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1 More Extensions

1.1 Preliminaries

In discussing some of the extensions that follow, it is convenient to scale k’s demand. Formally,

suppose that k’s demand can be written as Qk(pk) = λkQ̃k(pk), where λk ∈ [0,∞) capture its scale.

With this in mind, two observations are worth highlighting for what follows. First, we converge

to the case where only B is present (Propositions 1 and 5) by taking λA → 0 (with λB > 0).

Second, in Section 2, we introduced the concept of vertical differentiation disadvantage, defined as

the loss in relative quality experienced by a distributor that does not carry A against her rival that

does. This was epitomized by the expression vA(p
lf
A )+vB(p

lf
B )−vB(cB). As we also showed in that

section, this concept is important since it determines the extent of monopolization of B.

What is the connection between the scale of products’ demands and the disadvantage expe-

rienced by a distributor that does not carry A? Notice that vk(p) = λkṽk(p), where ṽk(p) =∫∞
p Q̃k(x)dx. Hence:

(i) The higher λA (keeping everything else constant), the higher the disadvantage from losing A

(holding prices fixed), since vA(p
lf
A ) is uniformly higher for a given plfA . This makes it easier

to monopolize B.

(ii) The higher λB (keeping everything else constant), the lower the disadvantage (holding prices

fixed), since vB(cB)−vB(plfB ) is uniformly higher for any given plfB > cB. This makes it harder

to monopolize B.

Intuitively, the higher λA is, the more important is product A for consumers. Hence, a distribu-

tor that does not carry A is in a weaker competitive position against her rivals that do. Conversely,

the higher λB is, the more important is for consumers to have a good deal for B. As a result, the

loss in relative quality from losing A is less important if the fringe provides B at a lower cost.

1.2 More Products

Adding more products does not qualitatively affect our main results. Suppose, for instance, that

there is another product Z that is also perfectly monopolized by M . If the latter can tie the

sales of A and Z, this is equivalent to increasing vA(p
lf
A ) in the laissez-faire scenario, so M will
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be able to achieve higher wholesale and retail prices for B. In other words, when M can tie his

entire portfolio of products, what matters for monopolization is the degree of vertical differentiation

disadvantage induced by losing M ’s overall portfolio, not the one induced by losing each of M ’s

products individually.1

Alternatively, suppose that Z is produced by M and an equally efficient fringe of perfectly

competitive producers. M will then attempt to monopolize both B and Z. This is equivalent

to increasing the scale of B’s demand in our baseline setting, which makes monopolization more

difficult. Finally, suppose that a fringe supplies Z but not by M . This case is qualitatively similar

to the previous case, except that M will not be able to soften downstream competition for Z. The

extent of monopolization will also be lower since distributors can now lower the prices of B and Z

to overcome the loss of A, decreasing the must-have nature of this last product.

1.3 More Efficient Fringe and Different Varieties of B

A strictly more efficient fringe does not affect the paper’s main qualitative results. The only minor

difference is that when the fringe is equally efficient,M can start monopolizing B in the laissez-faire

as soon as vA(p
lf
A ) > 0. In contrast, when the fringe is strictly more efficient, M will be able to

monopolize B only when vA(p
lf
A ) is significant enough to offset the fringe’s efficiency advantage.

Another way of seeing it is as follows. By Propositions 1 and 5, we know that if λA = 0, then

there is no monopolization of B. When the fringe is equally efficient than M , the latter can start

monopolizing B as soon as λA > 0 (though the extent of monopolization will be small when λA is

small). In contrast, when the fringe is strictly more efficient than M in producing B, M will have

to continue offering B at cost for λA ∈ [0, λ̄A] with λ̄A > 0.

Something similar occurs when the varieties of B produced by M and the fringe are imperfect

substitutes (so far, we have assumed that the two varieties are perfect substitutes). Again, M will

be able to soften competition for B only if the surplus in A can overcome the fact that there is

some intrinsic value (from an industry perspective) in carrying the fringe’s variety.

1.4 Weak Complements/Substitutes

So far, we have assumed that A and B are neither complements nor substitutes in consumption.

However, using continuity arguments, it is clear that our results extend to the case in which A and

B are weak complements or weak substitutes. However, the “weak” qualifier is important. For

instance, if A and B are very close substitutes, then distributors could use B to substitute for the

loss of A, substantially decreasing the must-have nature of A. On the other hand, if A and B are

perfect complements, then M will be able to monopolize both markets even when tying provisions,

1Note that the possibility of tying A and Z is important. The reason is that if M cannot tie these two products
(but can tie, say, A with B or Z with B), then a distributor can partially use Z (or A) to mitigate the vertical
differentiation of losing A (or Z).
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exclusivity clauses, distributor discrimination, and refusal to deal are all banned.

1.5 Alternative Timing

In the main text, we assumed that distributors simultaneously accept contracts and set retail prices.

We make this assumption mainly for tractability since it allows us to avoid recomputing equilibrium

retail prices after deviation by one of the distributors. An alternative (“sequential”) timing would

be to assume that distributors first make observable contract acceptance decisions and then set

retail prices downstream.

As shown in Figure 1.1, the results are qualitatively similar under both timings. The figure

Figure 1.1: Different Timings - The Effect of λA

(a) Baseline Timing - Retail Prices for A
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(b) Sequential Timing - Retail Prices for A
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(c) Baseline Timing - Retail Prices for B
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(d) Sequential Timing - Retail Prices for B
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Notes. Demands: Qk(p) = λk(1−(1−ρk)p)
ρk

1−ρk . Distribution: G(x) = e−e−x

. Population size: 100.000. Parameters:
n = 3, γ = 5, cA = 1/4, cB = 1/4, ρA = 3/2, λB = 1, ρB = 1.
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plots the equilibrium retail prices as a function of λA for the laissez-faire and robust-intervention

outcomes according to the model with horizontally differentiated distributors.2 The only significant

difference that arises is that unlike in Propositions 1 and 5 of the main text, under this alternative

timing,M can now monopolize market B even if A is not present (i.e., plfB > priB even when λA = 0).

Intuitively, under this alternative sequential timing,M ’s exclusive distributors adjust their retail

pricing downward after observing deviation by a rival. As a result, distributors’ reservation payoffs

are lower than in the baseline model of the main text and less sensitive to increases in the wholesale

price of rival distributors. The latter allows M to increase wholesale and retail prices of B with

exclusives even when λA = 0.

The fact that under the sequential timing, there is some softening of competition in market

B—despite A’s absence—also implies that banning exclusives is no longer equivalent to prohibiting

tying whenM is forced to make non-discriminatory offers and must deal with all distributors. This

is shown in Figure 1.2, which builds upon Figure 1.1 but also plots the effects of banning tying,

distributor discrimination, and refusal to deal while allowing exclusivity provisions. As the figure

shows, banning exclusives makes banning tying irrelevant, although the converse is not true. This

implies that banning exclusives leads to larger drops in the retail price of B and larger gains in

consumer surplus than only forbidding tying.3

Figure 1.2: Sequential Timing - Banning Exclusives vs. Forbidding Tying

(a) Retail Prices of B
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(b) Change in u = vA(pA) + vB(pB)
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Notes. Demands: Qk(p) = λk(1− (1− ρk)p)
ρk

1−ρk - Distribution: G(x) = e−e−x

- Population size: 100.000
Remaining parameters: n = 3, γ = 5, cA = 1/4, cB = 1/4, ρA = 3/2, λB = 1, ρB = 1.

2Check the Supplementary Material for the MATLAB codes used to create the different plots found throughout the
paper and the online Appendix.

3Intuitively, simply forbidding tying eliminates the multiproduct anticompetitive strategy but still allows M to
pursue a single-product anticompetitive strategy. In contrast, banning exclusives eliminates both the multiproduct
and single-product anticompetitive strategies; M can no longer soften downstream competition, given that he cannot
make his offer mutually exclusive to the fringe.
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It is important to highlight, however, that the difference between banning exclusives and pro-

hibiting tying becomes negligible as λA increases (see Figure 1.2). Accepting the fringe’s low-cost

offer for B becomes increasingly attractive as the complementarity between the two products in-

creases with λA. As a result, M ’s single-product anticompetitive strategy becomes increasingly

more difficult the larger the scale of A’s demand is.

1.6 Simpler Contracts: Upstream Contractual Frictions with Public Offers

In the main text, we showed that our must-have mechanism continues to operate with upstream

contractual frictions in the case of private offers. What happens, however, if offers are public (as

in Sections 2–5 of the main text)?

To explore this possibility, let us follow Calzolari, Denicolò and Zanchettin (2020) and capture

contractual frictions in a reduced-form way. More precisely, suppose that extracting rents by

means of fixed fees creates deadweight losses: With a lump-sum payment of Ti, M earns Ti, but

the distributor loses (1 + κ)Ti, with κ > 0.4 We then converge to the case in which M is forced to

make linear-price contracts by taking κ→ ∞.

Figure 1.3 shows the effects of introducing contractual frictions in the model with public offers

and horizontally differentiated distributors. Panels (a) and (b) plot the equilibrium retail prices

for B in the laissez-faire scenario (lf) and under the robust-intervention benchmark (ri). Building

on these prices, Panel (c) plots the change in the retail price of B due to the robust intervention,

while Panel (d) plots the consumer welfare gains following this intervention.

Two results stand out in these figures. The first, captured in Figure 1.3(b), is that in contrast

to our baseline model (see Proposition 6), the robust intervention now has an effect even when

distributors are local monopolies. This effect is completely unrelated to our theory of must-haves.

Indeed, as explained by Greenlee, Reitman and Sibley (2008) and Calzolari, Denicolò and Zanchet-

tin (2020) in the context of a single monopoly distributor, contractual frictions force M to sell

A and B above their marginal costs of production. As a result, M does not completely internal-

ize downstream profits, creating contractual externalities even in the absence of scale economies,

downstream competition, and one-stop shopping. Ultimately, this makes it profitable for M to use

tying provisions to monopolize market B, which explains why the intervention now also produces

gains when γ = 0.

The second result, illustrated in Figures 1.3(c) and 1.3(d), is that this monopolization based on

contractual frictions weakens with the introduction of downstream competition and is eventually

fully replaced by the monopolization based on must-haves that we have presented in this paper.

The reason was already discussed in the Related Literature: contractual frictions matter less with

more downstream competition because there is less profit to extract from distributors and hence,

4It is assumed that this friction appears only when Ti > 0. This guarantees that lump-sum subsidies do not entail
any special benefit.
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Figure 1.3: The Effects of Contractual Frictions

(a) Retail Prices for B - No Frictions
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(c) Retail Prices for B - Frictions vs. No Frictions
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(d) ∆CS - Frictions vs. No Frictions
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Notes. Demands: Qk(p) = λk(1−(1−ρk)p)
ρk

1−ρk . Distribution: G(x) = e−e−x

. Population size: 100.000. Parameters:
n = 3, cA = 1/4, cB = 1/4, λA = 1, λB = 1, ρA = 3/2, ρB = 1.

less need for fixed fees (or, more generally, within-product nonlinearities in the contracts).

1.7 More Complex Contracts

In the main text, we showed that M is unable to profitably monopolize B if A is not present. This

is because when M tries to induce distributors to accept contracts with wholesale prices for B that

are higher than the fringe’s cost, the sum of distributors’ reservation payoffs increases more rapidly

than the corresponding increase in industry profits.

This result, however, raises the question: What types of contracts are necessary and sufficient

for M to maximize industry profits (i.e., to fully monopolize B) in the single-product case? In
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this online Appendix, we use the simple model with two Bertrand competitors of Section 2 of the

main text to show that multilateral contracts are necessary and sufficient. This implies that if M

has these types of contracts at his disposal, then the presence of an additional product does not

affect the extent of monopolization of market B (as this market is already fully monopolized), and

must-have products play no role in the market outcome.

1.7.1 Multilateral Contracts Are Sufficient For Single-Product Full Monopolization

Suppose that M offers the following multilateral contracts to i = 1, 2 (where ϵ > 0):

• (wBi = pmB , TBi = −ϵ/2, ei = 1) if j ̸= i also accepts M ’s offers.

• (wBi = cB, TBi = −ϵ/2, ei = 1) if j ̸= i deviates to the fringe’s contract.

Because a distributor that rejects M ’s exclusive offer is always weakly better off accepting the

fringe’s contract (rather than not accepting a contract at all), the continuation game accepts the

following equilibrium candidates:

1. Both distributors accept M ’s offer and reject the fringe’s contract. If so, both distributors

charge pmB on-path and obtain profits of ϵ/2. This candidate is an equilibrium for if distributor

i deviates to the fringe’s contract, she knows that j will have a wholesale price for B equal to

cB, so she expects zero profits due to Bertrand competition downstream.

2. One distributor, say D1, accepts M ’s offer, while the other distributor accepts the fringe’s offer.

This cannot be an equilibrium. By taking the fringe’s offer, D2 obtains zero profits since D1

will have a wholesale price for B equal to cB. As a result, D2 deviates and takes M ’s contract

to obtain at least ϵ/2.

3. Both distributors rejectM ’s offer and take the fringe’s offer for B. This cannot be an equilibrium

either. Both distributors are making zero profits on-path. Consequently, a distributor has

incentives to deviate to M ’s offer to secure at least ϵ/2.

