphi), \quad X^{s t}=\frac{n-1}{n}-\frac{n+1}{n \alpha_{\varepsilon}} .
$$

Note that we used $\frac{\varphi}{1-\varphi}=\frac{1}{\alpha_{\varepsilon}}$ for $X^{s t}$.
(a) Using the expression of $\frac{\tau_{v}}{\tau}$ and X above, we have

$$
\begin{equation*}
\exp (2 \rho \Pi)=1-\alpha+\alpha^{2}\left(1-d_{\varepsilon}\right)(1-\varphi) \frac{1}{1+d_{\varepsilon} n \varphi} \frac{n}{1+n}\left(\frac{1-\alpha}{\alpha}+\frac{n}{1+n}(1-\varphi)\right) \tag{38}
\end{equation*}
$$

Because the right hand side converges $1-\alpha$ as $n \rightarrow \infty, \lim _{n \rightarrow \infty} \Pi=\Pi^{n t}$. From above, the optimal market maximizes

$$
\begin{equation*}
O_{n} \equiv \frac{1}{1+d_{\varepsilon} \varphi n} \frac{n}{1+n}\left\{\frac{1-\alpha}{\alpha(1-\varphi)}+\frac{n}{1+n}\right\} \tag{39}
\end{equation*}
$$

O_{n} is increasing (decreasing) in n if and only if $0<(>)$

$$
\begin{aligned}
& -\frac{d_{\varepsilon} \varphi}{\left(1+d_{\varepsilon} \varphi n\right)^{2}} \frac{n}{1+n}\left\{\frac{1-\alpha}{\alpha(1-\varphi)}+\frac{n}{1+n}\right\}+\frac{1}{1+d_{\varepsilon} \varphi n}\left\{\frac{2 n}{1+n}+\frac{1-\alpha}{\alpha(1-\varphi)}\right\} \frac{1}{(1+n)^{2}} \\
= & \frac{1}{\left(1+d_{\varepsilon} \varphi n\right)^{2}(1+n)}\left[-d_{\varepsilon} \varphi n\left\{\frac{1-\alpha}{\alpha(1-\varphi)}+\frac{n}{1+n}\right\}+\left\{\frac{1-\alpha}{\alpha(1-\varphi)}+\frac{2 n}{1+n}\right\} \frac{1+d_{\varepsilon} \varphi n}{1+n}\right] .
\end{aligned}
$$

Note that

$$
\frac{1-\alpha}{\alpha(1-\varphi)}+\frac{n}{1+n}=\frac{(1-\alpha)(1+n)+\alpha(1-\varphi) n}{\alpha(1-\varphi)(1+n)}=\frac{1-\alpha+(1-\alpha \varphi) n}{\alpha(1-\varphi)(1+n)}
$$

and

$$
\frac{1-\alpha}{\alpha(1-\varphi)}+\frac{2 n}{1+n}=\frac{(1-\alpha)(1+n)+2 \alpha(1-\varphi) n}{\alpha(1-\varphi)(1+n)}=\frac{1-\alpha+(1+\alpha(1-2 \varphi)) n}{\alpha(1-\varphi)(1+n)}
$$

Therefore, the sign of terms in the square bracket is determined by the sign of

$$
\begin{aligned}
& -d_{\varepsilon} \varphi n\{1-\alpha+(1-\alpha \varphi) n\}(1+n)+\{1-\alpha+(1+\alpha(1-2 \varphi)) n\}\left(1+d_{\varepsilon} \varphi n\right) \\
= & -\left[d_{\varepsilon} \varphi(1-\alpha \varphi) n^{3}+d_{\varepsilon} \varphi\{1-\alpha(2-\varphi)\} n^{2}-\{1+\alpha(1-2 \varphi)\} n-(1-\alpha)\right] .
\end{aligned}
$$

Defining

$$
\begin{gathered}
\Gamma(n) \equiv d_{\varepsilon} \varphi(1-\alpha \varphi) n^{3}+d_{\varepsilon} \varphi\{1-\alpha(2-\varphi)\} n^{2}-\{1+\alpha(1-2 \varphi)\} n-(1-\alpha), \\
(39) \text { is } \begin{array}{c}
\text { increasing } \\
\text { decreasing }
\end{array} \text { in } n \text { if and only if } \Gamma(n)<0 .
\end{gathered}
$$

