
ONLINE APPENDIX

Secure Survey Design in Organizations:

Theory and Experiments

Sylvain Chassang and Christian Zehnder

A Extensions

A.1 Contractual versus Reputational Incentives

In our model, the monitor is incentivized not to submit a report r = 1 by ex ante threats from

the agent: this is a contracting environment. In contrast, the survey methods inspired by

Warner (1965) tend to be concerned with reputational incentives, i.e. what inferences people

will draw about their behavior from realized reports. However, there is a close relationship

between ex ante contractual threats, and ex post retaliation. In both cases, the effectiveness

of threats depends on the informativeness of signal r̃ = 1:

prob(r̃ = 1|r = 1)

prob(r̃ = 1|r = 0)
=

1

prob(r̃ = 1|r = 0)
.

For this reason, garbling reports plays an essentially identical role under contractual and

reputational incentives.

Contractual incentives. Consider a Bad agent, and assume for simplicity that altruism

α is less than α∗, so that monitors send report r = 0 whenever the agent commits to retaliate.

Then it is optimal for the agent to commit to retaliate if and only if

D −KA × prob(r̃ = 1|r = 0) > 0 ⇐⇒ 1

prob(r̃ = 1|r = 0)
>
KA

D
.

Hence the monitor faces retaliation following r̃ = 1 if and only if 1
prob(r̃=1|r=0)

is large

enough. Hence, sufficiently high garbling shuts down retaliation in equilibrium.

Reputational incentives. We now consider a setting in which the monitor is motivated

by reputational incentives. There are no ex ante threats. Instead, the agent exhibits spite
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and may retaliate in a manner commensurate to her belief that the monitor caused her harm

(see Chassang and Zehnder, 2016, for a model along these lines).

Assume that the ex post expected punishment KM experienced by the monitor in the

event r̃ = 1 is a function of the likelihood ratio of true reports conditional on the realization

r̃ = 1:

KM

(
prob(r = 1|r̃ = 1)

prob(r = 0|r̃ = 1)

)
.

It follows from Bayes rule that

log

(
prob(r = 1|r̃ = 1)

prob(r = 0|r̃ = 1)

)
= log

(
prob(r̃ = 1|r = 1)

prob(r̃ = 1|r = 0)

)
+ log

(
prob(r = 1)

prob(r = 0)

)
= log

(
1

prob(r̃ = 1|r = 0)

)
+ log

(
prob(r = 1)

prob(r = 0)

)

Garbling reduces term log
(

1
prob(r̃=1|r=0)

)
thereby diminishing the reputational impact of

information transmission.

Reputation concerns without retaliation. In many settings, instead of being con-

cerned with potential retaliation or her own reputation, the monitor may be concerned with

the impact information may have on the agent’s reputation. Consider the problem of detect-

ing mental health or substance abuse issues for teams operating in high stakes environments,

such as military and law enforcement units. High degrees of loyalty are essential for such

teams. As a result, team members may be unwilling to signal that a teammate is experi-

encing issues: this may have a negative long-term impact on their teammate’s career. In

such situations, suitably garbled information channels may help concerned team members

get help for their teammates without endangering their teammates future careers. Because

there is no embedded antagonism, this class of applications may also exhibit reduced rates

of false reporting.

A.2 Properties of QRL-k

Model. Consider the class of finite extensive-form games, with players i ∈ I, in which

players move at most once, and past actions are public. The set of strategies of player i

takes the form Si =
∏

hi∈Hi Ahi where Ahi is the set of actions available to player i at history

hi. For any profile of marginal distributions over strategies (µi)i∈I ∈
∏

i∈I ∆(Si), we denote

by µ−i the product of independent distributions
∏

j 6=i µj. Expected payoffs to player i are
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denoted by ui(si, s−i). Payoffs conditional on a decision node hi and action ai ∈ Ahi are

simply denoted by ui(ai, s−i).

Definition A.1 (QRL-k model). A quantal response level-k model of play consists of

(i) A sequence (µi,k)i∈I,k∈N of distributions of play µi,k ∈ ∆(Si), and independent

noise terms εi ∈ RSi such that for all si ∈ suppµi,k, hi ∈ Hi, ai ∈ Ahi, and k ≥ 1,

(7) probµi,k(ai = si(hi)) = probεi

(
ai = arg max

ai∈Ahi
Uhi(ai, µ−i,k−1, εi)

)
where Uhi(ai, εi, µ−i,k−1) ≡ Es−i∼µ−i,k−1

[ui(ai, s−i)] + εi(ai).

(ii) A profile (λi)i∈I of distribution of levels λi ∈ ∆(N) describing the distribution

of cognitive levels for each player.

A QRL-k model of play induces a distribution µQRL over strategy profiles s = (si)i∈I

described by

(8) µ(s) =
∑

(ki)i∈I∈NI

∏
i∈I

λi(ki)µi,k(si).

Definition A.2 (Common downward belief in rationality.). We say that a player i of level

k exhibits common downward belief in rationality at history hi if and only if

• hi is a final decision node, and k ≥ 1, or

• i believes that any player j with a decision node hj after hi exhibits common downward

belief in rationality at hj.

Lemma A.1 (limited impact of higher levels). Consider an extensive-form single move game

with N players and a QRL-k model of play. If k ≥ N , then at any history hi, player i exhibits

common belief in downward rationality and µi,k = µi,k+1.

Proof. Denote by #succ(hi) the number of players that can play after history hi. Since

the game is a single move game, whenever h′ follows h, #succ(h′) ≤ #succ(h) − 1. Hence

at any final decision node f (i.e. decision node that leads to final payoff realizations), there

may have been at most N − 1 decisions taken. This implies common belief in downward

rationality from the initial node.

The statement that µi,k = µi,k+1 follows from backward induction. �
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This implies that considering only players whose level of rationality is less than 2 is

without loss of generality in the two-player survey games studied in Section VII.

B Further Empirical Analysis

B.1 Trends

This section reports trends in our first wave of experiments.

Figure B.1: agents’ commitment to punish over time
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Note: The figure displays time trends in the frequency with which Good and
Bad agents commit to punish under DE and HG. The variable % Commit-
ment to Punish measures the within-type percentage of agents who commit
to punish. Error bars mark ±1 standard error from the mean (clustered at
the session level).

Commitment to Punish. Figure B.1 displays the time trends of the frequency with which

Good and Bad agents commit to punish under direct response and hard garbling. The figure

confirms that Bad agents consistently reduce the frequency of punishment threats in HG

relative to DE. The frequency of threats by Bad agents increases moderately over time under
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both HG and DE. However, the time trend (OLS) is only significant in DE (DE: β = 0.007,

p = 0.001; HG: β = 0.004, p = 0.234).