Thus following the aforementioned offers, the unique equilibrium of the continuation game is for

both distributors to accept M ’s offers. As a result, equilibrium retail prices will be p∗Bi = p∗Bj = pmB

and M ’s profits Πlf
M = πB(p

m
B ; cB) − ϵ → πB(p

m
B ; cB) as ϵ → 0. Hence, multilateral contracts are

sufficient for single-product full monopolization. □

1.7.2 Contingent Contracts Are Necessary For Single-Product Full Monopolization

We will prove the contrapositive statement: if M can only offer the most general bilateral con-

tracts (even if they are in the most general form {Ti(qBi), ei}), there cannot be single-product full

monopolization (in fact, we will show that there will be no monopolization at all).
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So supposeM offers contracts of the form {Ti(qBi), ei} to i = 1, 2. As in the proof of Proposition

1, in equilibrium is without loss of generality to (i) focus on the case whereM offers all distributors

contracts with exclusivity provisions, {Ti(qBi), ei = 1}, and (ii) assume that every distributor

accepts M ’s offer. Denote then by p∗Bi and p∗Bj distributors on-path retail prices following M ’s

offers,5 and without loss of generality assume that p∗B1 ≤ p∗B2. Assume, furthermore, that (i) the

tie-breaking rule is such that all consumers buy from D1 if retail prices are the same (the proof can

be easily generalized to an arbitrary tie-breaking rule), and (ii) that p∗B2 ≤ pmB (the proof for when

p∗B2 > pmB follows the exact same logic).

It is then an equilibrium for both distributors to accept M ’s offers if and only if the following

participation constraints are satisfied:

p∗B1QB(p
∗
B1)− T1(QB(p

∗
B1)) ≥ max{0, (p∗B2 − cB)QB(p

∗
B2)}

−T2(0) ≥ max{0, (p∗B1 − cB)QB(p
∗
B1)}

But since M ’s equilibrium profits are Π∗
M = T1

(
QB(p

∗
B1)
)
+ T2(0) − cBQB(p

∗
B1), distributors’

participation constraints imply that:

Π∗
M ≤ (p∗B1 − cB)QB(p

∗
B1)−max{0, (p∗B2 − cB)QB(p

∗
B2)} −max{0, (p∗B1 − cB)QB(p

∗
B1)}

This expression is strictly negative unless p∗B1 ≥ cB and p∗B2 ≤ cB. Thus, and given our presumption

that p∗B1 ≤ p∗B2, with bilateral contractsM will always induce distributors to charge p∗B1 = p∗B2 = cB

(for example, offering (wBi = cB, TBi = 0, ei = 1)) and obtain zero profits.

Hence, it is clear that the best M can do with bilateral contracts is to let distributors buy from

the fringe, i.e., there is no monopolization in B whatsoever. □

1.8 Single-Product Strategic Rival

Suppose that M ’s rival in the provision of B is not a fringe of competitive suppliers, as assumed

thus far, but a single-product strategic rival, say S, with the same per-unit cost cB. To see why

our results remain qualitatively (and sometimes quantitatively) unchanged, consider two cases

regarding S’s space of available contracts.

Start with the case in which S can only offer two-part tariffs (exclusives are not available for

S, but they are for M). Since S cannot prevent distributors from accepting his offer while buying

everything from M , S will have no choice but to discard any negative transfers in his offers.6 It is

easy to see then that, in equilibrium, S will offer product B at cost and set a fixed fee of zero, just

5We assume that T1(·) and T2(·) are such that an equilibrium in pure strategies exists at the pricing stage.
6The only reason to offer a negative fee is to entice a distributor to accept a higher wholesale price than that being

offered by the rival upstream supplier. However, since S cannot include exclusivity provisions in his contracts, a
distributor does not need to decide between his offer and that of M ; she can accept both to obtain the negative fee
and obtain B at the lowest per-unit cost. Anticipating the latter, S will never offer negative fees.
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as the fringe does. Consequently, substituting the fringe for a strategic rival, in this case, has no

effect on the outcome of the game.

Consider now the alternative case in which S is also allowed to offer exclusive contracts for B.

When the scale of A’s demand is small (i.e., λA ≈ 0), S still operates very similarly to the fringe

in that he makes no profit in equilibrium. The only difference with the laissez-faire equilibrium

(see Propositions 2 and 5) is that S makes offers with wholesale prices above cost that also include

negative fixed fees. However, as λA increases, it is possible to prove that wholesale prices and fixed

fees in S’s offers converge to cB and zero from above and below, respectively, to a point where

λA is sufficiently large, where S stops offering exclusives altogether and sells B at cost. In this

case—again—substituting the fringe for a strategic rival has no effect whatsoever on the outcome

of the game.

1.9 Nash-in-Nash Bargaining

So far, we have assumed that M makes take-it-or-leave-it offers to the distributors. In this section,

we show that if upstream contractual frictions are present (as in the case of private offers), our

results extend to the case where M and the distributors bilaterally negotiate according to a Nash-

in-Nash Bargaining Protocol.7

Consider the model with horizontally differentiated distributors of Sections 4 and 5 of the main

text, except that now M and the distributors negotiate according to a Nash-in-Nash Bargaining

protocol (the fringe continues to offer distributors product B at a constant per-unit wholesale price

equal to cB). That is,M engages with each distributor in a bilateral Nash bargain, anticipating that

M and the other distributors will also reach an agreement and taking the terms of those agreements

as given. The bargaining weight of M relative to Di is assumed to be equal to βi ∈ (0, 1).

We will first show that if fixed fees are available, the same type of supplier opportunism that

arises in the take-it-or-leave-it protocol with private offers emerges here. Thus,M is unable to raise

products’ wholesale prices above their marginal cost of production, so there is no monopolization

in B.

Indeed, suppose that M offers tying-exclusive contracts (wAi, wBi, Ti, ei = 1). Given the bar-

gaining protocol, the offers of other distributors are given, so the retail prices charged by Di only

depend on his offer (as in the case of private offers):

p∗
i (wi) = argmax

(pAi,pBi)
ΠD(pi,p

e
−i;wAi, wBi)

= argmax
(pAi,pBi)

{
(πA(pAi;wAi) + πB(pBi;wBi))s(pi,p

e
−i)
} (1)

7The Nash-in-Nash bargaining protocol was first proposed by Horn and Wolinsky (1988). Collard-Wexler,
Gowrisankaran and Lee (2019) later provided a noncooperative foundation for this bargaining solution based on
a model of alternating offer bargaining. This protocol has been playing an ever more prominent role in the empirical
literature and the antitrust practice analyzing the effect of upstream negotiations on market outcomes (see, e.g.,
Farrell et al., 2011; Crawford and Yurukoglu, 2012).
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where pe
−i is Di’s conjecture about the retail prices charged by her rivals. With some abuse of

notation, define then:8

Π̂M (N ,wi,w−i) ≡
(
(wAi − cA)QA(p

∗
Ai(wi)) + (wBi − cB)QB(p

∗
Bi(wi))

)
s(p∗

i (wi),p
e
−i)

+
∑

j ̸=i

[(
(wAj − cA)QA(p

e
Aj) + (wBj − cB)QB(p

e
Bj)
)
s(pe

j , (p
∗
i (wi),p

e
−ij))

]
Π̂M (N \ {i},wi = ∞,w−i)

≡
∑

j ̸=i

[(
(wAj − cA)QA(p

e
Aj) + (wBj − cB)QB(p

e
Bj)
)
s(pe

j , (pi = ∞,pe
−ij))

]
whereN = {1, ..., n} is set of distributors operating in the downstreammarket. That is, Π̂M (N ,wi,w−i)

areM ’s profits before fixed fees if he reaches an agreement withDi, while Π̂M (N\{i},wi = ∞,w−i)

are his profits if he does not (taking all other agreements as given).

The Nash protocol then implies that (wAi, wBi, Ti) must solve:

max
(wAi,wBi,Ti)

[
Π̂M (N ,wi,w−i)− Π̂M (N \ {i},wi = ∞,w−i) + Ti

]βi

×
[
ΠD(p

∗
i (wi),p

e
−i;wAi, wBi)− max

p̃Ai=∞,p̃Bi

ΠD(p̃i,p
e
−i;∞, cB)− Ti

]1−βi

subject to:

Π̂M (N ,wi,w−i)− Π̂M (N \ {i},wi = ∞,w−i) + Ti ≥ 0

ΠD(p
∗
i (wi),p

e
−i;wAi, wBi)− max

p̃Ai=∞,p̃Bi

ΠD(p̃i,p
e
−i;∞, cB)− Ti ≥ 0

The first-order conditions of this problem are then:

∂

∂Ti
=

βi

Π̂M (N ,wi,w−i)− Π̂M (N \ {i},wi = ∞,w−i) + Ti

− 1− βi
ΠD(p∗

i (wi),pe
−i;wAi, wBi)−maxp̃Ai=∞,p̃Bi ΠD(p̃i,pe

−i;∞, cB)− Ti
= 0

∂

∂wki
=

βi
∂

∂wki
Π̂M (N ,wi,w−i)

Π̂M (N ,wi,w−i)− Π̂M (N \ {i},wi = ∞,w−i) + Ti

−
(1− βi)

∂
∂wki

ΠD(p
∗
i (wi),p

e
−i;wAi, wBi)

ΠD(p∗
i (wi),pe

−i;wAi, wBi)−maxp̃Ai=∞,p̃Bi ΠD(p̃i,pe
−i;∞, cB)− Ti

= 0

8Note the difference with expression (??) of the main text (M ’s profits in the take-it-or-leave-it protocol with private
offers). Here, M and Di are equally informed about the terms that parties may sign in other bilateral relationships.
This explains why M ’s profits depend only on pe

j (rather than pe
j and p∗

j (wj)).
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Combining these first-order conditions, we obtain that (w∗
Ai, w

∗
Bi) must be such that:

∂

∂wki
Π̂M (N ,wi,w−i) +

∂

∂wki
ΠD(p

∗
i (wi),p

e
−i;wAi, wBi) = 0 for k = A,B

That is,

(w∗
Ai, w

∗
Bi) = argmax

(wAi,wBi)

{
Π̂M (N ,wi,w−i) + ΠD(p

∗
i (wi),p

e
−i;wAi, wBi)

}
Hence, the equilibrium wholesale prices under the Nash-in-Nash protocol are also equal to the

products’ marginal costs, i.e., wNiN
i = (cA, cB) for all i = 1, ..., n (where NiN stands for “Nash-in-

Nash”).

This result should not be surprising: we know from Collard-Wexler, Gowrisankaran and Lee

(2019) that the Nash-in-Nash Protocol is a type of contract equilibrium. Hence, when fixed fees are

available, the same type of supplier opportunism that arises under take-it-or-leave-it private offers

also emerges here, precluding M from raising products’ wholesale prices above their marginal costs

of production. This implies that the only effect that the Nash-in-Nash protocol has compared to

the take-it-or-leave-it private offers is that the negotiated fixed fees betweenM and the distributors

are different; Ti now depend on the relative bargaining weight of M vis-a-vis Di.

Similarly to the case of private offers, we can restore the must-have monopolization mechanism

by introducing contractual frictions. Suppose, for instance, thatM is forced to offer linear contracts

to the distributors so that M offers tying-exclusives contracts of the form (wAi, wBi, ei = 1) to all

the distributors. Then, the negotiated terms between M and Di must now solve:

max
(wAi,wBi)

[
Π̂M (N ,wi,w−i)− Π̂M (N \ {i},wi = ∞,w−i)

]βi

×
[
ΠD(p

∗
i (wi),p

e
−i;wAi, wBi)− max

p̃Ai=∞,p̃Bi

ΠD(p̃i,p
e
−i;∞, cB)

]1−βi

subject to:

Π̂M (N ,wi,w−i)− Π̂M (N \ {i},wi = ∞,w−i) ≥ 0

ΠD(p
∗
i (wi),p

e
−i;wAi, wBi)− max

p̃Ai=∞,p̃Bi

ΠD(p̃i,p
e
−i;∞, cB) ≥ 0

From here it is clear that wNiN
ki > ck for k = A,B. Moreover, just as in the case of take-it-or-leave-it

private offers, ifA is not present, there will be no monopolization inB since ΠD(p
∗
i (wi),p

e
−i;wAi, wBi) ≥

maxp̃Ai=∞,p̃Bi ΠD(p̃i,p
e
−i;∞, cB) is violated for all wBi > cB. A similar argument can also be used

to show that if tying provisions are forbidden, there cannot be monopolization in B either.

In sum, the Nash-in-Nash case is almost identical to the take-it-or-leave-it private offers case:

when fixed fees are available, there is no monopolization due to supplier opportunism. However, up-

stream contractual frictions ameliorate M ’s opportunism, restoring the must-have monopolization

11



mechanism.

1.10 Nonlinear Pricing Downstream

The main text assumes that distributors compete in linear prices, whereas pay-TV subscriptions

rely instead on fixed fees. In this online appendix, we consider the consequences of allowing two-

part tariffs (or, more generally, nonlinear contracts) in the downstream market using the baseline

model of Section 2.

We will show two results. First, with the model as currently constructed, there is no monop-

olization in B if distributors can offer nonlinear contracts/two-part tariffs downstream. This is

because two-part tariffs allow M to fully extract the surplus in product A, so the outcome is the

same “as if” there is a unit-inelastic demand for product A. That said, we show, secondly, that

A’s must-have nature is restored (and, therefore, so is the monopolization of market B) once we

introduce heterogeneity in consumers’ valuations for product A. This is because such heterogeneity

now precludes M from extracting all the surplus in A.

1.10.1 Two-Part Tariffs with Homogenous Consumers

Consider the baseline model of Section 2, except that distributors can now offer a two-part tariffs

to consumers. That is, Di announces a schedule (pAi, pBi, fi) where pki is the marginal price that

Di sets for product k = A,B, and fi is a fixed/“entry” fee.9 We will characterize M ’s preferred

SPNE and show that it involves no monopolization in market B.10

As usual, when characterizingM ’s preferred SPNE it is without loss of generality to (i) focus on

the case where M offers all distributors tying-exclusive contracts of the form (wAi, wBi, Ti, ei = 1)

and (ii) assume that every distributor accepts M ’s offer. Suppose then that M offers contracts

with a vector of wholesale prices (wA1, wB1, wA2, wB2), and without loss of generality assume that

vA(wA1) + vB(wB1) ≥ vA(wA2) + vB(wB2). To further simplify the proof, assume—as in the proof

of Proposition 2—that if both distributors offer the same surplus to consumers, the tie-breaking

rule is such that all consumers buy from D1 (the proof can easily be generalized to an arbitrary

tie-breaking rule).

