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1 Corrigendum for Theorem 3

This section issues a correction for Theorem 3, which characterizes obviously strategy-

proof mechanisms in binary allocation problems. Theorem 3 asserts that all obviously

strategy-proof mechanisms are personal-clock auctions (Definition 15), which are hybrids

of ascending auctions (‘In-Transfer Falls’) and descending-price ‘procurement’ auctions

(‘Out-Transfer Falls’).

Clause 1.d.iv. of Definition 15 deals with a corner case. It asserts that whenever

there is more than one ‘non-quitting’ action available to agent i, then there exists an

action that, if played, ensures that agent i is in the allocation. However, the argument

offered in the proof establishes a weaker conclusion: whenever there is more than one

‘non-quitting’ action available to agent i, then there exists a continuation strategy that,

if played, ensures that agent i is in the allocation. If we modify Clause 1.d.iv. to reflect

this, that suffices to correct Theorem 3.

The modification has no apparent economic significance: it does not change the set

of choice rules that can be implemented by a personal-clock auction. When an agent

encounters one of the information sets covered by 1.d.iv., the agent knows that the price

will not change in future. Hence, we can alter the mechanism so that, upon hitting

the information set in question, the agent immediately reports all information about his

type, and the altered mechanism will be obviously strategy-proof. Thus, the additional

extensive forms permitted under the amended definition do not allow us to implement

additional choice rules.

∗shengwu li@fas.harvard.edu
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1.1 Original definition and theorem

For ease of reference, we reproduce the original definition and theorem below, using the

same notation.

Definition 15. G is a personal-clock auction if, for every i ∈ N , at every earliest

information set I∗i such that |A(I∗i )| > 1:

1. Either (In-Transfer Falls): There exists a fixed transfer t̄i ∈ R, a going transfer

t̃i : {Ii | I∗i � Ii} → R, and a set of ‘quitting’ actions Aq such that:

(a) For all z where I∗i ≺ z:

i. Either: i /∈ gy(z) and gt,i(z) = t̄i.

ii. Or: i ∈ gy(z) and

gt,i(z) = inf
Ii|I∗i �Ii≺z

t̃i(Ii) (1)

(b) For all a ∈ Aq, for all z such that a ∈ ψi(z): i /∈ gy(z)

(c) Aq ∩A(I∗i ) 6= ∅.

(d) For all I ′i, I
′′
i ∈ {Ii | I∗i � Ii}:

i. If I ′i ≺ I ′′i , then t̃i(I
′
i) ≥ t̃i(I ′′i ).

ii. If I ′i ≺ I ′′i , t̃i(I
′
i) > t̃i(I

′′
i ), and there does not exist I ′′′i such that I ′i ≺

I ′′′i ≺ I ′′i , then Aq ∩A(I ′′i ) 6= ∅.
iii. If I ′i ≺ I ′′i and t̃i(I

′
i) > t̃i(I

′′
i ), then |A(I ′i) \Aq| = 1.

iv. If |A(I ′i) \ Aq| > 1, then there exists a ∈ A(I ′i) such that: For all z such

that a ∈ ψi(z): i ∈ gy(z).

2. Or (Out-Transfer Falls): As above, but we substitute every instance of “i ∈
gy(z)” with “i /∈ gy(z)” and vice versa.

Theorem 3. If (G,SN ) OSP-implements fy, then P(G,SN ) is a personal-clock auction.

If G is a personal-clock auction, then there exist SN and fy such that (G,SN ) OSP-

implements fy.

1.2 Counterexample

The following is a counterexample to Theorem 3 as originally stated. There are two

agents, with values in the interval [0, 2] for the object. Agents do not make payments

unless they win the object. First, agent i reports whether θi = 1 or θi ∈ [0, 2] \ {1}.
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If i reports type θi = 1 , then agent j reports either θj < 1 or θj ≥ 1. If θj < 1, then

i wins the object and pays 1. If θj ≥ 1, then no agent wins.

If i reports θi ∈ [0, 2] \ {1}, then immediately thereafter he reports either θi > 1 or

θi < 1. If i reports θi > 1, then he wins and pays 1. Otherwise, no agent wins.

The above mechanism is obviously strategy-proof. However, clause 1.d.iv. of Defini-

tion 15 is violated when agent i reports whether θi = 1 or θi ∈ [0, 2] \ {1}. Both actions

are not quitting actions, since they do not rule out that i wins the object. Neither action

ensures that i wins the object. However, there exists a continuation strategy for i that

ensures he wins: Report that θi ∈ [0, 2] \ {1}, then report θi > 1.

1.3 Correction

The following step in the proof of Theorem 3 (page 17 of the Online Appendix) is

incorrect:

Suppose that there does not exist a ∈ A(I ′i) such that, for all z such that

a ∈ ψi(z), i ∈ gy(z). Then there must exist (h′′ ∈ I ′i, S′′−i) such that

i /∈ gy(h′′, S
θ′i
i , S

′′
−i)

gt,i(h
′′, S

θ′i
i , S

′′
−i) = t̄i

The first sentence supposes that no action ensures that i wins the object. The second

sentence deduces (incorrectly) that the continuation strategy of type θ′i does not ensure

that i wins the object.

We now amend clause 1.d.iv. to read as follows:

If |A(I ′i) \ Aq| > 1, then there exists Si such that: For all h ∈ I ′i, for all S−i:

i ∈ gy(z) where z = zG(h, Si, S−i).

We can then modify the proof to suppose the second step directly, replacing the part

quoted above, as follows:

Suppose there exists (h′′ ∈ I ′i, S′′−i) such that i /∈ gy(h′′, S
θ′i
i , S

′′
−i). Then

gt,i(h
′′, S

θ′i
i , S

′′
−i) = t̄i.

We then tweak the other direction of the proof, to show that all personal-clock

auctions are obviously strategy-proof under the amended Definition 15. This requires us

to modify the construction of the agent’s obviously dominant strategy. If the agent faces
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In-Transfer Falls, encounters an information set with more than one non-quitting action,

and finds it strictly profitable to be in the allocation, the original construction required

that the agent play the action that ensures he is in the allocation. Now, we instead

require the agent adopts the continuation strategy that ensures he is in the allocation.

The construction for Out-Transfer Falls proceeds symmetrically.

These modifications suffice to correct Theorem 3 and its proof.

1.4 Amended definition and theorem

The amended definition and theorem are as follows. The only modification is to Clause

i.d.iv. of the definition.

Definition 15A (correct). G is a personal-clock auction if, for every i ∈ N , at every

earliest information set I∗i such that |A(I∗i )| > 1:

1. Either (In-Transfer Falls): There exists a fixed transfer t̄i ∈ R, a going transfer

t̃i : {Ii | I∗i � Ii} → R, and a set of ‘quitting’ actions Aq such that:

(a) For all z where I∗i ≺ z:

i. Either: i /∈ gy(z) and gt,i(z) = t̄i.

ii. Or: i ∈ gy(z) and

gt,i(z) = inf
Ii|I∗i �Ii≺z

t̃i(Ii) (2)

(b) For all a ∈ Aq, for all z such that a ∈ ψi(z): i /∈ gy(z)

(c) Aq ∩A(I∗i ) 6= ∅.

(d) For all I ′i, I
′′
i ∈ {Ii | I∗i � Ii}:

i. If I ′i ≺ I ′′i , then t̃i(I
′
i) ≥ t̃i(I ′′i ).

ii. If I ′i ≺ I ′′i , t̃i(I
′
i) > t̃i(I

′′
i ), and there does not exist I ′′′i such that I ′i ≺

I ′′′i ≺ I ′′i , then Aq ∩A(I ′′i ) 6= ∅.
iii. If I ′i ≺ I ′′i and t̃i(I

′
i) > t̃i(I

′′
i ), then |A(I ′i) \Aq| = 1.

iv. If |A(I ′i) \ Aq| > 1, then there exists Si such that: For all h ∈ I ′i, for all

S−i: i ∈ gy(z) where z = zG(h, Si, S−i).

2. Or (Out-Transfer Falls): As above, but we substitute every instance of “i ∈
gy(z)” with “i /∈ gy(z)” and vice versa.

Theorem 3A (correct). If (G,SN ) OSP-implements fy, then P(G,SN ) is a personal-

clock auction. If G is a personal-clock auction, then there exist SN and fy such that

(G,SN ) OSP-implements fy.
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2 Proofs omitted from the main text

2.1 Proof of Theorem 1

Proof. First we prove the “if” direction. Fix agent 1 and preferences θ1. Suppose that S1

is not obviously dominant in G = 〈H,≺, A,A, P, δc, (Ii)i∈N , g〉. We need to demonstrate

that there exists G̃ that is i-indistinguishable from G, such that λG,G̃(S1) is not weakly

dominant in G̃ . We proceed by construction.