In addition, Figure B.1 also shows that Good agents’ commitment to punish under HG

does not diminish over time in HG (β = 0.002, p = 0.697). This observation is important,

because commitment to punish under HG is not consistent with equilibrium.

Treatment effects. The fact that monitors report Good agents more frequently under

DE than HG biases treatment effect estimators. As Figure B.2 shows, differences in the false

reporting of Good agents do not disappear over time. Under direct elicitation the reporting

of Good agents remains roughly constant over time (β = −0.0005, p = 0.423), whereas

reporting decreases under hard garbling (β = −0.0012, p = 0.010). An estimation of the

difference based on data of the final five periods alone therefore yields a larger (and marginally

significant) difference: ∆RG = 3 percentage points (OLS: p = 0.056, RS: p = 0.210).

Figure B.2: reporting of good agents over time
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Note: The figure shows the development of intended reporting against Good
agents under DE and HG over time. The variable %Reporting Intent against
Good Agents measures the frequency with which monitors intend to submit
a positive report r = 1 against a Good agent. Error bars mark ±1 standard
error from the mean (clustered at the session level).
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Learning dynamics. We note in Section VI that experimental behavior under RR is

roughly self-confirming. Bad agents do not experiment with punishment threats, and fail to

learn that monitors respond to incentives. One objection to this interpretation is that agents

can get evidence that monitors do not always take the unrelated question seriously: Good

agents who do not commit to punish face a reporting rate of 6% rather than 25% under RR.46

This means that for the self-confirming interpretation to be correct, agents must not make

successful inferences about continuation play when their type is Bad using data collected

when their type is Good. The data suggest that this is indeed the case.

Table B.1 reports (purely correlational) findings from regressing the number of threats

given type in periods 11 to 20 on the number of threats given type in periods 1 to 10.

Experience emitting threats when Good is not correlated to future threats conditional on

being a Bad type, but is highly correlated to future threats conditional on being Good.

Table B.1: agents’ future behavior is related to context-relevant experience only.

# late threats | good Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept -0.137 0.422 -0.330 0.758 -1.221 0.947
# early threats | good 1.199 0.079 15.270 0.000 0.997 1.401
# early threats | bad 0.082 0.133 0.610 0.567 -0.261 0.425

# late threats | bad Coef. Std.Err. z P > |z| [0.025 0.975]

Intercept 1.699 0.685 2.480 0.056 -0.062 3.461
# early threats | good 0.123 0.086 1.440 0.209 -0.097 0.343
# early threats | bad 0.858 0.137 6.280 0.002 0.507 1.210

Note: OLS estimation, standard errors clustered at the session level.

B.2 Reporting of Good Agents

We noted in Section VII that monitors report Good agents at a greater rate under DE than

either HG or RR, and that this is driven by the reporting of good agents who do not commit

to punish. The QRL-k model correctly predicts that Good agents issue threats at lower rates

46It is important to keep in mind that agents do not see this aggregated information, but need to learn
it over time. Such learning is difficult and slow, because agents only have very few observations at their
disposal.
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under RR and HG than DE, but fails to predict differences in the reporting of Good agents

by monitors.

One possible explanation is that monitors may sometimes have antagonistic feelings

against agents as a whole, and that those antagonistic feelings are more frequent under

DE because DE shifts payoffs from monitors towards agents. Table B.2 shows that although

on average, monitors tend to do better than agents, this varies across treatments. Under

both RR and HG the average monitor payoff is roughly 60 points ahead of the average agent

payoff, and the share of rounds in which the agent comes out ahead is under 15%. In con-

trast, under DE the average monitor payoff is only 12 points ahead the average agent payoff,

and the agent comes out ahead in 42% of rounds. It is therefore plausible that monitors

would be more likely to harbor antagonistic feeling towards agents under DE than either RR

or HG.

Table B.2: Agent and monitor payoffs and behavior across treatments

DE HG RR
Average Agent Payoff 50.13 15.07 39.47
Average Monitor Payoff 62.0 74.2 100.87
Share of Rounds Agent Ahead 0.42 0.15 0.10
Share of Good Non-Threatening
Agents Reported

0.13 0.06 0.06

In turn, reporting Good, non-threatening, agents is an efficient way for spiteful monitors

to act on their feelings. Reporting a Good non-threatening agent causes a 10 points direct

loss to the monitor, versus a 100 points direct loss to the agent. In contrast, reporting a

Good agent that commits to punish causes a 200 points direct loss to the monitor, versus

a 200 points direct loss to the agent, while reporting a Bad agent that commits to punish

causes a 170 points direct loss to the monitor, versus a 200 points direct loss to the agent.

Reflecting such social preferences in the model of Section VII seems plausibly doable but

goes beyond the scope of the paper.

B.3 Social Learning Treatments

In this section we describe in greater detail the results from our second wave of experiments.

In those treatments we provide participants with conditional payoff information elicited in
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previous sessions of the same experiment.47 We describe how conditional payoff information

affects outcomes under our three elicitation mechanisms (DE, RR, HG).

Figure B.3: impact of social learning on output and punishment
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Note: The figure shows average output and the overall frequency of pun-
ishment. The variable Output corresponds to average per-period output at
the session level. The variable % Punishment represents the percentage of
agent-monitor pairs in which punishment occurred. Error bars mark ±1
standard error from the mean (clustered at the session level).

Output and punishment. Figure B.3 displays average output and punishment frequen-

cies for all elicitation mechanisms in our original treatments and the social learning treat-

ments. The figure reveals that our finding that randomized response gets the best of both

survey procedures (see section VI.A) no longer holds once social learning is possible. While

there is no significant impact on average output under DE and HG48, the availability of con-

ditional payoff information reduces average output under RR from 870 to 527 points (OLS:

p = 0.018, RS: p = 0.046). As a consequence, there is no longer a significant difference in

average output between DE (497) and RR (527) under social learning (OLS: p = 0.769, RS:

47Agents are informed about sample averages of agent profits conditional on agent type and commitment to
punish. Monitors learn sample averages of monitor profits conditional on agent quality, agent’s commitment
to punish, and the reporting decision.

