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The goal of this note is to characterize buyer-optimal outcomes with minimal learning in

environments where the seller’s valuation is positive and the buyer’s valuation can be negative.

1 Model

There is a seller who has an object to sell to a single buyer. The seller’s value for the object is

c. The buyer’s valuation, v, is distributed according to the CDF F supported on (−∞, 1].1 Let µ

denote the expected valuation, that is,
∫ 1

0
vdF (v) = µ. The buyer observes a signal s about v. The

joint distribution of v and s is common knowledge. The seller then gives a take-it-or-leave-it price

offer to the buyer, p. Finally, the buyer trades if and only if her expected valuation conditional

on her signal weakly exceeds p. If trade occurs, the payoff of the seller is p and the payoff of the

buyer is v−p; otherwise, both the buyer’s payoff is zero and the seller’s payoff is c. Both the seller

and the buyer are von Neumann-Morgenstern expected payoff maximizers. In what follows we fix

the CDF F and analyze those signal structures which maximize the buyer’s expected payoff.

We may assume without loss of generality that each signal s provides the buyer with an

unbiased estimate about her valuation, that is, E (v|s) = s. The reason is that the buyer only

needs to know E (v|s) in order to decide whether to trade at a given price, so it does not matter

whether she observes s or E (v|s). In what follows, we restrict attention to unbiased signal

structures.

2 Buyer-optimal Signal Structures

First, we argue that the payoffs of both the buyer and the seller are determined by the un-

conditional distribution of the signal. To this end, let D (G, p) denote the demand at price p
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if the signal’s distribution is G, that is, D (G, p) is the probability of trade at p. Note that

D (G, p) = 1 − G (p) + ∆ (G, p) where ∆ (G, s) denotes the the probability of s according to

the CDF G.2 The seller’s optimal price, p, solves maxs(s − c)D (G, s) and the buyer’s payoff

is
∫ 1

p
(s − p)dG (s). Therefore, the problem of designing a buyer-optimal signal structure can be

reduced to identifying the unconditional signal distribution which maximizes the buyer’s expected

payoff subject to monopoly pricing. Of course, not every CDF corresponds to a signal distribution.

In what follows, we characterize the set of distributions that do.

For each unbiased signal structure, v can be expressed as s + ε for a random variable ε with

E (ε|s) = 0. This means that G is the distribution of some unbiased signal about v if and only if F

is a mean-preserving spread of G (see Definition 6.D.2 of Mas-Colell et al., (1995)). Let GF denote

the set of CDFs of which F is a mean-preserving spread. By Proposition 6.D.2 of Mas-Colell et

al. (1995) this set can be defined as follows

GF =

{
G ∈ G :

∫ x

−∞
F (v) dv ≥

∫ x

−∞
G (s) ds for all x ∈ [0, 1] ,

∫ 1

−∞
sdG (s) = µ

}
. (1)

The problem of designing a buyer-optimal signal structure can be stated as follows

max
G∈GF

∫ 1

p

(s− p) dG (s)

s.t. p ∈ arg max
s

(s− c)D (G, s) .

In what follows, we call a pair (G, p) an outcome if G ∈ GF and p ∈ arg maxs (s− c)D (G, s).

In other words, the pair (G, p) is an outcome if there exists an unbiased signal about v which is

distributed according to the CDF G and it induces the seller to set price p.

Next, we define a set of distributions and prove that a buyer-optimal signal distribution lies

in this set. For each q ∈ (c, 1] and B ∈ [q, 1] let the CDF GBq be defined as follows:

GBq (s) =


0 if s ∈ [0, q),

1− q−c
s−c if s ∈ [q,B),

1 if s ∈ [B, 1].

(2)

Observe that the support of GBq is [q,B] and it specifies an atom of size (q − c) / (B − c) at B.

An important attribute of each CDF in this class is that the seller is indifferent between charging

any price on its support. Notice that Gqq is a degenerate distribution which specifies an atom of

size one at q.

