
Appendix A. Analytical Derivations 

 

Equation (10): Agency optimization over route density (D) and vehicle size (n) 

Combining (1), (4), and (5), the household’s indirect utility function in (7) is defined by 
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From the agency’s point of view, (A1) can be transformed into a social utility function by 

substituting the various definitions and constraints of the system, namely, (2), (3), (8), and (9). In 

doing so, the revenues ΣijpijMij in the government’s budget constraint (9) cancel those in the 

individual’s budget constraint in the last term of (A1); prices appear only insofar as Mij depends 

on them through the consumer’s demand functions. The resulting social utility function can be 

optimized by setting λ=uX (the first-order condition for X) and then by setting to zero its partial 

derivatives with respect to D, n, V, and either M or p. (Henceforth we omit the ij superscripts for 

simplicity and understand the preceding statement to apply to each i and j.) Here it is convenient 

to use M as the agency’s choice variable; that is, we hold M constant in taking the other three 

derivatives. We consider two of those in this subsection, deferring the third (V) till later. Each is 

a partial derivative, holding the other three variables constant. Thus, in optimizing route density 

and vehicle size, we hold constant M and V, which implies also that occupancy o≡M/V is 

constant. 

Route density affects user waiting and access costs, and vehicle size affects user 

crowding costs and agency operating costs OC. Thus each first-order condition for optimization 

has two terms, and each term involves only the same i and j, so we can continue to omit the ij 

superscripts without ambiguity: 

(A2) 
D
aU

D
wU

D
U

aw ∂
∂

+
∂
∂

=
∂
∂

= ~~~
0  = D

A
f

W aM
D
fwM ρλρλ −

∂
∂

−  

(A3) 
n

OCU
n
cU

n
U

Ic ∂
∂

−
∂
∂

=
∂
∂

= ~~~
0  = 

dn
dKVt

n
lcM l

C λρλ −
∂
∂

−  

 App-1



where wf, aD, and cl are derivatives of the functions defined in (3a), and we have used the 

definitions of ρk from (6b). The partial derivatives on the right-hand sides of (A2) and (A3) can 

be computed using definitions (3) and (8), holding V, M, and o constant. This yields 

, , and dK/dn=kDfDf // −=∂∂ nlnl // −=∂∂ 2. Inserting these and dividing each equation by 

λM yields (10). 

 

Equation (11). Marginal welfare effects of reduction in peak-rail fare 

Partially differentiating (A1) and applying (6b) gives 
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Totally differentiating (A1) shows that when the agency changes peak-rail price pPR, utility 

changes according to 
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From (A2) and (A3), we obtain 
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where ≡dVij
MV ij/dMij is a constant (1/oiCAR) for j=CAR and depends on the transit agency’s 

operating policy for j=B, R. To keep track of its parts, we write the components of (A4a) as 

(A4b) POLLACC
dp

dTAXCROWDWAITACCUSERTIMMMW PR
PRPR +++++=  

where WAITACC includes the terms involving ρW and ρA and POLLACC, the last term in (A4a),  

represents changes in pollution and accident externality costs. 

 We can compute dTAX/dpPR by rearranging (9) with only TAX on the left-hand side, 

differentiating it, and using (2a) and (8) to get 
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where we hold constant τiA and all transit prices other than pPR. It is convenient to write the terms 

in (A5a) as changes in particular financial flows: 

(A5b) VEHSIZEOPCONGOPSUPPLYTRANSITREVFUELREVM
dp

dTAX PR
PR +++−−−= )(  

where the first term is changes in peak-rail revenue from existing passengers; the second is 

changes in fuel tax revenue; the third is changes in transit fare revenue due to mode and time-of-

day shifts; the fourth is changes in transit operating cost related to travel time (divided into two 

parts: changes due to shifts among different modes and times of day with different average 

supply costs, and effects of congestion); and the last is changes in transit operating cost related to 

vehicle size. Note that new revenues reduce the lump-sum TAX that must be levied, whereas new 

costs increase it. 