48Under DE average output slightly increases from 480 to 497 points (OLS: p = 0.846, RS: p = 1.000)
and under HG average output slightly decreases from 798 to 735 points (OLS: p = 0.410, RS: p = 0.699).
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p = 0.873).49 Finally, while the availability of conditional payoff information leads to slightly

lower punishment frequencies under DE (8.0% vs. 6.2%, OLS: p = 0.067, RS: p = 0.143) and

HG (17.8% vs. 15.5%, OLS: p = 0.048, RS: p = 0.035), the punishment frequency under RR

increases insignificantly (8.1% vs. 9.1%, OLS: p = 0.546, RS: p = 0.563).

Figure B.4: output and punishment under social learning
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Note: The figure displays the development of average output and the over-
all frequency of punishment in all social learning treatments (DE, RR and
HG). The variable Output corresponds to average per-period output at the
session level. The variable % Punishment represents the percentage of agent-
monitor pairs in which punishment occurred. Error bars mark ±1 standard
error from the mean (clustered at the session level).

The fact that randomized response no longer outperforms direct elicitation in the presence

of conditional payoff information is further confirmed by a dynamic analysis. Figure B.4

displays the development of average output and realized punishment in the social learning

treatments over time. Average output under RR and DE converges across treatments after

the first five periods, and then exhibit the same negative time-trend until the end of the

experiment (DE: β = −18.205, p < 0.001, RR: β = −22.705, p < 0.001). Average output

under HG, in contrast, experiences only a weak and non-significant negative time trend and

49In the presence of social learning average output under HG is significantly higher than under DE (OLS:
p = 0.003, RS: p = 0.024) and under RR (OLS: p = 0.064, RS: p = 0.097).
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stabilizes at a much higher level than in the other two treatments (β = −3.744, p = 0.155).

In the final five periods average output under HG is roughly 700 points, compared to 330

points under DE (OLS: p = 0.002, RS: p = 0.022), and 350 points under RR (OLS: p = 0.017,

RS: p = 0.071). The punishment frequencies show mildly negative time trends under DE

(β = −0.002, p < 0.001) and RR (β = −0.004, p = 0.002), while the punishment frequency

under HG remains by and large constant over time (β = −0.001, p = 0.335).

Commitment to punish, and reporting. Figure B.5 summarizes the impact of social

learning on agents’ commitment to punish and monitors’ reporting intents. Regarding pun-

ishment commitments Panel A reveals that social learning almost exclusively affects agents’

behavior under RR. In particular, the frequency with which Bad agents commit to punish

under RR increases from 52% in the original treatment to 77% in the social learning treat-

ment (OLS: p = 0.009, RS: p = 0.028). The rates at which Bad agents commit to punish

under DE and HG and those of Good agents under all treatments do not significantly change

in response to the presence of conditional payoff information.50 The increase in the frequency

with which Bad agents commit to punish under RR in the social learning environment implies

that there is no longer a difference in the commitment rate of Bad agents between RR (77%)

and DE (77%, OLS: p = 0.880, RS: p = 0.784). Moreover, the commitment rate of Bad

agents under HG (64%) is significantly lower than under both other elicitation mechanims

(HG vs. DE: OLS: p = 0.006, RS: p = 0.017, HG vs. RR: OLS: p = 0.029, RS: p = 0.058).51

Panel B shows that the impact of social learning on monitors’ reporting intents is also

most pronounced under RR. While the introduction of conditional payoff information only

leads to a moderate reduction in the frequency with which monitors intend to report Bad

agents under DE (35% vs. 34%, OLS: p = 0.861, RS: p = 0.565) and HG (53% vs. 44%,

OLS: p = 0.086, RS: p = 0.292), the frequency of intended reports under RR drops from

60% in the original treatment to 37% in the social learning treatment (OLS: p = 0.018, RS:

p = 0.041). As a consequence, the rate of reporting intents against Bad agents is no longer

different between RR and DE (OLS: p = 0.611, RS: p = 0.855). With respect to reporting

50In the following the first (resp. second) percentage corresponds to the rate at which agents commit to
punish under the original (resp. social learning) treatment. DE: Bad agents (75% vs. 77%, OLS: p = 0.778,
RS: p = 0.613), Good agents (44% vs. 48%, OLS: p = 0.675, RS: p = 0.699). RR: Good agents (25% vs.
31%, OLS: p = 0.412, RS: p = 0.686). HG: Bad agents (60% vs. 64%, OLS: p = 0.512, RS: p = 0.619), Good
agents (28% vs. 23%, OLS: p = 0.305, RS: p = 0.619).

51Note that even with conditional information, the commitment rate of Good agents is significantly higher
under DE (48%) than under RR (31%, OLS: p = 0.035, RS: p = 0.065) and HG (23%, OLS: p = 0.004, RS:
p = 0.015). The commitment rates of Good agents between RR and HG are not significantly different (OLS:
p = 0.209, RS: p = 0.619).
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intents against Good agents the presence of social learning opportunities implies that the

rate of reporting intents drops to low levels under DE (9% vs. 3%, OLS: p = 0.028, RS:

p = 0.290) and HG (5% vs. 3%, OLS: p = 0.324, RS: p = 0.463), but slightly increases under

RR (5% vs. 7%, OLS: p = 0.256, RS: p = 0.197). This implies that in the social learning

treatments the rate of false reporting against Good agents is significantly higher under RR

than under DE (OLS: p = 0.005, RS: p = 0.054).52

Figure B.5: impact of social learning on commitment to punish and reporting intent
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Note: The figure shows the observed frequencies of reporting intent and
commitment to punish in all treatments. The variable % Commitment to
Punish measures the within-type percentage of agents who commit to pun-
ish. The variable %Reporting Intent measures the frequency with which
monitors intend to submit a positive report r = 1 against an agent as a
function of the agent’s quality and the treatment. Error bars mark ±1
standard error from the mean (clustered at the session level).

Figure B.6 illustrates the dynamics of commitment to punish and reporting intents in the

52Under RR the rate of reporting intents differs depending on whether monitors answer the relevant or
the unrelated question. If monitors answer the relevant question, the introduction of conditional payoff
information reduces reporting intents against Bad agents from 58% to 35% (OLS: p = 0.020, RS: p = 0.055)
and reporting intents against Bad agents from 3% to 2% (OLS: p = 0.594, RS: p = 0.394). In case of the
unrelated question, conditional payoff information reduces reporting intents against Bad agents from 64% to
45% (OLS: p = 0.042, RS: p = 0.084), but increases reporting intents against Bad agents from 12% to 21%
(OLS: p = 0.035, RS: p = 0.048).
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social learning treatment. The figure illustrates that both DE and RR suffer from increasingly

undesirable behavior over time. In particular, Bad agents commit to punish more frequently

over time (DE: β = 0.007, p < 0.001, RR: β = 0.009, p < 0.001, see Panel A) and are

reported less frequently (DE: β = −0.009, p < 0.001, RR: β = −0.015, p < 0.001, see

Panel C). Under HG these time trends are either absent (commitment rate of Bad agents:

β = 0.000, p = 0.960) or weak (reporting of Bad agents: β = −0.004, p = 0.086). These

findings reinforce the conclusion that the high performance of randomized response observed

in the first wave of experiments cannot be sustained in organizational settings in which social

learning is feasible. The improved survey quality obtained under hard garbling, in contrast,

remains stable.

