
Web Appendices

A. Proofs of Lemmas

Lemma 1 For all p > p0, G (� ; p) �rst-order stochastically dominates G (� ; p0).

Proof. Recall that

G (q) = (1�mB)GA (q) +mBGB (q)
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Since G (q) is a convex combination of GA (q) and GB (q), it follows that d
dp
G (q) < 0 for

all q 2 (0; 1). This proves the lemma.

Lemma 2 GA (�) is a mean preserving spread of GB (�). And, for all mB < m
0
B, G (� ;mB)

is a mean preserving spread of G (� ;m0
B).

Proof. First, we verify that EGA [QA] = EGB [QB] = p.

By de�nition,

EG [Q] =

Z 1

0

qg (q) dq

where  2 fA;Bg. Changing the integration variable from probability q to signal s, we get
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Z 1

�1
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and g (s) =
�
p�
�
s�1
�

�
+ (1� p)�

�
s
�

��
�

q(s)(1�q(s)) . Hence,

EG [Q] =

Z 1

�1
q (s) g (s)

dq (s)

ds
ds

= p

Z 1

�1
�

�
s� 1
�

�
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= p

This proves that EGA [QA] = EGB [QB] = p. For later use, note that EG(�;mB) [Q] =

EG(�;m0
B)
[Q] = p.

To prove that GA (�) is a mean preserving spread of GB (�) it now su¢ ces to show that, on

the interval (0; 1), GB (�) crosses GA (�) only once and from below. We do this by establishing

that the di¤erence D (q) � GA (q) � GB (q) has two extrema: starting from zero at q = 0,

D (q) �rst reaching a maximum� at which D (q) is strictly positive� and then a minimum�

at which D (q) is strictly negative.

Let

� = ln

�
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q

p

1� p

�
such that
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Relying on the fact that � is a monotone function of q, we now ask when dD
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= 0 :
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Now consider the right-hand side, which we denote by 	, as a function of �.
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Thus, D takes on extrema at values of � that solve
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�A
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�2
B

�
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Therefore, the solutions to � are roots of the function

1

8

�
1

�2A
� 1

�2B

�
+
1

2

�
�2A � �2B

�
�2 � ln �A
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These roots are

� =
�1

2�A�B ln
�B
�A

; � =
1

2�A�B ln
�B
�A

The existence of two distinct roots for � (and hence for q) implies that GA and GB cross

each other exactly once. It remains to verify that GB crosses GA from below and not from

above. Now,

D = GA (q)�GB (q)

= p (GA1 �GB1) + (1� p) (GA0 �GB0)
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At q = qI = 1

1+ 1�p
p
e

1
2�A�B

; GA1 �GB1 = 0 while GA0 �GB0 > 0. Hence, D
�
qI
�
> 0.

At q = qII = 1

1+ 1�p
p
e
� 1
2�A�B

; GA0 �GB0 = 0 while GA1 �GB1 < 0. Hence, D
�
qII
�
< 0.

Now, because qI < qII , this implies that GB crosses GA from below.

This completes the proof that GA (�) is a mean-preserving spread of GB (�).

Finally, to prove that G (�;mB) is a mean preserving spread of G (�;m0
B) for allmB < m

0
B,

it remains to show that G (�;mB) second-order stochastically dominates G (�;m0
B). Or,Z q̂

0

G (q;mB) dq �
Z q̂

0

G (q;m0
B) dq � 0

for all q̂ 2 (0; 1), with strict inequality for some q̂. Now,Z q̂

0

G (q;mB) dq �
Z q̂

0

G (q;m0
B) dq

= (m0
B �mB)

Z q̂

0

(GA (q)�GB (q)) dq � 0

where the weak inequality for all q̂, and the strict inequality for some q̂, follow from the fact

that GB (�) second-order stochastically dominates GA (�).

This completes the proof.