Let (S′1, I1, h
sup, Ssup

−1 , d
sup
c , hinf , Sinf

−1, d
inf
c ) be such that I1 ∈ α(S1, S

′
1), hinf ∈ I1,

hsup ∈ I1, and

uG1 (hsup, S′1, S
sup
−1 , d

sup
c , θ1) > uG1 (hinf , S1, S

inf
−1, d

inf
c , θ1) (3)

SinceG is a game of perfect recall, we can pick (Sinf
−1, d

inf
c ) such that hinf ≺ zG(h∅, S1, S

inf
−1, d

inf
c ),

by specifying that (Sinf
−1, d

inf
c ) plays in a way consistent with hinf at any h ≺ hinf . Likewise

for hsup and (Ssup
−1 , d

sup
c ). Suppose we have so done.

We now define another game G̃ is 1-indistinguishable from G. Intuitively, we con-

struct this as follows:

1. We add a chance move at the start of the game; chance can play L or R.

2. Agent 1 does not at any history know whether chance played L or R.

3. If chance plays L, then the game proceeds as in G.

4. If chance plays R, then the game proceeds mechanically as though all players in

N \ 1 and chance played according to Ssup
−1 , d

sup
c in G, with one exception:

5. If chance played R, we reach the information set corresponding to I1, and agent 1

plays S1(I1), then the game henceforth proceeds mechanically as though all players

in N \ 1 and chance played according to Sinf
−1, d

inf
c in G.

Formally, the construction proceeds as such: Ã = A∪ {L,R}, where A∩ {L,R} = ∅.
There is a new starting history h̃∅, with two successors σ(h̃∅) = {h̃L, h̃R}, Ã(h̃L) = L,

Ã(h̃R) = R, P̃ (h̃∅) = c. The subtree H̃L ⊂ H̃ starting from h̃L ordered by ≺̃ is the same

as the arborescence (H,≺). (Ã, P̃ , δ̃c, g̃) are defined on H̃L exactly as (A, P, δc, g) are on

H. For j 6= 1, Ĩj is defined as on H.

We now construct the subtree starting from h̃R. Let h∗ be such that h∗ ∈ σ(hsup),

h∗ � zG(hsup, S1, S
sup
−1 , d

sup
c ).
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H ′ ≡ {h ∈ H | ∃S′′1 : h � zG(h∅, S
′′
1 , S

sup
−1 , d

sup
c )}}

∩[{h ∈ H | P (h) = 1} ∪ {h ∈ Z}]

\{h ∈ H | h∗ � h}

(4)

In words, these are the histories that can be reached by some S′′1 when facing

Ssup
−1 , d

sup
c , where either agent 1 is called to play or that history is terminal, and such

that those histories are not h∗ or its successors.

Let h∗∗ be such that h∗∗ ∈ σ(hinf), h∗∗ � zG(hinf , S1, S
inf
−1, d

inf
c ).

H ′′ ≡ {h ∈ H | ∃S′′1 : h � zG(h∅, S
′′
1 , S

inf
−1, d

inf
c )}

∩[{h ∈ H | P (h) = 1} ∪ {h ∈ Z}]

∩{h ∈ H | h∗∗ � h}

(5)

In words, these are the histories that can be reached by some S′′1 when facing Sinf
−1, d

inf
c ,

where either agent 1 is called to play or that history is terminal, and such that those

histories are h∗∗ or its successors.

We now paste these together. Let H̃R be the rooted subtree ordered by ≺̃, for some

bijection γ : H̃R → H ′ ∪H ′′, such that for all h̃, h̃′ ∈ H̃R, h̃≺̃h̃′ if and only if

1. EITHER: γ(h̃), γ(h̃′) ∈ H ′ and γ(h̃) ≺ γ(h̃′)

2. OR: γ(h̃), γ(h̃′) ∈ H ′′ and γ(h̃) ≺ γ(h̃′)

3. OR: γ(h̃) ≺ h∗ and h∗∗ � γ(h̃′)

The root of this subtree exists and is unique; it corresponds to γ−1(h), where h is

the earliest history preceding zG(h∅, S1, S
sup
−1 , d

sup
c )} where 1 is called to play. Let h̃R be

the root of H̃R. This completes the specification of H̃.

For all h̃ ∈ H̃R, we define:

1. g̃(h̃) = g(γ(h̃)) if h̃ is a terminal history.

2. P̃ (h̃) = 1 if h̃ is not a terminal history.

For all h̃ ∈ H̃R \ h̃R, we define Ã(h̃) = A(h), for the unique (h̃′, h) such that:

1. h̃ ∈ σ(h̃′)
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2. h ∈ σ(γ(h̃′))

3. h � γ(h̃)

We now specify the information sets for agent 1. Every h̃ ∈ H̃L corresponds to a

unique history in H. We use γL to denote the bijection from H̃L to H. Let γ̂ be defined

as γL on H̃L and γ on H̃R.

1’s information partition Ĩ1 is defined as such: ∀h̃, h̃′ ∈ H̃ :

∃Ĩ ′1 ∈ Ĩ1 : h̃, h̃′ ∈ Ĩ ′1 (6)

if and only if

∃I ′1 ∈ I1 : γ̂(h̃), γ̂(h̃′) ∈ Ĩ ′1 (7)

All that remains is to define δc; we need only specify that at h̃∅, c plays R with

certainty.1

G̃ = 〈H̃, ≺̃, Ã, Ã, P̃ , δ̃c, (Ĩi)i∈N , g̃〉 is 1-indistinguishable from G. Every experience at

some history in H̃L corresponds to some experience in G, and vice versa. Moreover, any

experience at some history in H̃R could also be produced by some history in H̃L.

Let λG,G̃ be the appropriate bijection from 1’s information sets and actions in G

onto 1’s information sets and actions in G̃. Take arbitrary S̃−1. Observe that since

I1 ∈ α(S1, S
′
1), λG,G̃(S1) and λG,G̃(S′1) result in the same histories following h̃R, until they

reach information set λG,G̃(I1). Having reached that point, λG,G̃(S1) leads to outcome

g(zG(hinf , S1, S
inf
−1, d

inf
c )) and λG,G̃(S′1) leads to outcome g(zG(hsup, S′1, S

sup
−1 , d

sup
c )). Thus,

Eδ̃c [u
G̃
1 (h̃∅, λG,G̃(S′1), S̃−1, d̃c, θ1)]

= uG1 (hsup, S′1, S
sup
−1 , d

sup
c , θ1)

> uG1 (hinf , S1, S
inf
−1, d

inf
c , θ1)

= Eδ̃c [u
G̃
1 (h̃∅, λG,G̃(S1), S̃−1, d̃c, θ1)]

(8)

So λG,G̃(S1) is not weakly dominant in G̃.

We now prove the “only if” direction. Take arbitrary G̃. Suppose λG,G̃(S1) ≡ S̃1 is

not weakly dominant in G̃ (given type θ1). We want to show that S1 is not obviously

dominant in G.

1If one prefers to avoid δc without full support, an alternative proof puts ε probability on L, for ε
close to 0, or for games with |N | > 2 assigns P̃ (h̃∅) = 2.
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There exist S̃′1 and S̃′−1 such that:

Eδ̃c [u
G̃
1 (h̃∅, S̃

′
1, S̃
′
−1, d̃c, θ1)] > Eδ̃c [u

G̃
1 (h̃∅, S̃1, S̃

′
−1, d̃c, θ1)] (9)

This inequality must hold for some realization of the chance function, so there exists

d̃c such that:

uG̃1 (h̃∅, S̃
′
1, S̃
′
−1, d̃c, θ1) > uG̃1 (h̃∅, S̃1, S̃

′
−1, d̃c, θ1) (10)

Fix (S̃′1, S̃
′
−1, d̃c, θ1).

zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c) 6= zG̃(h̃∅, S̃1, S̃

′
−1, d̃c) (11)

Define:

H̃∗ ≡ {h̃ ∈ H̃ | h̃ ≺ zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c) and h̃ ≺ zG̃(h̃∅, S̃1, S̃

′
−1, d̃c)} (12)

h̃∗ ≡ h̃ ∈ H̃∗ such that ∀h̃′ ∈ H̃∗ : h̃′ � h̃ (13)

Since the opponent strategies and chance moves are held constant across both sides

of Equation 11, P (h̃∗) = 1 and h̃∗ ∈ Ĩ1, where S̃1(Ĩ1) 6= S̃′1(Ĩ1). Moreover, Ĩ1 ∈ α(S̃1, S̃
′
1)

and λG̃,G(Ĩ1) ∈ α(S1, S
′
1), where we denote S′1 ≡ λG̃,G(S̃′1).