First, $\Gamma(n)$ can be written as

$$
\begin{equation*}
\Gamma(n)=d_{\varepsilon} \varphi n^{2}[(1-\alpha \varphi) n+1-\alpha(2-\varphi)]-[\{1+\alpha(1-2 \varphi)\} n+1-\alpha] . \tag{40}
\end{equation*}
$$

Consider $(1-\alpha \varphi) n+1-\alpha(2-\varphi)$ and $\{1+\alpha(1-2 \varphi)\} n+1-\alpha$. Both are positive and linearly increasing in $n \geq 1$. Therefore,

$$
\Gamma(n) \lessgtr 0 \Leftrightarrow d_{\varepsilon} \varphi n^{2} \lessgtr \frac{\{1+\alpha(1-2 \varphi)\} n+1-\alpha}{(1-\alpha \varphi) n+1-\alpha(2-\varphi)}
$$

Since $1-\alpha \varphi<1+\alpha(1-2 \varphi)$ and $1-\alpha(2-\varphi)<1-\alpha$, the former is strictly smaller than the latter for any $n \geq 1$. Because $\frac{\{1+\alpha(1-2 \varphi)\} n+1-\alpha}{(1-\alpha \varphi) n+1-\alpha(2-\varphi)}>1$ for all $n, \Gamma(n)<0$ for all $n \leq \sqrt{\frac{1}{d_{\varepsilon} \varphi}}$. Because the first term in (40) is strictly convex and cuts the second linear term from below, there is a unique $n^{*}>\sqrt{\frac{1}{d_{\varepsilon} \varphi}}$ for which $\Gamma\left(n^{*}\right)=0$ and

$$
\Gamma(n) \lessgtr 0 \Leftrightarrow n \lessgtr n^{*} .
$$

Thus, Π is uniquely maximized at $n=n^{*}$.
(b) For a strategic equilibrium,
$\exp \left(2 \rho \Pi^{s t}\right)=1-\alpha+\alpha^{2}\left(1-d_{\varepsilon}\right)(1-\varphi)\left(\frac{n-1}{n}-\frac{n+1}{n} \frac{\varphi}{1-\varphi}\right)\left(\frac{1-\alpha}{\alpha}+\frac{n}{1+n}(1-\varphi)\right)$.
Thus, $\lim _{n \rightarrow \infty} \Pi^{s t}=\Pi^{n t}$. The optimal market size maximizes

$$
\begin{equation*}
O_{n} \frac{\frac{n-1}{n}-\frac{n+1}{n} \frac{\varphi}{1-\varphi}}{\frac{n}{1+n}} \tag{42}
\end{equation*}
$$

where O_{n} is given in (39). Taking the derivative with respect to n,

$$
\begin{equation*}
\left(\frac{d}{d n} O_{n}\right) \frac{\frac{n-1}{n}-\frac{n+1}{n} \frac{\varphi}{1-\varphi}}{\frac{n}{1+n}}+O_{n} \frac{d}{d n}\left\{\frac{\frac{n-1}{n}-\frac{n+1}{n} \frac{\varphi}{1-\varphi}}{\frac{n}{1+n}}\right\} . \tag{43}
\end{equation*}
$$

Because

$$
\frac{\frac{n-1}{n}-\frac{n+1}{n} \frac{\varphi}{1-\varphi}}{\frac{n}{1+n}}=\frac{n^{2}-1}{n^{2}}-\frac{n^{2}+2 n+1}{n^{2}} \frac{\varphi}{1-\varphi}
$$

increases in n, and $\frac{d}{d n} O_{n}=0$ at n^{*}, (43) is strictly positive for all $n \leq n^{*}$. Therefore, the optimal market size $n_{s t}^{*}$ is greater than n^{*}.
(c) We find the condition that implies $\sqrt{\frac{1}{d_{\varepsilon} \varphi}}>\frac{1}{\varphi}-2$, which in turn implies $n^{*}>\widehat{n}$. Using $\frac{1}{d_{\varepsilon}}=1+\frac{\tau_{v}}{\tau_{\varepsilon}}$,