 Substituting (A5b) into (A4b), we see that the terms MPR cancel, and we can rearrange the 

other parts into a more convenient order for further calculation, as follows: 
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 It is useful to summarize the definitions of elasticities of bus and rail travel 

characteristics, recalling that all are defined so as to be positive: 
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We also define how service frequency and route density change with vehicle miles, and how 

vehicle size and load factors change with occupancy, as follows: 
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 We now proceed to compute key derivatives in (A4a) and (A5a) in terms of  ≡ 

dM

ij
PRM

ij/dpPR. The travel time derivative can be written, using (2a), (3), and (A7b), as 
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where  and . Note that  by our assumption 

that rail speeds are unaffected by road traffic. Similarly, the waiting, access, and crowding 

derivatives in (A4), which apply only for j≠CAR, can be written using (2), (3), and (A7) as 
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 We now examine the terms in (A6) in groups. We begin by using (A8b) and (A8c) to 

compute WAITACC as given in (A4), using (10a) to simplify: 
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where the last equality applies definition (12b). This accounts for all the terms in (11) involving 

MBscale. As for the other terms in the first group in (A6), we note that TRANSITREV, the third 

term in (A5a), accounts for all the terms in (11) involving p. We also see that OPSUPPLY, as 

defined by the first of the two terms involving Kij in (A5a), can be written using (A7b) as 
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where the last equality uses definition (12a). Thus OPSUPPLY accounts for all the terms in (11) 

involving MCsupply. 
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 We now turn to the second group of terms in (A6). The terms USERTIM and OPCONG, 

which are the terms in (A4a) and (A5a) involving dtij/dpPR, can be combined and written, using 

(A8a), as 
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where we have adopted the notational convention that KiCAR=0. Using the fact that , 

the definition o

ij
CARB

ij
B tt α=

ij=Mij/Vij, and definitions (12d), we obtain 
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These terms are components of sums of  as defined in (12c). Next we obtain some other 

components of those same sums. Using the definition of ε

ij
extMC

V and the fact that λ=uX, the change in 

external costs of pollution and accidents is 
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Finally, the fuel tax revenue term in (A5) is 

(A13)  ∑ −=−
I

iCAR
PR

iCARiCAR MoFUELREV )/( τ

Adding equations (A11)-(A13) and applying definitions (12c) yields 
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which accounts for all the terms in (11) involving MCext.  

 Finally, we consider the last group of terms in (A6), involving crowding and the costs 

undertaken to avoid it. Using (A7b), A7d), (A8d), and (10b), these terms add to 
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which accounts for the terms in (11) involving MCocc. We have now accounted for all terms in 

(11), which completes the proof. 

 

Transit agency optimization over vehicle miles of service (V). 

 Now consider what would happen if the agency also optimized with respect to V. Our 

model does  not assume the agency actually does so, but here we use this assumption to derive a 

benchmark case for εV to use in our baseline scenario. This type of benchmark is sometimes 

called a “quasi-first-best” response: responding to changes according to a first-best adjustment 

rule even though some other factor (e.g. a bureaucratic bias toward offering too much service) 

prevents the situation from being truly first-best (Small and Verhoef 2007, p. 142).  

 In our case even this “quasi-first-best” value of εV is only approximate, as we compute it 

under three additional simplifying assumptions: 

• Elasticities of waiting and access times (defined positively) are all equal to a common value 

( ); ζηη ≡= ij
a

ij
w

• The transit agency ignores its own vehicles’ contributions to congestion ( ) and to 

other externalities (z

0=ij
Bt

iB=ziR=0); 

• Dwell time for entering and exiting passengers is negligible (θB=θR=0). 

The first bullet is an assumption common to the simpler models of Mohring effects—for 

example, that of Small (2004). A special case is when average waiting time is half the interval 

between vehicles, and average access time is proportional to the distance between parallel transit 

lines; then ζ=1. 