SinceG and G̃ are 1-indistinguishable, consider the experiences λG̃,G(ψ1(zG̃(h̃∅, S̃1, S̃
′
−1, d̃c)))

and λG̃,G(ψ1(zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c))).

In G, λG̃,G(ψ1(zG̃(h̃∅, S̃1, S̃
′
−1, d̃c))) could lead to outcome g̃(zG̃(h̃∅, S̃1, S̃

′
−1, d̃c)). We

use (Sinf
−1, d

inf
c ) to denote the corresponding opponent strategies and chance realizations

that lead to that outcome. We denote hinf ≡ h ∈ λG̃,G(Ĩ1) : h ≺ zG(h∅, S1, S
inf
−1, d

inf
c ) .

In G, λG̃,G(ψ1(zG̃(h̃∅, S̃
′
1, S̃
′
−1, d̃c))) could lead to outcome g̃(zG̃(h̃∅, S̃

′
1, S̃
′
−1, d̃c)). We

use (Ssup
−1 , d

sup
c ) to denote the corresponding opponent strategies and chance realizations

that lead to that outcome. We denote hsup ≡ h ∈ λG̃,G(Ĩ1) : h ≺ zG(h∅, S
′
1, S

sup
−1 , d

sup
c ) .

uG1 (hsup, S′1, S
sup
−1 , d

sup
c , θ1)

= uG̃1 (h̃∅, S̃
′
1, S̃
′
−1, d̃c, θ1)

> uG̃1 (h̃∅, S̃1, S̃
′
−1, d̃c, θ1)

= uG1 (hinf , S1, S
inf
−1, d

inf
c , θ1)

(14)
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where hsup, hinf ∈ λG̃,G(Ĩ1) and λG̃,G(Ĩ1) ∈ α(S1, S
′
1). Thus S1 is not obviously

dominant in G.

2.2 Proof of Theorem 2

Proof. The key is to see that, for every G ∈ G, there is a corresponding S̃∆
0 , and vice

versa. We use S̄0 to denote the support of S̃∆
0 . In particular, observe the following

isomorphism:

Table 1: Equivalence between extensive game forms and Planner mixed strategies

G S̃∆
0

dc S̃0 ∈ S̄0

δc the probability measure specified by S̃∆
0

g(z) for z ∈ Z the Planner’s choice of outcome when she ends the game

Ii ((mk, Rk, rk)
t−1
k=1,mt, Rt) consistent with some S̃0 ∈ S̄0

A(Ii) Rt
ψi(z) oci consistent with some S̃0 ∈ S̄0 and S̃N

Information sets inG are equivalent to sequences of past communication ((mk, Rk, rk)
t−1
k=1,mt, Rt)

under S̃∆
0 . Available actions at some information set A(Ii) are equivalent to acceptable

responses Rt. Thus, for any strategy in some game G, we can construct an equivalent

strategy given appropriate S̃∆
0 , and vice versa.

Furthermore, fixing a chance realization dc and agent strategies SN uniquely results in

some outcome. Similarly, fixing a realization of the planner’s mixed strategy S̃0 ∈ S̄0 and

agent strategies S̃N uniquely determines some outcome. Consequently, for any G ∈ G,

there exists S̃∆
0 with the same strategies available for each agent and the same resulting

(probability measure over) outcomes, and vice versa.2 Table 1 summarizes.

The next step is to see that a bilateral commitment Ŝi0 is equivalent to the Planner

promising to ‘run’ only games in some equivalence class that is i-indistinguishable.

Suppose that there is some G that OSP-implements f . Pick some equivalent S̃∆
0 with

support S̄0. For each i ∈ N , specify the bilateral commitment Ŝi0 ≡ Φ−1
i (Φi(S̄0)). These

bilateral commitments support f .

To see this, take any S̃∆′
0 ∈ ∆Ŝi0, with support S̄′0. For any S̃′0 ∈ S̄′0, for any S̃′N , there

exists S̃0 ∈ S̄0 and S̃N such that φi(S̃
′
0, S̃
′
N ) = φi(S̃0, S̃N ). By construction, G is such

that: There exists z ∈ Z where ψi(z) and g(z) are equivalent to φi(S̃0, S̃N ). Thus, for

2Implicitly, this relies on the requirement that both G and S̃∆
0 have finite length. If one had finite

length but the other could be infinitely long, the resulting outcome would not be well defined and the
equivalence would not hold.
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G′ that is equivalent to S̃∆′
0 , every terminal history in G′ results in the same experience

for i and the same outcome as some terminal history in G. Consequently, G and G′ are

i-indistinguishable. Thus, by Theorem 1, the strategy assigned to agent i with type θi

is weakly dominant in G′, which implies that it is a best response to S̃∆′
0 and any S̃N\i

in the bilateral commitment game. Thus, if f is OSP-implementable, then f can be

supported by bilateral commitments.

Suppose that f can be supported by bilateral commitments (Ŝi0)i∈N , with requisite

S̃∆
0 (with support S̄0) and S̃N . Without loss of generality, let us suppose these are

‘minimal’ bilateral commitments, i.e. Ŝi0 = Φ−1
i (Φi(S̄0)). Pick G that is equivalent to

S̃∆
0 . G OSP-implements f .

To see this, consider any G′ such that G and G′ are i-indistinguishable. Let S̃∆′
0

denote the Planner strategy that corresponds to G′. At any terminal history z′ in G′,

the resulting experience ψi(z
′) and outcome g′(z′) are equivalent to the experience ψi(z)

and outcome g(z) for some terminal history z in G. These in turn correspond to some

observation oi ∈ Φi(S̄0). Thus S̃∆′
0 ∈ ∆Ŝi0. Since f is supported by (Ŝj0)j∈N , S̃θii is a

best response (for type θi) to S̃∆′
0 and any S̃N\i. Thus, the equivalent strategy Si(θi)

is weakly dominant in G′. Since this argument holds for all i-indistinguishable G′, by

Theorem 1, Si(θi) is obviously dominant in G. Thus, if f can be supported by bilateral

commitments, then f is OSP-implementable.

2.3 Proof of Proposition 2

Proof. We prove the contrapositive. Suppose (G̃, S̃N ) does not OSP-implement f . Then

there exists some (i, θi, S̃
′
i, Ĩi) such that Ĩi ∈ α(S̃i(θi), S̃

′
i) and

uG̃i (h̃, S̃i(θi), S̃−i, d̃c, θi, ) < uG̃i (h̃′, S̃′i, S̃
′
−i, d̃

′
c, θi, ) (15)

for some (h̃, S̃−i, d̃c) and (h̃′, S̃′−i, d̃
′
c).

Notice that h̃ and h̃′ correspond to histories h and h′ in G. Moreover, we can define

S′i = S̃′i at information sets containing histories that are shared by G and G̃, and specify

S′i arbitrarily elsewhere. We do the same for (S̃−i, d̃c) and (S̃′−i, d̃
′
c), to construct (S−i, dc)

and (S−i, dc). But, starting from h and h′ respectively, these result in the same outcomes

as their partners in G̃. Thus,

uGi (h,Si(θi), S−i, dc, θi, ) < uGi (h′, S′i, S
′
−i, d

′
c, θi, ) (16)

h, h′ ∈ Ii, for Ii ∈ α(Si(θi), S
′
i). Thus (G,SN ) does not OSP-implement f .

10



2.4 Proof of Theorem 3

We split this proof into two parts.

Proposition 1. If (G,SN ) OSP-implements fy, then P(G,SN ) is a personal-clock auc-

tion.

Proof. Throughout this proof, we use the following notation: Given some type-strategy

Si, S
θi
i denotes the strategy assigned to θi by Si.

Take any (G,SN ) that implements (fy, ft). For any history h, we define

Θh ≡ {θN | h � zG(h∅, (S
θi
i )i∈N} (17)

Θh,i ≡ {θi | ∃θ−i : (θi, θ−i) ∈ Θh} (18)

For information set Ii, we define

ΘIi ≡ ∪h∈IiΘh (19)

ΘIi,i ≡ {θi | ∃θ−i : (θi, θ−i) ∈ ΘIi} (20)

Θ1
Ii,i ≡ {θi | ∃θ−i : (θi, θ−i) ∈ ΘIi and i ∈ fy(θi, θ−i)} (21)

Θ0
Ii,i ≡ {θi | ∃θ−i : (θi, θ−i) ∈ ΘIi and i /∈ fy(θi, θ−i)} (22)

Some observations about this construction:

1. Since player i’s type-strategy depends only on his own type, ΘIi,i = Θh,i for all

h ∈ Ii.

2. ΘIi,i = Θ1
Ii,i
∪Θ0

Ii,i

3. Since SP requires 1i∈fy(θ) weakly increasing in θi, Θ1
Ii,i

dominates Θ0
Ii,i

in the strong

set order.