GivenM ’s offers, Bertrand competition with two-part tariffs implies that the equilibrium down-

stream is given by p∗Ai = wAi, pBi = w∗
Bi for i = 1, 2 and:

f∗1 = vA(wA1) + vB(wB1)− vA(wA2)− vB(wB2) and f∗2 = 0

This implies that on-path only D1 will be visited by consumers and selling strictly positive units.

9Note that because consumers are one-stop shoppers, it is without loss to focus on a single contract (pAi, pBi, fi)
(rather than in two individual two-part tariff contracts (pAi, fAi) and a (pBi, fBi)).
10Using similar arguments as in Proposition 2 of the main text, it is possible to prove that all equilibria are outcome
equivalent to M ’s preferred SPNE.
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Both distributors accepting M ’s offers is then a Nash equilibrium if and only if the following

participation constraints are satisfied:

f∗1 − T1 ≥ max{0, vB(cB)− vA(wA2)− vB(wB2)}

−T2 ≥ max{0, vB(cB)− vA(wA2)− vB(wB2)}

That is, if Di’s on-path payoff is greater than her reservation payoff. Note that both distributors’

reservation payoffs are the same and equal to max{0, vB(cB)− vA(wA2)− vB(wB2)} in this case.11

InM ’s preferred SPNE, both distributors’ participation constraints must be binding. Obtaining

the equilibrium transfers from the binding constraints, substituting them into M ’s payoff function,

and using the fact that D1 is the only distributor selling on-path implies that M ’s payoff in his

preferred SPNE is the solution to the following problem:

Π̂pSPNE
M = max

w

{
πA(wA1; cA) + πB(wB1; cB) + T ∗

1 + T ∗
2

}
= max

w

{[
πA(wA1; cA) + vA(wA1)

]
+
[
πB(wB1; cB) + vB(wB1)

]
− vA(wA2)− vB(wB2)− 2max{0, vB(cB)− vA(wA2)− vB(wB2)}

}
subject to our premise that vA(wA1) + vB(wB1) ≥ vA(wA2) + vB(wB2). It is then straightforward

to prove that the solution to this problem involves wlf
A1 = cA, w

lf
B1 = cB and any pair (wlf

A2, w
lf
B2)

such that:

vA(w
lf
A2) + vB(w

lf
B2) = vB(cB)

Thus,M ’s profits are Π̂pSPNE
M = vA(cA), both distributors obtain profits equal to zero, and consumer

surplus is CSlf = vB(cB). That is, the solution involves no monopolization: (i) M ’s profits are

equal to A’s monopoly profit (which is equal to vA(cA) under nonlinear pricing), and (ii) consumer

surplus is given by the surplus of purchasing B at a marginal price equal to the fringe’s marginal

cost.

1.10.2 Two-Part Tariffs with Heterogeneous Consumers

As it is evident from the previous example, the problem with allowing nonlinear pricing downstream

in the presence of homogeneous consumers is thatM can fully extract all the surplus that A creates.

This issue, however, has an easy fix: in reality, consumers are likely to differ in how much they

value a product. When this is the case, distributors will be unable to extract the surplus from

11To see why, suppose first that D1 deviates to the fringe’s contract. Since she expects D2 to charge (p∗A2, p
∗
B2, f

∗
2 ) =

(wA2, wB2, 0), D1’s optimal deviation is w′
B1 = cB and vB(cB) − f ′

1 = vA(wA2) + vB(wB2) (as long as f ′
1 is non-

negative). On the other hand, if D2 deviates, and given that she expects D1 to charge (p∗A1, p
∗
B1, f

∗
1 ) = (wA1, wB1, f

∗
1 ),

her optimal deviation is w′
B2 = cB and vB(cB) − f ′

2 = vA(wA1) + vB(wB1) − f∗
1 (as long as f ′

2 is non-negative).
Using that f∗

1 = vA(wA1) + vB(wB1) − vA(wA2) − vB(wB2), this last condition can be rewritten as vB(cB) − f ′
2 =

vA(wA2) + vB(wB2). Hence, for both distributors, the optimal deviation is the same, and so are reservation payoffs.

13



high-valuation consumers, restoring, once again, A’s “musthavedness” and M ’s monopolization

mechanism.

As a simple example, consider the same setting as in the previous subsection, but suppose

consumers are heterogeneous in their valuation for A: a fraction µ of consumers have a demand

θLQA(pA) for this product, while a fraction 1 − µ, a demand θHQA(pA), with 0 < θL < θH . As

in the previous section, distributors announce a single two-part tariff for all consumers.12 Due to

space constraints, we will not characterize the equilibrium in detail; we will simply show that for a

certain range of parameters, M can secure strictly more than A’s monopoly profits in his preferred

SPNE.

A’s monopoly profit.— We begin by characterizing A’s monopoly profit. To do this, suppose that

A is the only product in the market and that M deals directly with final consumers using a two-

part tariff of the form (pA, fA). To obtain the optimal two-part tariff scheme, we have two cases

to consider: (i) M optimally decides to serve both types of consumers, or (ii) M only serves the

high-value consumers.

If M decides to sell to both types, then he sets fA = θLvA(pA) so type-H consumers end up

with strictly positive surplus. M profits, in this case, are [µθL + (1− µ)θH ]πA(pA; cA) + θLvA(pA),

so the optimal price, which we denote by plhA , is strictly greater than cA and satisfies:

[
µθL + (1− µ)θH

][
QA(p

lh
A ) + (plhA − cA)Q

′
A(p

lh
A )
]
− θLQA(p

lh
A ) = 0 (2)

An alternative strategy is to sell only to the high types. In that case, it is straightforward to prove

that M charges (pA, fA) = (cA, θHvA(cA)) for a total profit of (1− µ)θHvA(cA).

The first strategy is obviously better than the second one when µ is not too low, i.e., when

µ > µ∗, where µ∗ equalizes the profits of the two different cases. Hence, A’s “monopoly profit” in

this case is:

πmA =

 (1− µ)θHvA(cA) if µ < µ∗

[µθL + (1− µ)θH ]πA(p
lh
A ; cA) + θLvA(p

lh
A ) if µ ≥ µ∗

From here on, we will assume that µ ≥ µ∗, hence πmA = [µθL + (1− µ)θH ]πA(p
lh
A ; cA) + θLvA(p

lh
A ).

For certain parameter values, M can secure more than πmA in his preferred SPNE.— Consider now

the true game. We will show that for a certain range of parameters, M can secure strictly more

than A’s monopoly profit in his preferred SPNE.

To do this, suppose that M offers
(
wA1 = cA, wB1 = cB, T1, e1 = 1

)
and

(
wA2, wB2, T2, e2 = 1

)
,

with wA2 ≥ cA and θLvA(wA2) + vB(wB2) = vB(cB) − ϵ, for ϵ > 0. Suppose then that it is an

equilibrium of the continuation game for both distributors to acceptM ’s offer. It is possible to prove

12This is not without loss in this setting, but it serves to explain the gist of the argument in the simplest possible way.
As it will become evident below, the key ingredient is not the specific type of nonlinear pricing scheme considered
but rather the existence of nonextractable surplus in product A.
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that the equilibrium downstream is then given by p∗A1 = plhA , p∗B1 = cB, p
∗
A2 = wA2, p

∗
B2 = wB2,

f∗2 = 0, and:

f∗1 = θLvA(p
lh
A ) + vB(cB)− θLvA(wA2)− vB(wB2) =⇒ f∗1 = θLvA(p

lh
A ) + ϵ

Hence, in the downstream market only D1 is serving consumers on-path, leading to profits equal

to πmA + ϵ− T1 after fixed fees, while D2’s on-path profits after fixed fees are equal to −T2.
Now let us find the maximum upstream fees T1 and T2 so that both distributors accepting the

offers is indeed an equilibrium. Starting from a situation where both distributors are expected to

accept M ’s offer, consider first a deviation by D2 to the fringe’s contract. It is easy to see that

following this deviation, D2 will set B’s marginal price at the fringe’s cost. However, to determine

the optimal deviation fee, f ′2, the distributor must decide whether to sell to all types or just to the

low-types.13 The low-types will switch to D2 whenever:

θLvA(p
∗
A1) + vB(p

∗
B1)− f∗1 ≤ vB(cB)− f ′2 ⇐⇒ f ′2 ≤ ϵ

The high-types, in turn, will switch whenever θHvA(p
∗
A1) + vB(p

∗
B1)− f∗1 ≤ vB(cB)− f ′2, or equiva-

lently, whenever:

f ′2 ≤ ϵ− (θH − θL)vA(p
∗
A1) = ϵ− (θH − θL)vA(p

lh
A )

Note, crucially, that inducing high-valuation consumers to switch is more costly for D2 than in-

ducing the low-valuation consumers to do the same. Moreover, if ϵ < (θH − θL)vA(p
lh
A ), D2 cannot

profitably induce type-H consumers to switch, as this would entail offering a negative entry fee, i.e.,

f ′2 < 0. When that is the case, D2 will necessarily set f ′2 = ϵ, her reservation payoff will then be

equal to µϵ, and the maximum upstream fee that M can charge while still inducing D2 to accept

the contract is T ∗
2 = −µϵ.

We can repeat a similar procedure for the case where D1 deviates. We then find that D1 will

be unable to profitably induce type-H consumers to switch when ϵ < (θH −θL)vA(wA2). When this

parametric condition holds, D1’s reservation payoffs are also µϵ, and the maximum upstream fee

that M can charge while still inducing her to accept the contract is:

πmA + ϵ− T ∗
1 = µϵ =⇒ T ∗

1 = πmA + ϵ(1− µ)

In consequence, if (i) M makes the offers described above, (ii) M can coordinate distributors’

acceptance decision into his most favorable outcome (as in his preferred SPNE), and (iii) ϵ <

13Given that D2 lost access to A, then if he entices the high-type values to go to her store, she automatically entices
the low-type values to follow as well.
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(θH − θL)min{vA(plhA ), vA(wA2)}, then M ’s payoffs are equal to:

ΠM = T ∗
1 + T ∗

2 = πmA + (1− 2µ)ϵ

This is strictly greater than πmA so long as µ ∈ [µ∗, 1/2).14

Finally, since here always exists a triple (ϵ, wA2, wB2) such that (i) wA2 ≥ cA, (ii) θLvA(wA2) +

vB(wB2) = vB(cB) − ϵ, and (iii) 0 < ϵ < (θH − θL)min{vA(plhA ), vA(wA2)}, the previous result

implies that if µ ∈ [µ∗, 1/2), then M must be obtaining strictly more than A’s monopoly profit in

this preferred SPNE. This is because M can always make the offers described above, coordinate

distributors, and obtain strictly more than πmA as we showed above. □

2 Proofs Omitted from Section 4

2.1 Characterization and Properties of Equilibrium Retail Prices

In this appendix, we show the existence of an equilibrium in the retail pricing subgame given some

vector of on-path equilibrium wholesale prices w = (w1, ...,wn). Consider Di’s pricing problem:

max
pi

(
πA(pAi;wAi) + πB(pBi;wBi)

)
s
(
pi,p−i

)
= max

pi

(
πA(pAi;wAi) + πB(pBi;wBi)

)
s̃(u(pi),u−i(p−i))

(3)

where u(pi) = vA(pAi)+vB(pBi), u−i(p−i) =
(
u(pj)

)
j ̸=i

, and s̃(ui,u−i) = P(ui+ξℓi/γ ≥ maxj ̸=i{uj+
ξℓj/γ}). We begin with the following claim:

Claim 2.1.1. Let pBR
i be a solution of (3); then wki < pBR

ki < pmk (wki), where pmk (wki) ≡
argmaxpk πk(pk;wki).

Proof. The first-order conditions of (3) can be written as:

π′k(pki;wki)

QA(pki)
−
(
πA(pAi;wAi) + πB(pBi;wBi)

) ∂ ln s̃
∂ui

∣∣∣∣
(u(pi),u−i(p−i))

= 0, for k = A,B (4)

First, we will show that pBR
ki ≥ wki. Combine both first-order conditions to obtain (pAi −

wAi)εA(pAi)/pAi = (pBi − wBi)εB(pBi)/pBi, for which we use the fact that π′k(p;w)/Qk(p) =

1 + εk(p)(p − w)/p. Since sign(εA(pAi)) = sign(εB(pBi)), then sign(pAi − wAi) = sign(pBi − wBi)

necessarily. But if so, then pAi < wAi if and only if pBi < wBi, so the distributor that sets pki < wki

would be earning strictly negative profits. This, however, cannot be optimal since the distributor

can always deviate and set arbitrarily high retail prices to earn zero profits. Thus, pBR
ki ≥ wki.

14This, of course, requires that µ∗ < 1/2. However, it is easy to build parametric examples in which this condition
is fulfilled.
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Now we will show that pBR
ki > wki. Note that the condition (pAi − wAi)εA(pAi)/pAi = (pBi −

wBi)εB(pBi)/pBi also implies that pAi = wAi if and only if pBi = wBi. However, that requires

πA(pAi;wAi) + πB(pBi;wBi) = 0, so the first-order conditions of the distributor’s problem imply

that pBR
ki = pmk (wki) for k = A,B. But if so, then πA(pAi;wAi) + πB(pBi;wBi) > 0, contradicting

that πA(pAi;wAi) + πB(pBi;wBi) = 0.

Finally, we show that pBR
ki < pmk (wki). Given that pBR

ki > wki, in the optimum πA(pAi;wAi) +

πB(pBi;wBi) > 0. Since ∂ ln s̃/∂ui > 0, the fact that πA(pAi;wAi) + πB(pBi;wBi) > 0 implies that

the left-hand side of (4) is strictly negative for all pki ≥ pmk (wki). Hence, p
BR
ki < pmk (wki).