Proposition 1 Suppose that (G, p) is a buyer-optimal outcome and G involves minimum learn-

ing among all buyer-optimal signal structures. Let λ denote
∫
[−∞,p) sdG (s) / [G (p)−∆ (G, p)] if

G (p) > ∆ (G, p) and zero otherwise. Then there exists a B ∈ [p, 1] such that

(i) G (s) = 0 on s ∈ [0, λ) and G (s) = G (p) on [λ, p).

(ii) GBp (s) = [G (s)−G (p)] / [1−G (p)] if s ≥ p.

2Formally, ∆ (G, s) = G (s) − supx<s G (x). If G has no atom at s then ∆ (G, s) = 0.
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Part (i) states that there is a single signal, λ, which the buyer might observe below p. In other

words, with some probability, the buyer learns that her valuation is below the price but receives

no additional information regarding her valuation. If the buyer’s value is very likely to be above

the seller’s cost c, then the buyer might never observes such a signal and under the buyer-optimal

signal trade occurs with probability one. Otherwise, λ is the buyer’s expected value conditional

on s < p. Part (ii) says that, conditional on observing a signal above p, the signal is distributed

according to GBp for some B, that is, the seller is indifferent between any price on [p,B].

Proof. Let (G, p) be a buyer-optimal outcome. We first argue that there exists a unique B ≥ p

such that GBp generates the same expected value as G (·|s ≥ p). Since p ∈ arg maxs (s− c)D (G, s),

(s− c)D (G, s) ≤ (p− c)D (G, p) for all s ∈ [0, 1]. Using the definitions of D (G, p), this inequality

can be rewritten as

1− p− c
s− c

D (G, p) + ∆ (G, s) ≤ G (s) .

Since ∆ (G, s) ∈ [0, 1], the previous inequality implies

1− p− c
s− c

D (G, p) ≤ G (s) ,

or equivalently,
1

D (G, p)
− p− c
s− c

≤ G (s)

D (G, p)
.

Subtracting [G (p)−∆ (G, p)] /D (G, p) from both sides yields

1− p− c
s− c

≤ G (s)−G (p) + ∆ (G, p)

D (G, p)
. (3)

Note that the right-hand side of this inequality is the signal distribution conditional on s ≥ p, so

the previous inequality is just

G1
p (s) ≤ G (s|s ≥ p) , (4)

that is, G1
p first-order stochastically dominates G (·|s ≥ p). This implies that∫ 1

p

sdG1
p (s) ≥

∫ 1

p

sdG (s|s ≥ p) ≥ pD (G, p) =

∫ 1

p

sdGpp (s) ,

where the first inequality follows from first-order stochastic dominance, and the last equality from

Gpp specifying an atom of size one at s = p. Since
∫ 1

p
sdGBp (s) is continuous and strictly increasing

in B, the Intermediate Value Theorem implies that there exists a unique B ∈ [p, 1] such that∫ 1

p

sdGBp (s) =

∫ 1

p

sdG (s|s ≥ p) . (5)

For each buyer-optimal outcome (G, p) we can define a signal distribution G̃ as follows

G̃ (s) =


0 if s ∈ [0, λ),

G (p)−∆ (G, p) if s ∈ [λ, p),

D (G, p)
(

1− p−c
s−c

)
+G (p)−∆ (G, p) if s ∈ [p,B)

1 if s ∈ [B, 1],
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where λ =
∫
[−∞,p) sdG (s) / [G (p)−∆ (G, p)] and B is defined so that (5) is satisfied. Note that

∆
(
G̃, p

)
= 0 and G̃ (p) = G (p)−∆ (G, p).

First, we argue that the expected value of the signal conditional on s < p is the same according

to both distributions, G and G̃. Note that∫
[−∞,p) sdG̃ (s)

G̃ (p)
=
λ [G (p)−∆ (G, p)]

G̃ (p)
= λ, (6)

where the second equality follows from G̃ (p) = G (p)−∆ (G, p).