Figure B.6: commitment to punish and reporting intent under social learning
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Estimating treatment effects. Figure B.7 shows that the bias of estimator ∆̂RB for

the treatment effect of HG relative to DE disappears almost completely when players get

feedback about conditional payoffs. The difference between reporting rates of Good agents

across treatments shrinks to RHG
G − RDE

G = 1.4% − 1.3% = 0.1 (or more precisely 0.07)

percentage points (OLS: p = 0.910, RS: p = 0.896). The 95% confidence interval for the

difference is [−0.01, 0.01]. As a consequence, the estimated treatment effect is essentially

unbiased when using the data obtained from the experiments in which social learning is

possible. We note that the improved consistency of our treatment effect estimator under

social learning is not caused by a higher frequency of threats from Good agents under DE

(48% with information versus 44% without information, OLS: p = 0.675, RS: p = 0.699), but

rather by a lower reporting rate of monitors against agents who do not threaten to punish

(4% with information, versus 13% without information, OLS: p = 0.083, RS: p = 0.240).53

C Structural Investigation

The QRL-k model is identified in experimental data: parameters (α, σ, ν, ρ) can be recovered

from µQRL, which can be estimated using the sample distribution.

Proposition C.1 (model identification). For all survey games, HG, DE, and RR, parameters

α, σ, ν and ρ are identified from the following moments:

• play by the monitor at all histories, (µQRL(r = 1|c, τ)) c∈{0,1},
τ∈{G,B}

and,

• play by the agent conditional on her type, (µQRL(c = 1|τ))τ∈{G,B}.

We take the QRL-k model to the data (focusing on treatments without social learning)

with three objectives: first, we assess in-sample fit; second, we explore the model’s value in

evaluating counterfactual scenarios; third, we examine the sensitivity of findings to different

specifications.

53Under RR the reporting of Good agents remains somewhat higher in the presence of social learning:
RRR

G = 3.5%. This rate is significantly higher than under DE (OLS: p = 0.005, RS: p = 0.054) and HG (OLS:
p = 0.023, RS: p = 0.037). This effect is driven by responses to the unrelated question. If we exclude cases
in which the monitor answered the unrelated question, the reporting rate for Good agents under RR drops
to 1.2%. This rate is not significantly different from those under DE (OLS: p = 0.719, RS: p = 0.234) or HG
(OLS: p = 0.728, RS: p = 0.667).
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Figure B.7: intended reporting of good agents over time in the social learning treatments
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Note: The figure shows time trends in intended reporting against Good
agents under DE and HG in the social learning experiment. The variable
%Reporting Intent against Good Agents measures the frequency with which
monitors intend to submit a positive report r = 1 against a Good agent.
Error bars mark ±1 standard error from the mean (clustered at the session
level).

In-sample fit. For each treatment HG, DE, and RR in our first wave of experiments, we

estimate model parameters ρ (share of level 2 players), α (monitor altruism), σ (the scale of

payoff-responsive shocks), and ν (the mass of payoff-non-responsive shocks). While param-

eters are identified analytically (Proposition C.1), we note that the model is overidentified.

Given the potential for misspecification this leads us to estimate parameters using the simu-

lated method of moments (McFadden, 1989), specifically by minimizing the relative distance

between sample and simulated moments.

Table 3, in the main text, shows estimated parameters. A first observation is that

parameter estimates match the intuitive explanation for why RR performs so well: the share

of level 2 players ρ is lower under RR than under DE. This does not impact the behavior

of monitors (given agent’s type and commitment decision) but it makes agents more careful

about issuing threats since they believe that monitors may take the unrelated question

seriously.

A second observation is that the rate of payoff-non-responsive perturbations ν is large,
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especially under DE. As Table C.1 clarifies, this is driven by the behavior of monitors under

DE: they report Bad agents with probability 19.1% conditional on threats, which suggests

that they may have fairly high altruism; however, they also report Good agents with prob-

ability 12.8% in the absence of threats, which suggests that they have low altruism. These

contradictory facts end up being rationalized through a high rate of payoff-non-responsive

errors.

Table C.1: in-sample fit of empirical (E) and simulated (S) moments; “report” refers to an
intended report r = 1

HG DE RR
moment Emp./Sim.

threat given bad E 0.603 0.753 0.524
S 0.443 0.619 0.416

threat given good E 0.281 0.436 0.255
S 0.200 0.516 0.306

report bad given no threat E 0.893 0.832 0.933
S 0.976 0.958 0.966

report bad given threat E 0.292 0.191 0.293
S 0.347 0.211 0.294

report good given no threat E 0.056 0.128 0.059
S 0.071 0.106 0.048

report good given threat E 0.033 0.037 0.031
S 0.024 0.042 0.034

D Proofs

Proof of Proposition 1. Monitors always submit report r = 0 conditional on the agent

type being Good, since this maximizes social surplus Y while minimizing expected potential

costs E[dr̃KM |r]. In turn, whenever π > 0 a Good agent maximizes her payoff by not

committing to punish.

Consider the case where the agent is Bad. If the agent commits to punish, the monitor
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sends report r = 1 if and only if(
1

n
+ α

n− 1

n

)
γLB −KM ≥ π

[(
1

n
+ α

n− 1

n

)
γLB −KM

]
⇐⇒ α ≥ nKM − γLB

(n− 1)γLB
= α∗.

If instead the agent commits not to punish, since α ≥ 0, the monitor reports the agent with

probability 1.

Altogether, recalling that p = prob(r = 1), this implies that it is optimal for the agent

to commit to punish if and only if

− (π + (1− π)p)× (D +KA) ≥ −D

⇐⇒ π + (1− π)p ≤ D

D +KA

.

This concludes the proof. �

Proof of Proposition 2. The fact that DE and RR are outcome equivalent is immediate.

The unrelated question is simply a relabeling of actions under direct elicitation.