The claim states that irrespective of what other distributors do, the retail price a distributor

charges for product k = A,B is always between its wholesale price and its monopoly price (corre-

sponding to that wholesale price). Therefore, on-path equilibrium prices p∗(w) will be such that

wki < p∗ki(w) < pmk (wki).

Now, notice that in problem (3), the prices charged by distributor j ̸= i affects Di’s profit

function only through the consumer traffic function s̃(ui(pi),u−i(p−i)). This function, furthermore,

depends on the vector of overall surplus each distributor leaves in the hands of final consumers, not

on the individual prices charged.

This fact implies that the original retail pricing subgame is strategically equivalent to one where

distributors solve a two-step problem: first, they select their optimal mix of prices subject to leaving

visitors at least a surplus of ui, and then they compete for consumer traffic by deciding how much

surplus ui to actually leave their visitors. Consequently, studying the equilibrium set of the original

pricing subgame is equivalent to studying the equilibrium set of an auxiliary surplus subgame where

distributors solve maxui∈[ui,ūi] Y (ui;wAi, wBi)s̃(ui,u−i), where ui = vA(p
m
A (wAi)) + vB(p

m
B (wBi)),

ūi = vA(wAi) + vB(wBi), and:

Y (ui;wAi, wBi) =

{
max

pAi,pBi

πA(pAi;wAi) + πB(pBi;wBi) s.t. vA(pAi) + vB(pBi) = ui

}
(5)

With this in mind, we then have following result (due to Quint, 2014):

Claim 2.1.2. s̃(ui,u−i) is log-concave in ui, and ln s̃ satisfies strictly increasing differences in ui

and uj for i ̸= j

Proof. This result follows from the log-concavity of the distribution of consumer-specific shocks

G(x). For the formal proof see Quint (2014), Theorem 1.

Claim 2.1.2 implies that lnY (ui;wAi, wBi) + ln s̃(ui,u−i) is supermodular in u = (ui,u−i).

Hence the downstream surplus game is a smooth and strictly log-supermodular game. Consequently,

we have the following result:
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Lemma 2.1.1. Suppose that on-path wholesale prices are given by w. Then there exists a vector

of equilibrium retail prices p∗(w). Moreover, if distributors have the same wholesale prices for each

product, then p∗ki = p∗kj for all i, j = 1, ..., n and k = A,B.

Proof. Existence of p∗(w) follows because the equivalent surplus game is log-supermodular (e.g.,

Vives, 1999). The result that equilibrium retail prices are symmetric if distributors have the same

wholesale prices follows because symmetric supermodular games, where strategy spaces are single-

dimensional, have only symmetric equilibria (Vives, 1999, 2005). This implies that if distributors

have the same wholesale prices, then all distributors necessarily offer the same equilibrium surplus.

The symmetry of prices then follows because the solution to (5) is unique.

Now suppose that distributors have the same on-path wholesale prices wA and wB for A and

B, respectively. By the previous lemma, we know that on-path, all distributors charge the same

retail prices for each product, i.e., p∗ki = p∗k for i = 1, ..., n and k = A,B. This immediately implies

that equilibrium retail prices must satisfy:

(p∗A, p
∗
B) ∈ argmax

pAi,pBi

(
πA(pAi;wA) + πB(pB;wB)

)
H
(
γ(vA(pAi) + vB(pBi)− vA(p

∗
A)− vB(p

∗
B))
)

(6)

where H(x) is the cumulative distribution function of maxj ̸=i{ξℓj}− ξℓi . The following lemma states

some of the properties these equilibrium retail prices satisfy (we will use these properties in the

proof of Lemma 2):

Lemma 2.1.2. If (wAi, wBi) = (wA, wB) for i = 1, ..., n, then equilibrium prices p∗A and p∗B are

unique and characterized by the following first-order conditions:

π′
A(p∗A;wA)

QA(p∗A) =
π′
B(p∗B ;wB)

QB(p∗B) (7)

π′
B(p∗B ;wB)

QB(p∗B) = γ
[
πA(p

∗
A;wA) + πB(p

∗
B;wB)

] (H′(0)
H(0)

)
(8)

Proof. Obtaining the first-order conditions of (6) and imposing symmetry yields (7) and (8). To

show uniqueness, recall that π′k(p;w)/Qk(p) = 1 + εk(p)(p − w)/p is strictly decreasing in p for

k = A,B. Hence, condition (7) determines a unique pA as a function of pB, pA = ψ(pB), which,

furthermore, is strictly increasing in pB. Evaluating this on (8) we get π′B(p
∗
B;wB)/QB(p

∗
B) −

z(γ, n)
[
πA(ψ(p

∗
B);wA) + πB(p

∗
B;wB)

]
= 0, where z(γ, n) ≡ γH ′(0)/H(0).

Define then the function Γ(pB) ≡ π′B(pB;wB)/QB(pB)− z(γ, n)
[
πA(ψ(pB);wA)+πB(pB;wB)

]
.

Because the pair (p∗A, p
∗
B) exists, we know there is at least one p∗B such that Γ(p∗B) = 0. Now, note

that:

Γ′(pB) =
∂

∂pB

(
π′B(pB;wB)

QB(pB)

)
− z(γ, n)

[
π′A(ψ(pB);wA)ψ

′(pB) + π′B(pB;wB)
]

which is strictly less than zero in the relevant range of prices (i.e., those prices such that wk < p∗k <

pmk (wk) given Claim 2.1.1). The latter follows since: (i) π′k(p;w)/Qk(p) = 1 + εk(p)(p − w)/p is
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strictly decreasing in p, (ii) π′k(pk;wk) > 0 in the relevant range (since πk(pk;wk) is strictly concave,

and, therefore, strictly quasiconcave), and (iii) ψ′(pB) > 0. Consequently, there can be at most one

p∗B (in the relevant range of prices) such that Γ(p∗B) = 0, which implies that p∗B is unique, and so

is p∗A = ψ(p∗B).

2.2 Proof of Lemma 2

Let wlf be the solution to M ’s laissez-faire problem:

max
w

Π̂lf
M =

∑
i

(
πA(p

∗
Ai(w); cA) + πB(p

∗
Bi(w); cB)

)
s(p∗

i (w),p∗
−i(w))

−
∑
i

(
max

p̃Ai=∞,p̃Bi

ΠD(p̃i,p
∗
−i(w);∞, cB)

)
(9)

In this Appendix, we show that p∗ki(w
lf ) = plfk for k = A,B, where:

(plfA , p
lf
B ) ≡ argmax

pA,pB

{πA(pA; cA) + πB(pB; cB)− nR(pA, pB)} (10)

and:

R(pA, pB) ≡ max
p̃B

πB(p̃B; cB)H
(
γvB(p̃B)− γvA(pA)− γvB(pB)

)
Moreover, we will also show that M ’s profit in the laissez-faire equilibrium are equal to Π̂lf =

πA(p
lf
A ; cA) + πB(p

lf
B ; cB)− nR(plfA , p

lf
B ).

The idea behind the proof.— The proof is somewhat involved, which is why we begin with an outline

of it. Note from (9) that wholesale pricesw only enter into the objective function indirectly, through

the equilibrium retail prices p∗(w) ≡ (p∗
i (w),p∗

−i(w)). Consider, therefore, the auxiliary problem

where M maximizes over retail prices directly:

max
p

Π̂lf⋆
M =

∑
i

(
πA(pAi; cA) + πB(pBi; cB)

)
s(pi,p−i)−

∑
i

(
max

p̃Ai=∞,p̃Bi

ΠD(p̃i,p−i;∞, cB)

)
(11)

Given that M has full control over prices in (11), while it controls them only imperfectly in (9),

Π̂lf⋆
M ≥ Π̂lf

M . We will then show that problem (11) has a unique global maximum involving symmetric

prices plfki = plfk for k = A,B and i, j = 1, .., n and that those prices are the same as the ones given

by (10). This also implies that:

Π̂lf⋆
M = πA(p

lf
A ; cA) + πB(p

lf
B ; cB)− nR(plfA , p

lf
B )

We then return to our original problem (9) and show that these symmetric prices can be

implemented with non-discriminatory tying offers with exclusivity provisions (wlf
A , w

lf
B , T

lf , elf = 1).
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Because Π̂lf⋆
M is an upper bound of M ’s “true” profits, Π̂lf

M , this immediately implies that these

nondiscriminatory offers are optimal for M in the laissez faire. Hence, the solution to problem (9)

is such that p∗ki(w
lf ) = plfk for k = A,B, where the latter are given by (10), and M ’s equilibrium

profits are equal to Π̂lf
M = Π̂lf⋆

M = πA(p
lf
A ; cA) + πB(p

lf
B ; cB)− nR(plfA , p

lf
B ).

2.2.1 The Proof

Step 1: Transforming Problem (11).— Note first that:

ΠD(p̃i,p−i;∞, cB) = max
p̃Bi

πB(p̃Bi; cB)P
(
vB(p̃Bi) + ξℓi/γ ≥ max

j ̸=i
{vA(pAj) + vB(pBj) + ξℓj/γ}

)
Thus, p−i only enters indirectly through u−i(p−i) ≡

(
vA(pAj) + vB(pBj)

)
j ̸=i

. In consequence,

ΠD(p̃i,p−i;∞, cB) can be written as ΠD(p̃i,p−i;∞, cB) = R(u−i(p−i)), where:

R(u−i) = max
p̃Bi

πB(p̃Bi; cB)P
(
vB(p̃Bi) + ξℓi/γ ≥ max

j ̸=i
{uj + ξℓj/γ}

)
We can thus rewrite problem (11) as maxu Π̂lf⋆

M = V lf (u)−
∑

iR(u−i), where:

V lf (u) = max
p

{∑
i

(
πA(pAi; cA) + πB(pBi; cB)

)
si(pi,p−i)

s.t. ui = vA(pAi) + vB(pBi) for i = 1, ..., n

}
Using the fact that πk(pki; ck) is strictly concave in pki, and given that

∑n
i=1 si(ui,u−i) = 1 and

0 ≤ si(ui,u−i) ≤ 1 (so s1(u1,u−1), s2(u2,u−2), ..., sn(un,u−n) can be thought as the weights of a

convex combination), it is then straightforward to prove that V lf (u) is strictly concave in u.

Step 2: Symmetric Surpluses are a Local Maximum.— Note that the function Π̂lf⋆
M = V lf (u) −∑

iR(u−i), is exchangeable upon permutation of distributors. Hence by Waterhouse (1983) the

problem has a symmetric critical/stationary point ui = ulf for all i = 1, ..., n (i.e., ui = ulf for all

i satisfies the first-order conditions of the problem).

We now demonstrate that this symmetric critical point is a local maximum by showing that

V lf (u) −
∑

iR(u−i) is locally concave around that point. Since V lf (u) is strictly concave in u, a

sufficient condition for this is that R(u−i) is locally convex in u. This is exactly the case, as the

following claim states.

Claim 2.2.1. Let Bϵ(x) denote an ϵ-ball around x. If u−i ∈ Bϵ(u
lf , ..., ulf ), then R(u−i) is strictly

convex in u−i.

Proof. Let R̃(u) ≡ R(u, ..., u) = πB(p̃
∗
B(u); cB)H(γvB(p̃

∗
B(u)) − γu) and V lf (u) ≡ V(u, ..., u) =
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πA(p
∗
A(u); cA) + πB(p

∗
B(u); cB), where:

(p∗A(u), p
∗
B(u)) = argmax

pA,pB

{
πA(pA; cA) + πB(pB; cB) s.t. vA(pA) + vB(pB) = u

}
p̃∗B(u) = argmax

p̃B

πB(p̃B; cB)H(γvB(p̃B)− γu)

and H(x) is the cumulative distribution function of maxj ̸=i{ξℓj} − ξℓi . To simplify notation, it is

convenient to work with the CDF of (maxj ̸=i{ξℓj} − ξℓi )/γ, which we denote by H̃(x), instead of

the CDF of maxj ̸=i{ξℓj} − ξℓi . This allows us to omit γ from our notation. Under this alternative

notation, we have that p̃∗B(u) = argmaxp̃B πB(p̃B; cB)H̃(vB(p̃B)− u).

Consider then the following problem: maxu V
lf (u) − nR̃(u). Denoting by ulf the solution to

this problem, we have that ulf must satisfy the following first-order condition:

π′B(p
∗
B(u

lf ); cB)

QB(p∗B(u
lf ))

=
π′B(p̃

∗
B(u

lf ); cB)

QB(p̃∗B(u
lf ))

nH̃
(
vB(p̃

∗
B(u

lf ))− ulf
)

(12)

where we are using the fact that:

−dV
lf

du
=
π′A(p

∗
A(u); cA)

QA(p∗A(u))
=
π′B(p

∗
B(u); cB)

QB(p∗B(u))
and − R̃′(u) =

π′B(p̃
∗
B(u); cB)

QB(p̃∗B(u))
H̃
(
vB(p̃

∗
B(u))− u

)
Using the first-order condition (12), it is possible to prove that vB(p̃

lf
B ) < ulf . With this in-

equality in mind, consider R̃(u) = maxp̃B πB(p̃B; cB)H̃(vB(p̃B)− u). Note that when u ∈ Bϵ(u
lf ),

then vB(p̃
∗
B(u)) < u (since vB(p̃

lf
B ) < ulf ), so when solving this problem we can restrict atten-

tion to the set of p̃B such that vB(p̃B) < u. In this region, moreover, the function f(u) ≡
πB(p̃B; cB)H̃(vB(p̃B)− u) is strictly convex in u:

f ′′(u) = πB(p̃B; cB)H̃
′′(vB(p̃B)− u) > 0

where the inequality follows because H̃ ′′(vB(p̃B) − u) > 0 given that (i) vB(p̃B) − u < 0 and (ii)

H̃(x) is a log-concave cumulative distribution function with mode greater than or equal to zero

(i.e., it is the CDF of (maxj ̸=i{ξℓj}− ξℓi )/γ). Thus, when u ∈ Bϵ(u
lf ), the problem that determines

R̃(u) satisfies the Convex Maximum Theorem conditions (see, e.g., Carter, 2001, p. 342), implying

that R̃(u) is strictly convex in u.