Second, we show that ∫
sdG̃ (s) = µ. (7)

To see this, note that∫
sdG̃ (s) = G̃ (p)

∫
[−∞,p) sdG̃ (s)

G̃ (p)
+
[
1− G̃ (p)

] ∫
[p,B]

sdG̃ (s)

1− G̃ (p)

= [G (p)−∆ (G, p)]λ+ [1−G (p) + ∆ (G, p)]

∫
[p,1]

sdG (s)

1−G (p) + ∆ (G, p)
=

∫
sdG (s) = µ,

where the first equality follows from (5) and (6) and the last equality follows from G ∈ GF .

Third, we prove that

G̃ (s) ≤ G (s)

if s ∈ [p,B]. Note that

G̃ (s) = D (G, p)

(
1− p− c

s− c

)
+G (p)−∆ (G, p) ≤ G (s) , (8)

where the inequality follows from (3).

Next, we show that G is a mean-preserving spread of G̃. If s ≤ λ then∫ s

−∞
G (x) dx ≥

∫ s

−∞
G̃ (x) dx = 0. (9)

If s ∈ [λ, p) then∫ s
−∞G (x) dx

G (p)−∆ (G, p)
= 1− λ−

∫ p
s
G (x) dx

G (p)−∆ (G, p)

≥ 1− λ−
∫ p
s
G (p)−∆ (G, p) dx

G (p)−∆ (G, p)
= 1− λ−

∫ p
s
G̃ (x) dx

G̃ (p)
=

∫ s
−∞ G̃ (x) dx

G (p)−∆ (G, p)
,

where the inequality follows from G (s) ≤ G (p) −∆ (G, p) for s < p, the second equality follows

from G̃ (x) = G (p) − ∆ (G, p) on [λ, p) and the last equality follows from (6). The previous

displayed inequality chain implies that if s ∈ [λ, p) then∫ s

−∞
G (x) dx ≥

∫ s

−∞
G̃ (x) dx. (10)
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If s ∈ [p,B], then∫ s

−∞
G (x) dx =

∫
[−∞,p)

G (x) dx+

∫
[p,s]

G (x) dx ≥
∫
[−∞,p)

G̃ (x) dx+

∫
[p,s]

G (x) dx (11)

≥
∫
[−∞,p)

G̃ (x) dx+

∫
[p,s]

G̃ (x) dx,

where the first inequality follows from (10) and the second inequality follows from (8).

If s ≥ B then∫ s

−∞
G (x) dx = 1−µ−

∫ 1

s

G (x) dx ≥ 1−µ−(1− s) = 1−µ−
∫ 1

s

G̃ (x) dx =

∫ s

−∞
G̃ (x) dx, (12)

where the first inequality follows from G (x) ≤ 1, the second equality from G̃ (x) = 1 if x ≥ B and

the third equality from (7). Inequalities (9)-(12) imply that G is a mean-preserving spread of G̃.

So far, we have proved that G is a mean-preserving spread of G̃, so G̃ involves less learning

than G. In fact, G̃ is strictly less informative than G unless G = G̃. Note that the seller is

indifferent between any price on [p,B]. If the seller charges p, his profit is (p− c)
(

1− G̃ (p)
)

=

(p− c)D (G, p), that is, the same as in outcome (G, p). The buyer’s payoff is∫ B

p

(s− p) dG̃ (s) =

∫ B

p

sdG̃ (s)−
(

1− G̃ (p)
)
p =

∫
[p,1]

sdG (s)−D (G, p) p,

where the second equality follows from (5) and G̃ (p) = G (p)−∆ (G, p). The previous inequality

chain implies that the buyer’s payoff is also the same as in the outcome (G, p). Also note that the

seller must strictly prefer setting price p to price λ because otherwise the buyer would be better off

in the outcome
(
G̃, λ

)
than in (G, p), contradicting the assumption that (G, p) is buyer-optimal.