Games HG and oRR differ only in the subgames after the agent commits to punish or not

(c ∈ {0, 1}). Under HG the monitor sends message r = 1 if and only if

UM(τ, c, r̃ = 1) ≥ πUM(τ, c, r̃ = 1) + (1− π)UM(τ, c, r̃ = 0)

⇐⇒ UM(τ, c, r̃ = 1) ≥ UM(τ, c, r̃ = 0).

Under oRR, when being asked to report the agent’s type, the monitor sends message r = 1 if

and only if UM(τ, c, r̃ = 1) ≥ UM(τ, c, r̃ = 0). By assumption, the monitor induces realized

report r̃ = 1 when asked the unrelated question. As a result, the equilibrium distributions of

realized reports r̃ conditional on any configuration (τ, c) coincide under oRR, and HG. As a

result, any joint distribution of outcomes (τ, c, r̃) supported by equilibrium play in one game

is supported by equilibrium play in the other game. �

Proof of Proposition 3. We have that Eµ[R̃] = RB + RG + (1 − RB − RG)π, hence

RB = Eµ[R̃]−π
1−π −RG. By the law of large numbers, µ-a.s., limN→∞ R̃ = Eµ[R̃].

Since R† = EµR̃ − RB − RG substituting the expression for RB above yields R† =

(1− EµR̃) π
1−π . Equation (4) follows from the Law of Large Numbers.
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It is immediate that RG = 0 if the monitor is rational: regardless of whether the agent

commits to punish or not, the monitor’s payoff is maximized by sending report r = 0.

When RG = 0, the expected mass of realized reports against Good agents EµR̃G satisfies

EµR̃G = RG + (1− q −RG)π

≤ RG + (1−RB −RG)π

≤

(
1− EµR̂− π

1− π

)
π = R†.

This bound is tight whenever q = RB, which occurs when all Bad types are reported. �

Proof of Proposition 4. Monitors of level 1 and 2 are both rational and act at final

decision nodes. Up to a relabeling, the reports of the monitor have the same implied realized

reports, and the same payoff consequences. As a result behavior by the monitor under the

two games conditional on any final decision node must be identical. This yields point (i)

Consider now a Bad agent deciding whether or not to commit to punish:

• A Bad agent of level 1 believes the monitor is level 0 and complies with the framing of

each game. As a result, under both RR and DE, the agent believes that with probability

1, the realized message will be r̃ = 1. Hence under both RR and DE Bad agents of

level 1 will behave identically.

• A Bad agent of level 2 realizes that the monitor is rational. We established under point

(i) that a rational monitor would behave in a way that yields identical realized reports

under RR and DE. As a result, Bad agents of level 2 behave in identical ways across

RR and DE.

If the share of level 1 and level 2 agents are the same across the two games, then the behavior

of Bad agents should coincide across RR and DE. �

Proof of Proposition 5. Consider the problem of a Good agent:

• A Good agent of level 1 believes that the monitor has level 0 and the monitor’s behavior

is not influenced by threats. In addition, under DE, the agent believes that the realized

report will be r̃ = 0 with probability 1. Under RR, the agent believes that the realized

report will be r̃ = 1 with probability π. As a result, Good agents of level 1 will choose

to commit to punish less frequently under RR than under DE.
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• A Good agent of level 2 realizes that the monitor is rational. We established under

point (i) of Proposition 4 that a rational monitor would behave in a way that yields

identical realized reports under RR and DE. As a result, Good agents of level 2 behave

in identical ways across RR and DE.

Whenever ρRR ≤ ρDE there are more level 1 agents under RR than DE. As a result, a smaller

share of Good agents commits to retaliate under RR than DE.

In turn, the behavior of monitors is the same across treatments RR and DE conditional

on the agent’s commitment to retaliation. Hence, a lower probability of commitment to

retaliate under RR than DE translates into a higher aver share of positive reports against

Good agents under RR than DE. �

Proof of Proposition C.1. We first consider the hard-garbling game HG. Consider the

behavior of a monitor after history (τ, c). Since this is a final decision node, monitors behave

rationally. The monitor chooses to send report r = 1 if and only if

Uα
M(r = 1|τ, c) + εr=1 ≥ Uα

M(r = 0|τ, c) + εr=0.

Let ∆UM(τ, c) ≡ Uα
M(r = 1|τ, c) − Uα

M(r = 0|τ, c) and r̄(τ, c) ≡ prob(r = 1|τ, c). We have

that

r̄(τ, c) = .5ν + (1− ν)
exp ∆UM (τ,c)

σ

1 + exp ∆UM (τ,c)
σ

.

Defining ¯̄r(τ, c) ≡ r̄(τ,c)−.5ν
1−ν , we have that

∆UM(τ, c)

σ
= log

¯̄r(τ, c)

1− ¯̄r(τ, c)
= log

r(τ, c)− ν/2
1− r(τ, c)− ν/2

.

This implies that

(9)
log r̄(G,0)−ν/2

1−r̄(G,0)−ν/2

log r̄(B,0)−ν/2
1−r̄(B,0)−ν/2

= − LG
γLB

.

It follows from the assumption that r̄(G, 0) < .5 < r̄(B, 0) that the left-hand side of (9)

is strictly decreasing in ν. Hence (9) has at most one solution. Given ν, values r̃(G, c = 0)
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and r̃(G, c = 1) pin-down σ:

σ =
KM(1− π)

log
¯̄r(G,0)

1−¯̄r(G,0)
− log

¯̄r(G,1)
1−¯̄r(G,1)

.

Given σ, parameter α is given by

−
σ log

¯̄r(G,0)
1−¯̄r(G,0)

LG(1− π)
− 1.

To pin down parameter ρHG, we need to consider play at non-terminal decision nodes.

Consider a Bad agent’s decision to commit to punish c = 1. The agent is level 1 with

probability ρHG and level 2 with probability 1− ρHG. When the agent is level 1, she believes

the monitor will send a report r = 1 whether or not she commits to punish. Hence an agent

of level 1 commits to punish if and only if

−D −KA + εc=1 ≥ −D + εc=0.

The probability of this event is

Pc=1|lev1,B = .5ν + (1− ν)
1

1 + exp(KA/σ)
.

An agent of level 2 realizes that the monitor will be influenced by her threat, and anticipates

that depending on her commitment c, the monitor will send report r = 1 if and only if

αY0 − cKM + εr=1 > α(Y0 − (1− π)LB)− πcKM + εr=0

which occurs with probability

µr=1|c,B = .5ν + (1− ν)
1

1 + exp
(

1−π
σ

(cKM − αLB)
) .