 Those assumptions enable us to derive a simple condition for maximizing (A1) with 

respect to the agency’s choice variables, for given travel demands {Mij}. In what follows, we 
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suppress superscripts for simplicity. Maximizing with respect to D and n again yields (10). Given 

our first simplifying assumption, we see immediately from (10a) that average waiting cost and 

access cost are equated: 

(A14)  aw AW ρρ =

This result is also in Jansson (1997). Since D=V/f, it can be written as 

(A15)  ζζ αραρ −− ⋅= )/( fVf a
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w
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where we have substituted in the constant-elasticity functions  and a=αζα −= fw w aD-ζ 

describing waiting and access times, respectively. Solving (A15) for f, we see that it is 

proportional to the square root of V. That is, f is adjusted when V changes with elasticity εfV=½. 

Therefore, 

(A16) εfM = εfVεV = ½εV

 We now consider maximizing with respect to V. Given our second assumption, V affects 

(A1) only through the terms involving waiting time w, access a, crowding c, and operator cost 

OC, the latter entering through budget constraint (9). The first-order condition is therefore 
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where the last equality uses the definitions in (6b) and (8) and the result λ=uX. Dividing by λ and 

using (A7), (2a), and (10), this implies 
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Under our second assumption, the right-hand side of (A17) is a constant as far as the agency is 

concerned. On the left-hand side, . Therefore, ζα −= fw w

(A18)  constantMVf =−− 1ζ

Now let M change parametrically, with all the service variables f, n, and V changing in response. 

Differentiating the logarithm of (A18) with respect to log(M) yields 
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(A19) -ζεfM + 1 –εV = 0 

Substituting (A16) into (A19) and solving yields εV=2/(2+ζ). For the common case ζ=1, this 

yields εV=2/3, as in Small (2004) and a special case of Nash (1988). 

 The intuition for this result is somewhat subtle. If ζ is near zero, wait and access costs are 

relatively unaffected by vehicle miles of service, so vehicles are operated only as necessary to 

handle the passenger loads; thus increased passenger loads require a proportional increase in 

vehicle miles, i.e. εV=1. If ζ is large, the operator accounts for the substantial effects on user 

costs by running extra vehicles for passengers’ convenience even when M is small; in that case, 

when M increases, the operator can absorb some of the increase through higher occupancy, 

thereby reaping more of the advantages of scale; this means choosing a smaller value of εV. We 

take ζ=1 as our base case (εV=2/3) and consider sensitivity ζ∈[0,2] by treating εV=1 and εV=½. 
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Appendix B. Assessment of Parameter Values 

Here we describe our methodology for estimating parameter values along with data 

sources; Table 2, which is discussed in the text, summarizes our key estimates. For some 

parameters, breakdowns by mode or time of day are unavailable from statistical sources; in these 

cases we use various estimation procedures or our own judgment. U.K. monetary numbers are 

converted to U.S. dollars using the average 1998–2003 exchange rate of £1.0 = US$1.6.  

 

System operating characteristics. Basic data are compiled from the operating agencies and 

various national statistics.1 For London, we allocate total passenger miles across time of day 

using the observed fraction of passenger trips occurring at peak period, 0.62 for rail and 0.48 for 

bus, and an assumed average trip length in the peak equal to 1.6 times that in the off-peak.2 

Passenger miles per hour are then computed assuming that the peak period covers 6 hours per 

workday (30 hours per week) and the off-peak covers 10 hours every day (70 hours per week). 

We assume peak shares are each 0.05 higher for Washington (which has a high proportion of 

government employment) and 0.05 lower for Los Angeles (which has a smaller discrepancy 

between peak and off-peak vehicles per hour).3 To obtain vehicle miles offered by time period, 

we assume that observed total vehicle miles are allocated across the available 100 weekly hours 

in proportion to passenger miles per hour to the power εV=0.67, our baseline assumption as 

discussed in Appendix A.4

For Washington and Los Angeles, automobile vehicle miles by time of day are from 

David Schrank and Tim Lomax (2003), and occupancy is from the 2001 National Household 

Travel Survey on average occupancy per trip in large metropolitan areas. For London, auto 

