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Cross-regional Ties within Firms:  

Promoting Knowledge Flow or Discouraging Knowledge Spillover? 

 

ABSTRACT 

R&D activities are increasingly carried out by collaborators from different geographic 

locations.  Such collaborations are expected to promote knowledge flow across distance 

and generate positive spillover to the local community.  However, little attention has been 

paid to the role of firm organization surrounding these collaborations.  While cross-

regional collaborations in entrepreneurial firms usually involves extensive interpersonal 

interactions, those in large, established organizations are often highly structured and 

routinized, which may even increase internal interdependence and raise barriers to cross-

organizational learning.  Examining the pharmaceutical industry from 1975 to 2001, we 

find that collaborations play an important role in bridging the locally clustered R&D 

activities.  Nevertheless, cross-regional ties in the big pharma companies contribute 

significantly less – sometimes even reduce knowledge spillover – to local innovation, and 

the pattern persists over time.  Interviews conducted in several R&D clusters 

corroborated the empirical findings. 
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I. INTRODUCTION 

In January 2004, the Swiss giant Roche announced the opening of its fifth global pharmaceutical R&D 

center in Shanghai, China.  The entry of Roche is widely expected to give a boost to the quality of local 

R&D, especially to the R&D of new ventures recently set up by Chinese scientists and returnees.  

Meanwhile, the company emphasized that “the new center will be part of Roche’s global pharmaceutical 

R&D network.”  In particular, the local employees will be working with their colleagues in Penzberg 

(Germany) on anti-cancer medicines, in Palo Alto (U.S.) for anti-HIV targets, in Basel (Switzerland) on 

therapies for the Alzheimer disease, and in Nutley (U.S.) for new treatment of obesity.  How will such 

cross-regional collaborations affect the expected knowledge spillover to local firms?   

Two literatures, focusing on two different aspects of the phenomenon, seem to provide opposing answers 

to this question.  The knowledge transfer literature argues that collaboration is an effective means of 

knowledge transfer, both within and cross firms (Cockburn & Henderson, 1998; Fleming, et al., 2004; 

Zucker & Darby, 2005; Singh, 2005a).  Through joint problem solving (McEvily & Marcus, 2005), 

geographically separated team members can gain access to the tacit knowledge that is otherwise locally 

bounded (Jaffe, et al., 1993; Audretsch & Feldman, 1996; Szulanski, 1996), hence bringing fresh 

perspectives to the local community.   

The innovation organization literature, however, is taking a different view.  In established organizations, 

the reliance on formal structures and operational routines reduces the need for interpersonal exchanges 

(Scott & Davis, 2006: 38-40).  Assuming pre-specified roles in a collaborative relationship, individual 

researchers may find it difficult to convey information to outsiders due to their partial understanding of 

the overall technology structure (Rajan & Zingales, 2001).  Meanwhile, without the complementary 

knowledge embedded in a faraway location, local firms may see little incentive in learning from their 

innovative neighbors (Zhao, 2006). 
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This paper aims to reconcile the two literatures by introducing organizational heterogeneity into our 

studies of knowledge flow and knowledge spillover.  The specific phenomenon of cross-regional R&D 

collaboration provides an interesting case for this purpose.  First, there has been a large literature on the 

roles of interpersonal ties (Reagans & Zuckerman, 2001; Fleming, et al., 2004) as well as geographic 

proximity (Jaffe, et al., 1993; Almeida & Kogut, 1999) in knowledge transfer, so we can easily 

benchmark our results against the established findings.  Second, in most studies on knowledge transfer, 

firms are either the unit of analysis or used as a control variable for studies on interpersonal networks.  

However, both the formation and the functioning of interpersonal networks may be actively shaped by the 

organizational environments around them.  Despite the large literature on collaborative R&D, the 

interaction between organizational heterogeneity and collaborative ties is still understudied. 

We hypothesize that the effects of cross-regional collaborations on localized knowledge spillover would 

vary with the types of firm organization that the collaborations are situated in.  While connections with 

the outside world are beneficial to local R&D in general, those organized in large established firms would 

also increase the internal complementarity and interdependence among the firms’ geographically 

dispersed units, thus raising barriers to cross-organizational learning. 

The hypothesis is tested with data from the pharmaceutical industry between 1975 and 2001.  In this 

period, the birth of contemporary technologies created “a burst of new companies” (Chandler, 2005).  

Meanwhile, the fast development of information technologies has also made it easier for researchers to 

access distant knowledge and engage in cross-regional collaborations.  Such features offer a rich setting 

for us to assess the role of firm organization in knowledge spillover and innovation.  

The empirical results show that cross-regional collaborations play an important role in bridging the 

locally clustered R&D activities.  Such collaborations not only increase the value of innovations directly 

resulting from the collaborations, but also benefit innovations in the whole community.  However, the 

contribution of cross-regional collaborations formed by the largest pharmaceutical companies is found to 
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be significantly lower than that of similar collaborations formed by their smaller counterparts, and the gap 

remains large over time.  This suggests that the development of information technologies in the past 

decades, while facilitating knowledge flow across distance, may have also intensified the internal linkages 

and promoted strategic R&D organization within established firms, thus discouraging knowledge 

spillover across firm boundaries.  The findings are further corroborated by our extensive interviews in 

some the large pharmaceutical clusters.  Interestingly, the local researchers reported much more helpful 

communications with the “well-connected” but “simple” firms in the community, than with the large 

global-oriented R&D labs that “feel like isolated islands.” 

The rest of the paper is organized as follows.  The next section develops the theoretical framework and 

the main hypotheses. Section III introduces the data sources and describes the empirical models used in 

the analysis.  The empirical results and robustness checks are discussed in Section IV and Section V, 

respectively.  Section VI concludes. 

II. THEORY DEVELOPMENT 

In this section, we first discuss the role of cross-regional collaborations in technology transfer across 

distance and knowledge spillover to the local communities.  Then, we incorporate firm heterogeneity into 

the discussion and examine how organizational contexts would affect the nature of interpersonal linkages.  

The theoretical concepts derived in this section lead to the empirical setup that follows.  

2.1 Localized spillover and cross-regional collaboration 

Innovations often result from the combination and recombination of existing knowledge (Schumpeter, 

1939; Fleming, 2001).  In the pharmaceutical industry, for example, drug discovery usually requires the 

inputs of scientists skilled in a very wide range of disciplines (Henderson & Cockburn, 1994).  As R&D 

projects become larger and more complex over time, collaborations among scientists become increasingly 

indispensable in the innovation process (Arora & Gambardella, 1994; Jones, 2005).  In fact, the 
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percentage of U.S. patents produced by teams of three or more inventors steadily increased from 16.4% in 

1975 to 34.8% in 1995.  For pharmaceutical patents, the numbers are 25.7% and 43.7%, respectively.  

Meanwhile, different geographic regions remain specialized in different knowledge bases (Cantwell & 

Janne, 1999; Verspagen & Schoenmakers, 2004).  Even within the pharmaceutical industry, we observe 

the concentration of biotechnology firms in Boston and the dominance of cardiovascular equipment 

manufacturers in Minneapolis.  Calculating the technological distance (Jaffe, 1986) between each pair of 

metropolitan areas in the U.S., based on both pharmaceutical patents and patents in all categories, we find 

little sign of technological convergence across regions in the past three decades.  

With geographically bounded knowledge pools, scientists from different locations may find it beneficial 

to collaborate with one another.  Technology transfer has proved to be challenging even within the same 

firm (Szulanski, 1996).  Joint problem-solving arrangements facilitate the acquisition of tacit and complex 

knowledge by providing a forum for experimentation, observation, and search for solutions (McEvily & 

Marcus, 2005).  Thus, cross-regional collaborations allow researchers to pool together a richer knowledge 

set, and their personal interactions help alleviate the difficulty of knowledge transfer across geographic 

distance (Lahiri, 2003; Frost & Zhou, 2005; Singh, 2005b).     