Lemma 1. Suppose (G,SN ) OSP-implements (fy, ft), where G ≡ 〈H,≺, A,A, P, δc, (Ii)i∈N , g〉.
For all i, for all Ii ∈ Ii, if:

11



1. θi < θ′i

2. θi ∈ Θ1
Ii,i

3. θ′i ∈ Θ0
Ii,i

then Sθii (Ii) = S
θ′i
i (Ii).

Equivalently, for any Ii, there exists a∗Ii such that for all θi ∈ Θ1
Ii,i
∩Θ0

Ii,i
, Sθii (Ii) =

a∗Ii.

Suppose not. Take (i, Ii, θi, θ
′
i) constituting a counterexample to Lemma 1. Since

θi ∈ Θ1
Ii,i

, there exists h ∈ Ii and S−i such that i ∈ gy(z
G(h, Sθii , S−i)). Fix ti ≡

gt,i(z
G(h, Sθii , S−i)). Since θ′i ∈ Θ0

Ii,i
, there exists h′ ∈ Ii and S′−i such that i /∈

gy(z
G(h′, S

θ′i
i , S

′
−i)). Fix t′i ≡ gt,i(z

G(h′, S
θ′i
i , S

′
−i)). Since Sθii (Ii) 6= S

θ′i
i (Ii) and θi ∪ θ′i ⊆

ΘIi,i, Ii ∈ α(Sθii , S
θ′i
i ). Thus, OSP requires that

ui(θi, h, S
θi
i , S−i) ≥ ui(θi, h

′, S
θ′i
i , S

′
−i) (23)

which implies

θi + ti ≥ t′i (24)

and

ui(θ
′
i, h, S

θi
i , S−i) ≤ ui(θ

′
i, h
′, S

θ′i
i , S

′
−i) (25)

which implies

θ′i + ti ≤ t′i (26)

But θ′i > θi, so

θ′i + ti > t′i (27)

a contradiction. This proves Lemma 1.

Lemma 2. Suppose (G,SN ) OSP-implements (fy, ft) and P(G,SN ) = G. Take any Ii

such that Θ1
Ii,i
∩Θ0

Ii,i
6= ∅, and associated a∗Ii.

1. If there exists θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, then there exists t0i such that:

(a) For all θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, for all h ∈ Ii, for all S−i, gt,i(z
G(h, Sθii , S−i)) =

t0i .

12



(b) For all θi ∈ ΘIi,i such that Sθii (Ii) = a∗Ii, for all h ∈ Ii, for all S−i, if

i /∈ gy(zG(h, Sθii , S−i)), then gt,i(z
G(h, Sθii , S−i)) = t0i .

2. If there exists θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, then there exists t1i such that:

(a) For all θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, for all h ∈ Ii, for all S−i, gt,i(z
G(h, Sθii , S−i)) =

t1i .

(b) For all θi ∈ ΘIi,i such that Sθii (Ii) = a∗Ii, for all h ∈ Ii, for all S−i, if

i ∈ gy(zG(h, Sθii , S−i)), then gt,i(z
G(h, Sθii , S−i)) = t1i .

Take any type θ′i ∈ Θ0
Ii,i

such that S
θ′i
i (Ii) 6= a∗Ii . Take any type θ′′i ∈ Θ0

Ii,i
such that

S
θ′′i
i (Ii) = a∗Ii . (By Θ1

Ii,i
∩ Θ0

Ii,i
6= ∅ there exists at least one such type.) Notice that

Ii ∈ α(S
θ′i
i , S

θ′′i
i ).

By Lemma 1, θ′i /∈ Θ1
Ii,i

, and the game is pruned. Thus,

∀h ∈ Ii : ∀S−i : i /∈ gy(zG(h, S
θ′i
i , S−i)) (28)

Since θ′′i ∈ Θ0
Ii,i

,

∃h ∈ Ii : ∃S−i : i /∈ gy(zG(h, S
θ′′i
i , S−i)) (29)

OSP requires that type θ′i does not want to (inf-sup) deviate. Thus,

inf
h∈Ii,S−i

gt,i(z
G(h, S

θ′i
i , S−i)) ≥

sup
h∈Ii,S−i

{gt,i(zG(h, S
θ′′i
i , S−i)) : i /∈ gy(zG(h, S

θ′′i
i , S−i))}

(30)

OSP also requires that type θ′′i does not want to (inf-sup) deviate. This implies

inf
h∈Ii,S−i

{gt,i(zG(h, S
θ′′i
i , S−i)) : i /∈ gy(zG(h, S

θ′′i
i , S−i))}

≥ sup
h∈Ii,S−i

gt,i(z
G(h, S

θ′i
i , S−i))

(31)

The RHS of Equation 30 is weakly greater than the LHS of Equation 31. The RHS of

Equation 31 is weakly greater than the LHS of Equation 30. Consequently all four terms

are equal. Moreover, this argument applies to every θ′i ∈ Θ0
Ii,i

such that S
θ′i
i (Ii) 6= a∗Ii ,

and every θ′′i ∈ Θ0
Ii,i

such that S
θ′′i
i (Ii) = a∗Ii . Since the game is pruned, θ′′i satisfies

13



(1b) iff θ′′i ∈ Θ0
Ii,i

and S
θ′′i
i (Ii) = a∗Ii . This proves part 1 of Lemma 2. Part 2 follows

by symmetry; we omit the details since they involve only small changes to the above

argument.

Lemma 3. Suppose (G,SN ) OSP-implements (fy, ft) and P(G,SN ) = G. Take any Ii

such that Θ1
Ii,i
∩Θ0

Ii,i
6= ∅, and associated a∗Ii. Let t1i and t0i be defined as before.

1. If there exists θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all (h ∈ Ii, Si, S−i), if

i ∈ gy(zG(h, Si S−i)), then gt,i(z
G(h, Si, S−i)) ≤ t0i − sup{θi ∈ Θ0

Ii,i
: Sθii (Ii) 6= a∗Ii}.

2. If there exists θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all (h ∈ Ii, Si, S−i), if

i /∈ gy(zG(h, Si S−i)), then gt,i(z
G(h, Si, S−i)) ≤ inf{θi ∈ Θ1

Ii,i
: Sθii (Ii) 6= a∗Ii}+ t1i .

Suppose that part 1 of Lemma 3 does not hold. Fix (h ∈ Ii, Si, S−i) such that

i ∈ gy(zG(h, Si S−i)) and gt,i(z
G(h, Si, S−i)) > t0i − sup{θi ∈ Θ0

Ii,i
: Sθii (Ii) 6= a∗Ii}. Since

G is pruned, we can find some θ′i ∈ ΘIi,i such that for every Ĩi ∈ {I ′i ∈ Ii : Ii ∈ ψ(I ′i)},
S
θ′i
i (Ĩi) = Si(Ĩi). Fix that θ′i.

Fix θ′′i ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii and θ′′i ≥ sup{θi ∈ Θ0
Ii,i

: Sθii (Ii) 6= a∗Ii} − ε.
Since G is pruned and θ′′i /∈ Θ1

Ii,i
(by Lemma 1), it must be that S

θ′′i
i (Ii) 6= S

θ′i
i (Ii).

By construction, Ii ∈ α(S
θ′i
i , S

θ′′i
i ).

OSP requires that, for all h′′ ∈ Ii, S′′−i:

ui(θ
′′
i , h
′′, S

θ′′i
i , S

′′
−i) ≥ ui(θ′′i , h, S

θ′i
i , S−i) (32)

which entails

t0i ≥ θ′′i + gt,i(z
G(h, Si, S−i)) (33)

which entails

t0i − sup{θi ∈ Θ0
Ii,i : Sθii (Ii) 6= a∗Ii}+ ε ≥ gt,i(zG(h, Si, S−i)) (34)

But, by hypothesis,

t0i − sup{θi ∈ Θ0
Ii,i : Sθii (Ii) 6= a∗Ii} < gt,i(z

G(h, Si, S−i)) (35)

Since this argument holds for all ε > 0, we can pick ε small enough to create a

contradiction. This proves part 1 of Lemma 3. Part 2 follows by symmetry.

Lemma 4. Suppose (G,SN ) OSP-implements (fy, ft) and P(G,SN ) = G. Take any Ii

such that |Θ1
Ii,i
∩Θ0

Ii,i
| > 1 and associated a∗Ii.
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1. If there exists θi ∈ Θ0
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all θ′i ∈ Θ1
Ii,i

, S
θ′i
i (Ii) = a∗Ii.

2. (Equivalently) If there exists θi ∈ Θ1
Ii,i

such that Sθii (Ii) 6= a∗Ii, then for all θ′i ∈
Θ0
Ii,i

, S
θ′i
i (Ii) = a∗Ii.