Consequently, the functionR(u−i) is strictly convex in u−i when moving in the direction ui = uj

for all j ̸= i (i.e., when imposing symmetry ex-ante) in a neighborhood of (ulf , ..., ulf ). Thus, by

continuity, R(u−i) is strictly convex in u−i in a neighborhood of (ulf , ..., ulf ) when moving in any

direction. That is, R(u−i) is strictly convex in u−i in a neighborhood of (ulf , ..., ulf ).

Step 3: Symmetric Surpluses are the Unique Global Maximum.— Even though V lf (u) is strictly

concave in u, the objective function V lf (u)−
∑

iR(u−i) is not strictly concave in the entire domain
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because the term
∑

iR(u−i) is not necessarily convex in u−i. Hence, we cannot show that the

symmetric point is a global optimum using global strict concavity. Instead, we follow an alternative

approach that relies on convexifying the term
∑

iR(u−i) and using the fact that
∑

iR(u−i) is

convex in u−i around the symmetric critical point ulf = (ulf , ..., ulf ).

Here is the formal proof. First, we know that V lf (u) −
∑

iR(u−i) has a symmetric critical

point ulf = (ulf , ..., ulf ), and that at such point R(u−i) is strictly convex in u−i (see Claim 2.2.1),

so
∑

iR(u−i) is convex in u−i also. Define f(u) ≡
∑

iR(u−i) and let cv f be the convex envelope

of f in u, i.e., cv f = inf{t | (t,u) ∈ conv epi f}. That is, cv f is the greatest convex function

in u which is less than f . By construction, we have that V lf (u) − cv f(u) ≥ V lf (u) − f(u).

Furthermore, since V lf (u) is strictly concave in u and cv f(u) is convex u, then V lf (u)− cv f(u)

is strictly concave in u. This implies that the latter has a unique interior global optimum u∗:

V lf (u∗)− cv f(u∗) > V lf (u)− cv f(u) ∀ u ̸= u∗

which is a critical point of V lf (u)− cv f(u).

Note then that since R(u−i) is convex in u−i around ulf , then f(u) is convex in u around ulf

also. This implies that at ulf , cv f and f coincide, so V lf (ulf ) − cv f(ulf ) = V lf (ulf ) − f(ulf ).

But since ulf is a critical point of V lf (u) − f(u), this implies that it is also a critical point of

V lf (u) − cv f(u). Furthermore, given that V lf (u) − cv f(u) has a unique critical point, then it

must be that ulf = u∗. However, if so, then:

V lf (ulf )− f(ulf ) = V (ulf )− cv f(ulf ) > V lf (u)− cv f(u) ≥ V lf (u)− f(u) ∀ u ̸= ulf

Hence,

V lf (ulf )− f(ulf ) > V lf (u)− f(u) ∀ u ̸= ulf

that is, ulf is the unique global optimum of V lf (u)− f(u) □

Step 4: The vector of surpluses ulf = (ulf , ..., ulf ) is a solution of M ’s “true” problem.— We know

that the solution to maxu V lf (u) −
∑

iR(u−i) is unique and involves symmetric surpluses, i.e.,

ulf = (ulf , ..., ulf ). Moreover, from step 2, we also know that ulf satisfies condition (12). Because

the vector (p∗A(u), p
∗
B(u)) is unique for any given u, we can then recover the unique set of on-path

prices consistent with ulf , i.e., plfk ≡ p∗k(u
lf ). Note that by construction, these prices satisfy the

following first-order conditions:

π′k(p
lf
k ; ck)

Qk(p
lf
k )

=
π′B(p̃

lf
B ; cB)

QB(p̃
lf
B )

nH
(
γvB(p̃

lf
B )− γvA(p

lf
A )− γvB(p

lf
B )
)
, for k = A,B

where p̃lfB denotes the solution to maxp̃B πB(p̃B; cB)H
(
γvB(p̃B) − γvA(p

lf
A ) − γvB(p

lf
B )
)
. That is,

plfk ≡ p∗k(u
lf ) are given by the solution of problem (10).
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From here, it is relatively easy to see that M can implement (plfA , p
lf
B ) by suitably choosing

the wholesale prices of his offer, implying that M ’s true problem (9) has the same solution as

M ’s auxiliary problem (11). Indeed, by Lemma 2.1.1 of the online Appendix 2.1, we know that

if distributors have the same wholesale prices, they will charge the same prices for each product.

Furthermore, by Lemma 2.1.2 of the same appendix, we also know that the induced equilibrium

prices p∗A(wA, wB) and p
∗
B(wA, wB) for a given set of wholesale prices are unique and characterized

by the following conditions:

π′A(p
∗
A;wA)

QA(p∗A)
=
π′B(p

∗
B;wB)

QB(p∗B)
and

π′B(p
∗
B;wB)

QB(p∗B)
= z(γ, n)

[
πA(p

∗
A;wA) + πB(p

∗
B;wB)

]
Using these two conditions plus the first-order conditions that determine (plfA , p

lf
B ), it is straight-

forward to prove that there exists a wlf
A > cA and a wlf

B > cB that implements (plfA , p
lf
B ). Hence,

the solution to M ’s true problem

max
w

Π̂lf
M =

∑
i

(
πA(p

∗
Ai(w); cA) + πB(p

∗
Bi(w); cB)

)
s(p∗

i (w),p∗
−i(w))−

∑
i

R(p∗
−i(w))

induces the same retail prices as the solution to problem (10), i.e., p∗ki(w
lf ) = plfk for k = A,B,

also implying that M ’s equilibrium profits are equal to Π̂lf
M = Π̂lf⋆

M = πA(p
lf
A ; cA) + πB(p

lf
B ; cB) −

nR(plfA , p
lf
B ). □

2.3 Proof of Proposition 5

Recall that by Lemma 2, the laissez-faire retail prices can be characterized by solving the following

problem max(pA,pB) {πA(pA; cA) + πB(pB; cB)− nR(pA, pB)} where:

R(pA, pB) ≡ max
p̃B

πB(p̃B; cB)H
(
γvB(p̃B)− γvA(pA)− γvB(pB)

)
Moreover, M ’s equilibrium profits are equal to Π̂lf

M = πA(p
lf
A ; cA) + πB(p

lf
B ; cB)− nR(plfA , p

lf
B ).

2.3.1 When A Does Not Exist

When A does not exists, M ’s problem becomes:15

max
pB

Π̂M (pB) = πB(pB; cB)− nmax
p̃B

πB(p̃B; cB)H
(
γvB(p̃B)− γvB(pB)

)
(13)

15Mathematically speaking, this case is obtained by multiplying A’s demand by a constant z, zQA(pA), and setting
z = 0.
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Let pofB be the retail price of B that would ensue if all distributors in equilibrium buy B from the

fringe, i.e.,

pofB = argmax
pB

πB(pB; cB)H
(
γvB(pB)− γvB(p

of
B )
)

and denote by p̃∗B(pB) the solution to maxp̃B πB(p̃B; cB)H
(
γvB(p̃B) − γvB(pB)

)
. Note that by

construction p̃∗B(p
of
B ) = pofB . This implies that M can always guarantee himself a payoff of zero by

setting plfB (without A) = pofB , as πB(p
of
B ; cB) = nπB(p

of
B ; cB)H(0), given that H(0) = 1/n.

Now suppose by contradiction that plfB (without A) ̸= pofB . Notice that a distributor that re-

jects M ’s offer always has the option to obtain B from the fringe and charge plfB (without A).

Consequently,

max
p̃B

πB(p̃B; cB)H
(
γvB(p̃B)− γvB(p

lf
B (without A))

)
≥ πB(p

lf
B (without A); cB)/n

with strictly inequality unless plfB (without A) = pofB . Hence, if plfB (without A) ̸= pofB , then

Π̂M (plfB (without A)) < 0, which contradicts the premise that plfB (without A) was optimal in the

first place. Consequently, when A does not exist, M induces distributors to charge the same retail

prices for B as if they all source the product from the fringe, i.e., plfB (without A) = pofB . □

2.3.2 When A is Present

We prove this part of the proposition in two steps. First, we show that Π̂lf
M > πA(p

m
A ; cA). Then,

we show that plfB (without A) < plfB (with A) < pmB .

Proof that Π̂lf
M > πA(p

m
A ; cA).—Suppose thatM induces distributors to charge (plfA , p

lf
B ) = (pmA , cB+

ϵ) where ϵ > 0 but small enough. Note then that R(plfA , p
lf
B ) = R(pmA , cB + ϵ) = 0 since vB(p̃B) <

vA(p
m
A ) + vB(cB + ϵ) for all p̃B ≥ cB, as vA(p

m
A ) > 0 given that QA(p) is strictly downward sloping.

Hence, M ’s profits, in this case, are equal to:

Πlf
M = πA(p

m
A ; cA) + πB(cB + ϵ; cB)− nR(pmA , cB + ϵ)

= πA(p
m
A ; cA) + πB(cB + ϵ; cB) > πA(p

m
A ; cA)

This implies that M can always guarantee himself profits that are strictly greater than A’s single-

monopoly profits. □.

Proof that plfB (without A) < plfB (with A) < pmB .—Because the laissez-faire retail prices are given by

max(pA,pB) {πA(pA; cA) + πB(pB; cB)− nR(pA, pB)}, then (plfA , p
lf
B ) satisfy the following first-order

conditions:

π′k(p
lf
k ; ck)

Qk(p
lf
k )

−
π′B(p̃

lf
B ; cB)

QB(p̃
lf
B )

nH
(
γvB(p̃

lf
B )− γvA(p

lf
A )− γvB(p

lf
B )
)
= 0, for k = A,B
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where p̃lfB = argmaxp̃B πB(p̃B; cB)H
(
γvB(p̃B) − γvA(p

lf
A ) − γvB(p

lf
B )
)
. This implies that we can

find the equilibrium retail prices plfA (with A) and plfB (with A) by solving for (pA, pB, p̃B) from the

following system of nonlinear equations:

π′A(pA; cA)

QA(pA)
−
π′B(pB; cB)

QB(pB)
= 0 (14)

π′B(pB; cB)

QB(pB)
−
π′B(p̃B; cB)

QB(p̃B)
nH
(
γvB(p̃B)− γvA(pA)− γvB(pB)

)
= 0 (15)

π′B(p̃B; cB)

QB(p̃B)
− πB(p̃B; cB)

(
γH ′(γvB(p̃B)− γvA(pA)− γvB(pB)

)
H
(
γvB(p̃B)− γvA(pA)− γvB(pB)

) ) = 0 (16)

Note then that (16) implies that π′B(p̃B; cB) > 0. Hence, we immediately have that plfB (withA) <

pmB ; otherwise, π′B(p
lf
B (with A); cB) ≤ 0 and (15) would be violated:

π′B(p
lf
B (with A); cB)

QB(p
lf
B (with A))

−
π′B(p̃B; cB)

QB(p̃B)
nH
(
γvB(p̃B)− γvA(p

lf
A (with A))− γvB(p

lf
B (with A))

)
< 0

On the other hand, proving that plfB (without A) < plfB (with A) is a bit more involved. To

simplify notation in what follows, let plfA ≡ plfA (with A), plfB ≡ plfB (with A), and p̃lfB ≡ p̃lfB (with A),

while use pofB to denote plfB (without A), i.e., pofB ≡ plfB (without A). We start with the following two

results:

Claim 2.3.1. δlf ≡ vA(p
lf
A ) + vB(p

lf
B )− vB(p̃

lf
B ) > 0

Proof. Suppose then by contradiction that δlf ≤ 0; then, H(−γδlf ) ≥ 1/n given that H(0) =

1/n. Because plfA , plfB and p̃lfB satisfy (14)–(16), that fact that H(−γδlf ) ≥ 1/n implies that

π′B(p
lf
B ; cB)/QB(p

lf
B ) ≥ π′B(p̃

lf
B ; cB)/QB(p̃

lf
B ) Consequently, since π′k(p;w)/Qk(p) is strictly decreas-

ing in p, we obtain that plfB ≤ p̃lfB . But if so, then vA(p
lf
A ) + vB(p

lf
B ) > vB(p̃

lf
B ), that is, δ > 0; a

contradiction.

Claim 2.3.2. pofB > p̃lfB .

Proof. We know that pofB is given by the following condition pofB = argmaxp̃B πB(p̃B; cB)H
(
γvB(p̃B)−

γvB(p
of
B )
)
. Taking the first-order condition of this problem, the condition can then be rewritten

as:
π′B(p

of
B ; cB)

QB(p
of
B )

= πB(p
of
B ; cB)

(
γH ′(0)

H(0)

)
(17)

On the other hand, p̃lfB must satisfy (16), that is:

π′B(p̃
lf
B ; cB)

QB(p̃
lf
B )

= πB(p̃
lf
B ; cB)

(
γH ′(− γδlf

)
H
(
− γδlf

) ) (18)
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Since g(x) was strictly log-concave, so is G(x) and 1 − G(x), and, therefore, so is H(x). The

latter implies, given that δlf > 0 (due to Claim 2.3.1), that H ′(0)/H(0) < H ′(−γδlf )/H(−γlf ).
Consequently, since π′B(p;w)/QB(p) is strictly decreasing in p and πB(p; cB) is strictly increasing

in p,16 conditions (17) and (18) imply that pofB > p̃lfB .

We are now ready to prove that plfB (without A) = pofB < plfB (with A) = plfB . Suppose by

contradiction that pofB ≥ plfB . Since π′B(p;w)/QB(p) is strictly decreasing in p, the premise implies

that:
π′B(p

lf
B ; cB)

QB(p
lf
B )

≥
π′B(p

of
B ; cB)

QB(p
of
B )

= πB(p
of
B ; cB)

(
γH ′(0)

H(0)

)
However, plfB must satisfy (15). Hence, the above condition can be written as:

π′B(p̃
lf
B ; cB)

QB(p̃
lf
B )

H(−γδlf ) ≥ πB(p
of
B ; cB)γH

′(0) (19)

where I am using the fact that H(0) = 1/n to simplify terms. However, p̃lfB must also satisfy (16).