The impact of cross-regional collaborations, however, is not limited to the firms that are organizing the 

collaborations.  Such long distance linkages also bring fresh perspectives and expand the horizon for all 

neighboring firms through localized knowledge spillover.  Since firms are more likely to search for and 

apply knowledge around their own technological positions (Cohen & Levinthal, 1990; Stuart & Podolny, 

1995), collocation of similar firms can promotes cross learning in the local community.  Nevertheless, too 

much localized connections may also stop firms from identifying new trends or exploring novel ideas, 

partly due to the recirculation of redundant information (Uzzi & Spiro, 2004).  March (1991) argues that 

exploiting certainties at the expense of exploring new possibilities can be detrimental to a firm in the long 

run.  Similar argument should also apply to geographic clusters: A region with little interaction with the 
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outside world is less likely to remain dynamic and innovative.  In this sense, technologies representing 

cross-regional collaborations can be great sources of knowledge for local innovators. 

2.2 Firm organization and knowledge internalization 

The phenomenon of cross-regional collaborations is interesting by itself, but we cannot fully understand 

the role of such collaborations without taking firm organization into consideration.  Collaborations occur 

in various institutional contexts, among university scientists, individual researchers, partners in small 

start-ups, as well as engineers of large multinational companies.  Hence, the nature of knowledge transfer 

among the collaborators is also shaped by the organizational structure they are embedded in.   

The interpersonal interactions involved in R&D collaborations are cited as the main reason why 

collaborations promote the diffusion of intellectual capital (Zucker & Darby, 2005).  In entrepreneurial 

firms when collaborations are less structured, researchers often engage in extensive experimentation and 

explorations in order to achieve certain goals (McEvily & Marcus, 2005), which leads to comprehensive 

understanding of the problem they are facing.  Mutual trust and deep appreciation for each other’s work 

are crucial for a collaborative relationship to be productive and sustainable.  In the interviews conducted 

in Shanghai’s Zhangjiang Hi-tech Park, many researchers working at the local branches of U.S. startups 

acknowledge that they collaborate extensively with their American colleagues, who are sometimes their 

graduate school classmates.  “We talk a lot, about literally everything, and we keep each other updated,” a 

researcher said.   

This may not be the case in a more formal organizational structure, where the role of each individual is 

well appointed and team members form “stable expectations” regarding the behaviors of other members, 

independently of their personal attributes (Simon, 1997).  With well-established routines (Nelson & 

Winter, 1982; Cohen, 2006), collaborations can be achieved without much interaction among the 

individual team members.  Each person is simply doing his or her part of the job, and their intellectual 

products are integrated through the hierarchical organizational structure.  This is indeed the impression 
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we had when visiting some of the large multinational R&D labs: A good team member simply means 

“doing what he/she is supposed to do.”  Often times, coordination is taken care of by a team leader or 

manager, not by the loosely structured, but intensive communications among team members.  When 

asked whom they would turn to for information, many answered “the boss,” even though they admit that 

their foreign colleagues “are the experts on this.”  

In recent years, large established corporations have been playing an important role behind the ever-

increasing occurrences of cross-regional collaborations.  Multinational firms have long been recognized 

for their capacity to assimilate, generate and integrate knowledge on a global basis (Bartlett & Ghoshal, 

1990; Feinberg & Gupta, 2004).  Long-established institutions and internal deployment of employees 

across subunits help facilitate collaborations that would not be possible otherwise.  The development of 

information technologies further strengthen the coordination abilities of the multi-unit, multi-location 

firms and allow them to spread out their R&D activities worldwide (Alcacer, et al., 2005).  Because of the 

complex internal organizations that large firms have, their internal long-distance ties may not have the 

same spillover effect as those established by smaller ventures.  

From the capability point of view, with greater combinative capabilities (Kogut & Zander, 1992), large 

multinational firms are usually advantageous at internalizing their R&D and appropriating value from 

new technologies (Buckley & Casson, 1976).  The large number of elements in an organization and the 

complex interactions among them also increase the difficulty of imitation (Rivkin, 2000).  Cross-regional 

collaborations, if carried out through organizational routines, only strengthen the firm specificity of these 

interactions and limit effective communications across firm boundaries (Levin, 1988). 

Furthermore, from the knowledge protection point of view, large firms may strategically organize their 

R&D activities in order to discourage learning by competitors.  When a firm’s R&D network spans 

multiple locations, at each location it can develop technologies that closely relate to the firms' internal 

resources residing elsewhere around the world.  Since specialized and co-specialized complementary 
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assets are critical to the successful commercialization of an innovation (Teece, 1986; Anand & Galetovic, 

2004), firms can minimize information outflow by increasing the reliance of local capabilities on 

knowledge and resources not readily available in the neighboring community.  For example, in areas 

where intellectual property protection is weak, firms tend to intensify the monitoring of local R&D and 

make sure that only certain stages of the discovery process are carried out locally; the resulting 

technologies are quickly integrated into the firm’s global knowledge base (Zhao, 2006).  If cross-regional 

collaborations inside the firm serve as means of building internal complementarity, then the benefits 

gained from such collaborations are less likely to be shared by the local community.  

III. DATA DESCRIPTION AND EMPIRICAL SETUP 

Based on the theoretical discussion in the previous section, this section sets up the empirical frameworks 

to examine whether the role of cross-regional collaboration varies across firm organizations.  In the 

following subsections, we first describe the data sources, the key variables, and a set of background 

statistics for this study.  Then, two alternative econometric models, which address the same question from 

two different angles, are presented. 

3.1 The pharmaceutical industry 

We choose the pharmaceutical industry for this study for a number of reasons. First, it is one of the most 

knowledge intensive industries.  On average, pharmaceutical firms spend about 20% of their revenue on 

R&D, and innovation is directly associated with firm performance.  Therefore, how to benefit from 

knowledge flow and how to prevent the leakage of proprietary information become crucial questions for 

firms in this industry.  

Second, pharmaceutical R&D has been highly concentrated geographically.  A century after the industry 

pioneers such as DuPont and Parke-Davis established the first industrial R&D facilities around major 

research universities (MacGarvie & Furman, 2005), the majority of pharmaceutical R&D is still 
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conducted in the largest technology clusters: the New York-New Jersey-Philadelphia region, greater San 

Francisco, London, Rhine Valley, etc.  

Third, this is a truly global industry and the players in the industry are extremely heterogeneous.  Big 

pharmas such as Pfizer and GSK each employs thousands of researchers worldwide, while a typical 

biotech startup consists of only 2–3 scientists.  Firm heterogeneity allows us to disentangle the role of 

firm organization from other factors in knowledge spillover. 

Finally, with the pharmaceutical industry, we can take advantage of the rich information from the patent 

data (Henderson & Cockburn, 1996; Penner-Hahn & Shaver, 2005), and use the physical addresses of 

patent inventors to track the firms’ R&D activities.  Both the Yale Survey (Levin et al., 1987) and the 

Carnegie Mellon Survey (Cohen et al., 2000) found that patents play an especially important role in 

protecting intellectual capital of firms in the pharmaceutical industry.  In addition, using patents granted 

by U.S. Patent and Trademark Office (USPTO) for the study of global R&D is justified by the special 

status of the U.S. pharmaceutical industry.  According to recent IMS Health reports, the U.S. market 

accounts for nearly half of pharmaceutical sales worldwide, and U.S. companies control over 60 percent 

of the global pharmaceutical market.  It is therefore reasonable to assume that most of the important 

pharmaceutical innovations would be filed for U.S. patent protection. 

We apply a broad definition of the industry.  Following Hall et al. (2001), the pharmaceutical patents used 

in this study include the following USPTO primary patent classes: 424, 514 (drugs), 128, 600, 601, 602, 

604, 606, 607 (surgery & medical instruments), 435, 800 (biotechnology), and 351, 433, 623 

(miscellaneous – drug & medical).  We choose patent classes instead of SIC codes for industry 

classification because the industry involves many well diversified firms, and not all information on SIC 

codes is available.  Dummy variables will be used to account for the possible variations across the 14 

patent classes that are not captured by other independent variables. 
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To emphasize on firms’ internal organization, we also exclude patents with multiple assignees, which are 

more likely to represent joint ventures or strategic alliances.  Patents assigned to individuals, universities 

and other non-profit organizations are also excluded from the sample, although their inclusion does not 

seem to make any significant difference to the results.  The final sample contains 204,139 patents1, of 

which 129,071 – or 62.5% of the total – have at least one American inventor.  These patents were applied 

between 1975 and 2001, and were granted before the end of 2004. 