                                                      
1 For the United States, see the National Transit Database (FTA 2003), and for the United Kingdom, see Transport 
for London (TfL 2003, Tables 1.1,1.2, 3.6), TfL (2004a, b), and U.K. DfT (2003, Tables 5.3, 5.16). Rail data 
encompass subways and light rail but not commuter rail. 
2 For the entire United Kingdom, commuting trips have length around twice that of trips for education, shopping, or 
other personal business (U.K. DfT 2003, Table 10); however, we expect a smaller discrepancy for transit trips 
because of the high fixed time cost of accessing transit. 
3 The Washington adjustments are in line with unpublished statistics we obtained from transit agency 
representatives; the Los Angeles transit authority has no such data on trips by time of day. 
4 Total vehicle miles for U.S. rail systems were obtained by multiplying vehicle-car miles by average cars per train. 
For peak periods the latter is calculated by the ratio of rail cars to trains; off-peak train length is assumed to be 
slightly lower based on common observation. For London rail, vehicle-miles (i.e. train-miles) is measured directly 
(in train-km) as 65.4 million train-km from London Underground Limitied (LUL 2003), p. 2; the same figure 
appears rounded off as 65 train-km in TfL (2003), Table 1.1. 
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passenger miles by time of day are from TfL (2003, Table 3.6), including car/motorcycle and 

taxi. Auto vehicle-miles are from TfL (2003, Tables 1.2, 31.); to allocate them across time 

periods we use information about person trips by time period and overall average trip distance, 

along with an assumed ratio of peak to off-peak trip distance of 1.3. Auto occupancy for London 

is then calculated as the ratio of passenger-miles to vehicle-miles. 

 

Operating costs and fares. We assume that vehicle capital costs are proportional to capacity n, 

whereas other operating costs are independent of n. Thus in aggregate, vehicle capital costs 

constitute k1tV and other operating costs k2ntV, using (8). Operating costs, aside from vehicle 

capital costs, are taken from the operating statistics of the transit agencies. For rail, we assume 

that 10 percent of these are the fixed cost of maintaining stations (  in (8a)). When expressed 

per vehicle hour of service, we assume that the rest of these costs are 25 percent greater during 

peak than off-peak periods because of difficulties in scheduling labor for split shifts; hence we 

obtain  in (8b). 

iRF

ijk1

As for vehicle capital costs, we estimate them ourselves by annualizing the purchase cost 

of a rail or bus car, assuming lifetimes of 25 and 12 years, respectively, and a real interest rate of 

7 percent.5 (One advantage of this procedure is that we need not rely on agency data for vehicle 

purchase costs, which may be distorted by various financing mechanisms such as tax-free 

bonds.) We allocate vehicle capital costs entirely to the peak period, on the assumption that any 

increase in vehicle miles in that period requires purchasing more vehicles, whereas an increase in 

the off-peak period does not; hence we obtain  and  = 0 in (8b). Vehicle capital costs 

are 27 to 52 percent of other peak variable operating costs. Thus our assumption that they are the 

portion of costs that is proportional to n leads to results consistent with several other studies of 

size-related costs, as reviewed by Small (2004, 156 and note 13).  

PjPj nk2
Ojk2

Fares were obtained by dividing agency passenger fare revenue by passenger mileage (for 

Washington rail, peak fares were higher than off-peak in 2002, but the discrepancy was modest 

and we ignore it). 

  

                                                      
5 We use U.S. nationwide figures for all vehicle prices (from APTA 2002, Table 60) except for Los Angeles rail, for 
which figures were available from www.mta.net/press/pressroom/facts_glance (where necessary, figures are updated 
to 2002 using the CPI for Transportation Equipment). The vehicle lifetimes chosen are common in the transit cost 
literature, and the interest rate is that recommended for cost-benefit analysis by U.S. OMB (1992). 
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Wait costs. Based on evidence summarized in Small and Verhoef (2007, 53), we assume the 

value of in-vehicle time ρT in the U.S. is half the gross wage rate; in the UK we assume the value 

of time is only 40 percent of the gross wage rate, due to higher labor taxes there which reduce the 

net wage rate relative to the gross wage. In both nations we assume the value of waiting time at 

transit stops, ρW, is 1.8ρT, the midpoint of the range suggested by Small and Verhoef. The 

median gross wage rate is measured at $16.93, $14.19, and $18.83 for Washington, Los Angeles, 

and London, respectively, and then expressed per minute.6 We assume that people of different 

wage rates have sorted themselves into different modes and time periods initially, as follows: 

auto and rail travelers each have wages that are 15% above the area’s median gross wage rate for 

peak periods, and 15 percent below for off-peak (since peak travelers are more likely to be 

higher-wage workers); and bus travelers have wage rates that are 80 percent of these amounts. 