Lemma 3 There exists a unique threshold, qI � 1
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p
e

1
2�
A
�
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< p; where the probability of

type I error is the same for both kinds of candidates.
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p
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Lemma 4 Suppose q > p. Then:

1. The distribution GA1 dominates GB1 in terms of the likelihood ratio.

2. The distribution GA0 dominates GB0 in terms of the likelihood ratio.

Proof. To establish this, it is su¢ cient to show that @
2 ln gA1
@�@q

> 0.

@2 ln gA1
@�@q

=
@2 ln�

�
s(q)�1
�

�
�

q(1�q)

@�@q

=

@2 ln

�
1p
2�
e�

1
2(

s(q)�1
� )

2
�

q(1�q)

�
@�@q

=
2

q
�
ln
�
1�q
q

p
1�p

�
1� q > 0

where the inequality holds since q > p. The proof of part 2 of the Lemma is virtually

identical.

Lemma 5 Suppose q > p. Then:

1. The distribution GA1 dominates GB1 in terms of the hazard rate.

2. The distribution GA0 dominates GB0 in terms of the hazard rate.

Proof. Lemma 4 implies that
gB1 (q

0)

gB1 (q)
<
gA1 (q

0)

gA1 (q)

for all p < q < q0.
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Hence, Z 1

q

gA1 (t)

gA1 (q)
dt >

Z 1

q

gB1 (t)

gB1 (q)

1�GA1 (q)
gA1 (q)

>
1�GB1 (q)
gB1 (q)

or, equivalently,
gA1 (q)

1�GA1 (q)
<

gB1 (q)

1�GB1 (q)
The proof of part 2 of the lemma is virtually identical.

B. Proofs of Propositions

Proposition 1 The optimal threshold, q�, is the unique interior solution to

q� =

�
1� �

�
1�

R 1
q� qdG (q)

��
c�

1� �G
�
q�
��
c+ (1� �) v + k

Proof. Recall that

V
�
q
�
=

�
R 1
q
(qv + (1� q) (�c)) dG (q)� k

1� �
�
1�

R 1
q
qdG (q)

�
=

�v
R 1
q
qdG (q)� �c

�
1�G

�
q
��
+ �c

R 1
q
qdG (q)� k

1� �
�
1�

R 1
q
qdG (q)

�
It is useful to represent this as numerator and denominator components for purposes of

di¤erentiation. Hence, de�ne

N � �
Z 1

q

(qv + (1� q) (�c)) dG (q)� k

and

D � 1� �
 
1�

Z 1

q

qdG (q)

!

Thus, the �rst-order necessary condition for optimality,
@V (q)
@q

= 0; may be expressed as

DN 0 �ND0

D2
= 0

26



Therefore,

@V
�
q
�

@q
=

D
�
��g

�
q
� �
(v + c) q � c

��
�N

�
��qg

�
q
��

D2

= �g
�
q
� �D (v + c) q +Dc+Nq

D2

Hence,

�D (v + c) q +Dc+Nq = 0

and this implies that

q� =
Dc

D (v + c)�N
Substituting for D and N , and simplifying, we get the following implicit characterization of

q� :

q� =

�
1� �

�
1�

R 1
q� qdG (q)

��
c�

1� �
�
1�

R 1
q� qdG (q)

��
(v + c)� �

R 1
q� (qv + (1� q) (�c)) dG (q) + k

=

�
1� �

�
1�

R 1
q� qdG (q)

��
c�

1� �G
�
q�
��
c+ (1� �) v + k

and this yields the expression in Lemma 1.

Having derived the necessary �rst-order condition for an interior solution q� 2 (0; 1), we

now prove its actual existence.

At q� = 0, LHS < RHS. At q� = 1, LHS > RHS. Hence, by continuity and the interme-

diate value theorem, there must be a q� 2 (0; 1) such that LHS = RHS.

Next, we prove uniqueness by showing that there is at most one q� 2 (0; 1) that satis�es

the necessary �rst-order condition.