3.2 The geography of collaboration and knowledge spillover 

To study cross-regional collaborations, we first have to define the “regions.”  In the benchmark analysis, a 

region is defined as a “metropolitan statistical area” in the U.S. – according to the U.S. Bureau of the 

Census – or a country in the rest of the world.  For the pharmaceutical industry, we prefer to use 

metropolitan areas rather than states because some important technology clusters span multiple states 

(e.g., New York-New Jersey-Connecticut tri-state area) and some states contain multiple clusters (e.g., 

California).  For the foreign countries, few have multiple pharmaceutical R&D centers in one country, 

and even if they do, imposing more refined definition throughout the world may introduce more noise 

than insightful information.  The definitions of “county” or “prefecture,” for example, vary widely across 

countries.   

This definition generates 361 unique regions, including 263 metropolitan areas led by New York-New 

Jersey, San Francisco and Boston, and 98 foreign countries led by Japan, Germany and U.K.  Among 

these regions, the top five percentile regions are associated with more than 63% of the patents in the 

sample.  For robustness checks, we also use (1) country, (2) states, and (3) economic areas defined by the 

Bureau of Economic Analysis, as alternative definitions of regions.  The advantage of economic areas, 

compared with metropolitan areas, is that they encompass both rural and urban counties.  

                                                 
1  The number of observations in some regressions may be larger that this number because the same patent may be 

observed at multiple locations.  
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The emergence of new markets and the unprecedented development of information technologies over the 

past several decades have had profound influence on the way R&D is carried out worldwide.  Figure 1 

depicts the geographic distribution of R&D activities for the largest pharmaceutical companies between 

1975 and 2001.  For each firm and each year, we count the number of locations the firm has inventors in, 

and calculate the Herfindahl Index of its geographic concentration based on inventor locations.  When the 

index is close to 1, the firm is concentrating almost all its R&D in the central lab, most likely at 

headquarters.  Not surprisingly, the large firms significantly increased their geographic diversification of 

R&D activities during this period.   

Meanwhile, as shown in Figure 2, the average distance among patent collaborators has been 

unambiguously increasing.  

------------------------------------- 

Insert Figures 1 and 2 here 

------------------------------------- 

However, these do not necessarily indicate that distance is disappearing.  It may well be the case that 

geographic proximity is getting more important with the fast movement of knowledge frontiers (Leamer 

& Storper, 2001; Sonn & Storper, 2004).  As knowledge spillover is still highly localized, researchers 

need to stay in the clustered areas in order to keep up with the technological frontier.  As a result, firms 

that hope to access the localized knowledge have to be present in multiple locations, and rely on long-

distance teams for technology integration. 

What we observe in Figures 3 and 4 seem to support this argument.  Here we measure the geographic 

distances between all the citation dyads in the pharmaceutical industry, and plot them along the citation 

years.  Interestingly, the within-firm citations and cross-firm citations exhibit starkly different trends.  

While the citation distances inside the firms increased sharply between 1975 and 2001 – a trend consistent 

with the organizational changes – the citation distance across firms actually decreased.  That is, 

knowledge spillover across organizational boundaries has become increasingly localized in this period!   
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------------------------------------- 

Insert Figures 3 and 4 here 

------------------------------------- 

The above figures provide some background information on cross-regional collaborations.  Next, we set 

up the empirical framework to examine the spillover effect of such collaborations on the overall 

innovation activities in the local community, and how this effect varies with firm organization. 

3.3 Empirical setup 

Patent is used as the unit of analysis, as it can capture interesting variations at the technology, firm and 

location levels.  Two alternative models are used for the empirical analysis.  Model I examines the 

process of knowledge spillover, where the focal patents are the sources of spillover.  That is, we count the 

patent citations from the neighboring innovations to a focal patent, and associate the number of local 

citations with the focal patent’s cross-regional collaboration behavior.  Model II examines the result of 

knowledge spillover, where the focal patents are the beneficiaries.  That is, we measure the overall quality 

of local patents, and associate it with the cross-regional collaborations observed in the region.  

Essentially, from two different perspectives, the two models test the same questions: Are cross-regional 

collaborations good for local innovation, and how does firm organization affect this relationship? 

3.3.1 Model I: local citations to the focal patent 

Patent citations are believed to be highly correlated with actual and perceived knowledge spillover (Jaffe, 

et al., 2000; Jaffe et al., 2001; Lahiri, 2003), despite the considerable noise contained in this measure 

(Alcacer & Gittelman, 2005).  In Model I, the dependent variable local_cite is defined as the number of 

citations from local innovations to the focal patents, excluding self-citations.  To capture the spillover to 

local small ventures, we also calculate local_small_cite, a subset of local_cite that only includes citations 

from firms with less than ten patents during the observation year. 
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The extent of knowledge spillover generated by a focal patent is affected by two key factors.  The first is 

cross_region, a dummy variable indicating whether the focal patent is developed by inventors from 

different geographic locations.  The second is big_pharma, a dummy variable indicating whether the 

patent belongs to a firm whose pharmaceutical patent output is among the top five percentile of the whole 

industry during the observation year.  It turns out that these firms filed around half of the patents in the 

sample.  Alternative definitions of big_pharma – such as the top 50 pharmaceutical companies in terms of 

global sales – are used for robustness tests.   

There are two reasons why we prefer to use the big_pharma dummy instead of a continuous measure of 

firm size.  First, from the organizational point of view, there are some non-linear, qualitative differences 

between the world’s largest pharmaceutical “empires” and the other large firms.  Second, using a dummy 

variable can help us illustrate the marginal effects more effectively.  Admittedly, this is an imperfect 

proxy for the concept of large established organizations, even though long heritage and hierarchical 

organization characterize most of the companies on the big pharma list. (See the table in Appendix.) In 

the regressions, we will also utilize the continuous measure to verify the robustness of the results. 

What interests us the most, however, is the interaction between cross_region and big_pharma, i.e., 

whether the impact of cross-regional collaborations varies across different firm organizations.  Put it 

differently, do we observe systematic differences between collaborations organized in large established 

firms and those in other organizational contexts? 

A series of patent, firm and regional characteristics are applied as control variables. For example, we 

control for the number of scientists on the team (inventors), which may indicate the importance of the 

project and the budget associated with it.  Intuitively, a patent developed by a large organization may 

obtain more future citations because of higher visibility, and a patent developed in a densely populated 

technology center should expect more citations due to localized knowledge flows.  Hence, we count the 
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total number of pharmaceutical patents owned by the firm (firm_size) and the number developed in the 

region (region_size) for every observation year, and use their natural logarithms as control variables. 

An important characterization of multi-location firms is their relative specialization at each location.   

For instance, some firms may prefer to apply the same expertise worldwide, while others exercise well-

designed division of labor among their internal units.  To capture this variation across firms, we first 

calculate the overall technological similarity between every pair of regions, following Jaffe (1986): 

( )( ) ( )1,0
''

'
∈=

jjii

ji
ij vvvv

vv
s                                                       (1) 

where vi and vj are two vectors representing two regions, and the kth element of vi is the number of patents 

developed in region i that fall into the kth patent class.  A nice feature of this measure is that the absolute 

number of patents does not matter; only their structural distribution does.  sij = 1 when the two vectors 

exactly overlap and sij = 0 when they are orthogonal.  Next, we go through the same calculation for each 

firm, and take the difference between the firm-level measure and the overall sij for each regional pair (i, j).  

Aggregating the results at the firm level generates loc_similarity, the variable that measure whether a 

firm’s innovation is more homogeneous (less specialized) across its multiple R&D locations than the 

distribution of the whole industry for the same locations.  Interestingly, large pharma and small ventures 

demonstrate striking difference in this measure: -0.021 vs. 0.070, both significantly different from zero, 

the industry benchmark. 