Hence a Bad agent of level 2 chooses to commit to punish whenever

−Dµr=1|c=1,B −KAµr=1|c=1,B + εc=1 ≥ −Dµr=1|c=0,B + εc=0.
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This event occurs with probability

Pc=1|lev2,B = .5ν + (1− ν)
1

1 + exp
(

1
σ
(D(µr=1|c=1,B − µr=1|c=0,B) +KAµr=1|c=1,B)

)
Altogether, on average, a Bad agent chooses to commit to punish with probability

µc=1|B = ρHGPc=1|lev1,B + (1− ρHG)Pc=1|lev2,B

which pins down ρHG.

Game DE can be treated as a special case with π = 1. A similar proof holds for RR. �

E Instructions for Participants

We present an English translation of the original French instructions for participants in the

randomized response treatment of our experiment. Instructions for particpants in other

treatments were very similar and are available from the authors on request.

These instructions were distributed on paper at the beginning of the experiments. The in-

structions were available to participants throughout the experiment.

At the end of this appendix we also show the section that we added to all instructions in the

versions of the treatments with conditional payoff information. In addition, we also show

how the information was displayed on participants’ screens.
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Instructions

Introduction

You are about to participate in an experiment of the University of Lausanne. During this

experiment you have the opportunity to earn a sum of money that will be paid to you at

the end of the experiment. The amount of money you earn may be more significant if

• you read the instructions carefully.

• you think carefully about the decisions you make.

If you have any questions while reading the instructions or while the experiment is in

progress, feel free to call us by raising your hand. By contrast, any communication between

participants—except through the channels offered as part of the experiment—is prohibited.

In the event of non-compliance with these instructions, we will be obliged to exclude you

from the experience without any payment.

In today’s experiment, you will interact with other participants via your computer. The

decisions you make will have an impact on your profit. Your decisions will also influence the

profit of other participants, just as the decisions of other participants may influence your

profit.

Your profit is calculated in points. At the end of the experiment your points will be converted

into Swiss Francs according to the following exchange rate:

60 points = 1 Swiss Franc

Regardless of your decisions in the experiment, you will also receive a fixed amount of CHF

10 for your participation.

The experiment consists of several identical rounds. At the end of the session, your remu-

neration will be calculated as the sum of your income obtained in all these rounds.
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I. Summary of the Experiment

There are 20 participants in this experiment. Each participant is randomly assigned to one

of two roles: sender or reporter. There are 10 participants of each type.

You see your role displayed on your screen. Please write down your role here: .......................

The experiment will last for 25 rounds. At the beginning of every round, each sender is

randomly assigned to a new reporter with whom the sender will interact in this round. This

interaction follows the same rules in each round. However, since the sender will be assigned

to a new reporter in each round, he/she will interact with different reporters throughout the

experiment.

The purpose of this first part of the instructions is to give you an overview of what will

happen in the experiment. In the second part of these instructions, we will provide you with

a much more detailed description of each step, including illustrations of how you will enter

your decisions on the computer.

Interaction between the sender and the reporter

At the beginning of each round each sender receives a project. The sender’s project can be

of good quality, or of bad quality. The quality of the project is randomly determined and

the sender cannot influence the quality.

After having been informed of the quality of his/her project, the sender must submit his/her

project for inspection to the reporter. When the sender submits the project, he/she must

send a message to the reporter. In this message the sender indicates whether or not he/she

will reduce the reporter’s profit if the project is blocked. This message is final and the sender

cannot change his/her opinion later.

Subsequently, there are two possibilities: 1) Sometimes the reporter is asked to answer the

question whether or not he/she wants to block the sender’s project. 2) In other cases, the

reporter is asked to answer “yes” to a question unrelated to the project. The sender never

knows to which type of question the reporter has answered. The sender’s project is always

blocked if the reporter’s answer is “yes” regardless of the question to which the reporter has

answered. That is, if a sender’s project has been blocked, the sender never knows for sure
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whether the project has been blocked because the reporter wanted to block the project or

because the reporter answered a question unrelated to the project.

If a project is implemented, the sender receives a bonus. This bonus does not depend on

the quality of the project. The implementation of a project also has an impact on the total

return, which is distributed among all reporters. If the quality of the project being imple-

mented is good, the total return increases, if the quality is poor, the total return decreases.

If a project is blocked, the sender must pay a penalty. In addition, blocking a project reduces

the impact of a project on the total return (which is shared among the reporters). More

specifically, blocking a good project reduces its positive impact, and blocking a bad project

reduces its negative impact.

After the sender has been informed whether his/her project has been blocked or imple-

mented, the sender’s decision regarding the reduction of the reporter’s profit is executed.

The reporter’s profit is reduced only if the project has been blocked and the sender has

decided to reduce the reporter’s profit in the event of a blocked project. If the reporter’s

profit is reduced, this also imposes a cost on the sender.

Finally, the profits are calculated. The sender’s profit depends on the status of his/her

project. If the project has been implemented the sender receives a bonus, but if the project

has been blocked the sender must pay a penalty. In addition, the sender’s profit also depends

on whether or not he/she decides to reduce the reporter’s profit (because a reduction of the

reporter’s profit is also costly for the sender). The reporter’s profit depends on the total

return that was created in the round. The greater the number of good projects that have

been implemented and the greater the number of bad projects that have been blocked, the

greater the profit of the reporter. In addition, the reporter’s profit is reduced if the project

has been blocked and the sender has decided to reduce the reporter’s profit in the event of

a blocked project. After the calculation of the profits the next round begins.

Remember: at the beginning of each new round, each sender is randomly as-

signed to a new reporter.
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II. Detailed description of the experiment

The experiment is computerized. All decisions you make during the experiment must be

entered via the computer in front of you.

In the second part of the instructions, we explain in detail what decisions you and other

participants can make, how you can enter these decisions on the computer, and how these

decisions affect your own profit and the profit of other participants. If you have any questions

while reading the instructions, please raise your hand. An experimenter will come to you

and answer your question.

1) Assignment of the sender to a new reporter and initial endowment

At the beginning of each round, each sender is randomly matched with a new reporter.

The sender and the reporter each receive an initial endowment of 30 points. This initial

endowment forms the basis for each participant’s profit in each round. Depending on

your own decisions and the decisions of other participants, your final profit in a round

may be higher or lower than the initial allocation. It is possible that your profit is

negative in some rounds. You have to cover such negative profits with the positive

profits you earn in other rounds or, if necessary, with the fixed amount of CHF 10 that

you receive for participation.

2) Submission of the project by the sender and message to the reporter

Each sender is assigned a new project in every round. This project can be of good or

bad quality. Each quality is realized with a probability of 50%. The sender cannot

influence the quality of the project. The quality of the project determines the impact

of the project on the total return that is distributed among the reporters at the end of

the round:

– A project of good quality increases the total return.