We obtain initial wait times and the wait time elasticity as follows. Let H be average 

minutes between transit vehicles at a given stop, or headway (the inverse of frequency). When H 

is small, it is reasonable to assume that travelers arrive randomly at a stop and incur expected 

wait time H/2. When headways are larger, at least some travelers will use transit timetables, 

which, following Peter Tisato (1998), we assume involves three time costs. The first two are 

planning and precautionary time required because the exact vehicle arrival time is uncertain; we 

assume these are 1 and 5 minutes, respectively, and each is valued at rate ρW. The third is the 

expected cost of early arrival at the destination, assuming the traveler chooses a transit vehicle 

arriving prior to the desired time to ensure against late arrival. This is ρEH/2 where ρE is the per 

minute cost of early arrival, assumed conservatively to be 0.2ρW; that is, a minute of early arrival 

is equivalent to 0.2 minutes of extra planning or precautionary time.7 All these costs are therefore 

accounted for by setting wait time per trip, w⋅d, to 6+0.2H/2 for those using a timetable.  

We therefore assume that when H<15, all users arrive randomly, so the average wait time 

per trip is w⋅d=H/2; whereas when H>60, everyone uses a schedule, so w⋅d=6+H/10. In the first 

case, ≡(dw/dH)⋅(H/w)=1, whereas in the latter case, =1/[1+(60/H)]. For simplicity, we ij
wη

ij
wη

                                                      
6 Wages are from U.S. Bureau of Labor Statistics (BLS 2004), TfL (2003, p. 49) and U.K. Office for National 
Statistics (ONS 2004). 
7 Richard Arnott, André de Palma, and Robin Lindsey (1993) and others use the value of ρE/ρT estimated by Small 
(1982) for work trips, which is 0.61. The ratio is likely to be much lower for non-work trips, which less often have a 
fixed schedule. So to be conservative we use half the work-trip value, or ρE=0.305ρT≈0.2ρW. 
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assume that the elasticity (which is what enters our calculations directly) falls gradually as a 

mixture of the elasticities applying to these two regimes:  

(B1) 
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where λ=(H-15)/45. Substituting this value for λ, the middle part of (B1) can be written as 

=(4/3)–(5/3)/[1+(60/H)], from which we can see that  is monotonically declining in H from 

a value of 1.0 at H=15 to 0.5 at H=60.

ij
wη

ij
wη

8 (It then rises gradually for H>60, but this regime is 

inapplicable here because in our simulations, headways never rise above 26 minutes.) 

Ideally we would compute initial headways from data on car-miles, directional route-

miles, and assumed duration of each time period. However some data on route-miles are 

unavailable, and even if they are the resulting average headways are not realistic because 

individual routes are heterogeneous. Therefore we use these data as guidance, but ultimately 

assume initial headways based on our judgment. For the US, we assume rail headways of 5 and 

10 minutes (peak and off-peak), and bus headways of 12 and 25 minutes. For London, we 

assume smaller headways of 3 and 8 minutes for rail, 6 and 15 for bus. 

 

Marginal benefits from scale economies and marginal cost from occupancy. These are easily 

computed from (12b), using above values for parameters Vε , , , , and .  Wρ ijw ij
wη

ijijnk2

 

Marginal congestion costs. For automobiles,  is obtained directly from equation (12d). 