To summarize, if (G, p) is a buyer-optimal outcome and induces minimal learning then G = G̃

which implies parts (i) and (ii) of the statement of the proposition.

Next, we characterize the minimally informative buyer-optimal signal structure in an example

and show that trade is neither efficient nor does it occur for sure if v is likely to be smaller than c.

Example 1. Suppose that

F (v) =


0 if v < 0

1/2 if v ∈ [0, 1)

1 if v ≥ 1,

that is, the buyer’s value is either zero or one with equal probabilities. Let c ∈ [0, 1/2].

For, c > 0, efficiency requires for trade to occur if and only if v = 1. So, the only signal

structure that is compatible with efficient trade is the fully informative one, with s = v. But then,

the seller charges p = 1 and the buyer’s payoff is zero. The seller’s profit is 1/2(1− c) > 0. If the

signal is pure noise, i.e. s ≡ µ, the seller charges the price p = µ = 1/2. The buyer’s payoff is zero

and the seller’s profit is 1/2− c.
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In general, for c > 0, the seller never charges a price smaller than c. Hence, any information

structure that results in sure trade must satisfy s ≥ c, ∀s that occur with positive probability.

Next, we characterize the buyer-optimal signal structure, G∗c , in this example. Proposition

1 implies that s = 0 with probability α ∈ [0, 1) and, with the remaining probability 1 − α, the

distribution of the signal is generated by GBp . In what follows, we pin down α, p and B for some

values of c. To this end, given c, let µc (p,B) denote the expected value generated by GBp . Note

that G∗c ∈ GF implies (1− α)µc (p,B) = 1/2, and hence

(1− α) =
1

2µc (p,B)
.

Therefore, the buyer’s payoff is

(1− α) [µc (p,B)− p] =
1

2
− p

2µc (p,B)
. (13)

Note that since µc (p,B) is increasing in B, the buyer-optimal B is one. Therefore, solving for the

buyer-optimal signal structure is reduced to the following problem

max
p∈[c,1]

µc (p, 1)

p
(14)

subject to µc (p, 1) ≥ 1

2
.

Next, we derive an explicit formula for µc (p, 1):

µc (p, 1) =

∫ 1

p

p− c
(s− c)2

sds+
p− c
1− c

= (p− c)

[∫ 1

p

s− c
(s− c)2

ds+

∫ 1

p

c

(s− c)2
ds+

1

1− c

]

= (p− c)

[
log (s− c)|1p −

c

s− c

∣∣∣∣1
p

+
1

1− c

]

= (p− c)
[
log

(
1− c
p− c

)
− c

1− c
+

c

p− c
+

1

1− c

]
= (p− c) log

(
1− c
p− c

)
+ p.

Therefore, the maximization problem in (14) can be rewritten as

max
p∈[c,1]

(p− c) log
(

1−c
p−c

)
p

subject to (p− c) log

(
1− c
p− c

)
+ p ≥ 1

2
.

The following table summarizes the solution to this problem c ∈ {0, 1/8, 1/4, 1/2}:
To summarize, for c = 0 or low costs, under the buyer-optimal signal structure the seller is

indifferent between all prices [p∗c , 1] and trade occurs with probability one.3 For higher costs, for

the buyer-optimal signal structure, the buyer learns that her valuation is zero with probability

α∗ > 0; with the remaining probability, the signal s is generated by the CDF G1
p∗ .

3For the distribution in the example the upper bound on costs for which this holds is around ≈ 0.133.
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c p∗ α∗

0 ≈ 0.19 0
1
8 ≈ 0.25 0
1
4 ≈ 0.40 ≈ 0.22
1
2 ≈ 0.64 ≈ 0.39

We could have reached similar conclusions, i.e. trade is inefficient and does not occur for sure

even if c = 0 but the buyer’s value can be negative. The analysis of the next example is analogous

to the previous one, so we omit it.