– A project of bad quality reduces the total return.

When the sender submits the project for inspection, he/she must attach a message in which

he/she announces whether he/she will reduce the profit of the reporter in case of a blocked

project, or not. This message is final and the sender cannot change this decision later. After

choosing the message, the sender has to submit the project for inspection by clicking on the

“submit” button.
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The computer screen that provides project information to the sender and allows him/her to

submit the project looks as follows:

3) Evaluation of the project by the reporter

After the sender has submitted the project, the reporter is informed of the quality of

the project and the sender’s decision regarding the profit reduction.

Subsequently, there are two possibilities:

i) Evaluation: The reporter is asked to answer the question whether he/she wants

to block the sender’s project or not. This possibility is realized with a probability

of 75 percent.

The computer screen that asks the reporter whether or not he/she wants to block

the project looks as follows:
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ii) Unrelated Question: The reporter is asked to answer a question that has noth-

ing to do with the sender’s project (do you see the word “red” on your screen? Yes

or no.) This possibility is realized with a probability of 25 percent. The correct

answer to this question is always “yes”, but the reporter can freely choose his/her

answer.

The computer screen that shows the unrelated question looks as follows:

Important:

The sender never knows whether the reporter has answered the evaluation question or

the unrelated question. The sender’s project is always blocked if the reporter’s answer

is “yes” regardless of the question to which the reporter has answered. If a sender’s

project is blocked, the sender cannot determine with certainty whether the project has

been blocked because the reporter wanted to block the project or because the reporter

answered a question unrelated to the project.

If the sender’s project is not blocked, the project is implemented. In this case all its

impact on the total return is realized:

– If a good project is implemented, it increases the total return by 400 points.

– If a bad project is implemented, it reduces the total return by 400 points.

If the sender’s project is blocked, its impact on the total return is reduced:

– If a good project is blocked, the project increases the total return by only 300

points.

– If a bad project is blocked, the project reduces the total return by only 100 points.

26



4) Reduction of the reporter’s profit by the sender

At the beginning of this phase the sender is informed if the project has been imple-

mented or blocked.

If the project has been implemented the sender receives a 50 point bonus which is

added to the initial 30 point endowment. The sender receives this bonus if and only if

the project has been implemented, regardless of the quality of the project.

If the project is blocked, the sender not only loses 50 points bonus, but also has to

pay a 50 points penalty which is deducted from the initial 30 points endowment. The

payment of the penalty is also independent of the quality of the project and the sender

must pay it in any case if the project has been blocked.

After observing whether the project has been implemented or blocked, the sender’s

decision regarding the reduction of the reporter’s profit is executed. If the project

has been blocked and the sender has decided to reduce the profit in case of a blocked

project, the reporter’s profit is reduced by 200 points. However, reducing the reporter’s

profit is also costly for the sender: he/she must pay 100 points from his/her own profit.

Important:

The sender’s decision to reduce the reporter’s profit in the event of a blocked project

only has consequences if the project is blocked. If the project is implemented, nothing

happens: the reporter’s profit is not reduced by 200 points and the sender does not

have to pay the 100 points for the reduction.

The computer screen that informs the sender whether or not the project has been

blocked is as follows:
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Subsequently, information about the projects that have been implemented and blocked

in this round as well as the sender’s profit and the reporter’s profit are displayed on

the screens.

III. Calculation of profits at the end of the round

In this third part of the instructions, we explain in detail how your decisions and the deci-

sions of other participants in the experiment influence your profit and the profits of other

participants.

The sender’s profit

The sender’s profit is calculated as follows:

Case 1: The sender’s project has been implemented (in this case the sender’s decision to

reduce the reporter’s profit in the event of a blocked project is not relevant):

Sender Profit = Initial Endowment + Bonus

Case 2: The sender decided not to reduce the reporter’s profit and the sender’s project was

blocked:

Sender Profit = Initial Endowment - Malus

Case 3: The sender decided to reduce the reporter’s profit in case of a blockage and the

sender’s project was blocked:

Sender Profit = Init. Endowment - Malus - Cost of reducing reporter’s profit
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Some examples:

1) Suppose that the sender has submitted a good quality project and has decided not to

reduce the reporter’s profit in the event of a blocked project. The project has been

implemented.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial endowment) + 50 (Bonus)

Sender Profit = 80 points

2) Suppose that the sender has submitted a poor quality project and has decided to re-

duce the reporter’s profit in the event of a blocked project. The project has been

implemented.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial endowment) + 50 (Bonus)

Sender Profit = 80 points

3) Suppose that the sender has submitted a poor quality project and has decided not to

reduce the reporter’s profit in the event of a blocked project. The project has been

blocked.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial endowment) - 50 (Malus)

Sender Profit = - 20 points

4) Suppose that the sender has submitted a good quality project and has decided to

reduce the reporter’s profit in the event of a blocked project. The project has been

blocked.

The sender’s profit is calculated as follows:

Sender Profit = 30 (Initial allocation) - 50 (Malus) - 100 (Cost of reduction)

Sender Profit = - 120 points
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The reporter’s profit

The reporter’s profit depends on the total return that has been generated by projects that

have been implemented or blocked. The return increases with each good quality project

and decreases with each bad quality project. Blocking a project reduces the impact of the

project (positive or negative). The total return is calculated as follows:

Total return = Number of good projects implemented × 400 points

+ Number of good projects blocked × 300 points

− Number of bad projects implemented × 400 points

− Number of bad projects blocked × 100 points

For example:

1) Suppose that a total of three good projects have been implemented, two good projects

have been blocked, two bad projects have been implemented and three bad projects

have been blocked.

The total return is calculated as follows:

Total yield = 3 × 400 + 2 × 300 - 2 × 400 - 3 × 100 = 700 points

2) Suppose that a total of five good projects have been implemented and five bad projects

have been blocked.

The total return is calculated as follows:

Total yield = 5 × 400 - 5 × 100 = 1500 points

The total return is distributed among all reporters, i.e. each reporter receives

one tenth of the total return.