To see this, �rst notice that we may rewrite the �rst-order condition as follows:

q� (c+ (1� �) v + k) = c� c�
 
1�

Z 1

q�
qdG (q)

!
+ �G

�
q�
�
cq�

Integrating by parts, we obtain

q� (c+ (1� �) v + k) = c� c�
Z 1

q�
G (q) dq
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Adding and subtracting c�
R q�
0
G (q) dq to the right-hand side yields

q� (c+ (1� �) v + k) = c� c�
Z 1

0

G (q) dq + c�

Z q�

0

G (q) dq

Finally, noting that
R 1
0
G (q) dq = 1� p and substituting, we obtain

q� (c+ (1� �) v + k) = c (1� �) + c�
�
p+

Z q�

0

G (q) dq

�
Hence,

q� =
(1� �) c+ c�p

(c+ (1� �) v + k) +
c�

(c+ (1� �) v + k)

Z q�

0

G (q) dq

Note that the right-hand side is monotonically increasing in q� at a speed < 1; for all

q� 2 (0; 1). This implies, however, that the right-hand side can cross the 45-degree line,

which corresponds to the left-hand side, at most once. Hence, there is at most one q� 2 (0; 1)

that satis�es the necessary �rst-order condition.

Finally, we show that at the unique interior q�, the value function reaches a global

maximum. This follows from the observation that limq!1 V
�
q
�
! �1, and that there

exists an " > 0 such that for all 0 < q < ",
@V (q)
@q

> 0. To see that the latter assertion is

indeed true, recall that

V
�
q
�
=
�
R 1
q
(qv + (1� q) (�c)) dG (q)� k

1� �
�
1�

R 1
q
qdG (q)

�
and that

@V
�
q
�

@q
= �g

�
q
� �D (v + c) q +Dc+Nq

D2

where N and D denote the numerator and the denominator of V
�
q
�
, respectively.

Now we rewrite
@V (q)
@q

to get

@V
�
q
�

@q
= �g

�
q
� c

D
+
V
�
q
�
� (v + c)
D

q

!

Written in this form, it is obvious that, for su¢ ciently small q > 0, both factors in the last

expression are strictly positive. This proves the proposition.

Proposition 2 For all q 2 (0; 1) ; there exist parameter values such that q� = q.
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Proof. Fix k = 0. In that case, the employer will always wish to participate by interviewing

candidates rather than eschewing the employment market. When c # 0; the right-hand side

of equation (2) goes to zero; hence, q� # 0. When c ! 1; the right-hand side of equation

(2) goes to 1 as the following argument shows:

lim
c!1

�
1� �

�
1�

R 1
q� qdG (q)

��
c�

1� �G
�
q�
��
c+ (1� �) v

� lim
c!1

�
1� �

�
1�

R 1
q� dG (q)

��
c�

1� �G
�
q�
��
c+ (1� �) v

= lim
c!1

�
1� �G

�
q�
��
c�

1� �G
�
q�
��
c+ (1� �) v

= 1

Hence, limc!1 q
� = 1. Finally, since the right-hand side of equation (2) is continuous in c;

it follows that there exist parameter values such that q� = q for all q 2 (0; 1).

Proposition 3

1. Minorities are overrepresented in the workplace i¤ the employer�s optimal search

strategy leads to lower Type I error for minorities than for majorities, i.e., 0 < q� < qI .

2. Minorities are underrepresented i¤ the employer�s optimal search strategy leads to

higher Type I error for minorities than for majorities, i.e., qI � q� < 1.

Proof. Under a uniform threshold success probability q, rB
mB

= 1 i¤GA1
�
q
�
= GB1

�
q
�
. As

we saw in Lemma 3, this corresponds to q = qI = 1

1+ 1�p
p
e

1
2�A�B

. To prove the proposition, we

show that at the critical point qI , raising q leads to strict underrepresentation of minorities.