Using this last condition on (19) and simplifying terms, we have that:

πB(p̃
lf
B ; cB)H

′(−γδlf ) ≥ πB(p
of
B ; cB)H

′(0) (20)

Note than that because H(x) is a strictly log-concave CDF with mode greater than or equal to

zero (i.e., it is the CDF of maxj ̸=i{ξℓj} − ξℓi ), then H(x) is strictly convex when x ≤ 0. Thus,

H ′(0) > H ′(−γδlf ) since δlf > 0. However, if so, a necessary condition to satisfy (20) is that

πB(p̃
lf
B ; cB) > πB(p

of
B ; cB), that is, p̃lfB > pofB (since πB(p; c) is strictly concave in p and both pofB

and p̃lfB are strictly less than pmB ). This contradicts our premise that pofB ≥ plfB . □

2.4 Proof of Proposition 6

Recall that by Lemma 2, the laissez-faire retail prices can be characterized by solving the following

problem max(pA,pB) {πA(pA; cA) + πB(pB; cB)− nR(pA, pB)} where:

R(pA, pB) ≡ max
p̃B

πB(p̃B; cB)H
(
γvB(p̃B)− γvA(pA)− γvB(pB)

)
This implies that plfA , plfB , and p̃lfB ≡ p̃∗B(p

lf
A , p

lf
B ) must satisfy:

π′B(p̃
lf
B ; cB)

QB(p̃
lf
B )

= γπB(p̃
lf
B ; cB)

(
H ′(−γδlf )
H(−γδlf )

)
(21)

π′k(p
lf
k ; ck)

Qk(p
lf
k )

=
π′B(p̃

lf
B ; cB)

QB(p̃
lf
B )

nH(−γδlf ), for k = A,B (22)

16This follows because πB(p; cB) is strictly concave in p and both pofB and p̃lfB are strictly less than pmB .
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where δlf ≡ vA(p
lf
A )+vB(p

lf
B )−vB(p̃lfB ) > 0 (see Claim 2.3.1 in Section 2.3 of this online Appendix).

From these conditions it is straightforward to prove that plfk ∈ [ck, p
m
k ] and p̃lfB ∈ [cB, p

m
B ] necessarily

(which implies that π′k(p
lf
k ; ck)/Qk(p

lf
k ) ∈ [0, 1] and π′B(p̃

lf
B ; cB)/QB(p̃

lf
B ) ∈ [0, 1]). Moreover, Lemma

2 also implies thatM ’s equilibrium profits are equal to Π̂lf
M = πA(p

lf
A ; cA)+πB(p

lf
B ; cB)−nR(plfA , p

lf
B ).

2.4.1 Equilibrium as γ → 0

We want to prove the following result:

Proposition 6 (Part 1). If γ → 0, (plfA , p
lf
B ) → (pmA , p

m
B ) and Π̂lf

M → πA(p
m
A ; cA).

Proof.—Taking γ → 0 in (21) and (22) and using the fact that H(0) = 1/n immediately leads to

plfA = pmA and plfB = p̃lfB = pmB . This implies that M ’s equilibrium profits are then:

Π̂lf
M = πA(p

m
A ; cA) + πB(p

m
B ; cB)− nπB(p

m
B ; cB) lim

γ→0
H
(
γvB(p

m
B )− γvA(p

m
A )− γvB(p

m
B )
)

= πA(p
m
A ; cA) + πB(p

m
B ; cB)− πB(p

m
B ; cB) = πA(p

m
A ; cA)

2.4.2 Equilibrium as γ → +∞

We want to prove the following result:

Proposition 6 (Part 2). If γ → ∞, then:

(plfA , p
lf
B ) → argmax

(pA,pB)

{
πA(pA; cA) + πB(pB; cB) s.t. vA(pA) + vB(pB) ≥ vB(cB)

}
Π̂lf

M → πA
(
lim
γ→∞

plfA ; cA
)
+ πB

(
lim
γ→∞

plfB ; cB
)

As in the main text, let ∆ ≡ vA(p
m
A )+vB(p

m
B )−vB(cB). Note that the limit prices in the above

proposition can be equivalently written as:

• If ∆ ≥ 0, then (plfA , p
lf
B ) → (pmA , p

m
B ) as γ → ∞.

• If ∆ < 0, then (plfA , p
lf
B ) → (p̄A, p̄B) as γ → ∞, where (p̄A, p̄B) is given by:

vA(p̄A) + vB(p̄B) = vB(cB) and
π′A(p̄A; cA)

QA(p̄A)
=
π′B(p̄B; cB)

QB(p̄B)
(23)

Note that in the ∆ < 0, we are using the fact that (p − c)Q′
k(p)/Qk(p) is strictly decreasing in p

for k = A,B, to ensure that the solution to the problem is unique and interior (this is where the

last set of conditions come from: they are the result of the first-order conditions of the problem).

Proof.—Because δlf > 0 and H(x) is log-concave, we have that limγ→∞H ′(−γδlf )/H(−γδlf ) > 0.

This implies that γH ′(−γδlf )/H(−γδlf ) → ∞ as γ → ∞. However, if so, then limγ→∞ πB(p̃
lf
B ; cB) =

0, or equivalently, p̃lfB → cB as γ → ∞, since otherwise the right-hand side of (21) would diverge
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violating the fact that π′B(p̃
lf
B ; cB)/QB(p̃

lf
B ) ∈ [0, 1] for all γ. Thus, limγ→∞ p̃lfB = cB. This imme-

diately implies that limγ→∞R(plfA , p
lf
B ) = 0, so:

Π̂lf
M → πA

(
lim
γ→∞

plfA ; cA
)
+ πB

(
lim
γ→∞

plfB ; cB
)

Now, the fact that limγ→∞ p̃lfB = cB implies that π′B(p̃
lf
B ; cB)/QB(p̃

lf
B ) → 1 as γ → ∞. Hence,

applying the limit to (22), we get limγ→∞ π′k(p
lf
k ; ck)/Qk(p

lf
k ) = limγ→∞ nH(−γδlf ). Since δlf > 0

and H(0) = 1/n, we have that limγ→∞ nH(−γδlf ) ≡ K ∈ [0, 1]. Thus, we have two cases to

consider: K = 0 and K ∈ (0, 1].

Suppose first that K = 0. Then (22) implies that plfk → pmk for k = A,B. Since p̃lfB is also

converging to cB, limγ→∞ δlf = vA(p
m
A ) + vB(p

m
B ) − vB(cB) = ∆. However, for K = 0 we also

require that γδlf → ∞ (otherwise nH(−γδlf ) would converge to something strictly positive). Thus

K = 0 (i.e., plfk → pmk ) can be the limit equilibria only if ∆ > 0 or if ∆ = 0 and δlf converges to

zero more slowly than γ → ∞ does.

Consider next K ∈ (0, 1]. This implies that plfk → p̄k for k = A,B, where π′k(p̄k; ck)/Q(p̄k) = K.

However, K ∈ (0, 1] also requires γδlf to be converging to a constant, so:

lim
γ→∞

δlf = vA(p̄A) + vB(p̄B)− vB(cB) = 0 (24)

and at the same rate as γ → ∞. Hence, the values of (K, p̄A, p̄B) are determined by solving the

system of equations given by (24) and π′k(p̄k; ck)/Q(p̄k) = K for k = A,B. These are exactly the

conditions stated in (23). □

2.5 Proof of Proposition 7

The strategy of proof is the following. First, we show that the equilibrium retail outcome following

the highly discriminatory offers stated in the proposition converges to an equivalent outcome (in

terms of prices paid by final consumers) to that of the laissez-faire’s when γ → ∞. We then use

this convergence result to show that the offers of the proposition are indeed ϵ-optimal for M when

γ → ∞.

Lemma 2.5.1. As in the main text, let ∆ ≡ vA(p
m
A ) + vB(p

m
B ) − vB(cB), and suppose M makes

the discriminatory offers of Proposition 7. Then, the n − 1 distributors that carry only B charge

the same retail price for that product. Let (pϵAi, p
ϵ
Bi) and p

ϵ
B be the equilibrium retail prices charged

by distributor i and her n− 1 rivals, respectively. As γ → ∞, pϵB → cB and only Di makes positive

sales. Moreover,

• If ∆ ≥ 0, then (pϵAi, p
ϵ
Bi) → (pmA , p

m
B ) as γ → ∞.

• If ∆ < 0, then (pϵAi, p
ϵ
Bi) → (p̄A, p̄B) as γ → ∞, where (p̄A, p̄B) is given by (23).
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Proof. The first part of the proof (that the n − 1 distributors that carry only B charge the same

retail price for that product) follows from the same arguments of supermodular games used to show

that if all distributors have the same wholesale prices, equilibrium retail prices must be symmetric

(see Section 2.1 of this online Appendix).

For the second part of the proof, we first characterize the retail equilibrium for an arbitrary

γ ∈ (0,∞) when (wAi, wBi) = (cA, cB) and (wAj , wBj) = (∞, cB) for all other j ̸= i, and then take

γ → ∞. To start, notice that if (pϵAj = ∞, pϵBj = pϵB) for all j ̸= i, then Di’s problem is:

max
pAi,pBi

(
πA(pAi; cA) + πB(pBi; cB)

) ∫
G
(
ζ + γ(vA(pAi) + vB(pBi)− vB(p

ϵ
B))
)n−1

g(ζ)dζ

The first-order conditions of the this problem yield:

π′k(p
ϵ
ki; ck)

Qk(p
ϵ
ki)

= γ
(
πA(p

ϵ
Ai; cA) + πB(p

ϵ
Bi; cB)

)
J(γδϵ) for k = A,B (25)

where δϵ ≡ vA(p
ϵ
Ai) + vB(p

ϵ
Bi)− vB(p

ϵ
B) and:

J(x) ≡
(n− 1)

∫
G(ζ + x)n−2g(ζ + x)g(ζ)dζ∫
G(ζ + x)n−1g(ζ)dζ

On the other hand, Dj ’s problem when Di charges (pϵAi, p
ϵ
Bi) and all other distributors charge

(pϵAm = ∞, pϵBm = pϵB) for m ̸= j and m ̸= i is:

max
pBj

πB(pBi; cB)

∫
G
(
ζ + γ(vB(pBj)− vB(p

ϵ
B))
)n−2

G
(
ζ + γ(vB(pBj)− vA(p

ϵ
Ai)− vB(p

ϵ
Bi))

)
g(ζ)dζ

Differentiating with respect to pBj and imposing symmetry (i.e., pϵBj = pϵB) yields:

π′B(p
ϵ
B; cB)

QB(pϵB)
= γπB(p

ϵ
B; cB)M(−γδϵ) (26)

where:

M(x) ≡

∫ [
(n− 2) g(ζ)

G(ζ) +
g(ζ+x)
G(ζ+x)

]
G(ζ)n−2G(ζ + x)g(ζ)dζ∫

G(ζ + x)G(ζ)n−2g(ζ)dζ

Hence, for any given γ ∈ (0,+∞), (pϵAi, p
ϵ
Bi) and pϵB are given the system of equations comprised

by (25) and (26).

We now move on to the second part: equilibrium convergence. Note that J(x) andM(x) are the

reversed hazard rate function (i.e., the ratio of the density to the distribution function) of two log-

concave distributions with support over R. As a result, J(x) > 0,M ′(x) > 0, J ′(x) < 0,M ′(x) < 0,

and xJ(x) → 0 and xM(x) → 0 as x→ ∞ (this last part follows because log-concave distributions

have sub-exponential tails). Moreover, given that (wAi = cA, wBi = cB) and (wAj , wBj) = (∞, cB)

for all other j ̸= i, then in any retail equilibrium p∗ki ∈ [ck, p
m
k ] and p∗B ∈ [cB, p

m
B ] (see Claim

29



2.1.1 in Section 2.1 of this online Appendix). This implies that π′k(pk; ck)/Qk(pk) ∈ [0, 1] and

π′B(pB; cB)/QB(pB) ∈ [0, 1].

We first deal with the convergence of pϵB; in particular, we show that pϵB → cB as γ → ∞.

Suppose not, i.e., pϵB → p ∈ (cB, p
m
B ]. Then by (26) it must be that limγ→∞ γπB(p

ϵ
B; cB)M(−γδϵ) =

C ∈ [0, 1). Since πB(p; cB) > 0, this implies that M(−γδϵ) → 0 as γ → ∞, which requires

γδϵ → −∞. The latter then implies that γJ(γδϵ) → ∞, so pϵAi → cA and pϵBi → cB (otherwise, the

right-hand side of (25) would diverge). However, if so, then δϵ → vA(cA)+vB(cB)−vB(p) > 0 which

implies that γδϵ → ∞ as γ → ∞. This contradicts that γδϵ → −∞. Thus, pϵB → cB necessarily.

We now deal with the convergence of (pϵAi, p
ϵ
Bi). To do this, consider limγ→∞ γJ(γδϵ). There

are three possibilities: (i) γJ(γδϵ) → ∞, (ii) γJ(γδϵ) → K ∈ (0,∞), and (iii) γJ(γδϵ) → 0 as

γ → ∞.

Note first that (i) leads to a contradiction. Indeed, if that is the case, then pϵAi → cA and

pϵBi → cB, which would imply that δϵ → vA(cA) as γ → ∞. The latter implies that γδϵ → ∞
faster than a logarithmic rate of convergence. Consequently, γJ(γδϵ) → 0 as γ → ∞ given the

sub-exponential tails of the log-concave distribution. This contradicts our original premise that

γJ(γδϵ) → ∞.