In addition, the reporter’s profit also depends on whether or not the sender decides to reduce

the reporter’s profit.
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The reporter’s profit is calculated as follows:

Case 1: The sender’s project has been implemented or the project has been blocked, but

the sender has decided not to reduce the reporter’s profit:

Reporter Profit = Initial Endowment + Total Return / 10

Case 2: The project was blocked and the sender decided to reduce the reporter’s profit in

the event of a blocked project:

Reporter Profit = Initial Endowment + Total Return / 10 - Profit Reduction

Some examples:

1) Suppose that the total return is 1000 points. The sender decided not to reduce the

reporter’s profit. The sender’s project has been implemented. The reporter’s profit is

calculated as follows:

Profit Reporter = 30 (Initial allocation) + 100 (Return / 10)

Profit Reporter = 130 points

2) Suppose the total return is 300 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been implemented.

The reporter’s profit is calculated as follows:

Profit Reporter = 30 (Initial allocation) + 30 (Return / 10)

Profit Reporter = 60 points

3) Suppose that the total return is 700 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been blocked. The

reporter’s profit is calculated as follows:

Profit Reporter = 30 (Initial allocation) + 70 (Return / 10) - 200 (Reduction)

Profit Reporter = - 100 points

31



At the end of each round, information about the types of projects that have been imple-

mented and blocked, the sender’s profit and the reporter’s profit is displayed on the screen:

Once the profit screen has disappeared, a new round begins in which the sender is randomly

assigned to a new reporter.

Scenario:

To clarify the implications of the participants’ decisions, we present a scenario. We will

focus on a pair of players (a sender and a reporter) in a round of the experiment. We assume

that the sender has a bad project in this round. In addition, we assume that the decisions

of other participant pairs imply that five good projects and three bad projects have been

implemented and one bad project has been blocked.

We now discuss all constellations of profits that can be realized:

Case 1: The sender decides not to reduce the reporter’s profit.

a) The project is implemented.

Total Return = 5 × 400 - 4 × 400 - 1 × 100 = 300 points

Sender Profit = 30 (Endowment) + 50 (Bonus) = 80 points

Reporter Profit = 30 (Endowment) + 30 (Return / 10) = 60 points

32



b) The project is blocked.

Total Return = 5 × 400 - 3 × 400 - 2 × 100 = 600 points

Sender Profit = 30 (Endowment) - 50 (Malus) = - 20 points

Profit Reporter = 30 (Endowment) + 60 (Return / 10) = 90 points

Case 2: The sender decides to reduce the reporter’s profit in the event of a blocked project.

a) The project is implemented.

Total Return = 5 × 400 - 4 × 400 - 1 × 100 = 300 points

Sender Profit = 30 (Endowment) + 50 (Bonus) = 80 points

Reporter Profit = 30 (Endowment) + 30 (Return / 10) = 60 points

b) The project is blocked.

Total Return = 5 × 400 - 3 × 400 - 2 × 100 = 600 points

Sender Profit = 30 (Endowment) - 50 (Malus) - 100 (Cost of reduction) = - 120 points

Reporter Profit = 30 (Endowm.) + 60 (Return / 10) - 200 (Reduction) = - 110 points

Important :

Remember that the sender’s project is always blocked if the reporter’s answer is “yes” re-

gardless of the question to which the reporter has answered. If a sender’s project is blocked,

the sender cannot determine with certainty whether the project has been blocked because the

reporter wanted to block the project or because the reporter answered a question unrelated

to the project.

IV. Control Questions

To ensure that you have understood the consequences of your decisions in this experience,

we ask you to complete the following exercises. First, please write down all answers to the

exercises on paper. Once you have completed the exercises, please enter your answers on the

computer to verify that they are correct.

The experiment can only begin when everyone has answered these questions

correctly.

If your screen is not yet on, simply move the mouse on your computer.
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Exercise 1: Implementing or blocking projects

a) With what probability will the reporter answer the question whether he/she wants to

block the sender’s project, or not?

Probability: ....................................................

b) With what probability will the reporter answer a question that is unrelated to the

sender’s project?

Probability: ....................................................

Exercise 2: Calculation of total return

Suppose the sender has a good quality project.

a) Suppose that in a round of the experiment five good projects were blocked and five

bad projects were implemented. Please calculate the total return in this situation.

Total Return = ....................................................

b) Suppose that in a round of the experiment five good projects were implemented and

five bad projects were blocked. Please calculate the total return in this situation.

Total Return = ....................................................

c) Suppose that in a round of the experiment four good projects and two bad projects

were implemented and one good project and three bad projects were blocked. Please

calculate the total return in this situation.

Total Return = ....................................................

Exercise 3: Calculation of the reporter’s profit

a) Suppose the total return is 1000 points. The sender decided not to reduce the reporter’s

profit. The sender’s project has been implemented. Please calculate the profit of the

reporter.

Profit Reporter = ....................................................

b) Suppose the total return is 300 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been blocked. Please

calculate the profit of the reporter.

Profit Reporter = ....................................................
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c) Suppose the total return is 1500 points. The sender decided to reduce the reporter’s

profit in the event of a blocked project. The sender’s project has been implemented.

Please calculate the profit of the reporter.

Profit Reporter = ....................................................

Exercise 4: Calculating the sender’s profit

a) Suppose that the sender has received a good quality project. The sender decided to

reduce the reporter’s profit in the event of a blocked project. The project has been

blocked. Please calculate the sender’s profit.

Sender Profit = ....................................................

b) Suppose that the sender has received a good quality project. The sender decided not

to reduce the reporter’s profit. The project has been implemented. Please calculate

the sender’s profit.

Sender Profit = ....................................................

c) Suppose that the sender has been assigned a project of bad quality. The sender decided

not to reduce the reporter’s profit. The project has been blocked. Please calculate the

sender’s profit.

Sender Profit = ....................................................

d) Suppose that the sender has been assigned a project of bad quality. The sender decided

to reduce the reporter’s profit in the event of a blocked project. The project has been

implemented. Please calculate the sender’s profit.

Sender Profit = ....................................................
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Social Learning: Additional Section on Conditional Payoff Information

In all versions of our treatments with conditional payoff information the following section

was added to the instructions right before the control questions (i.e., before section IV of

the instructions):

Additional information on profits in the experiment:

This experiment has already been conducted with a substantial number of participants. In

this session you have the possibility to benefit from the experience of previous participants.

Before your first decision a table will appear on your screen.

The table will show you the average profits that other participants in the same role as you

have realized with different decisions in this experiment. The displayed profits are based on

decisions of 80 participants who have already taken part in the same experiment.

During the experiment you will always have the possibility to look at this table if you click

on the “Information” button on your screen.

Screenshots: Conditional Payoff Information Displayed on Participant’s Screens

Sender’s screen:
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Reporter’s screen:

Remark: In the randomized response treatment the conditional payoff information of the

reporter is displayed separately for the case in which the unrelated question is answered.
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