Finally, since citations beyond the end of the sample period are unobservable, the forward citation 

measure inevitably encounters data truncation problems, especially for the most recent patents (Hall et al., 

2001).  To alleviate potential biases, we apply the year dummies in all regressions, and conduct 

robustness tests using an earlier sample period.  Meanwhile, because the typical number of citations a 

patent receives may vary across technology categories, we use the technology dummies to represent the 14 

primary patent classes in the sample. 
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The regressions are based on the following equation: 

E (local_cite) = β0 + β1 ⋅ cross_region + β2 ⋅ big_pharma+ β3 ⋅ cross_region × big_pharma 

 + β4 ⋅ inventors + β5 ⋅ firm_size + β6 ⋅ loc_similarity + β7 ⋅ region_size + σ i + ςt            (2) 

where σ i and ςt are vectors of technology and year dummies, respectively.  We also use a cluster model to 

allow for the possibility that the observations are independent across firms but not within firms. 

3.3.2 Model II: Quality of Local Innovations 

Model I tracks the process of localized knowledge spillover.  However, it does not address the actual 

result of such spillover: whether the spillover generated by cross-regional collaborations lead to high-

quality of R&D by local inventors.  In Model II, we directly test the relationship between the quality of 

local R&D and the cross-regional ties observed in the region.     

In this model, the dependent variable is value – the count of all forward citations a patent receives after its 

grant date, excluding self-citations.  Various studies have shown that forward citation count serves as a 

good indicator of a patent’s economic and technological importance (e.g., Harhoff, et al., 1999; Hall et 

al., 2001, 2005), which is also positively correlated with other measures of patent value, such as 

consumer-surplus, patent renewal rate, and contribution to market capitalization (Singh, 2005b).  This 

holds true even after we take strategic patenting (Hall & Ziedonis, 2001) into consideration.  To reduce 

the positive skewness observed in the citation data, we also use log_value – the natural logarithm of (1 + 

value) – as an alternative measure. 

There are two key independent variables: the prevalence of long-distance collaborations in the region 

(connection), and the percentage of these collaborations organized by big pharmas (conn_bpharma).  The 

first variable is defined as the percentage of patents in a region that result from collaborations between 

local inventors and someone outside of the region.  The second variable addresses the organizational 

context of the collaborations.  It is defined as the percentage of cross-regional collaborations that are 

assigned to the top five percentile firms in terms of pharmaceutical patent output.  As we can tell from 
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here, Model I pays more attention to the cross-regional ties at the firm level while Model II focuses more 

on the regional environment. 

Similar to Model I, the control variables include the number of scientists on the team (inventors), the total 

patent output of the firm (firm_size) and the region (region_size), as well as the year and technology 

dummies.  In addition, we want to control for two region-level variables.  First is the presence of big 

pharma itself.  Large firms are usually more resourceful in improving the local infrastructure and 

attracting the best talent to town.  Ceteris paribus, their presence should enhance the overall level of local 

R&D.  Therefore, we use the variable big_ratio to measure the percentage of patents in a region that are 

assigned to the top five percentile firms.  Concerned with the correlation between big_ratio and 

conn_bpharma, the percentage of cross-regional collaborations organized by big pharmas, we will also 

run regressions without big_ratio and verify the robustness of the results.  The second variable is 

tech_overlap, the degree of technological overlap that the region has with all other regions.  Following 

equation (1), for each region i, tech_overlapi is the mean of all sij’s across j.  A region with a small 

tech_overlap value is probably specialized in some niche areas. 

The main variables are summarized in Table 1.  Note that for the highly skewed variables, such as 

firm_size and region_size, only the logarithmic values are reported.  Table 2 presents the correlations 

among these variables.   

------------------------------------- 

Insert Tables 1 and 2 here 

------------------------------------- 

The regressions are based on the following equation: 

E (value) = β0 + β1 ⋅ connection + β2 ⋅ conn_bpharma + β3 ⋅ inventors + β4 ⋅ cross-region 

 + β5 ⋅ firm_size + β6 ⋅ region_size + β7 ⋅ big_ratio + β8 ⋅ tech_overlap + σ i + ςt                    (3) 

where σ i and ςt are vectors of technology and year dummies, respectively.  Similar to Model I, a cluster 

model is used to allow for the possibility that the observations are not independent within firms. 
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IV. EMPIRICAL RESULTS 

In this section, we describe the main empirical results of the two alternative models, which are shown in 

Tables 3 and 4, respectively.  The results from a series of robustness checks will be described in the next 

section. 

4.1 Results of Model I 

In the first six columns of Table 3, we examine the total number of local citations received by the focal 

patent, local_cite.  To address the serious skewness in the distribution, we first take the natural logarithm 

of local_cite + 1, and use a simple OLS with technology and year dummies.  The results are shown in 

columns (1) to (5).  Column (6) is parallel (1), only that a negative binomial model is used to account for 

the discrete nature of citation counts.  

------------------------------------- 

Insert Table 3 here 

------------------------------------- 

The baseline results in column (1) suggest that a patent resulting from a cross-regional collaboration tends 

to generate more citations by local inventors.  According to the marginal effect calculation, such a patent 

in general generate 25% more local citations than a comparable patent whose inventors are all local.  

However, this positive effect is seriously compromised if the cross-regional collaborations belong to one 

of the largest pharmaceutical companies in the world.  In supportive of the theoretical arguments made in 

Section II, the coefficient on the interaction term cross_region × big_pharma indicates that cross-regional 

collaborations in big pharmas contribute less than half as much to local innovation as those formed by 

other organizations. 

In column (2), we use the interaction term between cross_region and firm_size, the continuous measure of 

firm size instead of the categorical variable big_pharma.  The same pattern holds: while the coefficient on 

cross_region remains positive and significant, the coefficient on the interaction term is negative and 
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significant.  That is, the knowledge spillover benefit from the cross-regional collaborations may become 

very limited if the originating firm is of a considerably large size.  Alternatively speaking, locating right 

next to a big pharma is not necessarily a bonus.  Even though patents developed by large firms, on 

average, generate more local spillover, this is not the case if the large firms have intensive internal 

linkages across different geographic locations.  

In column (3), we restrict the sample to the top five percentile regions in terms of pharmaceutical patent 

output in the observation year.  Most of the theoretical discussions on localized knowledge spillover 

apply to densely-populated technology clusters where scientists frequently interact with one another.  Yet, 

most of the regions in the sample have only a handful of patents every year, locations that do not have 

much to do with “technology clusters.”  Under the restriction, the number of distinct regions in the sample 

drops from 361 to 17 (7 foreign countries and 10 U.S. metropolitan areas), although they represent nearly 

75% of the patent output.  The results become even more significant with the restricted sample.  Similar 

results are obtained when we restrict the sample to regions with annual pharmaceutical patent output of 

100 or higher. 

The factor of regional specialization enters the regression in column (4).  Not surprisingly, firms that 

exercise more specialization than average, i.e. with a lower loc_similarity score, generate less spillover.  

Since big pharmas prove to exercise more specialization, the coefficient on the cross term cross_region × 

big_pharma becomes slightly smaller in magnitude, though still negative and significant.  The same 

pattern remains even after we include regional fixed effects in column (5). 

Results obtained with the negative binomial model – as shown in column (6) – are very consistent with 

those in the first three columns, both in the signs and magnitudes of the coefficients.  The control 

variables also show stable results across specifications: The number of inventors on the patent, the firm 

size, and the level of R&D activities in the region are all positively associated with local citations 

received by the focal patents.     
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The dependent variable for columns (7) is local_small_cite, which counts the number of citations that the 

focal patent receives from local small ventures – those with less than five patents during the observation 

year.  The only difference from the previous columns is that the coefficient on firm_size changes from 

significantly positive to insignificantly negative, suggesting the possibility that firms are more likely to 

cite technologies generated from similar organizations. 