That is, we calculate the derivative of

GA1 (q)�GB1 (q) = �
�
sA (q)� 1
�A

�
� �

�
sB (q)� 1
�B

�
with respect to q, evaluate it at qI = 1

1+ 1�p
p
e

1
2�A�B

and show that it is strictly negative.

The derivative is equal to

gA1 (q)� gB1 (q) = �
�
sA (q)� 1
�A

�
�A

q (1� q) � �
�
sB (q)� 1
�B

�
�B

q (1� q)
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Multiplying by q (1� q) and evaluating at qI , we get

= �

 
1
2
�B��A
�B

� 1
�A

!
�A � �

 
�1
2
�B��A
�A

� 1
�B

!
�B

= �

�
�1
2

�B + �A
�A�B

�
�A � �

�
�1
2

�B + �A
�A�B

�
�B

= (�A � �B)�
�
1

2

�B + �A
�A�B

�
< 0

This proves the proposition.

Proposition 4 Suppose that the employer is �selective,� i.e., q� > p; then:

1. As the employer becomes more selective, minority representation in the workplace

decreases. Formally, rB is decreasing in q�.

2. As the employer becomes arbitrarily selective, minorities vanish from the workplace.

Formally, limq�!1 rB = 0.

Proof. To prove part 1, di¤erentiate rB with respect to q:

@rB
@q

=
�mBgB1 (1�mBGB1 �mAGA1)� (�mBgB1 �mAgA1)mB (1�GB1)

(1�mBGB1 �mAGA1)
2

=
mBmA (gA1 (1�GB1)� gB1 (1�GA1))

(1�mBGB1 �mAGA1)
2

Notice that the sign of @rB
@q

depends only on the hazard rates of GA1 and GB1. And by

Lemma 5 it then follows that @rB
@q
< 0.

To prove part 2 of the proposition, notice that (via L�Hôpital�s rule)

lim
q!1

rB = lim
q!1

mB

mB +mA
gA1
gB1

and this limit depends solely on the limit of the likelihood ratio, gA1
gB1
. Finally, it may be

readily shown that:

lim
q!1

gA1
gB1

= lim
q!1

�
�
sA(q)�1
�A

�
�A

�
�
sB(q)�1
�B

�
�B

= lim
q!1

e
1

8�2
A
�2
B
(4�2A�2B ln2(

q
1�q )�1)(�2B��2A)�A

�B
!1
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Hence,

lim
q!1

rB = 0

Proposition 5 Minorities are �red at higher rates than majorities.

Proof. Because hires are �red if and only if they turn out to be incompetent, we have to

prove that

Pr
�
�A = 0 j qA � q

�
=
(1�GA0) (1� p)

1�GA
<
(1�GB0) (1� p)

1�GB
= Pr

�
�B = 0 j qB � q

�
for all q 2 (0; 1).

This is equivalent to showing that

1�GA0
1�GA

<
1�GB0
1�GB

or
1�GB
1�GB0

<
1�GA
1�GA0

Now,

1�GB
1�GB0

<
1�GA
1�GA0

()

1� pGB1 � (1� p)GB0
1�GB0

<
(1� pGA1 � (1� p)GA0)

1�GA0
()

1�GB1
1�GB0

<
1�GA1
1�GA0

Hence, showing that Pr
�
�A = 0 j qA � q

�
< Pr

�
�B = 0 j qB � q

�
is equivalent to showing

that the ratio of good hiring decisions over bad hiring decisions, 1�G1
1�G0 , is greater for kind A

hires than for kind B hires. To prove the latter, we show that

d

d�

"
1�G1

�
q
�

1�G0
�
q
�# < 0

Now, d
d�

�
1�G1(q)
1�G0(q)

�

=
d

d�

24R 1q g1 (q) dqR 1
q
g0 (q) dq

35
=

d

d�

24R 1q �
�
s(q)�1
�

�
�

q(1�q)dqR 1
q
�
�
s(q)

�

�
�

q(1�q)dq
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Using that ds(q)

d�
=

2(s(q)� 1
2)