Suppose Part 1 of Lemma 4 does not hold. Fix Ii, and choose θ′i < θ′′i such that

{θ′i} ∪ {θ′′i } ⊆ Θ1
Ii,i
∩ Θ0

Ii,i
. Fix θ′′′i ∈ Θ1

Ii,i
such that S

θ′′′i
i (Ii) 6= a∗Ii . By Lemma 1, if

θ′′′i ∈ Θ0
Ii,i

, then S
θ′′′i
i (Ii) = a∗Ii , a contradiction. Thus, θ′′′i ∈ Θ1

Ii,i
\Θ0

Ii,i
, and since Θ1

Ii,i

dominates Θ0
Ii,i

in the strong set order, θ′′i < θ′′′i .

Since θ′i ∈ Θ1
Ii,i

, there exists h′ ∈ Ii and θ′−i such that (θ′i, θ
′
−i) ∈ ΘIi and i ∈

gy(z
G(h′, S

θ′i
i , S

θ′−i
−i )). By Lemma 2, there exists ai ∈ Ai(Ii) such that ai 6= a∗Ii and

choosing ai ensures i /∈ y and ti = t0i . Thus, by G SP

θ′i + gt,i(z
G(h′, S

θ′i
i , S

θ′−i
−i )) ≥ t0i (36)

By θ′′i ∈ Θ0
Ii,i

, there exists h′′ ∈ Ii and θ′′−i such that i /∈ gy(zG(h′′, S
θ′′i
i , S

θ′′−i
−i )). By

Lemma 2

gt,i(z
G(h′′, S

θ′′i
i , S

θ′′−i
−i )) = t0i (37)

ByG SP, i ∈ gy(zG(h′, S
θ′′′i
i , S

θ′−i
−i )) and gt,i(z

G(h′, S
θ′′′i
i , S

θ′−i
−i )) = gt,i(z

G(h′, S
θ′i
i , S

θ′−i
−i )).

Notice that Ii ∈ α(S
θ′′i
i , S

θ′′′i
i ). Thus, OSP requires that θ′′i does not want to (inf-sup)

deviate to θ′′′i ’s strategy, which entails:

gt,i(z
G(h′′, S

θ′′i
i , S

θ′′−i
−i )) ≥ θ′′i + gt,i(z

G(h′, S
θ′′′i
i , S

θ′−i
−i )) (38)

t0i ≥ θ′′i + gt,i(z
G(h′, S

θ′′′i
i , S

θ′−i
−i ))

> θ′i + gt,i(z
G(h′, S

θ′i
i , S

θ′−i
−i ))

(39)

which contradicts Equation 36.

Part 2 is the contrapositive of Part 1. This proves Lemma 4.

Lemma 5. Suppose (G,SN ) OSP-implements (fy, ft) and P(G,SN ) = G.

For all Ii, if |Θ1
Ii,i
∩Θ0

Ii,i
| ≤ 1 and |A(Ii)| ≥ 2, then there exists t1i and t0i such that:

1. For all θi ∈ ΘIi,i, h ∈ Ii, S−i:

(a) If i /∈ gy(zG(h, Sθii , S−i)) then gt,i(z
G(h, Sθii , S−i)) = t0i
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(b) If i ∈ gy(zG(h, Sθii , S−i)) then gt,i(z
G(h, Sθii , S−i)) = t1i

2. If |Θ1
Ii,i
| > 0 and |Θ0

Ii,i
| > 0, then t1i = − inf{θi ∈ Θ1

Ii,i
}+ t0i

By G pruned, ΘIi,i 6= ∅. By the Green-Laffont-Holmström Theorem,

ft,i(θi, θ−i) = −1i∈fy(θ) inf{θ′i | i ∈ fy(θ′i, θ−i)}+ ri(θ−i) (40)

Consider the case where Θ1
Ii,i

= ∅. Pick some θ′i ∈ Θ0
Ii,i

and some h′ ∈ Ii, S
′
−i.

Fix t0i ≡ gt,i(z
G(h′, S

θ′i
i , S

′
−i)). Suppose there exists some (θ′′i , θ

′′
−i) ∈ ΘIi such that

ft,i(θ
′′
i , θ
′′
−i) = t0i

′′ 6= t0i . Pick h′′ ∈ Ii such that h′′ � zG(∅, Sθ
′′
i
i , S

θ′′−i
−i ). By Equation 40,

for all θi ∈ ΘIi,i, ft,i(θi, θ
′′
−i) = t0i

′′
. By G pruned and |A(Ii)| ≥ 2, we can pick θ′′′i ∈ Θ0

Ii,i

such that S
θ′′′i
i (Ii) 6= S

θ′i
i (Ii). Notice that Ii ∈ α(S

θ′′′i
i , S

θ′i
i ). If t0i

′′
> t0i , then

ui(θ
′
i, h
′, S

θ′i
i , S

′
−i) = t0i < t0i

′′
= ui(θ

′
i, h
′′, S

θ′′′i
i , S

θ′′−i
−i ) (41)

so S
θ′i
i is not obviously dominant for (i, θ′i). If t0i

′′
< t0i , then

ui(θ
′′′
i , h

′, S
θ′i
i , S

′
−i) = t0i > t0i

′′
= ui(θ

′′′
i , h

′′, S
θ′′′i
i , S

θ′′−i
−i ) (42)

so S
θ′′′i
i is not obviously dominant for (i, θ′′′i ). By contradiction, this proves Lemma 5

for this case. A symmetric argument proves Lemma 5 for the case where Θ0
Ii,i

= ∅.
Note that, if Lemma 5 holds at some information set Ii, it holds at all information

sets I ′i that follow Ii. Thus, we need only consider some earliest information set I∗i at

which |Θ1
I∗i ,i
∩Θ0

I∗i ,i
| ≤ 1 and |A(I∗i )| ≥ 2.

Now we consider the case where Θ1
I∗i ,i
6= ∅ and Θ0

I∗i ,i
6= ∅.

At every prior information set Ii prior to I∗i , |Θ1
Ii,i
∩ Θ0

Ii,i
| > 1. Since Θ1

I∗i ,i
6= ∅

and Θ0
I∗i ,i
6= ∅, by Lemma 4, I∗i is reached by some interval of types all taking the same

action. Thus sup{θi ∈ Θ0
I∗i ,i
} = inf{θi ∈ Θ1

I∗i ,i
}.

Fix θ̂i ∈ Θ0
I∗i ,i

such that θ̂i ≥ sup{θi ∈ Θ0
I∗i ,i
} − ε. Choose corresponding ĥ ∈ I∗i and

θ̂−i ∈ ΘI∗i ,−i such that i /∈ gy(zG(ĥ, S θ̂ii , S
θ̂−i
−i )). Define t0i ≡ gt,i(zG(ĥ, S θ̂ii , S

θ̂−i
−i )).

Fix θ̌i ∈ Θ1
I∗i ,i

such that θ̌i ≤ inf{θi ∈ Θ1
I∗i ,i
} + ε. Choose corresponding ȟ ∈ I∗i and

θ̌−i ∈ ΘI∗i ,−i such that i ∈ gy(zG(ȟ, S θ̌ii , S
θ̌−i
−i )). Define t1i ≡ gt,i(zG(ȟ, S θ̌ii , S

θ̌−i
−i )).

Suppose there exists some (θ′i, θ
′
−i) ∈ ΘI∗i

such that i /∈ fy(θ′i, θ′−i) and ft,i(θ
′
i, θ
′
−i) =

t0i
′ 6= t0i . Since sup{θi ∈ Θ0

I∗i ,i
} = inf{θi ∈ Θ1

I∗i ,i
}, it follows that for all θ−i ∈

ΘI∗i ,−i, inf{θi : i ∈ fy(θi, θ−i)} = inf{θi ∈ Θ1
I∗i ,i
}. Thus, by Equation 40, for all

θi ∈ ΘI∗i ,i
: ft,i(θi, θ

′
−i) = −1i∈fy(θi,θ′−i)

inf{θi ∈ Θ1
I∗i ,i
} + t0i

′
. Fix h′ ∈ I∗i such that

h′ � zG(∅, Sθ
′
i
i , S

θ′−i
−i ).
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By A(Ii) ≥ 2, we can pick some θ′′i ∈ ΘI∗i ,i
such that S

θ′′i
i (Ii) 6= S θ̂ii (Ii). Notice that

I∗i ∈ α(S
θ′′i
i , S

θ̂i
i ). Either θ′′i ∈ Θ0

I∗i
or θ′′i ∈ Θ1

I∗i
\Θ0

I∗i
. Suppose θ′′i ∈ Θ0

I∗i
. Suppose t0i

′
> t0i .