Because cross-regional collaborations involve more than one location, the resulting patents would also 

call multiple regions “local.”  Although for any particular “neighbor,” what matters is the knowledge 

spillover at one specific location, it is still interesting to see whether the aggregated numbers will present 

a different picture.  In column (8), we sort out all the regions that each patent has inventors in, and sum up 

the citations from all these locations to measure the localized spillover.  As expected, the coefficient on 

cross_region gets much higher after the aggregation, but the coefficient on the interaction term remains 

negative and significant, indicating the internalization effect of cross-regional collaborations within big 

pharmas. 

4.2 Results of Model II 

In Model II, the overall quality of local R&D is associated with the cross-regional connections found in 

the local community.  Similar to Model I, we apply two parallel regression methods: OLS on the logged 

dependent variable, and negative binomial on the direct citation counts. 

------------------------------------- 

Insert Table 4 here 

------------------------------------- 

Due to the relatively high correlation between big_ratio, the percentage of local patents generated by big 

pharmas, and conn_bpharma, the percentage of cross-regional ties attributable to big pharmas, we leave 

out big_ratio in the regression in column (1) before putting it into the regression in column (2).  The 

technological overlap variable tech_overlap is added in column (3), and both big_ratio and tech_overlap are 
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added in column (4).  Moreover, different firms are affected by local innovation environments to various 

degrees.  For example, without the functional support of established internal organizations, small ventures 

are most likely affected by the activities of neighboring entities.  Hence, we run the regressions on a 

subset of patents that are developed by firms with fewer than five patents in the observation year, and 

report the results in column (5).  Columns (6) and (7) are simply replications of columns (1) and (4), 

respectively, with negative binomial regressions. 

Consistently, extensive cross-regional ties contribute positively to the quality of local innovation, with the 

strongest effect occurring to the patents of small ventures.  For an average local patent, increasing the 

value of connection by one standard deviation will increase the expected forward citation counts by 

around 50%.  Even after controlling for a series of regional characteristics, well-connected locations tend 

to produce patents with a larger impact.  

However, if the cross-regional ties are mostly formed by large pharmas, the benefits may be significantly 

reduced, if not completely wiped out.  In fact, for a region with the average connection level at 35% and 

conn_bpharma at 30%, having additional cross-regional collaborations formed by large pharmas may only 

make things worse.  This observation is consistent with the influence of firm organization: cross-regional 

ties within a large, established firm may also serve the purpose of building a closely-knit internal R&D 

network, making knowledge less decipherable by the neighboring inventors.   

The coefficients on the control variables are consistent with theoretical conjectures.  At the patent level, 

the positive coefficients on inventors indicate that having more inventors on the team is associated with 

higher value of the innovation.  It also helps to have inventors from different geographic areas, as 

evidenced by the strong positive coefficients on cross-region.  At the firm level, firm size seems to have a 

negative effect on patent value except among the very small firms.  This may be due to large firms’ higher 

propensity of patenting as suggested by some early studies (Kortum & Lerner, 1998; Hall & Ziedonis, 

2001).   
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At the location level, patents developed in larger technology clusters receive more forward citations.  This 

is in line with the localized knowledge spillover argument: because learning is more likely to happen at 

the local level, and because there are more potential learners in technology clusters, patents generated in 

clusters tend to receive more citations in the future.  The strong presence of big pharmas in a region, i.e., a 

large big_ratio, is positively associated with the value of local innovations, indicating the spillover effect 

from the strongest players in the industry.  Acs & Audretsch (1988) reach similar findings in their multi-

industry studies.  Finally, the coefficient on tech_overlap is positive and significant, suggesting that 

highly specialized regions may be less likely to produce high-impact innovation.     

V. ROBUSTNESS TESTS AND DISCUSSIONS 

In the above section, we find strong empirical evidence that cross-regional collaborations are generally 

associated with more spillover to the local community and more valuable local innovations.  However, 

cross-regional collaborations formed by the largest companies show significantly lower spillover effects.  

In this section, a series of robustness tests are conducted to make sure that the previous findings are not 

dependent on the specific setups.   

5.1 Robustness tests for Model I 

The robustness tests on local knowledge spillover are illustrated in Table 5. 

------------------------------------- 

Insert Table 5 here 

------------------------------------- 

First, administrative boundaries are only approximate descriptions of R&D locations.  In the first four 

columns of Table 5, we use two alternative definitions of “region”: the state boundaries, and the economic 

areas following the Bureau of Economic Analysis (BEA).  Country boundaries are still used for the rest of 

the world.  These two alternative definitions, respectively, generate 149 and 268 unique geographic 
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regions for the sample.  The regress results, with both the 0-1 big_pharma measure and the continuous 

firm_size measure, remain strong and significant.   

Column (5) addresses the concern over the excessive number of zero local citations.  In fact, over half of 

the patents in the sample had never received any citations from the local community by the end of the 

sample period, which may be due to the short observation window or the patents’ low intrinsic value 

rather than firms’ strategic knowledge internalization.  Hence, a zero-inflated negative binomial model is 

applied to allow for the alternative mechanism for zero local citation, with the total number of forward 

citations as the exposure variable.  The result does confirm the possibility that the observation window is 

a significant predictor of the excessive zeroes in the dependent variable, but we find no significant 

changes to the coefficients of the key variables. 

One caveat in this study is that firm organizations are not exogenous; instead, firms strategically organize 

their R&D activities in response to the external environments.  For example, locations with inadequate 

supply of human capital and weak technology base will find it more difficult to attract industry leaders to 

set up R&D centers there.  Once they do, the firms’ local subsidiaries are more likely to maintain close 

connections with headquarters for technical support, connections that would certainly include cross-

regional collaborations.  Thus, the low local citation counts may simply reflect the fact that there is not 

much serious R&D going on.  In column (6), we allow for endogeneity of the focal variable cross-region 

– as well as the cross term – by applying a three-stage least squares regression, where the decision to 

engage in cross-regional collaboration is dependent on the location characteristics and the amount of 

R&D the firm has locally.  The results support the argument that non-cluster areas are more likely to see 

cross-regional collaborations, and the results with the focal variables get even stronger. 

Next, we test the appropriate definition of big pharma.  Since the analytical focus here is on the role of 

firm organization, we want to pay particular attention to the way firms are characterized.  In the baseline 

analysis, firm size is measured by the total number of patents filed in the observation year.  Although the 
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overall size is important, it may not reflect the R&D activities a firm carries out at a specific location.  In 

column (7), we redefine big pharmas as those (i) belonging to the top five percentile in terms of global 

patent output, and (ii) having at least 20% of their patents developed locally.  The results remain strong.  

It is worth mentioning that, while the coefficients on connection and the cross term remain unchanged, the 

coefficient on big_pharma becomes positive and significant, indicating that a local giant with substantial 

R&D in the community contribute more to local innovation than a “listening post” set up by a large multi-

location firm.   

Finally, the count of forward citations received by the focal patent is highly dependent on the time 

horizon in which the citations are observed.  Hall et al. (2001) shows that it took ten years for the 1975 

patents to receive 50% of their forward citations.  Even with the year fixed effects, the dependent variable 

can still be too noisy a proxy for the value of the most recent patents.  In column (8), we conduct the 

analysis on patents granted before 1995, leaving us at least ten years of observation window.  All the key 

results remain with this much smaller sample. 

5.2 Robustness tests for Model II 

The robustness tests on the value of local patents are illustrated in Table 6.  Here, OLS on the logged 

dependent variable is used except in column (5). 

------------------------------------- 

Insert Table 6 here 

------------------------------------- 

Similar to Table 5, the first four columns in Table 6 test the alternative definitions of regions using state 

and economic area boundaries, respectively.  Regressions both with and without the big_ratio variable are 

presented. The results are highly consistent with the findings with metropolitan area boundaries.  Column 

(5) addresses the excessive observations of zeros in the dependent variable.   Nearly one third of the 

patents in the sample never received any citations other than from the innovating firms themselves, and 
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again, the short observation window may be to blame.  After allowing the alternative mechanism for the 

zero observations, we find the same strong results as in Table 4. 