The travel-time functions are assumed to follow the commonly used BPR-type functional form 

(US Bureau of Public Roads, ) in which travel delay (dropping the i superscript for simplicity) is 

proportional to (V/C)

iCAR
congMC

γ where V=VCAR+αBVB is total traffic (in passenger-car equivalents), 

                                                      
8 In the optimal subsidy and 50% subsidy calculations, where we have non-marginal price changes, we also must 
compute wd itself in order to obtain the full prices for use in (14). In this case we integrate (B1) to obtain ln(wd) = 
5.6 + (4/3)lnH – (5/3)ln(H+60). In our calculations, H>15 occurs in only two cases (US off-peak bus), when H≈25. 
At H=25 this formula implies wd=12.03, which suggests that about seven-eighths of travelers arrive randomly (thus 
having wait time H/2=12.5), while one-eighth of them use a schedule (wait time 6+H/10=8.5); thus the penetration 
rate of schedules is less than λ, which is 0.22 at this headway. 
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C=capacity, and γ is an exponent that we take to be 3.7 based on some aggregate relationships 

from the U.S.9 We also assume that bus speed is a fixed proportion of car speed. It is easy to 

show that with these assumptions, marginal delays to cars and buses, respectively, due to an auto 

vehicle-mile are: 

  = γ⋅(average delay/mile)/V CARCARCAR
CAR dVdtt /≡

  = CARBB
CAR dVdtt /≡ ( ) CAR

CAR
CARB ttt /  

Average delay/mile for the U.S. cities is obtained from total person hours of delay from Schrank 

and Lomax (2003), allocating 85 percent of it to the peak period, and dividing by passenger 

miles; this yields an average peak delay (in min/pass-mile) of 0.33 minutes per passenger mile 

for Washington and 0.49 for Los Angeles). Our data provide direct estimates of average traffic 

speeds in Greater London during the peak and daytime off-peak periods; we add 10 percent to 

the latter to account for evenings and nights (bus speeds are 10.3 and 12.3 mph in peak and off-

peak period). Average delay is then inferred assuming a free-flow speed of 30 miles per hour, 

with a result of 1.91 min/mile peak and 1.08 min/mile off-peak. We assume the passenger-car 

equivalent for buses, αB in (12d), is 4.0 for the U.S. cities and 5.0 for London, where buses are 

larger and cars are smaller.10 Based on agency data, we find the ratio of auto to bus speed to be 

2.8 in Washington, 2.7 in Los Angeles, and 1.6 in London. In London, about one-fourth of the 

marginal congestion cost  turns out to be attributed to the effect of congestion on bus 

passengers and operators, despite that only about one-eighth of passengers using roadways do so 

on buses; the difference is due to the considerable adverse effects of congestion on agency costs.  

iCAR
congMC

  

Pollution and accident externalities. We start with nationwide average values from the 

assessment by Parry and Small (2005) of U.S. and U.K. automobile externalities: namely, 2.0 

cents per vehicle mile for local pollution; 6 cents per gallon of gasoline for global warming; and 

3.0 and 2.4 cents per vehicle mile for accidents in the United States and the United Kingdom, 

respectively. To account for greater population exposure in urban areas, we double the local 

                                                      
9 Small (1992, 70–71) found that total delay is well approximated by a power function of traffic volume, with power 
4.1 in Toronto and 3.3 in Boston; we average to set γ=3.7. 
10 U.S. Federal Highway Administration (FHWA 1997, Table V-23) gives the passenger-car equivalent as only 2.0; 
however, this is only for federal urban highways where buses stop very infrequently, and it excludes mileage on city 
and suburban streets. 
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pollution figure for Washington and London, and we triple it for Los Angeles, whose topography 

causes pollutants to disperse especially slowly. We do not adjust external accident costs because 

the evidence suggests that, despite higher traffic densities in urban areas, external accident risks 

are not necessarily higher, given the counteracting effect of slower-moving traffic (Lindberg 

2001, 406–407).  

Also from Parry and Small (2005), we assume fuel taxes of 40 cents per gallon for the 

U.S. cities11 and 280 cents per gallon in London. We use their nationwide average fuel 

efficiencies of 20 and 30 miles per gallon for the off-peak period (on the assumption that most 

travel nationwide is in conditions similar to off-peak travel in these very large metropolitan 

areas) but reduce them by 25 percent in the peak period to adjust for the effect of congestion on 

fuel economy. 