By OSP,

ui(θ̂i, ĥ, S
θ̂i
i , S

θ̂−i
−i ) ≥ ui(θ̂i, h′, S

θ′′i
i , S

θ′−i
−i ) (43)

which entails

t0i ≥ t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(θ̂i − inf{θi ∈ Θ1
I∗i ,i
})

≥ t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(−ε)

≥ t0i
′ − ε

(44)

and we can pick ε small enough to constitute a contradiction. Suppose t0i
′
< t0i . By

OSP

ui(θ
′′
i , ĥ, S

θ̂i
i , S

θ̂−i
−i ) ≤ ui(θ′′i , h′, S

θ′′i
i , S

θ′−i
−i ) (45)

which entails

t0i ≤ t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(θ′′i − inf{θi ∈ Θ1
I∗i ,i
})

= t0i
′
+ 1i∈fy(θ′′i ,θ

′
−i)

(θ′′i − sup{θi ∈ Θ0
I∗i ,i
}) ≤ t0i

′ (46)

which is a contradiction.

The case that remains is θ′′i ∈ Θ1
I∗i
\ Θ0

I∗i
. Then i ∈ fy(θ

′′
i , θ
′
−i) and ft,i(θ

′′
i , θ
′
−i) =

− inf{θi ∈ Θ1
I∗i ,i
}+ t0i

′
. Suppose t0i

′
> t0i . OSP requires:

ui(θ̂i, ĥ, S
θ̂i
i , S

θ̂−i
−i ) ≥ ui(θ̂i, h′, S

θ′′i
i , S

θ′−i
−i ) (47)

which entails

t0i ≥ θ̂i − inf{θi ∈ Θ1
I∗i ,i
}+ t0i

′

≥ t0i
′ − ε

(48)

and we can pick ε small enough to constitute a contradiction.

Suppose t0i
′
< t0i . Since S

θ′′i
i (Ii) 6= S θ̂ii (Ii), either S θ̌ii (Ii) 6= S θ̂ii (Ii) or S θ̌ii (Ii) 6=

S
θ′′i
i (Ii). Moreover, ft,i(θ̌i, θ

′
i) = −1i∈fy(θ̌i,θ′−i)

inf{θi ∈ Θ1
I∗i ,i
}+ t0i

′
.
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Suppose S θ̌ii (Ii) 6= S θ̂ii (Ii). OSP requires:

ui(θ̌i, h
′, S θ̌ii , S

θ′−i
−i ) ≥ ui(θ̌i, ĥ, S θ̂ii , S

θ̂−i
−i ) (49)

which entails

1i∈fy(θ̌i,θ′−i)
(θ̌i − inf{θi ∈ Θ1

I∗i ,i
}) + t0i

′ ≥ t0i (50)

which entails

1i∈fy(θ̌i,θ′−i)
ε+ t0i

′ ≥ t0i (51)

and we can pick ε small enough to yield a contradiction. Suppose S θ̌ii (Ii) 6= S
θ′′i
i (Ii).

By Equation 40, ft,i(θ̌i, θ
′
−i) = −1i∈fy(θ̌i,θ′−i)

inf{θi ∈ Θ1
I∗i ,i
} + t0i

′
, and ft,i(θ

′′
i , θ̂−i) =

− inf{θi ∈ Θ1
I∗i ,i
}+ t0i . OSP requires

ui(θ̌i, h
′, S θ̌ii , S

θ′−i
−i ) ≥ ui(θ̌i, ĥ, S

θ′′i
i , S

θ̂−i
−i ) (52)

which entails

1i∈fy(θ̌i,θ′−i)
(θ̌i − inf{θi ∈ Θ1

I∗i ,i
}) + t0i

′ ≥ (θ̌i − inf{θi ∈ Θ1
I∗i ,i
}) + t0i (53)

which entails

1i∈fy(θ̌i,θ′−i)
ε+ t0i

′ ≥ ε+ t0i (54)

which entails

t0i
′ ≥ t0i (55)

a contradiction. By the above argument, for all Ii satisfying the assumptions of

Lemma 5, there is a unique transfer t0i for all terminal histories z passing through Ii such

that i /∈ gy(z). Equation 40 thus implies that there is a unique transfer t1i for all terminal

histories z passing through Ii such that i ∈ gy(z). Moreover, t1i = − inf{θi ∈ Θ1
Ii,i
}+ t0i .

This proves Lemma 5.

Now to bring this all together. We leave showing parts (1.d.iv) and (2.d.iv) of

Definition 15 to the last. Take any (Ĝ, ŜN ) that OSP-implements (fy, ft). Define

G ≡ P(Ĝ, ŜN ) and SN as ŜN restricted toG. By Proposition 2, (G,SN ) OSP-implements

(fy, ft).
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We now characterize (G,SN ). For any player i, consider any information set I∗i such

that |A(I∗i )| ≥ 2, and for all prior information sets I ′i ≺ I∗i , |A(I ′i)| = 1. By Lemma 1,

there is a unique action a∗I∗i
taken by all types in Θ1

I∗i ,i
∩Θ0

I∗i ,i
.

Either |Θ1
I∗i ,i
∩Θ0

I∗i ,i
| > 1 or |Θ1

I∗i ,i
∩Θ0

I∗i ,i
| ≤ 1.

If |Θ1
I∗i ,i
∩Θ0

I∗i ,i
| > 1, then by Lemma 4, G̃ pruned and |A(Ii)| ≥ 2,

1. EITHER: There exists θi ∈ Θ0
I∗i ,i

such that Sθii (I∗i ) 6= a∗I∗i
, and for all θ′i ∈ Θ1

I∗i ,i
,

S
θ′i
i (I∗i ) = a∗I∗i

.

2. OR: There exists θi ∈ Θ1
I∗i ,i

such that Sθii (I∗i ) 6= a∗I∗i
, and for all θ′i ∈ Θ0

I∗i ,i
, S

θ′i
i (I∗i ) =

a∗I∗i
.

In the first case, then by Lemma 2, there is some t̄i such that, for all (Si, S−i), for

all h ∈ Ii, if i /∈ gy(zG(h, Si, S−i), then gt,i(z
G(h, Si, S−i) = t̄i. Moreover, we can define

a ‘going transfer’ at all information sets I ′i such that I∗i � I ′i:

t̃i(I
′
i) ≡ min

I′′i :I∗i �I′′i �I′i
[t̄i − sup{θi ∈ Θ0

I′′i ,i
: Sθii (I ′′i ) 6= a∗I′′i

}] (56)

Notice that this function falls monotonically as we move along the game tree; for any

I ′i, I
′′
i such that I ′i � I ′′i , t̃i(I

′
i) ≥ t̃i(I

′′
i ). Moreover, by construction, at any I ′i, I

′′
i such

that I ′i ≺ I ′′i , t̃i(I
′
i) > t̃i(I

′′
i ), and there does not exist I ′′′i such that I ′i ≺ I ′′′i ≺ I ′′i , then

there exists a ∈ A(I ′′i ) that yields i /∈ y, and by Lemma 2 this yields transfer t̄i. We

define Aq to include all such quitting actions; i.e. Aq is the set of all actions such that:

1. a ∈ Ii for some Ii ∈ Ii

2. For all z such that a ∈ ψi(z): i /∈ gy(z) and gt,i(z) = t̄i

Lemma 3 and SP together imply that, at any terminal history z, if i ∈ gy(z), then

gt,i(z) = inf
Ii:I∗i �Ii≺z

t̃i(Ii) (57)

This holds because, if gt,i(z) < infIi:I∗i �Ii≺z t̃i(Ii), then type θi such that t̄i−infIi:I∗i �Ii≺z t̃i(Ii)) <

θi < t̄i − gt,i(z) could profitably deviate to play a ∈ A0 at information set I∗i .

In the second case, then by Lemma 2, there is some t̄i such that, for all (Si, S−i), for

all h ∈ I∗i , if i ∈ gy(zG(h, Si, S−i), then gt,i(z
G(h, Si, S−i) = t̄i. Moreover, we can define

a ‘going transfer’ at all information sets I ′i such that I∗i � I ′i):

t̃i(I
′
i) ≡ min

I′′i :I∗i �I′′i �I′i
[t̄i + inf{θi ∈ Θ0

I′′i ,i
: Sθii (I ′′i ) 6= a∗I′′i

}] (58)
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We define A1 symmetrically for this second case.

Part (1.d.iii) and (and its analog in Clause 2) of Definition 15 follow from Lemma 4.

The above constructions suffice to prove Theorem 3 for cases where |Θ1
I∗i ,i
∩ Θ0

I∗i ,i
| > 1.

Cases where |Θ1
I∗i ,i
∩Θ0

I∗i ,i
| ≤ 1 are dealt with by Lemma 5.