Example 2. Suppose that c = 0

F (v) =


0 if v < −1

1/2 if v ∈ [−1, 1)

1 if v ≥ 1,

that is, the buyer’s value is either minus or one with equal probabilities.

In the example above, the allocation resulting from the buyer-optimal information structure

is inefficient because some buyers whose valuation is below the cost of the seller end up buying

the object. A natural question to ask is: Can the buyer-optimal information structure induce

some buyers to refrain from trading even if their valuations are above the production cost? We

prove that such an inefficiency can never arise. To this end, we first prove that each buyer with a

valuation above the price buys the object.

Lemma 1 Suppose that (G, p) is a buyer-optimal outcome and G (p) − ∆ (G, p) > 0. Then

F (p|s < p) = 1.

This lemma states that, if trade does not happen surely, then the probability that the buyer’s

true valuation is below the price conditional on receiving a signal smaller than the price is one.

In other words, if a buyer does not trade at price p then her true valuation is below the price p.

Proof. It is without loss of generality to assume that the buyer receives a single signal strictly

below p. Let λ denote the value of this signal, that is, λ = EG (s|s = λ). Furthermore, let Fλ (v)

denote F (v|s < p) = F (v|s = λ) for all v. Note that
∫
vdFλ (v) = λ. Finally, let α denote the

probability of receiving λ, that is, α = G (λ).

We prove the statement of the proposition by way of contradiction. That is, we assume that

Fλ (p) = F (p|s < p) < 1 and construct an outcome in which the payoff of the buyer is higher than

in (G, p). In particular, we modify the signal distribution G conditional on s = λ and show that

the buyer’s payoff strictly increases. To this end, fix a B ∈ (p, 1] such that Fλ (B) < 1. This is

possible if Fλ (p) < 1. Let the signal distribution Gε be defined such that the signal is generated

7



by GBp with probability ε (> 0). With the remaining probability 1− ε, the signal is λε such that

λ = ε

∫
sdGBp (s) + (1− ε)λε. (15)

Note that Gε converges to one on [λ, 1] as ε goes to zero. Since Fλ (B) < 1, ε can be chosen small

enough so that Fλ < Gε on [λε, 1]. In addition, observe that Gε = 0 ≤ Fλ on [0, λε). This implies

that Fλ is a mean-preserving spread of Gε.

Consider now the following modification of G denoted by G̃. The signal is generated by

G (.|s > p) with probability 1 − α. With the remaining probability α, the signal is generated by

Gε. In other words, instead of observing the signal λ, the buyer observes a more informative signal

distributed according to Gε with probability α. Since Fλ is a mean-preserving spread of Gε and

Gε is a mean-preserving spread of G (.|s = p) by (15), the signal structure G̃ can be interpreted

in the following sequential manner. First, the buyer receives a signal according to G. Conditional

receiving the signal λ, the buyer receives an additional signal regarding her valuation according

to Gε. By construction, F is a mean-preserving spread of G̃, so G̃ ∈ GF . In what follows,
(
G̃, p

)
is an outcome, that is, p is a profit-maximizing price and and U

(
G̃, p

)
> U (G, p).

To show that
(
G̃, p

)
is an outcome, first note that the seller would never set a price below p.

To see this, note that the only signal below p is λε, so λε generates higher profit than any other

price on [0, p). However, if the seller finds it optimal to set price λε then he would also find it

optimal to set price λ when the buyer’s signal is distributed according to G. Therefore, we can

restrict attention to prices on [p, 1]. Note that

max
v≥p

D
(
G̃, v

)
(v − c) = max

v≥p
[αD (Gε, v) + (1− α)D (G (.|s > p) , v)] (v − c)

≥ αmax
v≥p

D (Gε, v) (v − c) + (1− α) max
v≥p

D (G (.|s > p) , v) (v − c) .

Note that p is a solution to both problems on the right-hand side and hence, p is also a solution

to the problem on the left-hand side. Therefore,
(
G̃, p

)
is indeed an outcome.