 For bus, accidents costs per vehicle mile are taken to be the same as for auto because 

buses move more slowly and are driven by professionals, offsetting their much greater weight, 

but pollution is taken to be triple that for automobiles.12 Bus global-warming costs are computed 

assuming fuel efficiency of 5 miles per gallon. When expressed per passenger mile, all three of 

these external costs are very small for bus (one cent per passenger-mile), and are taken to be zero 

for rail.  

 Our estimates of external costs omit road wear, which is negligible for autos but perhaps 

not for buses due to their weight and small number of axles over which it is distributed. Still, we 

think these are small enough to ignore. Buses probably cause marginal road damage similar to 

that of lighter single-unit trucks, which has been estimated at around 3 cents per vehicle-mile on 

urban interstate roads (U.S. FHWA 2000, Table 13), an amount that would have negligible effect 

on our results. The costs might be considerably higher on city streets because of their thinner 

pavements, but we would not expect them to dominate the congestion costs and scale economies 

that we find. 

 

Dwell times. For bus, we adopt the midrange values for typical boarding and alighting times 

from Transportation Research Board (TRB 2000, Exhibit 27-9), assuming two doors for 

                                                      
11 The federal tax was 18.4 cents per gallon; state-level taxes in California, the District of Columbia, Virginia, and 
Maryland were approximately 20 cents per gallon (U.S. DOC 2003, Table 730).  
12 These assumptions are consistent with estimates of relative external costs per vehicle mile for heavy trucks and 
autos in U.S. FHWA (1997, Table 13); separate estimates for bus are not available. 
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alighting and boarding. We assume cash payment for the U.S. cities and prepayment (which 

allows rear-door boarding) for London. This yields values of 4.275 seconds for the U.S. cities 

and 3.375 sec for London (for comparison, Kenneth J. Dueker et al. 2004 estimate 5.18 sec in 

Portland). For rail, we use the estimate by Kraus (1991, 256) from observations in Boston, which 

is 1.0/NT sec where NT is the number of cars per train. In each case we divide by trip length to 

specify parameter θij. The marginal cost of increased dwell time is then calculated from (12d), 

using parameters already described. 

 

Generalized price of travel. The components of qij are given by (10c); besides parameter values 

already described, we need the time per mile of transit vehicles tij and access and crowding 

elasticities  and . (This is in fact the only place where we need an empirical estimate of 

.) 

ij
aη

ij
cη

ij
cη

 To calculate tij, we divide total vehicle miles by vehicle hours to give average speeds, 

over the day, of 23 and 11 miles per hour for Washington rail and bus, and 23 and 12 miles per 

hour for Los Angeles rail and bus. For London, we have a direct estimate of average speeds from 

the agency: namely 20 miles per hour for rail, 11 for bus. For all three cities we assume the ratio 

of peak to off-peak speed is 1.0 for rail, while for bus it is the same as that for autos: 

approximately 0.86 for Washington and London, 0.79 for Los Angeles. 

 The access-time elasticity  depends on route density in a manner similar to how the 

wait-time elasticity depends on service frequency. It is one if people live at uniformly distributed 

locations and walk to the nearest transit stop, and smaller if people living farther away choose a 

faster access mode with a fixed cost (e.g., park and ride). The less dense the transit network, the 

more important these other access modes, so the lower the elasticity. We assume other access 

modes have minor importance in London but more in Washington and more still in Los Angeles, 

and so choose  = 0.8, 0.65 and 0.5 for these cities, respectively. 

ij
aη

ij
aη

 There is little empirical basis for gauging , which is positive only for peak service; we 

set it to 1.5 in the baseline, though our results are not sensitive to different assumptions (because 

crowding costs are relatively small).  

ij
cη

  

Own-price travel demand elasticities. Our model calls for elasticities of each mode’s passenger 
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demand with respect to its own generalized price qij, denoted as . However, most empirical 

evidence is based on elasticities with respect to fare p

ij
qη

ij, which we denote as . We first review 

the evidence on , then describe how we convert to . 

