Journal of Economic Perspectives: Vol. 28 No. 2 (Spring 2014)

Expand

Quick Tools:

Print Article Summary
Export Citation
Sign up for Email Alerts Follow us on Twitter

Explore:

JEP - All Issues


Big Data: New Tricks for Econometrics

Article Citation

Varian, Hal R. 2014. "Big Data: New Tricks for Econometrics." Journal of Economic Perspectives, 28(2): 3-28.

DOI: 10.1257/jep.28.2.3

Abstract

Computers are now involved in many economic transactions and can capture data associated with these transactions, which can then be manipulated and analyzed. Conventional statistical and econometric techniques such as regression often work well, but there are issues unique to big datasets that may require different tools. First, the sheer size of the data involved may require more powerful data manipulation tools. Second, we may have more potential predictors than appropriate for estimation, so we need to do some kind of variable selection. Third, large datasets may allow for more flexible relationships than simple linear models. Machine learning techniques such as decision trees, support vector machines, neural nets, deep learning, and so on may allow for more effective ways to model complex relationships. In this essay, I will describe a few of these tools for manipulating and analyzing big data. I believe that these methods have a lot to offer and should be more widely known and used by economists.

Article Full-Text Access

Full-text Article (Complimentary)

Additional Materials

Authors

Varian, Hal R. (U CA, Berkeley and Google Inc, Mountain View, CA)

JEL Classifications

C55: Modeling with Large Data Sets

Comments

View Comments on This Article (0) | Login to post a comment


Journal of Economic Perspectives


Quick Tools:

Sign up for Email Alerts

Follow us on Twitter

Subscription Information
(Institutional Administrator Access)

Explore:

JEP - All Issues

Virtual Field Journals


AEA Member Login:


AEAweb | AEA Journals | Contact Us