�
, straightforward algebra leads to the conclusion that the sign

of d
d�

�
1�G1(q)
1�G0(q)

�
is equal to the sign of

Z 1

q

g1 (q) dq

Z 1

q

s (q) (s (q)� 1) g0 (q) dq �
Z 1

q

g0 (q) dq

Z 1

q

s (q) (s (q)� 1) g1 (q) dq

Changing variables of integration from q to s, we getZ 1

s(q)
g1 (s)

@q (s)

@s
ds

Z 1

s(q)
s (s� 1) g0 (s)

@q (s)

@s
ds

�
Z 1

s(q)
g0 (s)

@q (s)

@s
ds

Z 1

s(q)
s (s� 1) g1 (s)

@q (s)

@s
ds

Substituting for g0, g1, and
@q(s)

@s
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s(q)
�
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�

�
ds
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s(q)
s (s� 1)�

�
s

�

�
ds�
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�

�
s

�

�
ds
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s (s� 1)�

�
s� 1
�

�
ds

Expanding s (s� 1),Z 1

s(q)
�

�
s� 1
�

�
ds
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s(q)
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�
s

�

�
ds�
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s(q)
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�
s

�

�
ds

!

�
Z 1

s(q)
�

�
s

�

�
ds

 Z 1

s(q)
s2�

�
s� 1
�

�
ds�

Z 1

s(q)
s�

�
s� 1
�

�
ds

!
Writing in terms of conditional expectations, 

1� �
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�
q
�
� 1
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�
q
�

�

!!�
E
�
S20 j S0 � s

�
q
��
� E

�
S0 j S0 � s

�
q
���
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�
q
�

�
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s
�
q
�
� 1

�

!!�
E
�
S21 j S1 � s

�
q
��
� E

�
S1 j S1 � s

�
q
���

Dividing by the common positive factor
�
1� �

�
s(q)�1
�

���
1� �

�
s(q)
�

��
:

E
�
S20 j S0 � s

�
q
��
�E

�
S0 j S0 � s

�
q
��
�E

�
S21 j S1 � s

�
q
��
�E

�
S1 j S1 � s

�
q
��

Now, the moment generating function, mgf , of a left-truncated standard normal random

variable U with truncation point d is (see, for example, Heckman and Honoré, 1990):

mgf (�) = e
1
2
�2

R1
d��

1p
2�
exp

�
�1
2
u2
�
duR1

d
1p
2�
exp

�
�1
2
u2
�
du
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Hence,

E [U j U � d] = @mgf

@�
j�=0

=
� (d)

1� � (d)

while

E
�
U2 j U � d

�
=

@2mgf

@�2
j�=0

= 1 + d
@mgf

@�
j�=0

= 1 +
d� (d)

1� � (d)

For X � N (�; �2), this implies

E [X j X � d0] = �+
��
�
d0��
�

�
1� �

�
d0��
�

�
E
�
X2 j X � d0

�
= �2 + (�+ d0)

��
�
d0��
�

�
1� �

�
d0��
�

� + �2
Now, recall that S0 � N (0; �) and S1 � N (1; �). Hence,

E
�
S20 j S0 � s

�
q
��
�E

�
S0 j S0 � s

�
q
��
�E

�
S21 j S1 � s

�
q
��
�E

�
S1 j S1 � s

�
q
��

= �2 + s
�
q
� ��

�
s(q)
�

�
1� �

�
s(q)
�

� � ��

�
s(q)
�

�
1� �

�
s(q)
�

�

�

0BB@�2 + �1 + s �q�� ��
�
s(q)�1
�

�
1� �

�
s(q)�1
�

� + 1� 1� ��

�
s(q)�1
�

�
1� �

�
s(q)�1
�

�
1CCA

Dividing by � and collecting terms, we get

�
s
�
q
�
� 1
� �

�
s(q)
�

�
1� �

�
s(q)
�

� � s �q� �

�
s(q)�1
�

�
1� �

�
s(q)�1
�

�
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Hence, the question is whether

(s� 1)
�
�
s
�

�
1� �

�
s
�

� � s �
�
s�1
�

�
1� �

�
s�1
�

� < 0
s� 1
�

�
�
s
�

�
1� �

�
s
�

� � s

�

�
�
s�1
�

�
1� �

�
s�1
�

� < 0
for all s 2 R and � > 0.