Finally, observe that

U (G, p) = (1− α)

∫
sdG (s|s > p) < (1− α)

∫
sdG (s|s > p) + αε

∫
sdGBp (s) = U

(
G̃, p

)
,

that is, the buyer’s payoff is larger in the outcome
(
G̃, p

)
than in (G, p). This contradicts the

hypothesis that (G, p) is buyer-optimal.

We are ready to prove that a buyer with valuation above the seller’s cost always trades in a

buyer-optimal outcome.

Proposition 2 Suppose that (G, p) is a buyer-optimal outcome and G (p) −∆ (G, p) > 0. Then

F (c|s < p) = 1.

This proposition states that if some buyer does not trade in the buyer-optimal outcome then

her valuation must be smaller than the production cost. In other words, any efficiency loss in a
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buyer-optimal outcome is due to too much trade, that is, a buyer might purchase the good even

if her valuation below the cost.

Proof. By Lemma 1, F (p|s < p) = 1. It remains to show that F (p|s < p) = F (c|s < p), that

is, each buyer whose valuation is in the interval [c, p] ends up buying the object. Note that it is

without loss of generality to assume that those buyers who receive s < p learn their valuation.

The reason is that such a modification of the information structure can only lower the price, which

leads to more efficient purchasing decision of the buyer. We prove the statement of the proposition

by way of contradiction. We assume that there is a positive mass of buyers whose valuation is in

[c, p] and who receive a signal smaller than p, that is, F (p|s < p) > F (c|s < p). Since every buyer

with s < p observes her valuation, this inequality is equivalent to G (p) > G (c).

Let F̃ denote the distribution obtained from G by conditioning on [c, 1] that is,

F̃ (v) =
G (v)−G (c)

1−G (c)
.

Note that if the buyer’s value distribution is given by F̃ and the buyer learns her valuation, the

seller finds it optimal to set price p, that is,
(
F̃ , p

)
is an outcome. Furthermore, sinceG (p) > G (c),

trade is not efficient in this outcome. Let
(
G̃∗, p̃∗

)
denote the buyer-optimal outcome if the buyer’s

valuation is distributed by F̃ . Also observe that if the buyer’s value-distribution is given by F̃ ,

then v > c with probability one and hence, efficiency requires trade for sure. The analysis of our

paper applies to this case. By Theorem 1 of the paper, the outcome
(
G̃∗, p̃∗

)
induces efficient

trade and a strictly larger payoff than the inefficient outcome
(
F̃ , p

)
, that is,

U
(
G̃∗, p̃∗

)
> U

(
F̃ , p

)
. (16)

Let us now define a signal z as follows. If the buyer observed s < c then let z = s. If s > c

then let the value of z determined by G̃∗. Let G denote the resulting CDF. Note that since F is

a mean-preserving spread of G and G̃∗ is a mean-preserving spread of F̃ = G (.|s > c), F is also a

mean-preserving spread of G. Therefore, G is a feasible signal distribution. Also note that
(
G, p̃∗

)
is an outcome because G (.|z > c) = G̃∗ and

(
G̃∗, p̃∗

)
is an outcome. Finally, note that

U (G, p) = (1−G (c))U
(
F̃ , p

)
< (1−G (c))U

(
G̃∗, p̃∗

)
= U

(
G, p̃∗

)
,

where the inequality follows from (16). This inequality chain implies that (G, p) is not a buyer-

optimal outcome which is a contradiction.

3 Payoff Characterization

This section is devoted to the analysis of the combinations of those consumer and producer surplus

which can arise as an equilibrium outcome for some signal s. First, we show that our analysis can
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be used to characterize those equilibrium payoff profiles which are efficient. Second, we characterize

the set of all payoff-profiles that can be implemented by some signal structure Example 1.

