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Online Appendix: Estimation of model with AR(1) er-

rors: Not for Publication

To estimate a model with this stochastic process on the outside option, we discretize the

error term into 200 states and solve the dynamic programming problem defined by Equations

6 and 7 for an initial guess of our parameters.40 We then simulate many work histories from

this model, forming an unbiased estimate of the distribution of sequences of days worked at

the beginning of each month. We simulate the model by drawing sequences ε = {ε0, . . . , εt}
and following the optimal policy prescribed the dynamic program. For different sequences of

ε’s we obtain different work histories. Repeating this process many times results in unbiased

estimates of the probabilities of all possible sequences. We then match the model’s predicted

set of probabilities over these sequences against their empirical counterparts.

To address the “incidental parameters” problem of not knowing the first ε, we treat the

the draw on ε at t = 1 as coming from the limiting distribution of Equation 12, given by

F̄ = N(0, 1/(1 − ρ2)). The key assumption here is that the dependence of the error term

at the beginning of next month on the error term at the fifth day of the previous month is

nearly zero, even for high values of ρ.41 As a result, we can treat the error term next month

as drawn from the unconditional distribution of ε.

Denoting a sequence of days worked as A, for each teacher-month sequence, we form a

vector of moment conditions:

E[Pr(Aim;Xm)− P̂ r(Aim;Xm, θ̂)] = 0, (15)

where Pr(Aim,;Xm) is the empirical probability of observing a sequence of days worked

conditioning on Xm, a vector containing the number of holidays and the maximum number

of days in that month an agent could potentially work in that month.42 The moments used

in estimation sum across all months and all teachers to form the unconditional expectation

of observing a sequence of days worked, Pr(A). We form P̂ r(A), the model’s predicted

40The number of states for ε was determined by increasing the number of points in the discretization of the
error term until there was no change in the expected distribution of outcomes. For alternative approaches
to estimating dynamic discrete choice models with serially-correlated errors, see Keane and Wolpin (1994)
and Stinebrickner (2000).

41For example, the dependence of an error term for the first day of next month, 22 periods in the future,
on the error term from the fifth day of the current month is ρ22, or 0.00039 for ρ = 0.7.

42This is necessary since the maximum payoff a teacher could obtain varies across months with the length
of the month and the number of holidays in that month, which count as a day worked in the bonus payoff
function if they fall on a workday.
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counterpart, through Monte Carlo simulation:

P̂ r(A;X, θ̂) =
1

N ·M ·NS

N∑
i=1

M∑
m=1

NS∑
j=1

1(Aijm = A;Xm, θ̂), (16)

where Aijm is the simulated work history associated with teacher i and simulation j, as

derived from a dynamic program constructed in accordance with the parameters θ̂ and

the characteristics of the month m. The number of simulations used to form the expected

probability of observing a sequence of days worked is denoted as NS. In all of our estimations

we use NS = 200, 000. Note that we are also drawing ε1 anew from the distribution F̄ for

every simulated path, where we keep track of the seeding values in the random number

generator, as to ensure that the function value is always the same for a given θ̂. The

unconditional moments are:

E[Pr(A;Xm)− P̂ r(A;Xm, θ̂)] = 0, (17)

The objective function under the method of simulated moments is:

min
θ
g(Xi, θ)

′Ω−1g(Xi, θ), (18)

where g(Xi, θ) is the vector of moments formed by stacking the 2N − 1 moments defined

by Equation 17, and Ω−1 is the standard two-step optimal weighting matrix. For more

details concerning the implementation and asymptotic theory of simulation estimators, see

McFadden (1989) and Pakes and Pollard (1989).

Matching sequences of days worked from the first N days in each month produces 2N −
1 linearly independent moments, where we subtract one to correct for the fact that the

probabilities have to sum to one. In our estimation, we match sequences of length N = 5,

which generates 31 moments. Experimentation with shorter and longer sequences of days

worked did not result in significant changes to the coefficients.43

We also relax the assumption that the outside option is equal across all agents by allowing

43There is also a related econometric problem: the more moments one has to match, the lower the number
of observations corresponding to each sequence. As the number of moments gets large, the number of
teachers who actually followed any specific sequence diminishes towards zero. The number of days we
match reflects a tradeoff in the additional information embodied in a longer sequence of choice behavior
against the empirical imprecision of measuring those moments. This is a conceptually separate problem
from the computational burden of simulating the model probabilities precisely, which also contributes to
noisy estimates. For example, using the first 16 days of the months, where we will start seing some teachers
“in the money,” generates 65,535 moments, which is more than double the number of observations in the
data.
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the outside option, µim, to be drawn anew for all teachers every month from a known

parametric distribution G(µ). When forming moments in the MSM estimator in Equation

18 we need to integrate out this unobserved heterogeneity. The modification to the expected

probability of observing a sequence of days worked for teacher i is then:

P̂ r(Ai;X, θ̂) =
1

M ·NS · U

M∑
m=1

NS∑
i=1

U∑
u=1

1(Aim = A;Xm, θ̂1, uim), (19)

where uim is a draw of the mean level of the outside option from G(θ̂2), the unknown

distribution of heterogeneity in the population. In practice we set U = 200. For clarity,

we have partitioned the set of unknown parameters into θ̂1 = {β, ρ} and θ̂2, the set of

parameters governing the distribution of unobserved heterogeneity. Note that this model is

slightly different than the fixed-effects model considered in the i.i.d. case above, as it allows

the draw of the outside option to vary across both months and agents.