Now for the last piece: We prove that parts (1.d.iv) and (and its analog in Clause

2) of Definition 15 hold. The proof of part (1.d.iv) is as follows: Suppose we are facing

Clause 1 of Definition 15, and for some Ii, |A(I ′i) \ A0| > 1. By part (1.d.iii), we know

that the going transfer t̃i can fall no further. Since G is pruned and |A(I ′i) \ A0| > 1,

there exist two distinct types of i, θi, θ
′
i ∈ ΘI′i,i

, who do not quit at I ′i, and take different

actions. Since neither quits at I ′i and the going transfer falls no further, there exist

θ−i, θ
′
−i ∈ ΘI′i,−i such that i ∈ fy(θi, θ−i) and i ∈ fy(θ′i, θ′−i). So there exist (h ∈ I ′i, S−i)

and (h′ ∈ I ′i, S′−i) such that

i ∈ gy(h, Sθii , S−i) (59)

i ∈ gy(h′, S
θ′i
i , S

′
−i) (60)

gt,i(h, S
θi
i , S−i) = gt,i(h

′, S
θ′i
i , S

′
−i) = t̃i(I

′
i) (61)

WLOG suppose θi < θ′i. Suppose that there does not exist a ∈ A(I ′i) such that, for

all z such that a ∈ ψi(z), i ∈ gy(z). Then there must exist (h′′ ∈ I ′i, S′′−i) such that

i /∈ gy(h′′, S
θ′i
i , S

′′
−i) (62)

gt,i(h
′′, S

θ′i
i , S

′′
−i) = t̄i (63)

Note that I ′i ∈ α(Sθii , S
θ′i
i ). But then S

θ′i
i is not obviously dominant, a contradiction,

since

uG̃i (h′′, S
θ′i
i , S

′′
−i, θ

′
i) = t̄i ≤ θi + t̃i(I

′
i)

< θ′i + t̃i(I
′
i) = uG̃i (h, Sθii , S−i, θ

′
i)

(64)

(The first inequality holds because of type θi’s incentive constraint.) This shows that

part (1.d.iv) of Definition 15 holds. Its analog in Clause 2 is proved symmetrically.
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Proposition 2. If G is a personal-clock auction, then there exist SN and fy such that

(G,SN ) OSP-implements fy.

Proof. Take any personal-clock auction G. For any i and any θi, the following strategy

Si is obviously dominant:

1. If i encounters an information set consistent with Clause 1 of Definition 15, then,

from that point forward:

(a) If θi + t̃i(Ii) > t̄i and there exists a ∈ A(Ii) \Aq, play a ∈ A(Ii) \Aq.

i. If |A(Ii) \ Aq| > 1, then play a ∈ A(I ′i) such that: For all z such that

a ∈ ψi(z): i ∈ gy(z).

(b) Else play some a ∈ Aq.3

2. If i encounters an information set consistent with Clause 2 of Definition 15, then,

from that point forward:

(a) If θi + t̄i < t̃i(Ii) and there exists a ∈ A(Ii) \Aq, play a ∈ A(Ii) \Aq.

i. If |A(Ii) \ Aq| > 1, then play a ∈ A(I ′i) such that: For all z such that

a ∈ ψi(z): i /∈ gy(z).

(b) Else play some a ∈ Aq.

The above strategy is well-defined for any agent in any personal-clock auction, by

inspection of Definition 15.

Consider any deviating strategy S′i. At any earliest point of departure, the agent

will have encountered an information set consistent with either Clause 1 or Clause 2 of

Definition 15. Suppose that the agent has encountered an information set covered by

Clause 1.

Take some earliest point of departure Ii ∈ α(Si, S
′
i). Notice that, by (1.a) of Definition

15, no matter what strategy i plays, conditional on reaching Ii, either agent i is not in the

allocation and receives t̄i, or agent i is in the allocation and receives a transfer t̂i ≤ t̃i(Ii).
Suppose θi + t̃i(Ii) > t̄i. Note that under Si, conditional on reaching Ii, the agent

either is not in the allocation and receives t̄i, or is in the allocation and receives a transfer

strictly above t̄i−θi. If S′i(Ii) ∈ Aq (i.e. if agent i quits), then the best outcome under S′i
is no better than the worst outcome under Si. If S′i(Ii) /∈ Aq, then, since S′i(Ii) 6= Si(Ii),

|A(Ii) \ Aq| > 1. Then, by (1.d.iii) of Definition 15, t̃i will fall no further. So Si(Ii)

guarantees that i will be in the allocation and receive transfer t̃i(Ii). But, by (1.a) of

3If |Aq ∩A(Ii)| > 1, the agent chooses deterministically but arbitrarily.
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Definition 15, the best possible outcome under S′i conditional on reaching Ii is no better,

so the obvious dominance inequality holds.

Suppose θi + t̃i(Ii) ≤ t̄i. Then, under Si, conditional on reaching Ii, agent i is not in

the allocation and has transfer t̄i.
4 However, under S′i, either the outcome is the same,

or agent i is in the allocation for some transfer t̂i ≤ t̃i(Ii) ≤ t̄i − θi. Thus, the best

possible outcome under S′i is no better than the worst possible outcome under Si, and

the obvious dominance inequality holds.

The argument proceeds symmetrically for Clause 2.

Notice that the above strategies result in some allocation and some payments, as a

function of the type profile. We define these to be (fy, ft), such that G OSP-implements

(fy, ft).

3 Alternative Empirical Specifications

Here we report alternative empirical specifications for the experiment.

A natural measure of errors would be to take the sum, for k = 1, 2, 3, 4, of the absolute

difference between the kth highest bid and the kth highest value. However we do not

observe the highest bid under AC, and we often do not observe the highest bid under

AC+X. We could instead take the sum for k = 2, 3, 4 of the absolute difference between

the kth highest bid and the kth highest value, averaged as before in five-round blocks.

Table 2 reports the results.

Another measure of errors would be to take the sum of the absolute difference between

each bidder’s bid and that bidder’s value, dropping all highest bidders for symmetry.

Table 3 reports the results.

Table 4 reports the results of Table 4 in the main text, except that the p-values are

calculated using the Wilcoxon rank-sum test.

29.0% of rank-order lists are incorrect under SP-RSD. 2.6% of choices are incorrect

under OSP-RSD. However, this is not a fair comparison; rank-order lists mechanically

allow us to spot more errors than single choices. To compare like with like, we compute

the proportion of incorrect choices we would have observed, if subjects played OSP-RSD

as though they were implementing the submitted rank-order lists for SP-RSD. This is a

cautious measure; it counts errors under SP-RSD only if they alter the outcome. Table

5 reports the results.

4By (1.d.ii) of Definition 15, either i will have quit in the past, or will have an opportunity to quit
now, which he exercises.
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Table 2: mean(sum(abs(kth bid - kth value))), for k = 2, 3, 4

Format Rounds SP OSP p-value

Auction

1-5 32.63 9.89 < .001
(4.64) (1.89)

6-10 16.28 5.53 .001
(2.73) (0.91)

+X Auction

1-5 17.04 6.18 .011
(3.70) (1.06)

6-10 14.21 4.74 .022
(3.70) (0.75)

For each auction, we sum the absolute differences between the kth bid and the kth value, for k = 2, 3, 4.
We then take the mean of this over each 5-round block. We then compute standard errors counting each
group’s 5-round mean as a single observation. (18 observations per cell.) p-values are computed using a
two-sample t-test, allowing for unequal variances.

Table 3: mean(sum(abs(i’s bid - i’s value))), dropping highest bidders

Format Rounds SP OSP p-value

Auction

1-5 35.13 10.18 < .001
(5.20) (1.88)

6-10 15.46 4.89 .002
(2.85) (0.72)

+X Auction

1-5 17.88 5.58 .009
(4.10) (1.01)

6-10 14.20 4.64 .022
(3.72) (0.83)

For each auction, we sum the absolute differences between each bidder’s bid and their value, dropping
the highest bidder. We then take the mean of this over each 5-round block. We then compute standard
errors counting each group’s 5-round mean as a single observation. (18 observations per cell.) p-values
are computed using a two-sample t-test, allowing for unequal variances.

Table 4: Proportion of serial dictatorships not ending in dominant strategy outcome,
p-values calculated using Wilcoxon rank-sum test

SP OSP p-value

Rounds 1-5 43.3% 7.8% .0001
Rounds 6-10 28.9% 6.7% .0010

This is the same as Table 4 in the main text, except that the p-values are calculated using the Wilcoxon
rank-sum test.
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Table 5: Proportion of incorrect choices under serial dictatorship: SP (imputed) vs OSP
(actual)

SP OSP p-value

Rounds 1-5 17.8% 2.6% < .001
(3.5%) (1.1%)

Rounds 6-10 10.7% 2.6% .002
(2.0%) (1.3%)

p-value .078 1.000

For each group in SP-RSD, for each period, we simulate the three choices that we would have observed
under OSP-RSD. For each group, for each 5-round block, we record the proportion of choices that are
incorrect. We then compute standard errors counting each group-block pair as a single observation. (18
observations per cell.) When comparing SP to OSP, we compute p-values using a two-sample t-test.
When comparing early to late rounds of the same game, we compute p-values using a paired t-test. In
the sample for OSP-RSD, there are 7 incorrect choices in the first five rounds and 7 incorrect choices in
the last five rounds.