$$
\begin{aligned}
\sqrt{\frac{1}{\varphi}\left(1+\frac{\tau_{v}}{\tau_{\varepsilon}}\right)} & >\frac{1}{\varphi}-2 \Leftrightarrow \frac{1}{\varphi}\left(1+\frac{\tau_{v}}{\tau_{\varepsilon}}\right)>\left(\frac{1}{\varphi}\right)^{2}-4 \frac{1}{\varphi}+4 \\
& \Leftrightarrow\left(\frac{1}{\varphi}\right)^{2}-\left(\frac{\tau_{v}}{\tau_{\varepsilon}}+5\right) \frac{1}{\varphi}+4<0 \\
& \Leftrightarrow 4 \varphi^{2}-\left(\frac{\tau_{v}}{\tau_{\varepsilon}}+5\right) \varphi+1<0
\end{aligned}
$$

Therefore, we need $\varphi \in\left(\frac{\frac{\tau_{v}}{\tau \varepsilon}+5-\sqrt{9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau v}{\tau \varepsilon}\right)^{2}}}{8}, \frac{\frac{\tau_{v}}{\tau \varepsilon}+5+\sqrt{9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau_{v}}{\tau_{\varepsilon}}\right)^{2}}}{8}\right)$, where $\frac{\frac{\tau_{v}}{\frac{\tau_{\varepsilon}}{\tau}}+5+\sqrt{9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau_{v}}{\tau_{\varepsilon}}\right)^{2}}}{8}>$ 1 and

$$
\begin{aligned}
\frac{\frac{\tau_{v}}{\tau_{\varepsilon}}+5-\sqrt{9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau_{v}}{\tau_{\varepsilon}}\right)^{2}}}{8} & =\frac{\left(\frac{\tau_{v}}{\tau_{\varepsilon}}+5\right)^{2}-\left(9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau_{v}}{\tau_{\varepsilon}}\right)^{2}\right)}{8\left(\frac{\tau_{v}}{\tau_{\varepsilon}}+5+\sqrt{\left.9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau_{v}}{\tau_{\varepsilon}}\right)^{2}\right)}\right.} \\
& =\frac{2}{\frac{\tau_{v}}{\tau_{\varepsilon}}+5+\sqrt{9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau_{v}}{\tau_{\varepsilon}}\right)^{2}}} \in\left(0, \frac{1}{4}\right) .
\end{aligned}
$$

For any fixed $\varphi \in(0,1)$, sufficiently large τ_{v} implies $\frac{2}{\frac{\tau_{v}}{\tau_{\varepsilon}}+5+\sqrt{9+10 \frac{\tau_{v}}{\tau_{\varepsilon}}+\left(\frac{\tau_{v}}{\tau_{\varepsilon}}\right)^{2}}}<\varphi$ and hence $\sqrt{\frac{1}{d_{\varepsilon} \varphi}}>\frac{1}{\varphi}-2$.

- (A11)

2.4.2 The case with $\mu \omega<1$

Lemma A12 (optimal market size with $\mu \omega<1$)
(a) $\lim _{n \rightarrow \infty} \exp (2 \rho \Pi)=\lim _{n \rightarrow \infty} \exp \left(2 \rho \Pi^{s t}\right)=1-\alpha+\alpha \frac{1-\omega+(1-\mu) \frac{d_{\varepsilon}}{1-d_{\varepsilon}}}{1-\omega+\frac{d_{\varepsilon}}{1-d_{\varepsilon}}}$.
(b) Π and $\Pi^{s t}$ decrease in n for sufficiently large n, and $n_{s t}^{*}>n^{*}$.

Proof.

(a) From Lemma A2, $\lim _{n \rightarrow \infty} n \varphi=\infty$ while $\lim _{n \rightarrow \infty} \varphi=0$. Thus, $\lim _{n \rightarrow \infty} X=\lim _{n \rightarrow \infty} X^{s t}=1$ and

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\tau_{v}}{\tau} & =\frac{1-\omega+\omega d_{\varepsilon}-\mu d_{\varepsilon}}{1-\omega+\omega d_{\varepsilon}} \\
& =\frac{(1-\omega)\left(1-d_{\varepsilon}\right)+d_{\varepsilon}-\mu d_{\varepsilon}}{(1-\omega)\left(1-d_{\varepsilon}\right)+d_{\varepsilon}} \\
& =\frac{1-\omega+(1-\mu) \frac{d_{\varepsilon}}{1-d_{\varepsilon}}}{1-\omega+} \frac{d_{\varepsilon}}{1-d_{\varepsilon}}
\end{aligned}
$$