Denote hazard rate
�( s� )
1��( s� )

by �
�
s
�

�
. The expression then becomes

(s� 1)�
� s
�

�
� s�

�
s� 1
�

�
Graphically, when s� 1 < 0; [Figure 3 Here]

Hence, for all s� 1 < 0, it is obvious that

(s� 1)�
� s
�

�
� s�

�
s� 1
�

�
< 0

When s� 1 > 0; graphically, [Figure 4 Here].

Here, in principle, it could go either way.

Now, for s� 1 > 0,

(s� 1)�
� s
�

�
� s�

�
s� 1
�

�
= (s� 1)

�
�
� s
�

�
� �

�
s� 1
�

��
� (s� (s� 1))�

�
s� 1
�

�
�

Z �( s� )

�( s�1� )
��1 (l) dl �

Z s

s�1
�
�x
�

�
dx

where the inequality follows from the convexity of �
�
s
�

�
.

Changing the variable of integration in the �rst term from hazard rate l to signal x, the

last expression becomes

=

Z s

s�1
x
@l

@x
dx�

Z s

s�1
�
�x
�

�
dx

=

Z s

s�1

x

�
�0
�x
�

�
dx�

Z s

s�1
�
�x
�

�
dx

=

Z s

s�1

�x
�
�0
�x
�

�
� �

�x
�

��
dx
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Finally, we show that the integrand, which we write as

z�0 (z)� � (z)

is negative for all z � 0.

First, note that

�0
� s
�

�
=

d

d s
�

�
� s
�

�
=
d

d s
�

"
�
�
s
�

�
1� �

�
s
�

�#

=
� s
�
�
�
s
�

� �
1� �

�
s
�

��
+ �2

�
s
�

��
1� �

�
s
�

��2
=

�
�
s
�

�
1� �

�
s
�

�  � � s��� s
�

�
1� �

�
s
�

���
1� �

�
s
�

�� !

=
�
�
s
�

�
1� �

�
s
�

�  �
�
s
�

�
1� �

�
s
�

� � s

�

!
= �

� s
�

��
�
� s
�

�
� s

�

�
Hence, the integrand can be written as

z�0 (z)� � (z)

= z� (z) (� (z)� z)� � (z)

= � (z) (z (� (z)� z)� 1)

Dividing by � (z), The question becomes whether

z (� (z)� z) < 1

for z � 0.

Now, note that �0 (z) < 1 for all z, as the derivative of the hazard rate of the standard

Normal distribution converges to 1 from below when z !1. Hence, it su¢ ces to show that

z (� (z)� z) � � (z) (� (z)� z) = �0 (z)

Now,

z (� (z)� z) � � (z) (� (z)� z)

is equivalent to

0 � (� (x)� x)2

where the last inequality is obviously true.
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C. Proofs of Implications

Implication 1 Reducing the cost of �ring increases workplace diversity.

Proof. We prove the implication by showing that q� is increasing in c. Recall that optimality

of the threshold strategy implies that

(3)
�
V
�
q�
�
� v
�
q� +

�
1� q�

�
c = 0

Implicitly di¤erentiating with respect to c while noting that
@V (q�)
@q� = 0 gives

�
V
�
q�
�
� v
� dq�
dc
+
@V
�
q�
�

@c
q� +

�
1� q�

�
� c

dq�

dc
= 0

Solving for
dq�

dc
:

dq�

dc
=

�
@V (q�)
@c

� 1
�
q� + 1

v + c� V
�
q�
�

It is easily checked that

@V
�
q�
�

@c
=

��
R 1
q� (1� q) dG (q)