Endogeneity issue is again raised in column (6), where two key variables are treated as endogenous.  

First, as in Model I, the decision to form cross-regional collaborations may be dependent on the 

availability of local resources.  Second, the percentage of cross-regional ties attributable to big pharmas 

may be determined by the sheer dominance of big pharmas in local R&D.  Both these conjectures are 

supported by the simultaneous equations, but the coefficients in the main equation are still significant 

with the expected signs.  

Lastly, to address the truncation problem, we break the sample into two periods: the first from 1975 to 

1994, and the second from 1995 to 2001.  The main results hold in both sample periods, confirming the 

robustness of the findings.  The negative moderating effect of big pharma seems to be more significant in 

the second period, implying that the fast development of information technologies in the past decade may 

have helped with the global firms’ internalization efforts more than the promotion of knowledge spillover.  

Of course, we should exercise caution in interpreting such results, given the potential truncation problem 

for the second sample period. 

5.3 Discussions on the empirical results 

Admittedly, there are still many limitations to the empirical findings.  First, knowledge spillover is not 

restricted to science and technology, not to mention patented technologies.  Large firms located in certain 

areas may help spread information on markets, regulations, and managerial practice, which directly or 

indirectly affects the neighboring firms’ innovation activities.  These effects cannot be fully captured in 

this study.  More information is needed for a comprehensive understanding of local interactions. 

In addition, to truly capture the effect of cross-regional collaborations on knowledge spillover, we need to 

take inventor mobility (Almeida & Kogut, 1999) into consideration, both within and across firm 
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boundaries.  For instance, due to internal mobility, R&D carried out at one location may be recorded as 

cross-regional collaboration when the patent is filed several years later, and vice versa.  Moreover, a 

former employee of an incumbent firm may start up a new business (Agarwal et al., 2004) outside of the 

region.  In such circumstances, patents resulting from a previous collaboration may appear as cross-

regional collaborations, although they hardly reflect the incumbent firm’s strategic internal organization. 

Most importantly, the above analysis does not indicate any causal relationships among the key variables.  

To certain extent, the first-hand observations during interviews complement the empirical analyses in 

showing that organizations play an important role in influencing knowledge flow and knowledge 

spillover, beyond what can be explained by the ties among individuals.  Nevertheless, many more 

dimensions – such as firms’ strategic location decisions and acquisition activities – need to be sorted out 

before we can talk about causality with any certainty. 

VI. CONCLUSION 

There has been a large literature on the role of interpersonal networks on knowledge transfers.  It is far 

less understood how this role is actively shaped by the organizational context around them.  By taking a 

closer look at a particular type of interpersonal ties – cross-regional collaborations among pharmaceutical 

researchers – we argue that firm organization has a significant impact on the relationship between 

interpersonal networks and knowledge flow.  While collaborations with the outside world are generally 

beneficial to local R&D, the benefit can be significantly reduced if these connections are formed within 

large, established organizations. 

Going back to the example discussed at the very beginning, the findings in this study suggest that the 

Shanghaiese do have reason to celebrate the entry Roche’s new R&D center.  Industry leaders in a region 

usually generate more knowledge spillover and contribute to the value of local R&D.  However, 

knowledge spillover from Roche can be very limited if the strong linkages among its multiple R&D 
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centers also promote knowledge internalization, hence raising the learning barrier faced by the outsiders.  

In particular, if most of a region’s external interactions are dependent on the networks within large 

multinational firms, other firms may expect very little from the localized spillover. 

This study also contributes to the organization literature by suggesting that organizational structures not 

only affect knowledge management directly (Argyres & Silverman, 2004), but also do so indirectly by 

influencing the functioning of interpersonal ties.  Moreover, the implications of such interactions extend 

beyond the organizational boundaries.  Although the emphasis on firm organization has resulted in the 

simplification on other important dimensions, such as the strength of the collaborative ties (Hansen, 1999) 

and the nature of the knowledge being transferred (Zander & Kogut, 1995; Hansen et al., 2005), this 

study is complementary to many of the findings in this literature. 

Finally, a deeper understanding of this phenomenon will have important implications to policy makers 

who are eager to attract investments and nurture local technology clusters.  With firms’ geographically 

dispersed R&D activities, the same scale of local R&D may generate very different knowledge spillover 

to the neighbors, depending on how knowledge is organized internally.  For the local community, being 

part of a multinational firm’s “global network” is not always a blessing. 
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     Figure 1. Firms are spreading out geographically             Figure 2. More cross-regional collaborations  

        

50
10

0
15

0
20

0
25

0
30

0
m

ile
s 

1975 1980 1985 1990 1995 2000
patent application year

(mean) mean_dist predicted mean_dist

Data source: USPTO

1978-2001
 Drugs & Medical: Mean Distance Among Collaborators

 

• Here the criteria for large established firms are (1) top% percentile in terms of patent output, and (2) continuously in 

business for at least 25 years. 

• Locations are defined as metropolitan areas in the U.S. and countries outside of the U.S. The same pattern remains with 

other definitions of location. 

 

 

  Figure 3.  Internal information sharing across distance         Figure 4. Knowledge spillover across firms 

        

• Citation distance is defined as the mean of the pairwise distances between all inventors on the citing patent and all 

inventors on the cited patent. 
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Table 1.  Summary of Variables 

Variable Explanation Mean Std. Dev. Min. Max. 

value Number of citations a patent receives, 
excluding self citations 6.27   14.84 0 1,075 

local_cite Number of citations a patent receives from 
the same region, excluding self citations 1.47   5.11 0 305 

local_small_cite Number of citations from local small 
companies, excluding self citations 0.46   1.79 0 109 

inventors Number of inventors on the patent  2.55   1.73 1 32 

Pa
te

nt
 le

ve
l 

cross_region 1 if the patent is developed through cross-
regional collaboration, 0 otherwise 0.17   0.38 0 1 

firm_size Natural logarithm of 1 + the total number of 
patents filed by the firm  0.80   0.30 0.69 4.67 

Fi
rm

 
le

ve
l 

loc_similarity Similarity of technology classes across the 
firm’s multiple locations 0.03   0.22 -0.93 0.99 

region_size Natural logarithm of 1 + the total number of 
patents developed in the region  1.41   1.06 0.69 6.33 

connection Percentage of all patents with inventors 
from multiple locations 0.35   0.42 0 1 

conn_bpharma Percentage of cross-regional collaborations 
that are in big pharmas 0.29   0.41 0 1 

big_ratio Percentage of patents granted to large firms  0.16   0.32 0 1 R
eg

io
na

l l
ev

el
 

tech_overlop The degree of technological overlap with 
other regions 0.54 0.13 0 0.65 

tech fixed effect  Dummy variables for the 14 primary patent classes 
year fixed effect Dummy variables for the 30 grant years 

 

Table 2.  Correlation Matrix 

  1 2 3 4 5 6 7 8 9 10 11 12 
1 value 1.00            
2 local_cite 0.58 1.00           
3 local_small_cite 0.55 0.80 1.00          
4 inventors -0.04 0.02 0.03 1.00         
5 cross_region -0.01 0.02 0.06 0.35 1.00        
6 firm_size  0.00 -0.01 -0.06 0.08 -0.12 1.00       
7 loc_similarity 0.05 0.03 0.01 -0.02 0.10 -0.20 1.00      
8 region_size -0.10 0.00 0.02 0.08 -0.13 0.18 -0.19 1.00     
9 connection -0.07 -0.05 0.00 0.05 0.34 -0.03 0.08 -0.31 1.00    
10 conn_bpharma -0.08 0.00 -0.03 0.08 -0.05 0.31 -0.08 0.26 -0.05 1.00   
11 big_ratio  -0.06 0.02 -0.01 0.02 -0.08 0.37 -0.04 0.28 -0.03 0.78 1.00  
12 tech_overlap -0.08   -0.01 0.00 0.07 -0.05 0.02 -0.12 0.16 -0.07 0.06 0.07 1.00 
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Table 3. Regressions on Local Knowledge Spillover 