ij
pη

ij
pη

ij
qη

 Based on Armando M. Lago, Patrick D. Mayworm, and J. Matthew McEnroe (1981), 

Phil Goodwin (1992), and Richard H. Pratt et al. (2000), we assume that the own-fare demand 

elasticity, averaged over peak and off-peak time periods, is -0.5 for bus and -0.3 for rail,13 and 

that in each case the elasticity in the off-peak period is twice that in the peak. Given that about 70 

percent of passenger mileage occurs during the peak period, the values just stated imply own-

fare elasticities  of approximately -0.40 and -0.8 for peak and off-peak bus, and -0.24 and 

-0.48 for peak and off-peak rail, respectively. To convert these to generalized-price elasticities 

, we assume that the empirical measurement of  incorporates the effects of p

ij
pη

ij
qη

ij
pη

ij on wij in 

(10c), as discussed in the derivation of (14c); that is, we assume  

(B2) ij

ij

ij

ij
ij
qij

ij

PR

ij

ij

ij
ij
p dp

dq
q
p

dp
dq

dq
dM

M
p ηη ==  

where the ratio and the derivative on the right-hand side are both obtained from (10c). Thus we 

simply invert equation (B2) to obtain our estimates of , which we assume to be constants. ij
qη

 

Modal diversion ratios, . Pratt et al. (2000, 12–41 ff.) provide several estimates for U.S. cities 

of the proportion of incremental transit trips that are diverted to or from other modes following a 

change in transit price; typical numbers, averaged across time of day, are about 65 percent and 

80 percent for Atlanta and Los Angeles, respectively. Nearly all of these shifts are to or from 

cars. We assume that Washington is like Atlanta, and that peak values  are 0.05 higher, and 

off-peak values  0.05 lower, than these average values.  

ij
klm

Pj
PCARm

Oj
OCARm

 Now consider the cross-elasticities between bus and rail transit. The few studies available 

typically find them to be about half the direct elasticities in cities with good coverage by both 

                                                      
13 A recent review of mostly U.K. studies by Neil Paulley et al. (2006) produces somewhat larger long-run 
elasticities, which they suggest is because elasticities have risen in magnitude and are higher in the United Kingdom 
than in other nations. Many of the studies relied upon by Paulley et al. are unpublished, and we do not feel the 
evidence is strong enough to apply these higher elasticities to our U.K. simulations. 

 App-16



bus and rail transit systems, such as London and Chicago (Christopher L. Gilbert and Hossein 

Jalilian 1991, Table 3b; Antti Talvitie 1973). Assuming equal travel volume by mode, this would 

imply  for i=P,O. However, we expect the substitutability between modes to 

decrease as one expands beyond the city to the metropolitan area, and to decrease more for cities 

with less and less well developed rail networks. We also expect them to have declined 

considerably from the 1970s or 1980s to the year 2000 because of increasing competition from 

the automobile. Finally, in the newer U.S. transit systems the bus lines are typically reconfigured 

to serve as feeders to the rail system, with competitive routes discontinued. Therefore, we 

assume the cross-mode diversion ratios to be just 10 percent for Washington (

and 5 percent for Los Angeles ( ). 

5.0≈= iR
iB

iB
iR mm

)1.0== iR
iB

iB
iR mm  

05.0== iR
iB

iB
iR mm

 For London, we expect less diversion to automobile and more to the other transit mode 

because of the smaller initial share of automobiles and travelers’ more extensive transit choices. 

We therefore set London’s diversion ratios to be like those for Washington, except 0.20 smaller 

for auto in the same time period, and 0.20 larger for other transit in the same time period. 

 Little information is available about shifts of transit riders across time periods. We 

assume that in each case, 10 percent of the change in transit ridership represents such shifts, and 

that the shifts occur entirely to the same transit mode. 

 Those assumptions lead to the values shown in Table 2. The fraction of extra transit trips 

from increased travel demand is a residual, equal to between zero and 20 percent. The review by 

Pratt et al. (2000) suggests that 10 percent and 26 percent of new transit trips in Los Angeles and 

Atlanta, respectively, represented some combination of changes in walking, trip frequency, and 

destination during the 1990s. Given the likely further decline in this fraction due to metropolitan 

decentralization, this evidence is roughly consistent with our assumed values. 
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