1� �
�
1�

R 1
q� qdG (q)

�
Substituting into the expression for

dq�

dc
and simplifying, one obtains

dq�

dc
=

0@ �G
�
q�
�
� 1

1� �
�
1�

R 1
q� qdG (q)

�
1A q� + 1

To establish that the right-hand side of this expression is positive requires that we show

�
1� �G

�
q�
��
q� �

 
1� �

 
1�

Z 1

q�
qdG (q)

!!
< 0

To see this, notice that

�
1� �G

�
q�
��
q� �

 
1� �

 
1�

Z 1

q�
qdG (q)

!!
<

�
1� �G

�
q�
��
q� �

�
1� �

�
1� q�

�
1�G

�
q�
����

= � (1� �)
�
1� q�

�
< 0
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Implication 2 Reducing the cost of interviewing decreases workplace diversity.

Proof. To establish the implication, we show that q� is decreasing in k. Implicitly di¤eren-

tiating equation (3) with respect to k while noting that
@V (q�)
@q� = 0; we obtain

�
V
�
q�
�
� v
� dq�
dk

+
@V
�
q�
�

@k
q� � c

dq�

dk
= 0

Solving for
dq�

dk
;

dq�

dk
=

@V (q�)
@k

q�

v + c� V
�
q�
�

Hence,
dq�

dk
and

@V (q�)
@k

have the same sign, while it is easily checked that
@V (q�)
@k

< 0.

Implication 3 Diversity is procyclical.

Proof. From Implication 1, we already know that q� is increasing in k. It remains to prove

that q� is decreasing in v.

Implicitly di¤erentiating equation (3) with respect to v while noting that
@V (q�)
@q� = 0; we

obtain �
V
�
q�
�
� v
� dq�
dv

+

 
@V
�
q�
�

@v
� 1
!
q� � c

dq�

dv
= 0

Solving for
dq�

dv
:

dq�

dv
=

�
@V (q�)
@v

� 1
�
q�

v + c� V
�
q�
�

It is easily checked that

dV
�
q�
�

dv
=

�
R 1
q� (q) dG (q)

1� �
�
1�

R 1
q� qdG (q)

�
Substituting this back into

dq�

dv
and simplifying; one obtains

dq�

dv
= �

1��
1��

�
1�
R 1
q� qdG(q)

�q�
v + c� V

�
q�
�

< 0
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Implication 4 Riskier �rms are more diverse.

Proof. Implicitly di¤erentiating equation (3) with respect to � while noting that
@V (q�)
@q� = 0;

we obtain �
V
�
q�
�
� v
� dq�
d�
+

 
dV
�
q�
�

d�
� 1
!
q� � c

dq�

d�
= 0

Solving for
dq�

d�
:

dq�

d�
=

�
dV (q�)
d�

� 1
�
q�

v + c� V
�
q�
�

It is easily checked that:

dV
�
q�
�

d�
=
Z (1� �X) +X (�Z � k)

(1� �X)2

where

Z �
Z 1

q

(qv + (1� q) (�c)) dG (q)

X �
 
1�

Z 1

q

qdG (q)

!

To show that
dq�

d�
> 0; it is su¢ cient to show that

dV (q�)
d�

� 1 > 0, or equivalently

Z (1� �X) +X (�Z � k)� (1� �X)2 > 0

To see this, simplify the left-hand side of the above expression and recall that, since the

employer �nds it optimal to search in the �rst place, �Z � k � 0. This yields

Z �Xk + (1�X�)2

� Z �X�Z + (1�X�)2

= (1�X�) (Z + 1�X�)

> 0

where the last inequality follows from the fact that Z > 0 and X, � 2 (0; 1).