Dependent Variable: local_ cite and local_small_cite  

Citations from all local inventors 

OLS on log (1+ DV) 

Citations by 
local small   

firms 

Citations 
from multi- 

regions  

(1) (2) 
cluster  only 

(3) (4) 
location FE

(5) 

Negative 
Binomial 

(6) (7) (8) 

cross_region 0.155 ** 
(0.011) 

0.201 ** 

(0.015) 
0.156 ** 

(0.013) 
0.147 ** 

(0.011) 
0.113 ** 

(0.005) 
0.470 ** 

(0.044) 
0.109 ** 
(0.008) 

0.389 ** 
(0.014) 

big_pharma - 0.002 
(0.020)  0.006 

(0.025) 
- 0.007 
(0.020) 

- 0.004 
(0.006) 

- 0.045 
(0.071) 

- 0.016 
(0.013) 

- 0.006 
(0.022) 

cross_region   
× big_pharma 

- 0.080 ** 
(0.017)  - 0.098 ** 

(0.021) 
- 0.073 ** 

(0.017) 
- 0.057 ** 

(0.006) 
- 0.243 ** 

(0.063) 
- 0.058 ** 
(0.011) 

- 0.085 ** 
(0.022) 

inventors 0.024 ** 
(0.003) 

0.024 ** 

(0.003) 
0.023 ** 

(0.001) 
0.024 ** 

(0.003) 
0.028 ** 

(0.001) 
0.065 ** 

(0.010) 
0.011 ** 
(0.002) 

0.037 ** 
(0.004) 

firm_size 0.040 ** 
(0.008) 

0.042 ** 
(0.007) 

0.036 ** 

(0.010)  
0.042 ** 

(0.008) 
0.028 ** 
(0.002) 

0.139 ** 

(0.026) 
- 0.005 
(0.005) 

0.042 ** 
(0.009) 

cross_region    
× firm_size  - 0.034 ** 

(0.006)       

loc_similarity    0.109 ** 

(0.040) 
0.036 ** 
(0.002)    

region_size 0.042 ** 
(0.004) 

0.042 **    
(0.004) 

0.023 
(0.016) 

0.043 ** 
(0.004) 

- 0.059 ** 
(0.005) 

0.133 ** 
(0.013) 

0.028 ** 
(0.002) 

0.044 **  
(0.004) 

constant 0.147 
(0.092) 

0.141  
(0.093) 

0.226 † 

(0.132) 
0.132  

(0.094) 
0.668 **  
(0.136) 

- 1.059 ** 

(0.373) 
0.050 

(0.035) 
- 0.141 
(0.094) 

technology 
dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

year dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

         

Observations  247,127 247,127 157,032 247,127 238,110 247,127 247,127 247,127 

F or χ2 59.89 56.12 47.81 58.92 746.17 4,174.60 37.20 66.28 

Prob >F or χ2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
Numbers in parentheses ( ) are robust standard errors allowing for within-firm correlation except (5). 
 
†   p < 0.10  
*   p < 0.05 
** p < 0.01 
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Table 4. Regressions on the Value of Local Patents 

Dependent Variable: value  

OLS on log (1+ DV) Negative Binomial 

 

(1) (2) (3)  (4) 

small firm 
patents 

(5) (6) (7) 

connection 0.506 ** 
(0.042) 

0.476 ** 

(0.043) 
0.535 ** 

(0.046) 
0.504 ** 

(0.048) 
0.585 ** 

(0.037) 
0.885 ** 

(0.083) 
0.875 ** 

(0.088) 

conn_bpharma - 0.288 ** 
(0.039) 

- 0.463 **

(0.043) 
- 0.291 **

(0.040) 
- 0.460 **

(0.043) 
- 0.456 **

(0.036) 
- 0.361 ** 

(0.052) 
- 0.639 ** 

(0.062) 

inventors 0.007 * 
(0.003) 

0.008 * 

(0.003) 
0.007 * 

(0.003) 
0.007 * 

(0.003) 
- 0.006 † 
(0.003) 

0.024 ** 

(0.006) 
0.025 ** 

(0.006) 

cross_region 0.081 ** 
(0.011) 

0.082 ** 
(0.011) 

0.083 ** 
(0.011) 

0.084 ** 
(0.011) 

0.108 ** 
(0.012) 

0.133 ** 

(0.023) 
0.139 ** 

(0.023) 

firm_size         - 0.026 ** 
(0.007) 

- 0.030 **

(0.007) 
- 0.026 **

(0.007) 
- 0.030 **

(0.007) 
0.064 ** 
(0.014) 

- 0.033 ** 

(0.013) 
- 0.041 ** 

(0.013) 

region_size 0.018 ** 
(0.005) 

0.015 *   
(0.006) 

0.019 **  
(0.004) 

0.015 **  
(0.006) 

0.022 **  
(0.004) 

0.042 ** 

(0.008) 
0.034 ** 

(0.009) 

big_ratio  0.239 ** 
(0.057)  0.230 ** 

(0.058) 
0.317 ** 
(0.043)  0.395 ** 

(0.083) 

tech_overlap   0.140 ** 
(0.044) 

0.129 ** 
(0.044) 

0.176 ** 
(0.032)  0.242 ** 

(0.075) 

constant 1.675 ** 
(0.140) 

1.680 ** 
(0.143) 

1.606 ** 
(0.144) 

1.616 ** 
(0.146) 

1.182 ** 
(0.291) 

1.730 ** 

(0.211) 
1.637 ** 
(0.218) 

technology 
dummies  Yes Yes Yes Yes Yes Yes Yes 

year dummies  Yes Yes Yes Yes Yes Yes Yes 

       

Observations  244,919 244,919 244,919 244,919 91,697 244,919 244,919 

F or χ2 315.26 313.25 308.61 306.97 697.71 16,551.32 16,942.25

Prob >F or χ2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 
Numbers in parentheses ( ) are robust standard errors allowing for within-firm correlation. 

 
†   p < 0.10  
*   p < 0.05 
** p < 0.01 
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Table 5.  Robustness Tests on Local Knowledge Spillover 

Dependent Variable: local_ cite 

Alternative definition of regions 
 State 

(1) 
State 
(2) 

EA 
(3) 

EA 
(4) 

ZINB 
(5) 

Endogenous 
variable 

(6) 

Redefine 
big pharma 

(7) 

Granted < 
1995 
(8) 

cross_region 0.183 ** 
(0.011) 

0.531 ** 

(0.040) 
0.175 ** 

(0.011) 
0.315 ** 

(0.028) 
0.221** 

(0.026) 
1.988 ** 

(0.102) 
0. 153 ** 

(0.010) 
0.242 ** 
(0.018) 

big_pharma 0.002 
(0.021)  - 0.043 

(0.021)  0.004 
(0.054) 

0.512 ** 
(0.034) 

0.085 **  
(0.017) 

0.003 
(0.034) 

cross_region   
× big_pharma 

- 0.096 ** 
(0.017)  - 0.089 ** 

(0.017)  - 0.210 ** 

(0.041) 
- 2.283 ** 
(0.106) 

- 0.087 **   
(0.019) 

- 0.085 * 
(0.034) 

inventors 0.021 ** 
(0.003) 

0.020 ** 

(0.003) 
0.021 ** 

(0.003) 
0.020 ** 

(0.003) 
0.058 ** 

(0.006) 
- 0.014 ** 

(0.005) 
0.024 **   
0.002 

0.022 ** 
(0.004) 

firm_size 0.030 ** 
(0.008) 

0.020 ** 

(0.007) 
0.038 ** 

(0.008) 
0.027 ** 
(0.006) 

0.187 ** 
(0.018) 

- 0.065 ** 

(0.002) 
0.014 **    
(0.005) 

0.064 ** 
(0.018) 

firm_size         
× big_pharma  - 0.065 ** 

(0.007)  - 0.032 ** 

(0.005)     

region_size 0.085 ** 
(0.005) 

0.108 ** 
(0.006) 

0.052 ** 
(0.004) 

0.064 ** 
(0.005) 

0.132 ** 
(0.011) 