Efficient Outcome Characterization.— Efficiency requires a buyer with value v to trade if and

only if v ≥ c. We call an outcome (G, p) efficient if it induces efficient trade, that is, a buyer

with valuation v receives a signal s ≥ p if and only if v ≥ c. If the buyer’s valuation is always

weakly larger than c, F (c) = ∆ (F, c), then the analysis of our paper directly applies with the

only modification that the set of distributions to be considered is defined by (2) instead of the

equal-revenue distributions considered in the paper. In particular, the set of payoff-profiles that

can be implemented by some signal structure can still be described by Figure 1, except that µ

must be replaced by µ − c and p∗ must be replaced by p∗ − c. Observe that among all these

payoff combinations, only the line segment connecting the points (0, µ− c) and (µ− p∗, p∗ − c)
correspond to efficient outcomes.

For the general case, in which the buyer’s valuation may be smaller than c, let Fc denote

the distribution of the buyer’s valuation conditional on the valuation being larger than c, that

is, Fc = F (.|v ≥ c). Let µc denote the expectation generated by Fc, that is, µc =
∫
vdFc (v).

Furthermore, let p∗c denote the equilibrium price in the buyer-optimal outcome (characterized by

Theorem 1 of the paper) if the buyer’s value distribution is Fc.

Proposition 3 There exists an efficient outcome such that the buyer’s payoff is u and the seller’s

profit is π if and only if there exists an γ ∈ [0, 1] such that

u = (1− F (c)) (1− γ) (µc − p∗c) and

π = (1− F (c)) [γ (µc − c) + (1− γ) (p∗c − c)] .

This proposition states that the set of efficient equilibrium profiles for value distribution F can

be obtained by characterizing the set of efficient payoff profiles for value distribution Fc and by

multiplying each of these profiles by (1− F (c)). The two extreme points in this set are supported

by the following information structures. Consider first the outcome (0, (1− F (c)) (µc − c)). This

profile arises if the buyer only learns whether her valuation is above or below c. The seller sets price

µc and captures all the surplus. Consider now the point ((1− F (c)) (µc− p∗c), (1−F (c) (p∗c − c)).
This payoff profile arises if the buyer receives the buyer-optimal signal for Fc conditional on v ≥ c
and receives a different signal otherwise. The seller optimally sets price p∗c .

Proof. First note that if the buyer’s value distribution was given by Fc then the combinations

of those consumer and producer surplus which can arise as an equilibrium outcome can be char-

acterized as follows. There exists an outcome where the buyer’s payoff is u′ and the seller’s profit

is π′ if and only if there exists an γ ∈ [0, 1] such that

u′ = (1− γ) (µc − p∗c) and π′ = [γ (µc − c) + (1− γ) (p∗c − c)] . (17)

This directly follows from the paragraph explaining Figure 1 in the paper.
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Observe that if (G, p) is an efficient outcome that the buyer must learn in equilibrium whether

or not her valuation is above the seller’s cost. Also note that the seller’s price only depends on

G (.|s ≥ c) if the signal is distributed according to G. Therefore, an outcome (G, p) is efficient

if and only if (i) a buyer with valuation v observes a signal s ≥ c if and only if v ≥ c and (ii)

(G (.|s ≥ c) , p) corresponds to an efficient outcome if the buyer’s value-distribution is Fc. Finally,

observe that

U (G, p) = (1− F (c))U (G (.|s ≥ c) , p) (18)

and

pD (G, p) = p (1− F (c))D (G (.|s ≥ c) , p) , (19)

in other words, the payoffs of both the buyer and the seller in the outcome (G, p) is (1− F (c)) as

large as in the outcome (G (.|s ≥ c) , p) given that the buyer’s value-distribution is Fc. Noting that

G (.|s ≥ c) can be any CDF which yields an efficient outcome if the buyer’s valuation is distributed

according to Fc, equations (17)–(19) yield the statement of the proposition.