Consider next possibility (ii). Then, (pϵAi, p
ϵ
Bi) → (p̄A, p̄B) where the latter are given by:

π′A(p̄A; cA)

QA(p̄A)
=
π′B(p̄B; cB)

QB(p̄B)
and

π′B(p̄B; cB)

QB(p̄B)
= K

(
πA(p̄A; cA) + πB(p̄B; cB)

)
On the other hand, for γJ(γδϵ) → K ∈ (0,∞), it must be that γδϵ → ∞ at the same rate as

− ln(K/γ). Consequently, it must be that limγ→∞ δϵ = vA(p̄A) + vB(p̄B) − vB(cB) = 0 and at a

rate equal to − ln(K/γ)/P (γ), where P (γ) is a polynomial with finite degree. Thus, possibility (ii)

is feasible when (p̄A, p̄B,K) satisfy:

π′A(p̄A; cA)

QA(p̄A)
=
π′B(p̄B; cB)

QB(p̄B)

π′B(p̄B; cB)

QB(p̄B)
= K

(
πA(p̄A; cA) + πB(p̄B; cB)

)
(27)

plus vA(p̄A) + vB(p̄B) = vB(cB) and δϵ → 0 at a rate − ln(K/γ)/P (γ). It is then easy to prove

that the system (27) has a solution if and only if ∆ < 0. When that is the case, furthermore, the

solution is unique.

Finally, consider possibility (iii). Then, pϵki → pmk . If so, limγ→∞ δϵ = vA(p
m
A ) + vB(p

m
B ) −

vB(cB) = ∆. Hence, for γJ(γδϵ) → 0 as γ → ∞, it must be that ∆ > 0 or that ∆ = 0 and δϵ → 0

more slowly than the rate of convergence of a logarithmic function.

Consequently, there is a unique outcome consistent with the equilibrium conditions for the

different values of ∆. When ∆ > 0, pϵB → cB and pϵki → pmk as γ → ∞. When, on the other hand,

∆ = 0, pϵB → cB, p
ϵ
ki → pmk , and δϵ → 0 at a slower rate than a logarithmic rate of convergence.

Finally, when ∆ < 0, pϵB → cB, p
ϵ
ki → p̄k (where (p̄A, p̄B) are given by solving (27)), and δϵ → 0 at a

rate − ln(K/γ)/P (γ). Since we know that the equilibrium exists for all γ ∈ (0,∞), the equilibrium
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must be converging to this unique outcome as γ → ∞.

Lemma 2.5.2. The discriminatory offers in Proposition 7 are ϵ-optimal for M when γ → ∞.

Proof. Since pϵB → cB as γ → 0, Di’s reservation payoff when dealing with M is approximately

zero for γ sufficiently high (the payoff of rejecting M ’s offer and just procuring B from the fringe

is zero in the limit). Consequently, when γ → ∞, M can extract all of Di’s profits, and therefore

obtain the entire industry surplus using the fixed fee on A’s contract, TAi. This is an upper bound

for M ’s profit (it is the payoff he receives in the laissez-faire outcome when γ → ∞), implying that

making these highly discriminatory offers is (approximately) optimal for M when γ is arbitrarily

large.

2.6 Proof of Proposition 8

2.6.1 Preliminaries

Let wlf be the vector of wholesale prices offered by M in the laissez-faire equilibrium. By Lemma

2, we know that p∗ki(w
lf ) = plfk for k = A,B, where:

(plfA , p
lf
B ) ≡ argmax

pA,pB

{πA(pA; cA) + πB(pB; cB)− nR(pA, pB)}

Thus, M is inducing distributors to charge the same prices for each product, so he must be making

nondiscriminatory offers in the laissez-faire equilibrium. This implies that M ’s problem in the

laissez-faire, can be equivalently written as:

max
wA,wB

Π̂lf
M = πA(p

∗
A(wA, wB); cA) + πB(p

∗
B(wA, wB); cB)− nR(p∗A(wA, wB), p

∗
B(wA, wB))

where p∗A(wA, wB) and p
∗
B(wA, wB) are given by Lemma 2.1.2.

Now suppose that M is forced to make non-discriminatory offers and prohibited from engaging

in refusal to deal. In an earlier version of this paper, we showed that in this case banning exclusivity

provisions produces the same effect as barring tying clauses. No matter the type of prohibition,

the robust-intervention (“ri”) game has a unique SPNE in which M solves the following problem:

max
wA,wB=cB

Π̂ri
M = πA(p

∗
A(wA, wB); cA) + πB(p

∗
B(wA, wB); cB)− nR(p∗A(wA, wB), p

∗
B(wA, wB)) (28)

where, again, p∗A(wA, wB) and p∗B(wA, wB) are given by Lemma 2.1.2. Note that this is the same

problem as in the laissez-faire but with the additional restriction that wB = cB. Denoting by wri
A

and wri
B = cB the solution to this problem, the retail prices that consumers pay on-path following

this intervention are prik = p∗k(w
ri
A , w

ri
B ) for k = A,B.

The idea of the proof is the following. Note that both in the laissez-faire and in the robust-

intervention scenario, M deals with all distributors in a nondiscriminatory way. This implies
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that in both scenarios, consumers visit their preferred distributor. Hence, to show that ∆CSri ≡
CSri − CSlf > 0, it suffices to show that uri = vA(p

ri
A) + vB(p

ri
B) > vA(p

lf
A ) + vB(p

lf
B ) = ulf .

To do this, we first show thatM ’s laissez-faire problem can be rewritten asM directly choosing

ulf (instead of choosing (wlf
A , w

lf
B ) or (plfA , p

lf
B )), and that the same can be said about M ’s problem

in the robust-intervention, i.e., we can work as if M is deciding uri directly. We then encompass

both scenarios into a single maximization in which M chooses u and there is parameter b ∈ {0, 1}
indexes whether the robust intervention is in place or not (so ulf = u∗(b = 0) and ure = u∗(b = 1)).

Finally, we use monotone comparative statics to establish that u∗(b) is strictly increasing in b.

2.6.2 The Proof

Step 1: Rewriting M ’s problems.— Recall that M ’s laissez-faire problem is:

max
wA,wB

Π̂lf
M = πA(p

∗
A(wA, wB); cA) + πB(p

∗
B(wA, wB); cB)− nR(p∗A(wA, wB), p

∗
B(wA, wB))

where R(pA, pB) is given by R(pA, pB) = maxpBi πB(pBi; cB)H
(
vB(pBi)− vA(pA)− vB(pB)

)
. This

is also M ’s problem in the robust intervention but with the additional restriction that wB = cB.

Note next that R(pA, pB) does not depend on pA and pB individually, but rather on u(pA, pB).

Hence, distributors’ outside options can be written as R(pA, pB) = R̃(u(pA, pB)), where R̃(u) =

maxx πB(x; cB)H(vB(x)−u) is strictly decreasing in u. Using this fact, we can write M ’s problem

in both scenarios as maxu V
lf (u)− nR̃(u) and maxu V

ri(u)− nR̃(u), respectively, where:

V lf (u) = max
wA,wB

πA(p
∗
A(wA, wB); cA) + πB(p

∗
B(wA, wB); cB)

subject to vA(p
∗
A(wA, wB)) + vB(p

∗
B(wA, wB)) = u

(29)

and V ri(u) is defined by the same maximization with the additional constraint that wB = cB.

Intuitively, since distributors’ reservation payoffs in either scenario depend only on the surplus

consumers are obtaining from purchasing both products, u, we can decompose M ’s problem into

two steps. First, he chooses the optimal mix of prices that maximize industry profits subject to

leaving consumers with some given surplus u. This is akin to a Ramsey-pricing problem. Second,

M decides how much u to leave consumers, determining his profits (which are equal to the total

industry profit minus distributors’ reservation payoffs).

Rewriting both problems this way, we can encompass both scenarios into a single maximization:

max
u

(1− b)V lf (u) + bV ri(u)− nR̃(u) (30)

where parameter b ∈ {0, 1} indexes whether the authority is implementing the robust intervention.

Letting u∗(b) be the solution to (30), the intervention necessarily leads to a gain in consumer

welfare if u∗(b) is strictly increasing in b, which by standard monotone comparative statics is the
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case whenever dV lf/du < dV ri/du.

Step 2: Proof that ∆CSri > 0.—To prove that dV lf/du < dV ri/du, we will make use of the following

two claims whose proofs can be found in the next subsection:

Claim 2.6.1. V lf (u) and V ri(u) exhibit the following properties:

• They are bounded, twice continuously differentiable, strictly concave functions.

• There exists a ū ∈ (0,+∞) such that:

V lf (ū) = V ri(ū) and
dV lf

du

∣∣∣∣
u=ū

=
dV ri

du

∣∣∣∣
u=ū

• V lf (u) ≥ V ri(u) for all u ∈ [0, ū]. Moreover, argmaxu V
lf (u) < ū, argmaxu V

ri(u) < ū, and

argmaxu V
lf (u) ̸= argmaxu V

ri(u).

Claim 2.6.2. If V lf (u) and V ri(u) satisfy the conditions of Claim 2.6.1, then dV lf/du < dV ri/du

for all u ∈ [0, ū).

With these results in hand, we can prove that u∗(b) is strictly increasing in b ∈ {0, 1} (implying

that ∆CS > 0). By Claim 2.6.1, we know there exists a u ∈ (0,+∞) such that V lf (u) = V ri(u)

and (dV lf/du)|u=ū = (dV ri/du)|u=ū. The latter implies that at u = ū, the solutions to V lf (ū) and

V ri(ū) coincide and are equal to wA = cA and wB = cB.

Now, we know from Proposition 5 in the main text that wlf
A > cA and wlf

B > cB. Furthermore,

it is not difficult to prove that wri
A > cA also (while wri

B = cB as we know). Since equilibrium retail

prices are strictly increasing in wholesale prices, it must be that ulf and uri are strictly less than

ū. Hence, when solving maxu (1 − b)V lf (u) + bV ri(u) − nR̃(u) it is without loss of generality to

restrict the domain to u ∈ [0, ū). But by Claim 2.6.2 we know that dV lf/du < dV ri/du; hence,

u∗(b) is strictly increasing in b ∈ {0, 1} □

Before moving on, we provide a graphical explanation for why dV lf/du < dV ri/du when u ∈
[0, ū). Claim 2.6.2 is the key result, as Figure 2.1 attempts to convey. The proof of the claim

uses the properties stated in Claim 2.6.1 to show—using the contraction mapping theorem—that

f(u) ≡ dV lf/du − dV ri/du vanishes only at ū over [0, ū]. This last result, plus the fact that

V lf (u) ≥ V ri(u), V lf (ū) = V ri(ū), and (dV lf/du)|u=ū = (dV ri/du)|u=ū immediately imply that

dV lf/du < dV ri/du for all u ∈ [0, ū).
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Figure 2.1: Graphical Illustration of Claim 2.6.2

(a) V lf (u) and V ri(u) (b) dV lf/du and dV ri/du

2.7 Proof of Claim 2.6.1

For ease of exposition, we have divided the proof of this claim into several shorter claims.

Claim 2.7.1. V lf (u) and V ri(u) are bounded, twice continuously differentiable, strictly concave

functions.

Proof. Given that demands are thrice continuously differentiable, so are the objective functions

V lf (u) and V ri(u). Hence, by the smooth maximum theorem (see, e.g., Carter, 2001, p. 603),

V lf (u) and V ri(u) are bounded, twice continuously differentiable functions.

Regarding strict concavity, we already argued that V lf (u) is strictly concave in u when we

showed that non-discriminatory contracts were optimal in the laissez faire. Thus, we focus on

proving that V ri(u) is strictly concave in u too. To do this, recall that

V ri(u) = max
wA

πA(p
∗
A(wA, cB); cA) + πB(p

∗
B(wA, cB); cB)

subject to vA(p
∗
A(wA, cB)) + vB(p

∗
B(wA, cB)) = u

(31)

where pA(wA, cB) and pB(wA, cB) are strictly increasing in wA and are such that pA(wA, cB) <

pmA (wA) and pB(wA, cB) < pmB (cB), where p
m
k (w) ≡ argmaxp(p − w)Qk(p). Since the dependence

of prices on cB will not play any role in what follows, to avoid cluttering notation, we will omit it

altogether, i.e., pk(wA, cB) ≡ pk(wA).