0.081 ** 

(0.003) 
0.041 **    
(0.004) 

0.060 ** 
(0.007) 

constant 0.017 
(0.095) 

- 0.078 

(0.098) 
0.141 ** 

(0.097) 
 0.102 
(0.099) 

- 2.417 ** 
(0.619) 

- 0.327 * 

(0.135) 
0.178 †    
(0.095) 

- 0.066 
(0.105) 

technology 
dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

year 
dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

Exposure     total_citation    

Inflate         

year     - 0.171 ** 
(0.019)    

total citation      0.002 * 
(0.001)    

Endogenous  
cross_region=         

f(cluster,      - 0.098 ** 

(0.002)   

firm local 
patents)      -  0.002 ** 

(0.001)   

         

Observations  245,058 245,058 243,167 243,167 159,951 247,127 247,127 91,003 

F or χ2 66.43 60.54 64.19 60.01 2,041.07 37,761.81 64.57 20.00 

Prob >F or χ2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

Numbers in parentheses ( ) are robust standard errors allowing for within-firm correlation except (6). 
†   p < 0.10           *   p < 0.05                  ** p < 0.01 
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Table 6.  Robustness Tests on the Value of Local Patents 

Dependent Variable:  value 

Alternative definition of regions 
 State 

(1) 
State 
(2) 

EA 
(3) 

EA 
(4) 

ZINB 
(5) 

Endogenous 
variable 

(6) 

Granted < 
1995 
(7) 

Granted 
>= 1995 

(8) 

connection 0.557 ** 
(0.048) 

0.565 ** 

(0.051) 
0.601 ** 

(0.049) 
0.574 ** 

(0.052) 
0.843** 

(0.083) 
0.118 ** 
(0.028) 

0.586 ** 
(0.071) 

0.343 **   
(0.041) 

conn_bpharma - 0.474 ** 
(0.042) 

- 0.412 ** 
(0.050) 

- 0.334 ** 
(0.049) 

- 0.432 ** 

(0.049) 
- 0.613 ** 

(0.065) 
- 0.101 ** 
(0.022) 

- 0.302 ** 

(0.049) 
- 0.469 **

(0.052) 

big_ratio  0.005 
(0.056)  0.189 ** 

(0.065) 
0.398 ** 

(0.082)   0.060 
(0.060) 

0.534 ** 
(0.058) 

inventors 0.007 ** 
(0.003) 

0.007 * 

(0.003) 
0.007 * 

(0.003) 
0.007 * 

(0.003) 
0.025 ** 

(0.006) 
 0.007 ** 
(0.001) 

- 0.002 
(0.005) 

0.013 ** 
(0.003) 

cross_region 0.081 ** 
(0.012) 

0.081 ** 

(0.012) 
0.082 ** 

(0.012) 
0.082 ** 

(0.012) 
0.134 ** 
(0.023) 

 0.098 ** 
(0.005) 

0.110 ** 
(0.020) 

0.061 ** 
(0.011) 

firm_size         - 0.030 ** 

(0.007) 
- 0.030 ** 

(0.007) 
- 0.027 ** 

(0.007) 
- 0.030 ** 

(0.007) 
- 0.042 ** 

(0.013) 
- 0.029 ** 

(0.002) 
- 0.051 ** 

(0.010) 
- 0.017 ** 

(0.006) 

region_size 0.046 ** 
(0.006) 

0.047 ** 
(0.007) 

0.026 ** 
(0.006) 

0.022 ** 
(0.007) 

0.034 ** 
(0.009)  - 0.004 

(0.008) 
0.022 ** 
(0.005) 

constant 1.622 ** 
(0.145) 

1.547 **  

(0.148) 
1.649 ** 

(0.140) 
 0.628 ** 
(0.143) 

1.699 ** 
(0.217) 

1.749 ** 
(0.167) 

1.890 ** 
(0.154) 

1.858 ** 
(0.054) 

technology 
dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

year dummies  Yes Yes Yes Yes Yes Yes Yes Yes 

Inflate         

     year      1.590 ** 
(0.178)    

Endogenous           

cross_region = 
f (region_size)      - 0.029 ** 

(0.001)   

conn_bpharma 
= f (big_ratio)      0.769 ** 

(0.001)   

         
Observations  242,744 242,744 240,040 240,040 244,919 247,127 89,159 155,760 
F or χ2 327.28 313.79 321.45 313.30 12,079.03 181,569.99 145.19 248.96 

Prob >F or χ2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
 

Numbers in parentheses ( ) are robust standard errors allowing for within-firm correlation except (6). 
†   p < 0.10           *   p < 0.05                  ** p < 0.01 
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Appendix 1. Top 30 Pharmaceutical Companies in 2004 
 

Rank Company Country Healthcare  
Sales (US$ MN)

Healthcare  
R&D (US$ MN) Employees  

1 Pfizer USA 52,516 7,684 115,000 
2 Johnson & Johnson USA 47,348 5,203 109,900 
3 GlaxoSmithKline UK 37,318 5,204 100,619 
4 Sanofi-Aventis France 31,615 4,927 96,439 
5 Novartis Switzerland 28,247 4,207 81,392 
6 Hoffmann-La Roche Switzerland 25,163 4,098 64,703 
7 Merck & Co. USA 22,939 4,010 62,600 
8 AstraZeneca UK 21,427 3,803 64,200 
9 Abbott Laboratories USA 19,680 1,697 50,600 
10 Bristol-Myers Squibb USA 19,380 2,500 43,000 
11 Wyeth USA 17,358 2,461 51,401 
12 Eli Lilly and Company USA 13,858 2,591 44,500 
13 Bayer Germany 10,554 1,299 113,060 
14 Amgen USA 10,550 2,028 14,400 
15 Boehringer Ingelheim Germany 10,146 1,532 35,529 
16 Baxter International USA 9,509 517 48,000 
17 Takeda Pharmaceutical Co. Japan 9,330 1,285 14,510 
18 Schering-Plough USA 8,272 1,607 30,500 
19 Astellas Pharma Japan 7,904 1,213 15,500 
20 Procter & Gamble USA 7,786  110,000 
21 Schering Germany 5,103 1,143 26,131 
22 Merck KGaA Germany 5,018 611 28,877 
23 Eisai Co. Japan 4,857 744 8,295 
24 Novo Nordisk Denmark 4,847 727 20,285 
25 Teva Pharmaceutical Industries Israel 4,799 338 13,813 
26 Genentech USA 4,621 948 7,646 
27 Sankyo Co. Japan 4,329 822 11,444 
28 Akzo Nobel The Netherlands 4,037 644 61,400 
29 Alcon Switzerland 3,914 390 12,200 
30 Forest Laboratories USA 3,160 294 5,136 
31 Daiichi Pharmaceutical Co. Japan 2,964 546 7,333 
32 Chugai Pharmaceutical Co. Japan 2,833 463 5,327 
33 Taisho Pharmaceutical Japan 2,655 221 5,378 
34 Altana Germany 2,623 506 10,783 
35 Serono Switzerland 2,458 595 4,902 
36 Bausch & Lomb USA 2,232 163 12,400 
37 Mitsubishi Pharma Japan 2,226 480 5,917 
38 Biogen Idec USA 2,210 684 4,266 
39 Genzyme USA 2,201 392 7,100 
40 Solvay Belgium 2,170 366 29,300 
41 UCB Belgium 2,088 404 11,403 
42 Allergan USA 2,046 346 5,030 
43 Kyowa Hakko Kogyo Co. Japan 2,035 230 5,960 
44 Shionogi & Co. Japan 1,862 279 5,522 
45 Ivax USA 1,837 142 10,100 
46 Chiron Corporation USA 1,723 431 5,400 
47 Watson Pharmaceuticals USA 1,641 134 3,851 
48 H. Lundbeck Denmark 1,625 296 5,155 
49 Sumitomo Chemical Co. Japan 1,622 239 20,195 
50 Tanabe Seiyaku Co. Japan 1,509 264 4,517 

 
Source: Top 50 pharmaceutical companies, MedAdNews, September 2005 