(b) First,

$$
\begin{aligned}
\frac{\tau_{v}}{\tau} & =\frac{\left(1-\mu d_{\varepsilon}\right) \frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}+1-\mu d_{\varepsilon}-\omega\left(1-d_{\varepsilon}\right)}{\frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}+1-\omega\left(1-d_{\varepsilon}\right)} \\
& =\frac{\left(1-\mu d_{\varepsilon}\right)\left(\frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}+1\right)-\omega\left(1-d_{\varepsilon}\right)}{\frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}+1-\omega\left(1-d_{\varepsilon}\right)} \\
& =\frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}\left(1+\frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}\right)-\omega}{\frac{1}{1-d_{\varepsilon}}\left(1+\frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}\right)-\omega} \\
& =\frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega+\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}} \frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}}{\frac{1}{1-d_{\varepsilon}}-\omega+\frac{1}{1-d_{\varepsilon}} \frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}} \in\left(\frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega}{\frac{1}{1-d_{\varepsilon}}-\omega}, 1-\mu d_{\varepsilon}\right) .
\end{aligned}
$$

This decreases in n and $\lim _{n \rightarrow \infty} \frac{\tau_{v}}{\tau}=\frac{\frac{1-\mu d_{\varepsilon}}{1-d_{\varepsilon}}-\omega}{\frac{1}{1-d_{\varepsilon}}-\omega}$, because $\lim _{n \rightarrow \infty} \frac{\alpha_{\varepsilon} B^{2}+\omega}{\omega n}=0$ at the rate $n^{-\frac{1}{3}}$.
Next,

$$
\begin{aligned}
X & =\frac{n}{1+n} \frac{1-\varphi}{1-(1-\omega) \varphi} \\
& =\frac{n}{1+n} \frac{\varphi}{1-(1-\omega) \varphi} \frac{1-\varphi}{\varphi} \\
& =\frac{n}{1+n} \frac{\alpha_{\varepsilon} B^{2}}{\frac{1}{\varphi}-(1-\omega)} \\
& =\frac{n}{1+n} \frac{\alpha_{\varepsilon} B^{2}}{\alpha_{\varepsilon} B^{2}+\omega} \\
& =\frac{1}{1+n^{-1}} \frac{\alpha_{\varepsilon}}{\alpha_{\varepsilon}+\omega B^{-2}} \in(0,1)
\end{aligned}
$$

This increases in n and $\lim _{n \rightarrow \infty} X=1$, because $\lim _{n \rightarrow \infty} B^{-2}=0$ at the rate $n^{-\frac{2}{3}}$. Because both $\frac{\tau_{v}}{\tau}$ and X monotonically converge to positive limits, whether $\frac{\tau_{v}}{\tau} X(1-\alpha+\alpha X)$ decreases in n for sufficiently large n depends on which force (increasing or decreasing) converges faster. We use the following fact:

Fact 2. Consider $n \geq 1$ and $\left\{a_{j}, d_{j}\right\}_{j=1}^{J}, b, c, e, f>0$. Let $\underline{a} \equiv \min _{j} a_{j}$.

$$
\begin{aligned}
& {\left[\prod_{j=1}^{J} \frac{d_{j}}{n^{-a_{j}}+d_{j}}\right] \times \frac{n^{-b}+e}{n^{-b}+f} \times\left(1-n^{-c}\right) \text { decreases in } n \text { for sufficiently large } n} \\
& \text { if } b<\min \{\underline{a}, c\} \text { and } e<f .
\end{aligned}
$$

Apply Fact 2 to $\frac{\tau_{v}}{\tau} X$ and $\frac{\tau_{v}}{\tau} X^{2}$, where $b=\frac{1}{3}, \underline{a}=\frac{2}{3}$. Thus, Π decreases in n for sufficiently large n.