Now, let w∗
A(u) be the solution to (31). Consequently, w∗

A(u) must satisfy vA(pA(w
∗
A(u))) +

vB(pB(w
∗
A(u))) = u. By the implicit function theorem we have that:

∂w∗
A

∂u
= −

(
QA(pA(wA))

∂pA
∂wA

+QB(pB)
∂pB
∂wA

)−1 ∣∣∣∣
wA=w∗

A(u)

< 0
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With this in mind, consider the Lagrangian of (31):

max
wA,λ

L(wA, λ;u) = πA(pA(wA); cA) + πB(pB(wA); cB) + λ
[
vA(pA(wA)) + vB(pB(wA))− u

]
and let (w∗

A(u), λ
∗(u)) be the solution to this problem. By the envelope theorem dV ri/du =

−λ∗(u), so proving that V ri(u) is strictly concave in u is equivalent as showing that λ∗(u) is

strictly increasing in u. The first-order condition of the Lagrangian with respect to wA tells us that

λ∗(u) = Ψ(pA(w
∗
A(u)), pB(w

∗
A(u))), where:

Ψ(pA(wA), pB(wA)) =
(∂pA/∂wA)π

′
A(pA(wA); cA) + (∂pB/∂wA)π

′
B(pB(wA); cB)

(∂pA/∂wA)QA(pA(wA)) + (∂pB/∂wA)QB(pB(wA))

Consequently,
∂λ∗

∂u
=
∂w∗

A

∂u

(
∂Ψ

∂pA

∂pA
∂wA

+
∂Ψ

∂pB

∂pB
∂wA

) ∣∣∣∣
wA=w∗

A(u)

Since ∂w∗
A/∂u < 0, to demonstrate that ∂λ∗/∂u > 0 it suffices to show that:(

∂Ψ

∂pA

∂pA
∂wA

+
∂Ψ

∂pB

∂pB
∂wA

) ∣∣∣∣
wA=w∗

A(u)

< 0

In doing so, note that maxwA,λ L(wA, λ, u) = maxλ L(w̃A(λ, u), λ, u), where w̃A(λ, u) is defined as

w̃A(λ, u) ≡ argmaxwA
L(wA, λ, u). By construction, we have that w∗

A(u) = w̃A(λ
∗(u), u). Note,

further, that the first-order condition that determines w̃A(λ, u) is independent of u, which implies

that w̃A(λ, u) = w̃A(λ):

w̃A(λ, u) : λ = Ψ(pA(w̃A(λ, u)), pB(w̃A(λ, u))) =⇒ λ = Ψ(pA(w̃A(λ)), pB(w̃A(λ)))

Consequently, we have that w∗
A(u) = w̃A(λ

∗(u)). Now, notice that:

∂2

∂λ∂wA
L(wA, λ, u) = −QA(pA(wA))

∂pA
∂wA

−QB(pB(wA))
∂pB
∂wA

< 0

Hence, L(wA, λ;u) has strictly decreasing differences in (wA, λ). This implies that w̃A(λ) is strictly

decreasing in λ. However, we know that w̃A(λ) satisfies λ = Ψ(pA(w̃A(λ)), pB(w̃A(λ))). Conse-

quently, by the implicit function theorem we have that:

∂w̃A

∂λ
=

(
∂Ψ

∂pA

∂pA
∂wA

+
∂Ψ

∂pB

∂pB
∂wA

)−1 ∣∣∣∣
wA=w̃A(λ)

< 0 (32)

given that we know that w̃A(λ) is strictly decreasing in λ. Since the latter holds, in particular for

wA = w̃A(λ
∗(u)) = w∗

A(u), then ∂λ
∗/∂u > 0, or, equivalently, V ri(u) is strictly concave in u.

Claim 2.7.2. ∃ ū ∈ (0,+∞) such that V lf (ū) = V ri(ū) and (dV lf/du− dV ri/du)|u=ū = 0.
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Proof. Consider first V lf (u), i.e., V lf (u) = maxwA,wB πA(p
∗
A(wA, wB); cA) + πB(p

∗
B(wA, wB); cB)

subject to vA(p
∗
A(wA, wB)) + vB(p

∗
B(wA, wB)) = u. Denoting by (w∗

A, w
∗
B) the solution to this

problem, the corresponding first-order conditions are:

π′
A(p∗A(w∗

A,w∗
B);cA)

QA(p∗A(w∗
A,w∗

B)) =
π′
B(p∗B(w∗

A,w∗
B);cB)

QA(p∗B(w∗
A,w∗

B)) (33)

vA(p
∗
A(w

∗
A, w

∗
B)) + vB(p

∗
B(w

∗
A, w

∗
B)) = u (34)

These two first-order conditions plus the equilibrium conditions leading to on-path prices

π′
A(p∗A;wA)

QA(p∗A) =
π′
B(p∗B ;wB)

QB(p∗B) (35)

π′
B(p∗B ;wB)

QB(p∗B) =
[
πA(p

∗
A;wA) + πB(p

∗
B;wB)

]
γn(n− 1)

∫ +∞
−∞ g(ζ)2G(ζ)n−2dζ (36)

determine (w∗
A, w

∗
B) and p∗k(w

∗
A, w

∗
B) for k = A,B, for a given level of u. Moreover, using the

envelope theorem, we have that:

−dV
lf

du
=
π′A(p

∗
A(w

∗
A, w

∗
B); cA)

QA(p∗A(w
∗
A, w

∗
B))

=
π′B(p

∗
B(w

∗
A, w

∗
B); cB)

QB(p∗B(w
∗
A, w

∗
B))

Now, because p∗k(wA, wB) is strictly increasing in wA and wB, by the implicit function theorem

w∗
k is strictly decreasing in u. Hence, there exists ū ∈ (0,∞) such that w∗

A(ū) = cA. But, if

so, then conditions (33) and (35) imply that w∗
B(ū) = cB. Consequently, ū = vA(p

∗
A(cA, cB)) +

vB(p
∗
B(cA, cB)), V

lf (ū) = πA(p
∗
A(cA, cB); cA) + πB(p

∗
B(cA, cB); cB), and

−dV
lf

du

∣∣∣∣
u=ū

=
π′A(p

∗
A(cA, cB); cA)

QA(p∗A(cA, cB))
=
π′B(p

∗
B(cA, cB); cB)

QB(p∗A(cA, cB))

Now consider V ri(u), i.e., V ri(u) = maxwA πA(p
∗
A(wA, cB); cA) + πB(p

∗
B(wA, cB); cB) subject to

vA(p
∗
A(wA, cB))+ vB(p

∗
B(wA, cB)) = u, where, p∗k(wA, cB) for k = A,B must satisfy conditions (35)

and (36) evaluated at wB = cB. The solution to this problem, which we denote by w∗∗
A , is given by

the implicit equation vA(p
∗
A(w

∗∗
A , cB)) + vB(p

∗
B(w

∗∗
A , cB)) = u.

Note that since p∗A(wA, cB) is strictly increasing in wA and ū = vA(p
∗
A(cA, cB))+vB(p

∗
B(cA, cB)),

then it must hold that w∗∗
A (ū) = cA. Hence, V

ri(ū) = V lf (ū) = πA(p
∗
A(cA, cB); cA)+πB(p

∗
B(cA, cB); cB).

Moreover, in the proof of Claim 2.7.1, we already showed that−dV ri/du = Ψ(p∗A(w
∗∗
A , cB), p

∗
B(w

∗∗
A , cB)),

where:

Ψ(p∗A(wA, cB), p
∗
B(wA, cB)) =

(∂pA/∂wA)π
′
A(p

∗
A(wA, cB); cA) + (∂pB/∂wA)π

′
B(p

∗
B(wA, cB); cB)

(∂pA/∂wA)QA(p∗A(wA, cB)) + (∂pB/∂wA)QB(p∗B(wA, cB))

But when u = ū and, therefore, w∗∗
A = cA (wB = cB), the retail equilibrium pricing condition (35)

implies that π′A(p
∗
A(cA, cB); cA)/QA(p

∗
A(cA, cB)) = π′B(p

∗
B(cA, cB); cB)/QB(p

∗
B(p

∗
B(cA, cB)), which,
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in turn, implies that:

Ψ(p∗A(cA, cB), p
∗
B(cA, cB)) =

π′A(p
∗
A(cA, cB); cA)

QA(p∗A(cA, cB))
=
π′B(p

∗
B(cA, cB); cB)

QB(p∗B(cA, cB))

Thus,

−dV
lf

du

∣∣∣∣
u=ū

= −dV
ri

du

∣∣∣∣
u=ū

=
π′A(p

∗
A(cA, cB); cA)

QA(p∗A(cA, cB))
=
π′B(p

∗
B(cA, cB); cB)

QB(p∗B(cA, cB))

Claim 2.7.3. V lf (u) ≥ V ri(u) for all u ∈ [0, ū]. Moreover, argmaxu V
lf (u) < ū, argmaxu V

ri(u) <

ū, and argmaxu V
lf (u) ̸= argmaxu V

ri(u).

Proof. That V lf (u) ≥ V ri(u) follows because the maximand of both problems is the same but

V ri(u) involves an additional constraint. That argmaxu V
lf (u) < u follows because argmaxu V

lf (u) =

vA(p
m
A (cA)) + vB(p

m
B (cB)), which also implies that argmaxu V

lf (u) ̸= argmaxu V
ri(u) since imple-

menting pmk (ck) for k = A,B requires wk > ck for k = A,B and the solution to V ri(u) imposes

that wB = cB. Finally, that argmaxu V
ri(u) < ū follows because:

dV ri

du

∣∣∣∣
u=ū

= −
π′A(p

∗
A(cA, cB); cA)

QA(p∗A(cA, cB))
= −

π′B(p
∗
B(cA, cB); cB)

QB(p∗B(cA, cB))
< 0

and V ri(u) is strictly concave in u.

2.8 Proof of Claim 2.6.2

This claim is a direct application of the following theorem.

Theorem 1. Let φ1 and φ2 be bounded class C(2) strictly concave functions over [0,+∞) that

satisfy the following conditions: (i) there exists a ū ∈ (0,+∞) such that φ1(ū) = φ2(ū) and

φ′
1(ū) = φ′

2(ū); (ii) φ1(u) ≥ φ2(u) for all u ∈ [0, ū], and (iii) u1 < ū, u2 < ū, and u1 ̸= u2, where

ui ≡ argmaxu φi(u). Then φ′
1(u) < φ′

2(u) ∀u ∈ [0, ū).

Preliminaries.— To prove the theorem, we will make use of the following preliminary results:

Theorem (Bennett and Fisher, 1974). If h is a continuous function from a compact set K ⊂ R
into itself satisfying the condition:

|h(x)− h(y)| < 1

2
||x− h(y)|+ |y − h(x)|| for all x, y ∈ K with x ̸= y

Then h has a unique fixed point.

Lemma 2.8.1. Let g : [0, ū] → [0, ū+ ε] be a contraction and ū its unique fixed point. Then there

is no other u∗ ∈ [0, ū] such that g(u∗) = ū.
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Proof. Define h : [0, ū] → [0, ū] as h(x) := x− g(x)+ g(ū). Note that h(ū) = ū, so ū is a fixed point

of h. Moreover, given that:

1

2
||x− h(y)|+ |y − h(x)|| = 1

2
||h(y)− x|+ |h(x)− y|| ≥ 1

2
|h(x)− y + h(y)− x|

≥ 1

2
|g(x) + g(y) + 2ū| > 1

2
|g(x) + g(y) + 2(x− y)| > 1

2
|2(g(y)− g(x)) + 2(x− y)|

> |(x− g(x) + (y − g(y))| > |h(x)− h(y)|

then by Bennett and Fisher (1974), ū is the unique fixed point of h. Suppose then by contradiction

that there exists a u∗ ̸= ū in the interval [0, ū] such that g(u∗) = ū. Then h(u∗) = u∗−g(u∗)−g(ū) =
u∗, implying that u∗ ̸= ū is also a fixed point of h. This contradicts the fact that ū is the unique

fixed point of h.

Proof of the theorem.— It is a direct implication of the following two propositions:

Proposition 2.8.2. Define f(u) ≡ φ′
1(u)− φ′

2(u), then f(u) vanishes only at ū over [0, ū].

Proof. Since φ1 and φ2 are bounded and class C(2), then φ′′
1 and φ′′

2 are continuous and bounded.

Hence, for a constant R > 2, K ≡ R · max {max |φ′′
1| ,max |φ′′

2|} is well defined. For ε > 0,

define Dε ≡ [0, ū + ε]. Because R is complete and Dε is closed, Dε is complete. Define, moreover,

g(u) ≡ 1
K f(u) + ū and let D ≡ maxu∈Dε f(u) and F := minu∈Dε f(u).

Note that for R large enough, we have that D/K < ε and F/K + ū ≥ 0. Thus, g(Dε) ⊆ Dε.

Moreover:

∣∣g′(u)∣∣ = 1

K

∣∣f ′(u)∣∣ = 1

K

∣∣φ′′
1(u)− φ′′

2(u)
∣∣ ≤ 1

K

∣∣φ′′
1(u)

∣∣+ 1

K

∣∣φ′′
2(u)

∣∣ < 1

2
+

1

2
< 1

Thus, g(u) is a contraction. Define J := {u ∈ [0, ū] : g(u) = ū}. Clearly, g(ū) = 1
K f(ū) + ū =

1
K · 0 + ū = ū, so ū ∈ J . Moreover, by Lemma 2.8.1, it must be that ū is the only element in J .

Define I ≡ {u ∈ [0, ū] : f(u) = 0}, i.e., I is the set of all the points over [0, ū] such that f(u)

vanishes. To prove that I = J we proceed by double contention. Take u ∈ I, then g(u) =
1
K f(u) + ū = 1

K · 0 + ū = ū. Hence u ∈ J . On the other hand, take u ∈ J , then:

g(u) = ū =⇒ 1

K
f(u) + ū = ū =⇒ 1

K
f(u) = 0 =⇒ f(u) = 0

Therefore u ∈ I. Consequently, since I = J and J is a singleton, then I is also a singleton. Thus,

over [0, ū], f(u) vanishes only at ū.

Proposition 2.8.3. Define f(u) ≡ φ′
1(u)−φ′

2(u). If over [0, ū] the function f(u) vanishes only at

ū, then φ′
1(u) < φ′

2(u) ∀u ∈ [0, ū).
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Proof. We will first show that statement necessarily implies that u1 < u2. We will then use this

fact to show that φ′
1(u) < φ′

2(u) for all u ∈ [0, ū).

Suppose by contradiction that u1 > u2. Given that φ1(u) is strictly concave in u, this implies

that f(u2) = φ′
1(u2) > 0. Because f(u) cannot change of sign over [0, ū) (f(u) vanishes only at ū

over [0, ū]), we then conclude that f(u) > 0 for all u ∈ [0, ū), i.e., φ′
1(u) > φ′

2(u) for all u ∈ [0, ū).

However, if so, then for u ∈ (ū − ϵ, ū) we have that φ1(u) < φ2(u) given that φ1(ū) = φ2(ū).

Contradiction.

Thus, u1 ≤ u2. Moreover, since u1 ̸= u2 by assumption, then u1 < u2. However, this implies

that f(u1) = −φ′
2(u1) < 0 given that φ2(u) is strictly concave in u. Because f(u) does not change

sign over [0, ū), then f(u) < 0 for all u ∈ [0, ū). That is, φ′
1(u) < φ′

2(u) for all u ∈ [0, ū).
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