Payoff Characterization in Example 1.—

Returning to our previous example, we now characterize those payoff-profiles of buyer-surplus

and seller-profit that can arise as an equilibrium outcome for some signal structure in the setting

of Example 1. Recall that under pure noise, the payoff profile is (0, 1/2− c) and under the fully

informative signal it is (0, 1/2− 1/2c) . Notice that the minimal price that can be achieved with

any information structure is the minimal price that can be achieved with an information structure

that induces trade with probability one. This price p̃c is given as the solution to

µc(p̃c, 1) =
1

2
. (20)

The resulting payoff of the buyer is u(p̃c) = 1/2− p̃c and the payoff of the seller is π(p̃c) = p̃c − c.
The following proposition characterizes the set of all implementable payoff profiles.

Proposition 4 The set of implementable payoff profiles is

{(x, π(p)) : x ∈ [0, u(p)] and p ∈ [p̃c, 1]} , (21)

with

u(p) =
1

2
− p

2
(

(p− c) log
(

1−c
p−c

)
+ p
) , and π(p) =

p− c

2
(

(p− c) log
(

1−c
p−c

)
+ p
) .

This result is illustrated in Figure 1, which shows the regions of the payoff-profiles that are

achievable for some signal structure of the buyer. The decreasing part of each curve corresponds

to {(u (p) , π (p))}1p̃c for different values of c. The proposition states that the set of implementable

payoff profiles coincide with the convex hull of these curves.

Proof. First, we prove that any point in the set (21) can be implemented by a signal structure.

Note that for any p ∈ [p̃c, 1], µc (p, 1) ≥ 1/2. Therefore, the signal structure where s is distributed
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Figure 1: Illustration of outcome regions depending on costs c: c = 0 region within the black

triangle; c = 1/8 region within the blue curve; c = 1/4 region within the orange curve ; c = 1/2

region within the red curve.

according to G1
p with probability 1/ [2µc (p, 1)] and s = 0 otherwise is feasible. Let Gp denote this

distribution. Given this signal structure, the seller finds it optimal to set price p, so (Gp, p) is

an outcome. Notice that U (Gp, p) = u (p) and Π (G) = π (p). It remains to show that (x, π (p))

is implementable for each x ∈ [0, u (p)]. If the buyer’s signal is distributed according to Gp then

the seller is indifferent between any price on [p, 1]. Depending on which of these prices the seller

charges, the buyer’s payoff can be anything on [0, u(p)].

It remains to show that any point which is implementable is in (21). To this end, suppose

that (G, p) is an outcome. We show that (U (G, p) ,Π (G)) is in the set (21). By the proof of

Proposition 1, there is a signal structure where the buyer receives signal 0 with probability α and

receives a signal distributed GBp with probability 1− α and the payoffs of both the seller and the

buyer are the same as in the outcome (G, p), that is,

Π (G) =
p− c

2µc (p,B)
and U (G, p) =

1

2
− p

2µc (p,B)
.

Recall that, given price p the seller’s minimum profit is

π(p) =
p− c

2µc(p, 1)
=

p− c

2
(

(p− c) log
(

1−c
p−c

)
+ p
) ,

which is increasing in p. Thus, the seller’s minimum profit is π (p̃c) and the maximum profit is

π (1). Therefore, by continuity, there exists a p ∈ [p̃c, 1] such that Π (G) = π (p). In order to show

that (U (G, p) ,Π (G)) = (U (G, p) , π (p)) is in the set (21), we must prove that U (G, p) ≤ u (p).
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First, observe that

π (p) =
p− c

2µc (p, 1)
≤ p− c

2µc (p,B)
=

p− c
2µc (p, 1)

= π (p) ,

where the inequality follows from µc (p,B) being increasing in B. Since π is increasing in p,

we conclude from this inequality chain that p ≤ p, therefore, µc (p, 1) ≥ µc (p,B) , and hence
p

2µc(p,B) ≥
p

2µc(p,1)
. Using (13), this implies that U (G, p) ≤ u (p).
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