Implication 5 The larger the minority, the smaller its degree of underrepresentation.
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Proof. Recall that q� satis�es

q� =

�
1� �

�
1�

R 1
q� qdG (q)

��
c�

1� �G
�
q�
��
c+ (1� �) v + k

=
(1� �) c+ c�

R 1
q� qdG (q)�

1� �G
�
q�
��
c+ (1� �) v + k

=
(1� �) c+ c�

�R 1
q� qdG (q) +

R q�
0
qdG (q)�

R q�
0
qdG (q)

�
�
1� �G

�
q�
��
c+ (1� �) v + k

=
(1� �) c+ c�

�
EG [Q]�

R q�
0
qdG (q)

�
�
1� �G

�
q�
��
c+ (1� �) v + k

=
(1� �) c+ c�

�
EG [Q]�

�
q�G

�
q�
�
�
R q�
0
G (q) dq

��
�
1� �G

�
q�
��
c+ (1� �) v + k

=
(1� �) c+ c�

�
EG [Q]� q�G

�
q�
�
+
R q�
0
G (q) dq

�
�
1� �G

�
q�
��
c+ (1� �) v + k

Therefore,

q�
��
1� �G

�
q�
��
c+ (1� �) v + k

�
= (1� �) c+ c�

�
EG [Q]� q�G

�
q�
�
+

Z q�

0

G (q) dq

�
(c+ (1� �) v + k) q� � c�q�G

�
q�
�
= (1� �) c+ c�EG [Q]� c�q�G

�
q�
�
+ c�

Z q�

0

G (q) dq

(c+ (1� �) v + k) q� = (1� �) c+ c�
�
EG [Q] +

Z q�

0

G (q) dq

�
Now, from Lemma 2, we know that if mB < m

0
B, then G (q;mB) is a mean preserving spread

of G (q;m0
B). Hence, if we go from mB to m0

B, EG [Q] remains unchanged in the RHS of

the last equation but, by de�nition of second-order stochastic dominance,
R q�
0
G (q;mB) >R q�

0
G (q;m0

B). Hence, the LHS also increases. Therefore, it must be that q
� (mB) > q

� (m0
B),

because c; �, v; and k are all constants. We conclude that
@q�

@mB
< 0.

Implication 6 In jobs that require rare skills, minorities will be underrepresented. In jobs

that require common skills, minorities will be overrepresented. Formally, there exist 0 < p0 <

p1 < 1 such that for all p 2 (0; p0) ; rB
mB

< 1, while for all p 2 (p1; 1) ; rB
mB

> 1.
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Proof. First, we establish that limp"1 q
� < 1 and limp#0 q

� > 0. To see this, note that q� is

monotone in p since, by implicitly di¤erentiating equation (3) ;

dq�

dp
=

@V (q�)
@p

q�

v � V
�
q�
�
+ c

> 0

where the inequality follows from the fact that v > V (q�) and, by Lemma 1,
@V (q�)
@p

> 0.

Since q� is bounded and monotone function of p we know that both limits must exist.

To establish that limp"1 q
� < 1; suppose, to the contrary, that limp"1 q

� = 1. Then the

right-hand side of equation (2) becomes:

lim
p"1

�
1� �

�
1�

R 1
1
qdG (q)

��
c

(1� �G (1)) c+ (1� �) v + k

=
(1� �) c

(1� �) c+ (1� �) v + k 6= 1

which is a contradiction.

To establish that limp#0 q
� > 0; recall that q� is implicitly de�ned by equation (2). Taking

limits:

lim
p#0
q� = lim

p#0

�
1� �

�
1�

R 1
q� qdG (q)

��
c�

1� �G
�
q�
��
c+ (1� �) v + k

> lim
p#0

(1� �) c
c+ (1� �) v + k > 0

To complete the proof, it remains to show that qII and qI are monotone in p with limits

limp#0 q
II = 0 and limp#1 q

I = 1. Monotonicity may be readily veri�ed by di¤erentiating the

expressions for qII and qI . Likewise, the limit results are trivial to obtain.
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