For $\Pi^{s t}$, note that

$$
\begin{aligned}
X^{s t} & =\frac{n-1}{n}-\frac{n+1}{n} \frac{\omega}{\alpha_{\varepsilon} B^{2}} \\
& =1-\frac{1}{n}-\left(1+\frac{1}{n}\right) \frac{\omega}{\alpha_{\varepsilon} B^{2}} \\
& =1-\frac{\omega}{\alpha_{\varepsilon} B^{2}}-\frac{1}{n}\left(1+\frac{\omega}{\alpha_{\varepsilon} B^{2}}\right)
\end{aligned}
$$

approaches its upper bound 1 at the rate at which $\frac{1}{B^{2}}$ approaches zero, which is $n^{-\frac{2}{3}}$. Apply Fact 2 to $\frac{\tau_{v}}{\tau} X^{s t}$ and $\frac{\tau_{v}}{\tau} X^{s t} X$, where $b=\frac{1}{3}, \underline{a}=c=\frac{2}{3}$.

Finally, from Lemma A10, $\frac{X^{s t}}{X}=1-\widetilde{\lambda}<1$ increases in n. Therefore, $\Pi^{s t}$ still increases in n at n^{*} and $n^{*}<n_{s t}^{*}$. \quad (A12)

Proof of Fact 2. Take log to obtain

$$
\sum_{j=1}^{J}\left\{\ln d_{j}-\ln \left(n^{-a_{j}}+d_{j}\right)\right\}+\ln \left(n^{-b}+e\right)-\ln \left(n^{-b}+f\right)+\ln \left(1-n^{-c}\right)
$$

Taking the derivative with respect to n,

$$
\begin{aligned}
& \sum_{j=1}^{J} \frac{a_{j} n^{-a_{j}-1}}{n^{-a_{j}}+d_{j}}-\frac{b n^{-b-1}}{n^{-b}+e}+\frac{b n^{-b-1}}{n^{-b}+f}+\frac{c n^{-c-1}}{1-n^{-c}} \\
= & \frac{1}{\left(n^{-b}+e\right)\left(n^{-b}+f\right)\left(1-n^{-c}\right) \prod_{j=1}^{J}\left(n^{-a_{j}}+d_{j}\right)} \times \\
& {\left[\left(n^{-b}+e\right)\left(n^{-b}+f\right)\left(1-n^{-c}\right) \sum_{j=1}^{J}\left\{a_{j} n^{-a_{j}-1} \prod_{k \neq j}\left(n^{-a_{k}}+d_{k}\right)\right\}\right.} \\
& \left.-\left[b n^{-b-1}\left\{\left(n^{-b}+f\right)-\left(n^{-b}+e\right)\right\}\left(1-n^{-c}\right)-c n^{-c-1}\left(n^{-b}+e\right)\left(n^{-b}+f\right)\right] \prod_{j=1}^{J}\left(n^{-a_{j}}+d_{j}\right)\right] \\
= & \frac{\left(n^{-b}+e\right)\left(n^{-b}+f\right)\left(1-n^{-c}\right) \sum_{j=1}^{J} \frac{a_{j} n^{-a_{j}}}{n^{-a_{j}}+d_{j}}-\left\{b n^{-b}(f-e)\left(1-n^{-c}\right)-c n^{-c}\left(n^{-b}+e\right)\left(n^{-b}+f\right)\right\}}{n\left(n^{-b}+e\right)\left(n^{-b}+f\right)\left(1-n^{-c}\right)} \\
= & \frac{\left(n^{-b}+e\right)\left(n^{-b}+f\right)\left(1-n^{-c}\right) \sum_{j=1}^{J} a_{j} \frac{n^{\underline{a}}}{1+d_{j} n^{a_{j}}}-\left\{b n^{-a}(f-e)\left(1-n^{-c}\right)-c n^{\underline{a}-c}\left(n^{-b}+e\right)\left(n^{-b}+f\right)\right\}}{n\left(n^{-b}+e\right)\left(n^{-b}+f\right)\left(1-n^{-c}\right)} .
\end{aligned}
$$

If $b<\min \{\underline{a}, c\}$ and $e<f$, the numerator is negative for sufficiently large n. (F2)

[^0]: *Department of Economics, University of Melbourne, e-mail: kei.kawakami@gmail.com, website: http://sites.google.com/site/econkeikawakami/

[^1]: ${ }^{1}$ Similarly, $E_{i}\left[\pi_{i}\right]=\Pi_{i}$ does not hold.