In Table 6, we compute the mean difference between the second-highest bid and the

second-highest value, by auction format and by five-round blocks. This summarizes the

average direction of deviations (positive or negative) from equilibrium play. I had no

prior hypothesis about these outcome variables, but report this analysis for completeness.

Table 7 breaks down the rate that subjects submit incorrect rank-order lists in one-

shot SP-RSD by demographic category.

Table 6: mean(2nd bid - 2nd value)

Format Rounds SP OSP

Auction

1-5 -1.59 0.58
(2.07) (0.77)

6-10 4.22 0.78
(1.28) (0.40)

+X Auction

1-5 1.62 0.15
(0.70) (0.47)

6-10 2.97 0.02
(0.97) (0.31)

For each group, we take the mean difference between the second-highest bid and the second-highest value
over each 5-round block. We then compute standard errors counting each group’s 5-round mean as a
single observation. (18 observations per cell, standard errors in parentheses.)
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Table 7: Incorrect lists in one-shot SP-RSD, by demographic categories

Yes No p-value

Economics major 46% 31% .131
STEM major 32% 34% .876
Took a course in game theory 34% 33% .876
Male 37% 28% .214

This table displays the proportion of subjects who submitted incorrect rank-order lists in one-shot SP-
RSD, by self-reported demographic categories. There are 192 subjects in this treatment. p-values are
computed with Fisher’s exact test.

4 Quantal Response Equilibrium

Quantal response equilibrium (QRE) is defined for normal form games (McKelvey and

Palfrey, 1995). Agent quantal response equilibrium (AQRE) adapts QRE to extensive

form games (McKelvey and Palfrey, 1998); agents play a perturbed best response at

each information set, given correct beliefs about the (perturbed) play of other agents

and their future selves.

Standard specifications of AQRE predict extreme under-bidding in ascending auc-

tions with fine bid increments. I here provide a simple proof that, for any private-value

ascending auction, there exist bid increments fine enough that logit-AQRE predicts that

all bids will be close to 0 with probability close to 1. The proof also works for a class of

related models, that allow agents to have arbitrary beliefs about the strategies of other

agents and their future selves.

Definition 1. An equilibrium with τ-logit errors specifies, for every information

set, some (arbitrary) beliefs about opponent strategies and the agent’s own continuation

strategy. Given those beliefs, let {v1, . . . , vJ} denote the implied continuation values for

actions {a1, . . . , aJ} at information set Ii. The probability that agent i chooses aj at

Ii is equal to eτvj∑J
l=1 e

τvl
for some τ ≥ 0, where this randomization is independent across

information sets and agents.

This contains logit-AQRE (McKelvey and Palfrey, 1998) as a special case. It also

includes näıve logit models, such that agents believe that their opponents and their

future selves play dominant strategies.

We now consider the following environment: There is a single object and some finite

set of bidders, with types (private values) in the interval [0, 1] and quasi-linear utility.

Types are drawn according to some joint cdf F : [0, 1]|N | → [0, 1].

Definition 2. In a k-increment ascending auction, the price rises step by step
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through the set { 0
k ,

1
k ,

2
k , . . .}. Agents observe only the clock price, and whether the auction

has ended. At each price, active agents (in some arbitrary order) choose In or Out.

Agents who choose Out become inactive; they make no payments and do not receive the

object. At any point when only one agent is active, the auction ends, and the active

agent wins the object at the current clock price.

Proposition 3. For any ε > 0 and any τ , there exists k such that, for all k ≥ k, in any

equilibrium with τ -logit errors of the k-increment ascending auction, the probability that

the closing price is above ε is less than ε.

Proof. Let M ε
k := max{j ∈ Z such that j

k ≤ ε}; this is the index of the highest bid

increment below ε. Take any agent i, any type θi, any k-increment auction, and any

equilibrium with τ -logit errors. Let vIn
i,j,k,θi

denote the continuation value (given i’s

arbitrary beliefs) of playing In at clock price j
k .

P ([i does not quit before ε] ∩ [ some j ∈ N \ i does not quit before ε])

≤ P (i does not quit before ε| some j ∈ N \ i does not quit before ε)

=

Mε
k∏

j=0

e
τvIn
i,j,k,θi

e
τvIn
i,j,k,θi + e0

≤
Mε
k∏

j=0

eτ

eτ + e0
(65)

The last inequality holds because, for any beliefs, i’s payoff from the k-increment

ascending auction is bounded above by 1. Moreover,

P (closing price above ε)

= P (
⋃
i∈N

[[i does not quit before ε] ∩ [ some j ∈ N \ i does not quit before ε]])

≤
∑
i∈N

P ([i does not quit before ε] ∩ [ some j ∈ N \ i does not quit before ε])

≤ |N |
Mε
k∏

j=0

eτ

eτ + e0
(66)

limk→∞M
ε
k = ∞, so limk→∞

∏Mε
k

j=0
eτ

eτ+e0
= 0. Consequently, we can pick k large

enough that, for all k ≥ k, the right-hand side of the above equation is less than ε, which

completes the proof.
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Table 8: AQRE computed for simplified auctions

mean(abs(2nd bid - 2nd value))
τ 2nd-Price Ascending

0 4.57 11.61
2−4 4.34 11.52
2−2 3.79 11.06
1 2.69 9.32
22 1.63 5.91
24 0.91 2.67

As Proposition 3 indicates, in any ascending auction with fine enough bid increments,

models such as logit-AQRE or näıve logit predict extreme underbidding.

In the auctions in my experiment, the range of types is $120 and bid increments

are 25 cents. It is not feasible to compute AQRE for these auctions. Players have 481

possible types and there are 601 possible bids. Consequently, the pure strategy space in

2P and 2P+X is of the order of 601481 ≈ 101336, and larger yet in AC and AC+X, since

there are multiple payoff-equivalent strategies of each kind (specifying different actions

at information sets that are never reached).

However, I compute logit-AQRE for the following simpler games: There are 4 agents,

with types drawn independently and uniformly at random from 0.25 to 20 (in 0.25

increments). Agents either play a second-price auction with 80 possible bids (equal to

the types), or an ascending clock auction with 80 clock prices.

I compute symmetric logit-AQRE for τ ∈ {0, 2−4, 2−2, 1, 22, 24}, and sample 106 plays

for each game-parameter pair. Table 8 displays the average absolute difference between

the second-highest bid and the second-highest value, by τ and auction format. For every

computed parameter value, AQRE predicts larger errors in the ascending auction than

in the second-price auction, which is the opposite of the effect in the experimental data.

For the simplified auctions that I computed, Table 9 displays the average difference

between the second-highest bid and the second-highest value predicted by AQRE. Com-

paring Table 8 and Table 9 indicates that the large errors in ascending auctions under

AQRE are driven almost entirely by under-bidding.

As Figure 2 and Figure 3 (in the main text) illustrate, there is no evidence of sys-

tematic under-bidding in AC and AC+X. Table 6 shows this rigorously.

For further robustness, I compute a ‘näıve’ alternative to AQRE: Agents make logistic

errors at each information set, while believing that their opponents (and their future

selves) play their dominant strategies5. Table 10 displays the average absolute difference

5In ascending auctions, there are multiple payoff-equivalent dominant strategies, which prescribe
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Table 9: Directional Errors under AQRE

mean(2nd bid - 2nd value)
τ 2nd-Price Ascending

0 0.01 -11.61
2−4 -0.33 -11.52
2−2 -0.83 -11.06
1 -0.75 -9.32
22 -0.32 -5.91
24 -0.06 -2.65

Table 10: Näıve logistic errors computed for simplified auctions

mean(abs(2nd bid - 2nd value))
τ 2nd-Price Ascending

0 4.57 11.61
2−4 4.35 11.59
2−2 3.89 11.52
1 2.86 10.71
22 1.68 6.02
24 0.91 2.43

between the second-highest bid and the second-highest value, by τ and auction format.

This model also predicts larger mistakes in ascending auctions than in second-price

auctions.

The preceding results suggest that models in which agents make payoff-sensitive mis-

takes independently at every information set are substantially at odds with the data.

They predict that ascending auctions with fine increments will induce extreme under-

bidding, and that errors should be larger in ascending auctions than in second-price

auctions. One could invent new theories that permit non-independent errors across in-

formation sets or different accuracy parameters for different games, but this introduces

many new degrees of freedom, and may have little testable content.
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