We estimate models with two types of unobserved heterogeneity which differ through

the specification of G(θ̂2). In the first model G(θ̂2) is distributed normally with mean and

variance θ̂ = {µ1, σ
2
1}. In the second model, our preferred specification, we allow for a

mixture of two types, where each type is distributed normally with proportion p and (1− p)
in the population.
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In the Money
Sequence of 

Days Frequency Percent
Number of 

Days Worked
(1) (2) (3) (4) (5)
No 00000 38 .4367816 0
No 01000 1 .0114943 1
No 10000 1 .0114943 1
No 00010 2 .0229885 1
No 00101 1 .0114943 2
No 00110 1 .0114943 2
No 01001 1 .0114943 2
No 00011 3 .0344828 2
No 11000 4 .045977 2
No 10011 1 .0114943 3
No 11010 1 .0114943 3
No 01101 1 .0114943 3
No 01011 1 .0114943 3
No 10101 1 .0114943 3
No 11100 2 .0229885 3
No 10110 2 .0229885 3
No 00111 3 .0344828 3
No 11001 3 .0344828 3
No 10111 2 .0229885 4
No 01111 3 .0344828 4
No 11110 4 .045977 4
No 11111 9 .1034483 5
Yes 00000 20 .019305 0
Yes 10000 2 .0019305 1
Yes 01000 2 .0019305 1
Yes 00010 3 .0028958 1
Yes 00100 7 .0067568 1
Yes 00001 9 .0086873 1
Yes 10010 2 .0019305 2
Yes 10001 2 .0019305 2
Yes 10100 2 .0019305 2
Yes 01010 3 .0028958 2
Yes 01001 4 .003861 2
Yes 00101 5 .0048263 2
Yes 00110 5 .0048263 2
Yes 01100 6 .0057915 2
Yes 11000 9 .0086873 2
Yes 00011 26 .0250965 2
Yes 10110 3 .0028958 3
Yes 10101 4 .003861 3
Yes 01101 5 .0048263 3
Yes 11010 5 .0048263 3
Yes 01110 6 .0057915 3
Yes 10011 8 .007722 3
Yes 01011 14 .0135135 3
Yes 11001 19 .0183398 3
Yes 11100 31 .0299228 3
Yes 00111 48 .046332 3
Yes 10111 23 .0222008 4
Yes 11110 48 .046332 4
Yes 11011 49 .0472973 4
Yes 11101 55 .0530888 4
Yes 01111 74 .0714286 4
Yes 11111 537 .5183398 5

Appendix Table 1:    Empirical Sequences of Days Worked in the Last Five 
Days of a Month 



Sequence Empirical Fitted
(1) (2) (3)

0 0 0 0 0 0.062 0.066
0 0 0 0 1 0.009 0.01
0 0 0 1 0 0.004 0.006
0 0 0 1 1 0.021 0.016
0 0 1 0 0 0.004 0.004
0 0 1 0 1 0.001 0.003
0 0 1 1 0 0.006 0.003
0 0 1 1 1 0.045 0.024
0 1 0 0 0 0.005 0.006
0 1 0 0 1 0.005 0.004
0 1 0 1 0 0.001 0.002
0 1 0 1 1 0.012 0.008
0 1 1 0 0 0.007 0.005
0 1 1 0 1 0.012 0.008
0 1 1 1 0 0.008 0.008
0 1 1 1 1 0.105 0.058
1 0 0 0 0 0.015 0.008
1 0 0 0 1 0.005 0.01
1 0 0 1 0 0.002 0.004
1 0 0 1 1 0.018 0.02
1 0 1 0 0 0.002 0.004
1 0 1 0 1 0.002 0.006
1 0 1 1 0 0.006 0.006
1 0 1 1 1 0.042 0.041
1 1 0 0 0 0.015 0.013
1 1 0 0 1 0.016 0.016
1 1 0 1 0 0.009 0.008
1 1 0 1 1 0.048 0.038
1 1 1 0 0 0.011 0.023
1 1 1 0 1 0.036 0.039
1 1 1 1 0 0.055 0.064

Appendix Table 2:  Fitted Moments



Parameter Appendix Model I Appendix Model II
(1) (2)

 0.043 0.016
(0.002) (0.000)

1 1.236 -1.166
(0.094) (0.011)

1
2 0.143

(0.039)
2 1.870

(0.672)
2

2 2.051
(0.305)

p 0.003
(0.002)

Yesterday Shifter 1.145
(0.017)

Heterogeneity RC None
LLH 9654.887

Bonus 1.371 0.722
(0.436) (0.075)

bonus_cutoff -6.06 -0.058
(3.635) (0.028)

Predicted Days Worked 14.98 17.264
(1.541) (0.360)

Days Worked BONUS=0 2.63 1.992
(0.362) (0.086)

Out of Sample Prediction 19.83 20.566
(1.725) (0.117)

Note:   Both models are estimated using maximum likelihood.

Appendix Table 3:  Alternative Specifications 



Days Worked Bonus Cutoff Bonus Cost
(1) (2) (3) (4)
14 13 25 642
15 21 75 686
16 18 50 698
17 20 75 782
18 19 75 877
19 23 175 967
20 17 75 1051
21 19 100 1134
22 21 200 1515

Appendix Table 4:  Model VI Cost-Minimization Policies
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